JP2008204799A - Activation method of solid-state polymer type fuel cell - Google Patents

Activation method of solid-state polymer type fuel cell Download PDF

Info

Publication number
JP2008204799A
JP2008204799A JP2007039467A JP2007039467A JP2008204799A JP 2008204799 A JP2008204799 A JP 2008204799A JP 2007039467 A JP2007039467 A JP 2007039467A JP 2007039467 A JP2007039467 A JP 2007039467A JP 2008204799 A JP2008204799 A JP 2008204799A
Authority
JP
Japan
Prior art keywords
fuel cell
voltage
anode
cathode
polymer electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007039467A
Other languages
Japanese (ja)
Inventor
Souzaburo Ohashi
聡三郎 大橋
Hiroaki Takahashi
宏明 高橋
Yosuke Horiuchi
洋輔 堀内
Tatsuya Hatanaka
達也 畑中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2007039467A priority Critical patent/JP2008204799A/en
Publication of JP2008204799A publication Critical patent/JP2008204799A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve a battery performance by changing electrodes of a fuel cell into an active and optimal status. <P>SOLUTION: The activation method of a solid-state polymer type fuel cell including an anode, a cathode, and a polymer electrolyte membrane arranged between the anode and the cathode, wherein at least one side of the anode and the cathode contains a carbon material of a Lc value of five or more comprises: the process of assembling the solid-state polymer type fuel cell; and the process of impressing a voltage of 1.0-1.5 V between the anode and the cathode after the assembly. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、固体高分子型燃料電池の活性化方法に関する。   The present invention relates to a method for activating a polymer electrolyte fuel cell.

高分子電解質膜を有する固体高分子型燃料電池は、小型軽量化が容易であることから、電気自動車等の移動車両や、小型コジェネレーションシステムの電源等としての実用化が期待されている。   Since a polymer electrolyte fuel cell having a polymer electrolyte membrane is easily reduced in size and weight, it is expected to be put to practical use as a mobile vehicle such as an electric vehicle or a power source for a small cogeneration system.

固体高分子型燃料電池のアノード及びカソードの各触媒層内における電極反応は、各反応ガスと、触媒と、含フッ素イオン交換樹脂(電解質)とが同時に存在する三相界面(以下、反応サイトという)において進行する。そのため、固体高分子型燃料電池においては、従来より、比表面積の大きなカーボンブラック担体に白金等の触媒金属を担持した金属担持カーボン等の触媒を高分子電解質膜と同種或いは異種の含フッ素イオン交換樹脂で被覆して触媒層の構成材料として使用される。   The electrode reaction in each catalyst layer of the anode and cathode of the polymer electrolyte fuel cell is a three-phase interface (hereinafter referred to as reaction site) in which each reaction gas, catalyst, and fluorine-containing ion exchange resin (electrolyte) are present simultaneously. ). Therefore, in polymer electrolyte fuel cells, conventionally, a catalyst such as metal-supported carbon in which a catalyst metal such as platinum is supported on a carbon black carrier having a large specific surface area is used in the same or different type of fluorine-containing ion exchange as the polymer electrolyte membrane. It is coated with resin and used as a constituent material of the catalyst layer.

ところで、燃料電池の発電性能をより一層向上することが求められている。燃料電池の発電性能の向上には、電極のプロトン伝導性抵抗の改善と導電性抵抗の改善が必要であり、本発明者らの考察によれば、これらプロトン伝導性抵抗及び導電性抵抗には下記(1)〜(3)のような抵抗が存在する。
(1)電極触媒間の距離が及ぼす電子伝導性抵抗
(2)電極触媒構造の電解質が及ぼすプロトン伝導性抵抗
(3)電極触媒間の電解質の厚さが及ぼすプロトン伝導性抵抗
Incidentally, there is a demand for further improving the power generation performance of fuel cells. In order to improve the power generation performance of the fuel cell, it is necessary to improve the proton conductivity resistance and the conductivity resistance of the electrode. According to the considerations of the present inventors, these proton conductivity resistance and conductivity resistance include The following resistances (1) to (3) exist.
(1) Electron conductivity resistance affected by the distance between electrode catalysts (2) Proton conductivity resistance influenced by electrolyte of electrode catalyst structure (3) Proton conductivity resistance influenced by electrolyte thickness between electrode catalysts

他方、下記特許文献1においては、ダイレクトメタノール型燃料電池の一般的なエージング方法が開示されている。具体的には、ダイレクトメタノール型燃料電池等のエージングを要する燃料電池のアノード電極にメタノール水溶液等のアノード媒質を供給し、カソード電極に空気等のカソード媒質を供給して、両電極間に燃料電池の発電時における通電と同じ方向へ強制通電を行って燃料電池のエージングをしている。   On the other hand, the following Patent Document 1 discloses a general aging method for a direct methanol fuel cell. Specifically, an anode medium such as a methanol aqueous solution is supplied to the anode electrode of a fuel cell requiring aging such as a direct methanol fuel cell, and a cathode medium such as air is supplied to the cathode electrode, and the fuel cell is interposed between the two electrodes. The fuel cell is aged by forcibly energizing in the same direction as the energization during power generation.

特開2006−40869号公報JP 2006-40869 A

しかし、特許文献1の発明は、ダイレクトメタノール型燃料電池のセル組み立て直後の発電特性が低く不安定であることに対処する初期慣らし運転の短縮に関するもので、その通電方向も燃料電池の発電時における通電と同じ方向であり、触媒層の微細構造に関わる活性化方法ではない。   However, the invention of Patent Document 1 relates to the shortening of the initial running-in operation to cope with the low and unstable power generation characteristics of the direct methanol fuel cell immediately after cell assembly. This is the same direction as the energization and is not an activation method related to the fine structure of the catalyst layer.

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、燃料電池の電極を活性化及び最適化状態にすることで電池性能を向上させることを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and an object thereof is to improve battery performance by activating and optimizing the electrodes of a fuel cell.

本発明者は、組み立て後の燃料電池に対して特定の活性化処理を行なうことによって、触媒効率を向上させることが可能であることを見出し本発明に至った。   The present inventor has found that the catalyst efficiency can be improved by performing a specific activation treatment on the assembled fuel cell, and has reached the present invention.

即ち、本発明は、固体高分子型燃料電池の活性化方法の発明である。即ち、アノードと、カソードと、該アノードと該カソードとの間に配置された高分子電解質膜とを有し、該アノードと該カソードの少なくとも一方がLc値5以上の炭素材料を含有する固体高分子型燃料電池の活性化方法であって、該固体高分子型燃料電池を組み立てる工程と、組み立て後に該アノードと該カソードとの間に1.0〜1.5Vの電圧を印加する工程と、を有することを特徴とする。   That is, the present invention is an invention of a method for activating a polymer electrolyte fuel cell. In other words, the solid high-layer material has an anode, a cathode, and a polymer electrolyte membrane disposed between the anode and the cathode, and at least one of the anode and the cathode contains a carbon material having an Lc value of 5 or more. A method for activating a molecular fuel cell, the step of assembling the polymer electrolyte fuel cell, and the step of applying a voltage of 1.0 to 1.5 V between the anode and the cathode after assembly, It is characterized by having.

印加電圧が1.5Vを越えると発電性能が向上せず、印加電圧が1.0V未満であると電極抵抗を低減できない。このように、本発明では、組み立て後に該アノードと該カソードとの間に1.0〜1.5Vの電圧を印加するが、印加電圧が1.0〜1.2Vであることがより好ましい。   If the applied voltage exceeds 1.5V, the power generation performance is not improved, and if the applied voltage is less than 1.0V, the electrode resistance cannot be reduced. Thus, in the present invention, a voltage of 1.0 to 1.5 V is applied between the anode and the cathode after assembly, and the applied voltage is more preferably 1.0 to 1.2 V.

本発明では、電圧を印加する手段として各種パターンが採用できる。具体的には、定電圧で保持する手段(定電圧法)、電圧を段階的に昇圧又は降圧する手段(ステップ法)、一定の電圧幅のサイクルを加える手段(サイクル法)、及びこれらいずれか2手段以上を組み合わせた手段から選択されることが好ましい。   In the present invention, various patterns can be adopted as means for applying a voltage. Specifically, means for holding at a constant voltage (constant voltage method), means for stepping up or down the voltage stepwise (step method), means for adding a cycle of a constant voltage width (cycle method), and any of these It is preferable to select from means combining two or more means.

本発明の活性化は、燃料電池の開回路電圧が0.15V以下の状態の際に電圧の印加を行なうことが好ましい。これにより、固体高分子型燃料電池が比較的未活性の時に活性化が行われるので効果的である。   In the activation of the present invention, it is preferable to apply a voltage when the open circuit voltage of the fuel cell is 0.15 V or less. This is effective because activation is performed when the polymer electrolyte fuel cell is relatively inactive.

電圧の印加は、燃料電池の発電時における電流方向と同じ電流方向であっても、燃料電池の発電時における電流方向と逆の電流方向であっても良い。この点、燃料電池の発電時における電流方向と同じ電流方向に限られる従来のエージングと異なる。即ち、本発明の活性化は、燃料電池用電極触媒のカーボン担体と高分子電解質量の構造に関するものであり、従来のエージングが初期慣らし運転であることとは技術的意味が全く相違する。   The voltage may be applied in the same current direction as the current direction during power generation of the fuel cell, or in the current direction opposite to the current direction during power generation of the fuel cell. This is different from conventional aging, which is limited to the same current direction as that during power generation of the fuel cell. That is, the activation of the present invention relates to the structure of the carbon support of the fuel cell electrode catalyst and the polymer electrolysis mass, and the technical meaning is completely different from the conventional aging operation in the initial break-in operation.

固体高分子型燃料電池の組み立て後に、アノードとカソードとの間に1.0〜1.5V、好ましくは1.0〜1.2Vの電圧を印加することによって、結晶性の高いカーボンを担体とする触媒層を活性化し、上記各抵抗を低減させて、触媒層中に反応ガス、触媒、電解質が会合する三相界面を十分に確保し、触媒効率を向上させることが可能となる。これにより、電極反応を効率的に進行させ、燃料電池の発電効率を向上させることができる。   After assembling the polymer electrolyte fuel cell, a high crystallinity carbon is used as a carrier by applying a voltage of 1.0 to 1.5 V, preferably 1.0 to 1.2 V, between the anode and the cathode. It is possible to activate the catalyst layer to reduce each of the above resistances, to ensure a sufficient three-phase interface where the reaction gas, catalyst, and electrolyte meet in the catalyst layer, thereby improving the catalyst efficiency. Thereby, an electrode reaction can be advanced efficiently and the power generation efficiency of a fuel cell can be improved.

本発明の固体高分子型燃料電池の触媒層で担体に担持される触媒金属として、例えば以下の物質が利用可能である。アノードの触媒としては、白金、ロジウム、パラジウム、イリジウム、オスミウム、ルテニウム、レニウム、金、銀、ニッケル、コバルト、リチウム、ランタン、ストロンチウム、イットリウムなどが例示され、これらを単独または二種類以上組み合わせて用いることができる。一方、カソードの触媒としては、アノードの触媒と同様のものが用いることができ、上記例示物質を使用することができる。なお、アノードおよびカソードの触媒は同じものを用いても異なるものを用いてもよい。   For example, the following materials can be used as the catalyst metal supported on the carrier in the catalyst layer of the polymer electrolyte fuel cell of the present invention. Examples of the catalyst for the anode include platinum, rhodium, palladium, iridium, osmium, ruthenium, rhenium, gold, silver, nickel, cobalt, lithium, lanthanum, strontium, yttrium, etc. These are used alone or in combination of two or more. be able to. On the other hand, the same catalyst as the anode catalyst can be used as the cathode catalyst, and the above exemplified substances can be used. The anode and cathode catalysts may be the same or different.

本発明の触媒層を備えた固体高分子型燃料電池で用いられる高分子電解質は、触媒電極の表面において、触媒金属を担持したカーボンナノホーン集合体と固体電解質膜を電気的に接続するとともに、触媒金属の表面に燃料を到達させる役割を有しており、水素イオン伝導性が要求される。さらに、アノードにメタノール等の有機液体燃料が供給される場合、燃料透過性が求められ、カソードにおいては酸素透過性が求められる。高分子電解質としてはこうした要求を満たすために、水素イオン伝導性や、メタノール等の有機液体燃料透過性に優れる材料が好ましく用いられる。具体的には、スルホン基、リン酸基などの強酸基や、カルボキシル基などの弱酸基などの極性基を有する有機高分子が好ましく用いられる。こうした有機高分子として、スルホン基含有パーフルオロカーボン(ナフィオン(デュポン社製)、アシプレックス(旭化成社製)など)、カルボキシル基含有パーフルオロカーボン(フレミオンS膜(旭硝子社製)など)、ポリスチレンスルホン酸共重合体、ポリビニルスルホン酸共重合体、架橋アルキルスルホン酸誘導体、フッ素樹脂骨格およびスルホン酸からなるフッ素含有高分子などの共重合体、アクリルアミド−2−メチルプロパンスルフォン酸のようなアクリルアミド類とn−ブチルメタクリレートのようなアクリレート類とを共重合させて得られる共重合体などが例示される。   The polymer electrolyte used in the solid polymer fuel cell having the catalyst layer of the present invention electrically connects the carbon nanohorn aggregate carrying the catalyst metal and the solid electrolyte membrane on the surface of the catalyst electrode, It has the role of allowing the fuel to reach the metal surface, and hydrogen ion conductivity is required. Further, when an organic liquid fuel such as methanol is supplied to the anode, fuel permeability is required, and oxygen permeability is required at the cathode. In order to satisfy these requirements, a polymer electrolyte that is excellent in hydrogen ion conductivity and organic liquid fuel permeability such as methanol is preferably used as the polymer electrolyte. Specifically, an organic polymer having a polar group such as a strong acid group such as a sulfone group or a phosphoric acid group or a weak acid group such as a carboxyl group is preferably used. Examples of such organic polymers include sulfone group-containing perfluorocarbons (Nafion (manufactured by DuPont), Aciplex (manufactured by Asahi Kasei), etc.), carboxyl group-containing perfluorocarbons (such as Flemion S membrane (manufactured by Asahi Glass)), polystyrene sulfonic acid Polymers, polyvinyl sulfonic acid copolymers, cross-linked alkyl sulfonic acid derivatives, copolymers such as fluorine-containing polymers composed of a fluororesin skeleton and sulfonic acid, acrylamides such as acrylamide-2-methylpropane sulfonic acid and n- Examples thereof include copolymers obtained by copolymerizing acrylates such as butyl methacrylate.

更に、高分子電解質として、上記強酸基や弱酸基などの極性基を有する有機高分子を用いることができる。極性基の結合する対象の高分子としては他に、ポリベンズイミダゾール誘導体、ポリベンズオキサゾール誘導体、ポリエチレンイミン架橋体、ポリサイラミン誘導体、ポリジエチルアミノエチルポリスチレン等のアミン置換ポリスチレン、ジエチルアミノエチルポリメタクリレート等の窒素置換ポリアクリレート等の窒素または水酸基を有する樹脂、シラノール含有ポリシロキサン、ヒドロキシエチルポリメチルアクリレートに代表される水酸基含有ポリアクリル樹脂、パラヒドロキシポリスチレンに代表される水酸基含有ポリスチレン樹脂などを用いることもできる。   Furthermore, as the polymer electrolyte, an organic polymer having a polar group such as a strong acid group or a weak acid group can be used. Other polymers to which polar groups are attached include polybenzimidazole derivatives, polybenzoxazole derivatives, polyethyleneimine cross-linked products, polysilamine derivatives, amine-substituted polystyrenes such as polydiethylaminoethylpolystyrene, and nitrogen substitutions such as diethylaminoethylpolymethacrylate. Nitrogen or hydroxyl group-containing resins such as polyacrylate, silanol-containing polysiloxane, hydroxyl group-containing polyacrylic resin typified by hydroxyethyl polymethyl acrylate, hydroxyl group-containing polystyrene resin typified by parahydroxypolystyrene, and the like can also be used.

また、上記の高分子に対して、適宜、架橋性の置換基、例えば、ビニル基、エポキシ基、アクリル基、メタクリル基、シンナモイル基、メチロール基、アジド基、ナフトキノンジアジド基を導入してもよい。   In addition, a crosslinkable substituent such as a vinyl group, an epoxy group, an acrylic group, a methacryl group, a cinnamoyl group, a methylol group, an azide group, or a naphthoquinonediazide group may be appropriately introduced into the polymer. .

燃料極および酸化剤極における上記の高分子電解質は、同一のものであっても異なるものであってもよい。   The polymer electrolytes in the fuel electrode and the oxidant electrode may be the same or different.

以下、実施例と比較例を示して、本発明を説明する。
[実施例1]
市販カーボンブラックであるKetjenEC(商標名)にPtを50%担持した触媒をナフィオン(商標名)溶液と有機溶媒と導電性材料の混合溶液に分散させ、この分散液を塗布して電極を得た。電極面積1cm当りのPt触媒の量が0.3mg/cmとなるようにした。
Hereinafter, the present invention will be described with reference to examples and comparative examples.
[Example 1]
A catalyst in which 50% Pt was supported on KetjenEC (trade name), a commercially available carbon black, was dispersed in a mixed solution of Nafion (trade name) solution, an organic solvent and a conductive material, and this dispersion was applied to obtain an electrode. . The amount of Pt catalyst per 1 cm 2 of electrode area was set to 0.3 mg / cm 2 .

この電極の両側に拡散層を設置して単セル電極を形成した。この単セルのカソード側の電極に、70℃に加熱したハブラを通過させた加湿空気を1L/min.、アノード側の電極に85℃に加熱したバブラを通過させた加湿水素を0.5L/min.供給し、初期電流電圧特性(活性化処理前)を測定した。活性化前の初期電流電圧特性の測定後、カソード側の電極に70℃に加熱したバブラを通過させた加湿窒素を1L/min.、アノード側の電極に85℃に加熱したバブラを通過させた加湿水素を0.5L/min.供給し、開回路電位が0.1V以下になるまで保持した。   A single cell electrode was formed by installing diffusion layers on both sides of the electrode. The electrode on the cathode side of this single cell was supplied with 1 L / min. Of humidified air passed through a hubra heated to 70 ° C. Then, humidified hydrogen passed through a bubbler heated to 85 ° C. to the anode side electrode was added at 0.5 L / min. The initial current-voltage characteristics (before activation treatment) were measured. After measurement of the initial current-voltage characteristics before activation, humidified nitrogen that was passed through a bubbler heated to 70 ° C. on the cathode side electrode was supplied at 1 L / min. Then, humidified hydrogen passed through a bubbler heated to 85 ° C. to the anode side electrode was added at 0.5 L / min. And held until the open circuit potential was 0.1 V or less.

その後、サイクルの最小電圧値0V、最大電圧値を1.0V、電圧変位速度50mV/Sでサイクル印加して、活性化処理を行い、初期電流電圧特性(活性化処理後)を測定した。   Thereafter, the cycle was applied with a minimum voltage value of 0 V, a maximum voltage value of 1.0 V, and a voltage displacement rate of 50 mV / S, an activation process was performed, and initial current-voltage characteristics (after the activation process) were measured.

なお、担体の物性(Lc値:カーボンブラックの結晶性を表す指標のひとつ〕はXRDで測定し、5以下であることを確認した。具体的には、2θが24°のピークとそのピークの半価幅からLcを算出した。   The physical properties of the carrier (Lc value: one of the indexes representing the crystallinity of carbon black) were measured by XRD and confirmed to be 5 or less. Specifically, the peak of 2θ was 24 ° and the peak Lc was calculated from the half width.

[比較例1]
実施例1において、活性化処理を行なわなかった。実施例1と同様に活性化処理前の初期電流電圧特性を測定した。
[Comparative Example 1]
In Example 1, no activation treatment was performed. Similar to Example 1, the initial current-voltage characteristics before the activation treatment were measured.

[実施例2]
実施例1において、活性化処理において印加する最大電圧を1.2Vとした。実施例1と同様に活性化処理前の初期電流電圧特性を測定し、活性化処理後の初期電流電圧特性を測定した。
[Example 2]
In Example 1, the maximum voltage applied in the activation process was 1.2V. Similarly to Example 1, the initial current-voltage characteristics before the activation treatment were measured, and the initial current-voltage characteristics after the activation treatment were measured.

[実施例3]
実施例1において、活性化処理を、印加する最大電圧を1.2Vとし、0.005V⇒100mV⇒500mV⇒1.2Vにステップで昇圧印加して行なった。各電位での保持時間は1minであった。実施例1と同様に活性化処理前の初期電流電圧特性を測定し、活性化処理後の初期電流電圧特性を測定した。
[Example 3]
In Example 1, the activation process was performed by setting the maximum voltage to be applied to 1.2 V and stepping up the voltage from 0.005 V → 100 mV → 500 mV → 1.2 V in steps. The holding time at each potential was 1 min. Similarly to Example 1, the initial current-voltage characteristics before the activation treatment were measured, and the initial current-voltage characteristics after the activation treatment were measured.

[実施例4]
実施例1において、活性化処理を、印加する最大電圧を1.2Vとし、1.2Vで6min保持した。実施例1と同様に活性化処理前の初期電流電圧特性を測定し、活性化処理後の初期電流電圧特性を測定した。
[Example 4]
In Example 1, the activation process was performed by setting the maximum voltage to be applied to 1.2 V and holding at 1.2 V for 6 minutes. Similarly to Example 1, the initial current-voltage characteristics before the activation treatment were measured, and the initial current-voltage characteristics after the activation treatment were measured.

[実施例5]
実施例1において、印加する最大電圧を1.3Vとして活性化処理を行った。実施例1と同様に活性化処理前の初期電流電圧特性を測定し、活性化処理後の初期電流電圧特性を測定した。
[Example 5]
In Example 1, the activation process was performed with the applied maximum voltage being 1.3V. Similarly to Example 1, the initial current-voltage characteristics before the activation treatment were measured, and the initial current-voltage characteristics after the activation treatment were measured.

[実施例6]
実施例1において、印加する最大電圧を1.5Vとして活性化処理を行った。実施例1と同様に活性化処理前の初期電流電圧特性を測定し、活性化処理後の初期電流電圧特性を測定した。
[Example 6]
In Example 1, the activation process was performed by setting the maximum voltage to be applied to 1.5V. Similarly to Example 1, the initial current-voltage characteristics before the activation treatment were measured, and the initial current-voltage characteristics after the activation treatment were measured.

[比較例2]
実施例1において、印加する最大電圧を2.0Vとして活性化処理を行った。実施例1と同様に活性化処理前の初期電流電圧特性を測定し、活性化処理後の初期電流電圧特性を測定した。
[Comparative Example 2]
In Example 1, the activation process was performed with the maximum voltage to be applied set to 2.0V. Similarly to Example 1, the initial current-voltage characteristics before the activation treatment were measured, and the initial current-voltage characteristics after the activation treatment were measured.

[比較例3]
実施例1において、印加する最大電圧を3.0Vとして活性化処理を行った。実施例1と同様に活性化処理前の初期電流電圧特性を測定し、活性化処理後の初期電流電圧特性を測定した。
[Comparative Example 3]
In Example 1, the activation process was performed by setting the maximum voltage to be applied to 3.0V. Similarly to Example 1, the initial current-voltage characteristics before the activation treatment were measured, and the initial current-voltage characteristics after the activation treatment were measured.

図1に、実施例1〜6及び比較例1〜3の活性化処理後の電圧向上率を示す。また、図2に、実施例1〜6及び比較例1〜3の活性化処理後の電極抵抗を示す。   In FIG. 1, the voltage improvement rate after the activation process of Examples 1-6 and Comparative Examples 1-3 is shown. Moreover, the electrode resistance after the activation process of Examples 1-6 and Comparative Examples 1-3 is shown in FIG.

図1の活性化処理における最大電位と電圧向上率の関係から、最大電位が1.5Vまでであれば活性化効果がみられ電池性能は向上することが分かる。さらに1.0〜1.2Vで最も活性化処理効果が高いことが分かる。これは電極に電圧を印加して微弱な電流を流すことにより、電流の流れる道筋ができたことによって、電極触媒間の距離が及ぼす電子伝導性抵抗、電極触媒構造の電解質が及ぼすプロトン伝導性抵抗、電極触媒間の電解質の厚さが及ぼすプロトン伝導性抵抗がそれぞれ低減されたことが原因であると思われる。また、この活性化処理で電極中の不純物を除去する効果も期待できる。   From the relationship between the maximum potential and the voltage improvement rate in the activation process of FIG. 1, it can be seen that if the maximum potential is up to 1.5V, the activation effect is seen and the battery performance is improved. Furthermore, it turns out that the activation process effect is the highest at 1.0-1.2V. This is because when a voltage is applied to the electrodes and a weak current is passed, a path for the current to flow is created, so that the electron conductive resistance caused by the distance between the electrode catalysts and the proton conductive resistance caused by the electrolyte of the electrode catalyst structure. This is probably because the proton conductive resistance exerted by the electrolyte thickness between the electrode catalysts is reduced. In addition, an effect of removing impurities in the electrode can be expected by this activation treatment.

図2の活性化処理における最大電位と電極抵抗の関係から、最大電位が1.0Vを境に電極抵抗が急激に低減できているのが分かる。ただし、1.5V以上の電位を印加するとカーボン担体の腐食の速度が極めて早くなるため触媒の担体が劣化し、図1に示すように電圧向上効果がみられない。これより、カーボン担体が腐食しにくい印加電圧の範囲でより活性化処理効果があらわれたためと思われる。   From the relationship between the maximum potential and the electrode resistance in the activation process of FIG. 2, it can be seen that the electrode resistance can be drastically reduced at the maximum potential of 1.0V. However, when a potential of 1.5 V or more is applied, the rate of corrosion of the carbon support becomes extremely fast, so that the support of the catalyst is deteriorated and no voltage improvement effect is observed as shown in FIG. From this, it is considered that the activation treatment effect appeared more in the range of the applied voltage where the carbon support is less likely to corrode.

本発明によれば、固体高分子型燃料電池の組み立て後に、アノードとカソードとの間に1.0〜1.5Vの電圧を印加することによって、結晶性の高いカーボンを担体とする触媒層を活性化し、抵抗を低減させて、触媒層中に反応ガス、触媒、電解質が会合する三相界面を十分に確保し、触媒効率を向上させることが可能となる。これにより、電極反応を効率的に進行させ、燃料電池の発電効率を向上させることができる。この結果、燃料電池の実用化と普及に貢献する。   According to the present invention, after assembling the polymer electrolyte fuel cell, a catalyst layer using carbon having high crystallinity as a carrier is formed by applying a voltage of 1.0 to 1.5 V between the anode and the cathode. It is possible to activate and reduce the resistance, to ensure a sufficient three-phase interface where the reaction gas, the catalyst and the electrolyte meet in the catalyst layer, thereby improving the catalyst efficiency. Thereby, an electrode reaction can be advanced efficiently and the power generation efficiency of a fuel cell can be improved. As a result, it contributes to the practical use and spread of fuel cells.

実施例1〜6及び比較例1〜3の活性化処理後の電圧向上率を示す。The voltage improvement rate after the activation process of Examples 1-6 and Comparative Examples 1-3 is shown. 実施例1〜6及び比較例1〜3の活性化処理後の電極抵抗を示す。The electrode resistance after the activation process of Examples 1-6 and Comparative Examples 1-3 is shown.

Claims (4)

アノードと、カソードと、該アノードと該カソードとの間に配置された高分子電解質膜とを有し、該アノードと該カソードの少なくとも一方がLc値5以上の炭素材料を含有する固体高分子型燃料電池の活性化方法であって、該固体高分子型燃料電池を組み立てる工程と、組み立て後に該アノードと該カソードとの間に1.0〜1.5Vの電圧を印加する工程と、を有することを特徴とする固体高分子型燃料電池の活性化方法。   A solid polymer type having an anode, a cathode, and a polymer electrolyte membrane disposed between the anode and the cathode, wherein at least one of the anode and the cathode contains a carbon material having an Lc value of 5 or more A method for activating a fuel cell, comprising: assembling the polymer electrolyte fuel cell; and applying a voltage of 1.0 to 1.5 V between the anode and the cathode after assembly. A method for activating a solid polymer type fuel cell. 前記印加電圧が1.0〜1.2Vであることを特徴とする請求項1に記載の固体高分子型燃料電池の活性化方法。   2. The method for activating a polymer electrolyte fuel cell according to claim 1, wherein the applied voltage is 1.0 to 1.2V. 前記電圧を印加する手段が、定電圧で保持する手段(定電圧法)、電圧を段階的に昇圧又は降圧する手段(ステップ法)、一定の電圧幅のサイクルを加える手段(サイクル法)、及びこれらいずれか2手段以上を組み合わせた手段から選択されることを特徴とする請求項1又は2に記載の固体高分子型燃料電池の活性化方法。   Means for applying a voltage (constant voltage method), means for stepping up or stepping down the voltage stepwise (step method), means for applying a cycle with a constant voltage width (cycle method), and The method for activating a polymer electrolyte fuel cell according to claim 1 or 2, wherein any one of these two or more means is selected. 開回路電圧が0.15V以下の状態の際に前記電圧の印加を行なうことを特徴とする請求項1乃至3のいずれかに記載の固体高分子型燃料電池の活性化方法。   4. The method for activating a polymer electrolyte fuel cell according to claim 1, wherein the voltage is applied when the open circuit voltage is 0.15 V or less.
JP2007039467A 2007-02-20 2007-02-20 Activation method of solid-state polymer type fuel cell Pending JP2008204799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007039467A JP2008204799A (en) 2007-02-20 2007-02-20 Activation method of solid-state polymer type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007039467A JP2008204799A (en) 2007-02-20 2007-02-20 Activation method of solid-state polymer type fuel cell

Publications (1)

Publication Number Publication Date
JP2008204799A true JP2008204799A (en) 2008-09-04

Family

ID=39782071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007039467A Pending JP2008204799A (en) 2007-02-20 2007-02-20 Activation method of solid-state polymer type fuel cell

Country Status (1)

Country Link
JP (1) JP2008204799A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009048841A (en) * 2007-08-17 2009-03-05 Toshiba Fuel Cell Power Systems Corp Initialization method and initialization device of fuel cell stack
WO2011125840A1 (en) * 2010-03-31 2011-10-13 本田技研工業株式会社 Solid polymer fuel cell activation method
JP2011238371A (en) * 2010-05-06 2011-11-24 Jx Nippon Oil & Energy Corp Membrane electrode assembly, fuel cell, and activating method for fuel cell
JP2013191568A (en) * 2013-04-22 2013-09-26 Canon Inc Fuel cell system and activation method of fuel battery
US9343768B2 (en) 2011-12-28 2016-05-17 Honda Motor Co., Ltd. Method for activating fuel cell
JP2018049761A (en) * 2016-09-21 2018-03-29 株式会社東芝 Method of operating fuel cell, fuel cell system, and vehicle
JP2019175816A (en) * 2018-03-29 2019-10-10 本田技研工業株式会社 Fuel cell activation method
US10581084B2 (en) 2016-12-13 2020-03-03 Toyota Jidosha Kabushiki Kaisha Method of activating catalyst for fuel cell
CN112813460A (en) * 2020-12-28 2021-05-18 同济大学 Membrane electrode activation method for SPE electrolytic cell, application and electrolytic cell structure
JP2022143038A (en) * 2021-03-17 2022-10-03 本田技研工業株式会社 Fuel cell manufacturing method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009048841A (en) * 2007-08-17 2009-03-05 Toshiba Fuel Cell Power Systems Corp Initialization method and initialization device of fuel cell stack
WO2011125840A1 (en) * 2010-03-31 2011-10-13 本田技研工業株式会社 Solid polymer fuel cell activation method
JP2011238371A (en) * 2010-05-06 2011-11-24 Jx Nippon Oil & Energy Corp Membrane electrode assembly, fuel cell, and activating method for fuel cell
US9343768B2 (en) 2011-12-28 2016-05-17 Honda Motor Co., Ltd. Method for activating fuel cell
JP2013191568A (en) * 2013-04-22 2013-09-26 Canon Inc Fuel cell system and activation method of fuel battery
JP2018049761A (en) * 2016-09-21 2018-03-29 株式会社東芝 Method of operating fuel cell, fuel cell system, and vehicle
US10581084B2 (en) 2016-12-13 2020-03-03 Toyota Jidosha Kabushiki Kaisha Method of activating catalyst for fuel cell
JP2019175816A (en) * 2018-03-29 2019-10-10 本田技研工業株式会社 Fuel cell activation method
CN112813460A (en) * 2020-12-28 2021-05-18 同济大学 Membrane electrode activation method for SPE electrolytic cell, application and electrolytic cell structure
JP2022143038A (en) * 2021-03-17 2022-10-03 本田技研工業株式会社 Fuel cell manufacturing method
JP7290682B2 (en) 2021-03-17 2023-06-13 本田技研工業株式会社 Fuel cell manufacturing method

Similar Documents

Publication Publication Date Title
JP2008204799A (en) Activation method of solid-state polymer type fuel cell
JP3608565B2 (en) Fuel cell and manufacturing method thereof
US20070003822A1 (en) Voltage cycling durable catalysts
US8236724B2 (en) Catalyst-supporting particle, composite electrolyte, catalyst electrode for fuel cell, and fuel cell using the same, and methods for fabricating these
TW200427126A (en) Electrode for fuel cell, fuel cell and manufacturing method thereof
JP2004311225A (en) Catalytic powder, catalytic electrode, and electrochemical device
JP2020047432A (en) Anode catalyst layer for fuel cell and fuel cell arranged by use thereof
CN113629282B (en) Reversible shunt for overcharge protection in polymer electrolyte membrane fuel cells
JP2003317735A (en) Solid high polymer electrolyte fuel cell, method for manufacturing solid high polymer electrolyte film for fuel cell and fuel cell
JP2008171647A (en) Catalyst for fuel cell, cathode for fuel cell, and solid polymer fuel cell equipped with the same
JP2007317437A (en) Performance evaluation method and searching method of electrode catalyst for cell, electrode catalyst for cell, and fuel cell using its electrode catalyst
JP2007213988A (en) Electrode catalyst layer for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell
JP2005340022A (en) Aging method and manufacturing method of fuel cell
JP2009187803A (en) Membrane electrode composite and fuel cell
JP3608564B2 (en) Fuel cell and manufacturing method thereof
JP2006179427A (en) Electrode catalyst for fuel cell, and the fuel cell
JP2006155987A (en) Electrode for fuel cell, its manufacturing method, and fuel cell using it
JP2006261043A (en) Polymer membrane electrode assembly and polyelectrolyte type fuel cell using this
JP2006236927A (en) Membrane electrode junction for solid polymer fuel cell
JP5057798B2 (en) Fuel cell electrode and fuel cell
JP2014044940A (en) Ion conductivity-imparting agent, anode catalyst layer, membrane-electrode assembly formed using the catalyst layer, anion exchange membrane fuel cell, and method of operating the same
JP5313569B2 (en) Solid polymer electrolyte membrane and method for producing solid polymer electrolyte membrane
JP4465260B2 (en) Anode electrode for fuel cell and polymer electrolyte fuel cell using the same
JP2006079840A (en) Electrode catalyst for fuel cell, and mea for fuel cell using this
JP2003323896A (en) Solid electrolyte fuel cell