JP2008204753A - Lithium secondary battery, and its manufacturing method - Google Patents

Lithium secondary battery, and its manufacturing method Download PDF

Info

Publication number
JP2008204753A
JP2008204753A JP2007038767A JP2007038767A JP2008204753A JP 2008204753 A JP2008204753 A JP 2008204753A JP 2007038767 A JP2007038767 A JP 2007038767A JP 2007038767 A JP2007038767 A JP 2007038767A JP 2008204753 A JP2008204753 A JP 2008204753A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
positive electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007038767A
Other languages
Japanese (ja)
Other versions
JP5168535B2 (en
Inventor
Hiroaki Ikeda
博昭 池田
Ryuta Morishima
龍太 森島
Sei Hayashi
聖 林
Koichi Yokoyama
康一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007038767A priority Critical patent/JP5168535B2/en
Publication of JP2008204753A publication Critical patent/JP2008204753A/en
Application granted granted Critical
Publication of JP5168535B2 publication Critical patent/JP5168535B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium secondary battery in which a filler layer is formed on the surface of a negative electrode active material layer and influence on battery performance by forming the filler layer is suppressed. <P>SOLUTION: The lithium secondary battery has a positive electrode 30 including a positive electrode active material layer 35, and a negative electrode including the negative electrode active material layer 45, a porous filler layer 48 formed on the surface of the negative electrode active material later and containing insulating fillers and a binder. The lithium secondary battery is constituted so that a ratio (N/P) of the initial capacity (N[mAh/cm<SP>2</SP>]) of a negative electrode 40 having no filler layer 48 to the initial capacity (P[mAh/cm<SP>2</SP>]) of the positive electrode 30 is 1.2-2.0. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、負極活物質層上に絶縁性のフィラー層が設けられた構成のリチウム二次電池およびその製造方法に関する。   The present invention relates to a lithium secondary battery having a configuration in which an insulating filler layer is provided on a negative electrode active material layer and a method for manufacturing the same.

軽量で高出力が得られるリチウム二次電池(典型的にはリチウムイオン電池)は、車両搭載用電源あるいはパソコンや携帯端末の電源として今後益々の需要増大が見込まれている。かかるリチウム二次電池の一形態として、リチウムイオンを吸蔵および放出可能な電極活物質を備える正極および負極と非水電解液とを備えるものが挙げられる。また特許文献1には、この種のリチウム二次電池において、正極活物質層および負極活物質層のいずれかの表面に多孔性保護膜を設ける技術が記載されている。リチウム二次電池に関する他の従来技術文献として特許文献2〜5が挙げられる。
特開平7−220759号公報 特開2005−327680号公報 特開2004−296098号公報 特開2001−143689号公報 特開2005−174792号公報
Lightweight and high output lithium secondary batteries (typically lithium ion batteries) are expected to increase in demand in the future as power sources for vehicles or power supplies for personal computers and portable terminals. As one form of the lithium secondary battery, a battery including a positive electrode and a negative electrode including an electrode active material capable of occluding and releasing lithium ions and a non-aqueous electrolyte can be given. Patent Document 1 describes a technique of providing a porous protective film on the surface of either the positive electrode active material layer or the negative electrode active material layer in this type of lithium secondary battery. Patent documents 2-5 are mentioned as other conventional technical literature about a lithium secondary battery.
Japanese Patent Laid-Open No. 7-220759 JP 2005-327680 A JP 2004-296098 A Japanese Patent Laid-Open No. 2001-14389 JP 2005-174792 A

電極活物質層の表面に絶縁性の層(例えば、特許文献1に記載されているような多孔性保護膜であって絶縁性のもの)を設けることは、リチウム二次電池の信頼性(内部短絡の防止等)を向上させるために有効な技術となり得る。かかる絶縁層を形成する方法としては、生産性等の観点から、絶縁性のフィラーと適当なバインダ成分とを含む組成物を電極(例えば電極活物質層)の表面に塗布してフィラー層を形成する方法を好ましく採用し得る。しかし、このようなフィラー層を有するリチウム二次電池は、該フィラー層を有しない構成のリチウム二次電池に比べて内部抵抗(例えば初期内部抵抗)の大きなものとなりがちであった。   Providing an insulating layer on the surface of the electrode active material layer (for example, a porous protective film as described in Patent Document 1 having an insulating property) This can be an effective technique for improving the prevention of short circuit. As a method for forming such an insulating layer, from the viewpoint of productivity and the like, a filler layer is formed by applying a composition containing an insulating filler and an appropriate binder component to the surface of an electrode (for example, an electrode active material layer). This method can be preferably adopted. However, a lithium secondary battery having such a filler layer tends to have a larger internal resistance (for example, an initial internal resistance) than a lithium secondary battery having a configuration without the filler layer.

そこで本発明は、負極活物質層の表面にフィラー層が形成されたリチウム二次電池であって該フィラー層の形成による他の電池性能への影響(初期内部抵抗の増加等)が抑制されたリチウム二次電池およびその製造方法を提供することを目的とする。また、かかるリチウム二次電池を備えた車両の提供を目的とする。   Therefore, the present invention is a lithium secondary battery in which a filler layer is formed on the surface of the negative electrode active material layer, and the influence on the other battery performance (increased initial internal resistance, etc.) due to the formation of the filler layer is suppressed. It is an object of the present invention to provide a lithium secondary battery and a manufacturing method thereof. Moreover, it aims at provision of the vehicle provided with this lithium secondary battery.

本発明者は、フィラー層を有しない構成の通常のリチウム二次電池に比べて正極活物質に対する負極活物質の使用量を意図的に多くすることにより、上記課題を解決し得ることを見出して本発明を完成した。   The present inventor has found that the above problem can be solved by intentionally increasing the amount of the negative electrode active material used relative to the positive electrode active material as compared with a normal lithium secondary battery having no filler layer. The present invention has been completed.

本発明による提供されるリチウム二次電池は、正極活物質を主成分とする正極活物質層を有する正極を備える。また、負極活物質を主成分とする負極活物質層と、該負極活物質層の表面に形成されたフィラー層とを有する負極を備える。上記フィラー層は、典型的には多孔性(すなわち多孔質構造)であって、絶縁性フィラー(絶縁性材料を主構成成分とするフィラーをいい、実質的に該絶縁性材料から構成されるフィラーであり得る。)とバインダとを含む。そして、該リチウム二次電池は、前記正極の初期容量(P[mAh/cm])と、前記フィラー層を有しない場合における前記負極の初期容量(N[mAh/cm])との比(N/P)が凡そ1.2〜2.0となるように構成されている。 The lithium secondary battery provided by the present invention includes a positive electrode having a positive electrode active material layer mainly composed of a positive electrode active material. Moreover, the negative electrode which has the negative electrode active material layer which has a negative electrode active material as a main component, and the filler layer formed in the surface of this negative electrode active material layer is provided. The filler layer is typically porous (that is, a porous structure), and is an insulating filler (a filler mainly composed of an insulating material), and is a filler substantially composed of the insulating material. And a binder. The lithium secondary battery has a ratio between the initial capacity of the positive electrode (P [mAh / cm 2 ]) and the initial capacity of the negative electrode (N [mAh / cm 2 ]) when the filler layer is not provided. (N / P) is configured to be approximately 1.2 to 2.0.

かかる構成のリチウム二次電池は、上記フィラー層を有することから信頼性に優れ、かつ、良好な電池性能を示すものであり得る。換言すれば、フィラー層の形成によるデメリット(典型的には電池性能の低下、例えば初期内部抵抗の増加、初期容量の減少等)の発生を高度に抑制しながら、該フィラー層の形成による効果(例えば、電池の信頼性を向上させる効果)を実現するものであり得る。   Since the lithium secondary battery having such a configuration has the filler layer, the lithium secondary battery is excellent in reliability and can exhibit good battery performance. In other words, the effects of the formation of the filler layer (typically, a decrease in battery performance, typically an increase in the initial internal resistance, a decrease in the initial capacity, etc.) and the effects of the formation of the filler layer ( For example, the effect of improving the reliability of the battery can be realized.

なお、本明細書において「リチウム二次電池」とは、電解質イオンとしてリチウムイオンを利用し、正負極間のリチウムイオンに伴う電荷の移動により充放電が実現される二次電池をいう。一般にリチウムイオン電池と称される二次電池は、本明細書におけるリチウム二次電池に包含される典型例である。   In the present specification, the “lithium secondary battery” refers to a secondary battery that uses lithium ions as electrolyte ions and is charged / discharged by transfer of electric charges associated with lithium ions between the positive and negative electrodes. A secondary battery generally referred to as a lithium ion battery is a typical example included in the lithium secondary battery in this specification.

前記フィラー層を構成する絶縁性フィラーとしては、無機材料(典型的にはセラミック材料)を主構成成分とするフィラー(無機フィラー)を好ましく使用することができる。ここに開示されるリチウム二次電池の好ましい一態様では、前記絶縁性フィラーが無機酸化物フィラー(無機酸化物を主構成成分とするフィラーをいい、実質的に無機酸化物から構成されるフィラーであり得る。)である。かかる無機酸化物フィラーの一好適例としてアルミナ粒子(典型的にはα−アルミナ粒子)が挙げられる。   As the insulating filler constituting the filler layer, a filler (inorganic filler) containing an inorganic material (typically a ceramic material) as a main constituent component can be preferably used. In a preferred embodiment of the lithium secondary battery disclosed herein, the insulating filler is an inorganic oxide filler (a filler comprising an inorganic oxide as a main constituent, and a filler substantially composed of an inorganic oxide). It is possible.) A suitable example of such an inorganic oxide filler is alumina particles (typically α-alumina particles).

前記フィラー層は、好ましくは、前記絶縁性フィラーおよび前記バインダを含むスラリーを前記負極活物質層に塗布して成る。このようなフィラー層を有するリチウム二次電池は生産性に優れるので好ましい。前記スラリーは、例えば、前記絶縁性フィラーと前記バインダとを凡そ80:20〜99.5:0.5の質量比で含有するものであり得る。かかる組成のスラリーを用いて形成されたフィラー層を備えるリチウム二次電池は、該フィラー層の耐久性と電池性能とを高度なレベルで両立するものであり得る。   The filler layer is preferably formed by applying a slurry containing the insulating filler and the binder to the negative electrode active material layer. A lithium secondary battery having such a filler layer is preferable because of excellent productivity. The slurry may contain, for example, the insulating filler and the binder at a mass ratio of about 80:20 to 99.5: 0.5. A lithium secondary battery including a filler layer formed using a slurry having such a composition can achieve both the durability and battery performance of the filler layer at a high level.

また、本発明によると、リチウム二次電池を製造する方法が提供される。該製造方法は、正極活物質を主成分とする正極活物質層を有し、所定の初期容量(P[mAh/cm])を示す正極を用意することを含む。また、負極活物質を主成分とする負極活物質層を有し、前記正極の初期容量に対して凡そ1.2〜2.0倍の初期容量(N[mAh/cm])を示す(すなわち、初期容量比(N/P)が凡そ1.2〜2.0である)負極原材を用意することを含む。また、絶縁性フィラーとバインダとを含むスラリーを前記負極活物質層に塗布して該負極活物質層の表面に多孔性のフィラー層が形成された負極を作製することを含む。そして、前記正極と前記負極とを用いてリチウム二次電池を構築することを含む。 The present invention also provides a method for manufacturing a lithium secondary battery. The manufacturing method includes preparing a positive electrode having a positive electrode active material layer mainly composed of a positive electrode active material and exhibiting a predetermined initial capacity (P [mAh / cm 2 ]). Moreover, it has a negative electrode active material layer mainly composed of a negative electrode active material, and exhibits an initial capacity (N [mAh / cm 2 ]) of about 1.2 to 2.0 times the initial capacity of the positive electrode ( That is, it includes preparing a negative electrode raw material having an initial capacity ratio (N / P) of about 1.2 to 2.0. In addition, the method includes applying a slurry containing an insulating filler and a binder to the negative electrode active material layer to produce a negative electrode in which a porous filler layer is formed on the surface of the negative electrode active material layer. Then, a lithium secondary battery is constructed using the positive electrode and the negative electrode.

かかる方法によると、フィラー層を有することから信頼性に優れ、かつ、フィラー層の形成による電池性能の低下等が高度に抑制されたリチウム二次電池を効率よく製造することができる。この製造方法は、ここに開示されるいずれかのリチウム二次電池を製造する方法として好ましく採用され得る。   According to this method, it is possible to efficiently produce a lithium secondary battery that is excellent in reliability because it has a filler layer and that is highly suppressed in deterioration of battery performance due to the formation of the filler layer. This manufacturing method can be preferably employed as a method for manufacturing any of the lithium secondary batteries disclosed herein.

なお、上記負極原材は、例えば上記製造方法の一環として該負極原材を作製することにより用意してもよく、あるいはあらかじめ作製された負極原材を入手(例えば購入)することにより用意してもよい。上記正極を用意することについても同様である。   The negative electrode raw material may be prepared by, for example, preparing the negative electrode raw material as part of the manufacturing method, or by obtaining (for example, purchasing) a negative electrode raw material prepared in advance. Also good. The same applies to the preparation of the positive electrode.

さらに、本発明によると、ここに開示されるいずれかのリチウム二次電池(ここに開示されるいずれかの方法により製造されたリチウム二次電池であり得る。)を備える車両が提供される。上記リチウム二次電池は、車両に搭載されるリチウム二次電池として適した性能(例えば高信頼性)を示すものであり得る。したがって、かかる二次電池は、自動車等の車両に搭載されるモーター(電動機)用の電源として好適に使用され得る。   Further, according to the present invention, there is provided a vehicle including any lithium secondary battery disclosed herein (which may be a lithium secondary battery manufactured by any method disclosed herein). The lithium secondary battery may exhibit performance (for example, high reliability) suitable as a lithium secondary battery mounted on a vehicle. Therefore, such a secondary battery can be suitably used as a power source for a motor (electric motor) mounted on a vehicle such as an automobile.

以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。   Hereinafter, preferred embodiments of the present invention will be described. Note that matters other than matters specifically mentioned in the present specification and necessary for the implementation of the present invention can be grasped as design matters of those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field.

ここに開示される発明は、正極活物質を有する正極および負極活物質を有する負極を備えるリチウム二次電池であって、上記負極の表面(典型的には、少なくとも負極活物質層の表面)に絶縁性のフィラー層が形成された構成のリチウム二次電池およびその製造、ならびに該電池を搭載した車両に広く適用され得る。該リチウム二次電池の外形は特に限定されず、例えば直方体状、扁平形状、円筒状等の外形であり得る。   The invention disclosed herein is a lithium secondary battery including a positive electrode having a positive electrode active material and a negative electrode having a negative electrode active material, and is provided on the surface of the negative electrode (typically at least the surface of the negative electrode active material layer). The present invention can be widely applied to a lithium secondary battery having a configuration in which an insulating filler layer is formed, its manufacture, and vehicles equipped with the battery. The external shape of the lithium secondary battery is not particularly limited, and may be, for example, a rectangular parallelepiped shape, a flat shape, a cylindrical shape, or the like.

上記正極活物質としては、リチウムイオンを吸蔵および放出可能な材料(典型的には粒子状)が用いられ、例えば一般的なリチウム二次電池に用いられる層状構造の酸化物系正極活物質、スピネル構造の酸化物系正極活物質等を好ましく用いることができる。かかる正極活物質の代表例として、リチウムニッケル系複合酸化物(典型的には、式:LiNiO;で表される組成の酸化物)、リチウムコバルト系複合酸化物(典型的にはLiCoO)、リチウムマンガン系複合酸化物(典型的にはLiMn)等のリチウム遷移金属複合酸化物を主成分とする正極活物質が挙げられる。ここで「リチウムニッケル系複合酸化物」とは、リチウムとニッケルとを構成金属元素とする酸化物の他、リチウムおよびニッケル以外に他の少なくとも一種の金属元素(すなわち、リチウムおよびニッケル以外の遷移金属元素および/または典型金属元素)をニッケルよりも少ない割合(原子数換算。リチウムおよびニッケル以外の金属元素を二種以上含む場合にはそれらの合計量としてニッケルよりも少ない割合)で含む複合酸化物をも包含する意味であり、リチウムコバルト系複合酸化物およびリチウムマンガン系複合酸化物についても同様である。ここに開示される技術は、リチウムニッケル系複合酸化物またはリチウムコバルト系複合酸化物を主成分とする正極活物質(典型的には、マンガンを実質的に含まない組成の正極活物質)を備えるリチウム二次電池に好ましく適用され得る。 As the positive electrode active material, a material capable of occluding and releasing lithium ions (typically in particulate form) is used. For example, an oxide-based positive electrode active material having a layer structure used in a general lithium secondary battery, spinel An oxide-based positive electrode active material having a structure can be preferably used. As typical examples of such a positive electrode active material, a lithium nickel composite oxide (typically an oxide having a composition represented by the formula: LiNiO 2 ;), a lithium cobalt composite oxide (typically LiCoO 2 ). And a positive electrode active material mainly composed of a lithium transition metal composite oxide such as lithium manganese composite oxide (typically LiMn 2 O 4 ). Here, the “lithium nickel composite oxide” means an oxide having lithium and nickel as constituent metal elements, and at least one metal element other than lithium and nickel (that is, a transition metal other than lithium and nickel) Element (and / or typical metal element) in a proportion less than nickel (in terms of the number of atoms. When two or more metal elements other than lithium and nickel are contained, the composite oxide contains less than nickel as the total amount thereof) This also applies to lithium cobalt complex oxides and lithium manganese complex oxides. The technology disclosed herein includes a positive electrode active material (typically, a positive electrode active material having a composition substantially free of manganese) mainly composed of a lithium nickel composite oxide or a lithium cobalt composite oxide. It can be preferably applied to a lithium secondary battery.

ここに開示される技術は、かかる正極活物質を有する正極と後述する負極活物質を有する負極とを用いて構築されるリチウム二次電池であって、両極間の電圧(端子間電圧)が凡そ4.2V以下の範囲(例えば凡そ3V〜4.1Vの範囲)で使用されるリチウム二次電池(典型的にはリチウムイオン電池)に好ましく適用され得る。   The technology disclosed here is a lithium secondary battery constructed using a positive electrode having such a positive electrode active material and a negative electrode having a negative electrode active material, which will be described later, and the voltage between both electrodes (inter-terminal voltage) is approximately. It can be preferably applied to a lithium secondary battery (typically a lithium ion battery) used in a range of 4.2 V or less (for example, a range of about 3 V to 4.1 V).

ここに開示される技術における正極は、典型的には、このような正極活物質を主成分とする層(正極活物質層)が正極集電体に保持された構成を有する。該正極集電体としては、導電性の良好な金属からなる導電性部材が好ましく用いられる。特に、アルミニウム(Al)またはアルミニウムを主成分とする合金(アルミニウム合金)製の正極集電体の使用が好ましい。正極集電体の形状は、得られた正極を用いて構築されるリチウム二次電池の形状等に応じて異なり得るため特に制限はなく、棒状、板状、シート状、箔状、メッシュ状等の種々の形態であり得る。なお、種々の形状の集電体自体の作製は、リチウム二次電池の分野において従来公知の方法であればよく、本発明を特徴付けるものではない。ここに開示される技術は、例えばシート状もしくは箔状の集電体に正極活物質層が保持された形態の正極を備えるリチウム二次電池に好ましく適用され得る。かかるリチウム二次電池の好ましい一態様として、捲回型の電極体を備えるリチウム二次電池が挙げられる。   The positive electrode in the technology disclosed herein typically has a configuration in which a layer containing such a positive electrode active material as a main component (positive electrode active material layer) is held by a positive electrode current collector. As the positive electrode current collector, a conductive member made of a metal having good conductivity is preferably used. In particular, it is preferable to use a positive electrode current collector made of aluminum (Al) or an alloy containing aluminum as a main component (aluminum alloy). The shape of the positive electrode current collector is not particularly limited because it may vary depending on the shape of the lithium secondary battery constructed using the obtained positive electrode, such as a rod shape, plate shape, sheet shape, foil shape, mesh shape, etc. It can be in various forms. The current collectors of various shapes may be produced by any conventionally known method in the field of lithium secondary batteries, and do not characterize the present invention. The technology disclosed herein can be preferably applied to a lithium secondary battery including a positive electrode in a form in which a positive electrode active material layer is held on, for example, a sheet-shaped or foil-shaped current collector. As a preferable embodiment of such a lithium secondary battery, a lithium secondary battery including a wound electrode body can be given.

上記正極活物質層は、例えば、正極活物質(好ましくは粒子状、例えばリチウムニッケル系複合酸化物粒子)を適当な溶媒に分散させた液状組成物(典型的にはペーストまたはスラリー状の組成物)を正極集電体に付与し、該組成物(正極活物質組成物)を乾燥させることにより好ましく作製され得る。上記溶媒(正極活物質粒子等の分散媒)としては水、有機溶媒およびこれらの混合溶媒のいずれも使用可能である。例えば、上記溶媒が水系溶媒(水または水を主体とする混合溶媒)である正極活物質組成物を好ましく使用することができる。   The positive electrode active material layer is, for example, a liquid composition (typically a paste or slurry composition) in which a positive electrode active material (preferably particulate, for example, lithium nickel composite oxide particles) is dispersed in an appropriate solvent. ) Is applied to the positive electrode current collector, and the composition (positive electrode active material composition) is preferably dried. As the solvent (dispersion medium such as positive electrode active material particles), any of water, organic solvents, and mixed solvents thereof can be used. For example, a positive electrode active material composition in which the solvent is an aqueous solvent (water or a mixed solvent mainly containing water) can be preferably used.

上記正極活物質組成物は、正極活物質および上記溶媒のほかに、一般的なリチウム二次電池において正極活物質層の形成に用いられる組成物に配合され得る一種または二種以上の材料を必要に応じて含有することができる。かかる材料の一例として導電材が挙げられる。該導電材としては、種々のカーボンブラック(アセチレンブラック、ファーネスブラック、ケッチェンブラック、等)、グラファイト粉末のようなカーボン粉末、あるいはニッケル粉末等の導電性金属粉末等を用いることができる。   In addition to the positive electrode active material and the solvent, the positive electrode active material composition requires one or more materials that can be blended in a composition used for forming a positive electrode active material layer in a general lithium secondary battery. Depending on the content. An example of such a material is a conductive material. As the conductive material, various carbon blacks (acetylene black, furnace black, ketjen black, etc.), carbon powder such as graphite powder, or conductive metal powder such as nickel powder can be used.

必要に応じて上記正極活物質組成物に含有され得る材料の他の例として、バインダおよび流動性調整剤が挙げられる。例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体(PVDF−HFP)、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)等のポリマーから適宜選択される一種または二種以上のポリマー材料を、上記バインダおよび/または流動性調整剤(典型的には粘度調整剤、例えば増粘剤)として好適に使用することができる。   Other examples of materials that can be contained in the positive electrode active material composition as needed include a binder and a fluidity modifier. For example, as appropriate from polymers such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-HFP), styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC). One or two or more selected polymer materials can be suitably used as the binder and / or fluidity modifier (typically a viscosity modifier such as a thickener).

特に限定するものではないが、上記正極活物質組成物の固形分濃度(不揮発分、すなわち正極活物質層形成成分の割合)は、例えば凡そ40〜60質量%程度であり得る。該固形分(正極活物質層形成成分)に占める正極活物質の含有割合は、少なくとも凡そ50質量%であることが好ましく、例えば凡そ75〜99質量%であり得る。通常は、この割合を凡そ80〜95質量%程度とすることが適当である。上記導電材を含む組成では、例えば、正極活物質層形成成分に占める正極活物質の割合を凡そ80〜90質量%とし、導電材の割合を凡そ5〜15質量%とすることができる。また、上述のようなポリマー成分を含む組成では、正極活物質層形成成分に占めるポリマー成分の割合を凡そ0.5〜15質量%とすることができる。このポリマー成分の含有割合が凡そ1〜5質量%であってもよい。   Although not particularly limited, the solid content concentration of the positive electrode active material composition (nonvolatile content, that is, the ratio of the positive electrode active material layer forming component) can be, for example, about 40 to 60% by mass. The content ratio of the positive electrode active material in the solid content (positive electrode active material layer forming component) is preferably at least about 50% by mass, and may be, for example, about 75 to 99% by mass. Usually, it is appropriate to set this ratio to about 80 to 95% by mass. In the composition containing the conductive material, for example, the ratio of the positive electrode active material to the positive electrode active material layer forming component can be about 80 to 90% by mass, and the ratio of the conductive material can be about 5 to 15% by mass. In the composition containing the polymer component as described above, the ratio of the polymer component to the positive electrode active material layer forming component can be about 0.5 to 15% by mass. The content of this polymer component may be about 1 to 5% by mass.

このような正極活物質組成物を正極集電体(好ましくは箔状もしくはシート状)に付与(典型的には塗布)するにあたっては、従来公知の方法と同様の技法を適宜採用することができる。例えば、適当な塗布装置(スリットコーター、ダイコーター、コンマコーター等)を使用して、集電体の表面に所定量の上記組成物を層状に塗布するとよい。   In applying (typically applying) such a positive electrode active material composition to a positive electrode current collector (preferably a foil or sheet), a technique similar to a conventionally known method can be appropriately employed. . For example, a predetermined amount of the above composition may be applied in a layered manner to the surface of the current collector using a suitable coating device (slit coater, die coater, comma coater, etc.).

一方、上記負極活物質としては、リチウムイオンを吸蔵および放出可能な材料が用いられ、例えば一般的なリチウム二次電池に用いられる種々の負極活物質から適当なものを採用することができる。ここに開示される技術における好適な負極活物質としてカーボン粒子が例示される。少なくとも一部にグラファイト構造(層状構造)を含む粒子状の炭素材料(カーボン粒子)の使用が好ましい。いわゆる黒鉛質のもの(グラファイト)、難黒鉛化炭素質のもの(ハードカーボン)、易黒鉛化炭素質のもの(ソフトカーボン)、これらを組み合わせた構造を有するもののいずれの炭素材料も好適に使用し得る。例えば、天然黒鉛、メソカーボンマイクロビーズ(MCMB)、高配向性グラファイト(HOPG)等を用いることができる。   On the other hand, as the negative electrode active material, a material capable of occluding and releasing lithium ions is used. For example, an appropriate material can be adopted from various negative electrode active materials used in a general lithium secondary battery. Carbon particles are exemplified as a suitable negative electrode active material in the technology disclosed herein. It is preferable to use a particulate carbon material (carbon particles) containing a graphite structure (layered structure) at least partially. Any carbon material of a so-called graphitic material (graphite), a non-graphitizable carbon material (hard carbon), a graphitizable carbon material (soft carbon), or a combination of these materials is preferably used. obtain. For example, natural graphite, mesocarbon microbeads (MCMB), highly oriented graphite (HOPG), etc. can be used.

上記負極活物質(典型的には粒子状、好ましくは黒鉛粒子等のカーボン粒子)としては、例えば平均粒径が凡そ5〜50μmのものを使用することができる。なかでも、平均粒径が凡そ5〜15μm(例えば凡そ8〜12μm)のカーボン粒子の使用が好ましい。このように比較的小粒径のカーボン粒子は、単位体積当たりの表面積が大きいことから、より急速充放電(例えば高出力放電)に適した負極活物質となり得る。したがって、かかる負極活物質を有するリチウム二次電池は、例えば車両搭載用のリチウム二次電池として好適に利用され得る。   As the negative electrode active material (typically in the form of particles, preferably carbon particles such as graphite particles), for example, those having an average particle diameter of about 5 to 50 μm can be used. Among them, it is preferable to use carbon particles having an average particle diameter of about 5 to 15 μm (for example, about 8 to 12 μm). Thus, carbon particles having a relatively small particle size have a large surface area per unit volume, and thus can be a negative electrode active material suitable for more rapid charge / discharge (for example, high power discharge). Therefore, the lithium secondary battery having such a negative electrode active material can be suitably used, for example, as a lithium secondary battery for vehicle mounting.

ここに開示される技術における負極は、典型的には、このような負極活物質を主成分とする層(負極活物質層)が負極集電体に保持された構成を有する。該負極集電体としては、導電性の良好な金属からなる導電性部材が好ましく用いられる。特に、銅(Cu)または銅を主成分とする合金(銅合金)製の負極集電体の使用が好ましい。負極集電体の形状は、上述した正極集電体と同様に、得られた負極を用いて構築されるリチウム二次電池の形状等に応じて異なり得るため特に制限されない。ここに開示される技術は、例えばシート状もしくは箔状の集電体に負極活物質層が保持された形態の負極を備えるリチウム二次電池(例えば捲回型の電極体を備えるリチウム二次電池)に好ましく適用され得る。   The negative electrode in the technology disclosed herein typically has a configuration in which a layer containing the negative electrode active material as a main component (negative electrode active material layer) is held by a negative electrode current collector. As the negative electrode current collector, a conductive member made of a metal having good conductivity is preferably used. In particular, it is preferable to use a negative electrode current collector made of copper (Cu) or an alloy containing copper as a main component (copper alloy). The shape of the negative electrode current collector is not particularly limited because it can vary depending on the shape of the lithium secondary battery constructed using the obtained negative electrode, as with the positive electrode current collector described above. The technology disclosed herein is, for example, a lithium secondary battery including a negative electrode in a form in which a negative electrode active material layer is held on a sheet-shaped or foil-shaped current collector (for example, a lithium secondary battery including a wound electrode body) ) Can be preferably applied.

上記負極活物質層は、例えば、負極活物質(好ましくはカーボン粒子)を適当な溶媒に分散させた液状組成物(典型的にはペーストまたはスラリー状の組成物)を負極集電体に付与し、該組成物(負極活物質組成物)を乾燥させることにより好ましく作製され得る。上記溶媒(カーボン粒子等の分散媒)としては水、有機溶媒およびこれらの混合溶媒のいずれも使用可能である。例えば、上記溶媒が水系溶媒(水または水を主体とする混合溶媒)である負極活物質組成物を好ましく採用することができる。   The negative electrode active material layer, for example, applies a liquid composition (typically a paste or slurry composition) in which a negative electrode active material (preferably carbon particles) is dispersed in a suitable solvent to a negative electrode current collector. The composition (negative electrode active material composition) can be preferably prepared by drying. As the solvent (dispersion medium such as carbon particles), any of water, organic solvents, and mixed solvents thereof can be used. For example, a negative electrode active material composition in which the solvent is an aqueous solvent (water or a mixed solvent mainly containing water) can be preferably employed.

上記負極活物質組成物は、負極活物質および上記溶媒のほかに、一般的なリチウム二次電池用負極において負極活物質層の形成に用いられる組成物に配合され得る一種または二種以上の材料を必要に応じて含有することができる。そのような材料の例としてバインダおよび流動性調整剤が挙げられる。例えば、正極活物質組成物に含有され得る材料として例示したポリマー材料と同様のものを、上記バインダおよび/または流動性調整剤(典型的には粘度調整剤、例えば増粘剤)として好適に使用することができる。   In addition to the negative electrode active material and the solvent, the negative electrode active material composition is one or more materials that can be blended in a composition used for forming a negative electrode active material layer in a general negative electrode for a lithium secondary battery. Can be contained as required. Examples of such materials include binders and fluidity modifiers. For example, the same polymer materials as those exemplified as materials that can be contained in the positive electrode active material composition are suitably used as the binder and / or fluidity modifier (typically, a viscosity modifier, such as a thickener). can do.

特に限定するものではないが、負極活物質組成物の固形分濃度(不揮発分、すなわち該組成物に占める負極活物質層形成成分の割合)は、例えば凡そ40〜60質量%程度とすることが適当である。また、固形分(負極活物質層形成成分)に占める負極活物質の含有割合は、例えば凡そ80質量%以上(典型的には凡そ80〜99.9質量%)とすることができ、凡そ90〜99%とすることが好ましく、凡そ95〜99質量%とすることがより好ましい。例えば、上述のようなポリマー材料を含有する組成の負極活物質組成物において、該組成物に含まれる負極活物質とポリマー材料との質量比(負極活物質:ポリマー材料)を凡そ80:20〜99.5:0.5とすることができ、該質量比が凡そ95:5〜99:1であってもよい。   Although not particularly limited, the solid content concentration of the negative electrode active material composition (nonvolatile content, that is, the ratio of the negative electrode active material layer forming component in the composition) is, for example, about 40 to 60% by mass. Is appropriate. The content ratio of the negative electrode active material in the solid content (negative electrode active material layer forming component) can be, for example, about 80% by mass or more (typically about 80 to 99.9% by mass), for example, about 90%. It is preferable to set it to -99%, and it is more preferable to set it as about 95-99 mass%. For example, in the negative electrode active material composition having a composition containing the polymer material as described above, the mass ratio of the negative electrode active material to the polymer material (negative electrode active material: polymer material) included in the composition is about 80:20 to 99.5: 0.5, and the mass ratio may be about 95: 5 to 99: 1.

このような負極活物質組成物を負極集電体(好ましくは箔状もしくはシート状)に付与(典型的には塗布)するにあたっては、正極活物質組成物を正極集電体に付与する場合と同様に、従来公知の方法と同様の技法を適宜採用することができる。   In applying (typically coating) such a negative electrode active material composition to a negative electrode current collector (preferably a foil or sheet), a case where the positive electrode active material composition is applied to the positive electrode current collector, Similarly, a technique similar to a conventionally known method can be appropriately employed.

ここに開示される技術では、負極集電体上に負極活物質層を形成して成る負極原材(すなわち、負極活物質層の表面に後述するフィラー層が未だ形成されていない状態の負極)の単位面積当たりの初期容量(N)が、正極の単位面積当たりの初期容量(P)の凡そ1.2〜2.0倍(すなわち、「負極の初期容量(N)/正極の初期容量(P)」で表される初期容量比(N/P)が凡そ1.2〜2.0)となるように、該負極原材の有する負極活物質量(負極集電体の単位面積当たりに保持されている負極活物質層に含まれる負極活物質の量であって、負極集電体の両面に負極活物質層が保持された構成の負極原材では両面の負極活物質層に含まれる負極活物質の合計量をいう。)を調整することが好ましい。かかる負極活物質量の調整は、例えば、負極集電体の単位面積当たりに塗布される負極活物質組成物の量(固形分換算の塗布量)を適切に設定することにより行うことができる。上記初期容量比が例えば凡そ1.3〜1.7であってもよい。該初期容量比(N/P)が上記範囲よりも小さすぎるリチウム二次電池は、フィラー層を有しないリチウム二次電池に比べて初期抵抗が増大したものとなりがちである。一方、上記初期容量比(N/P)が上記範囲よりも大きすぎるリチウム二次電池は、該電池の初期容量に対する不可逆容量の値が大きくなり、一定体積当たりの電池容量(エネルギー密度)が小さくなる傾向にある。初期容量比(N/P)を上述した好ましい範囲とすることにより、フィラー層の形成に拘わらず、良好な電池性能(低初期抵抗および/または高エネルギー密度)を示すリチウム二次電池が実現され得る。   In the technology disclosed herein, a negative electrode raw material formed by forming a negative electrode active material layer on a negative electrode current collector (that is, a negative electrode in which a filler layer described later is not yet formed on the surface of the negative electrode active material layer). The initial capacity per unit area (N) is about 1.2 to 2.0 times the initial capacity per unit area (P) of the positive electrode (ie, “the negative electrode initial capacity (N) / the initial capacity of the positive electrode ( P) ”so that the initial capacity ratio (N / P) is about 1.2 to 2.0). The amount of the negative electrode active material possessed by the negative electrode raw material (per unit area of the negative electrode current collector) The amount of the negative electrode active material contained in the held negative electrode active material layer, and the negative electrode raw material having a structure in which the negative electrode active material layer is held on both sides of the negative electrode current collector, is included in the negative electrode active material layers on both sides It is preferable to adjust the total amount of the negative electrode active material. The adjustment of the amount of the negative electrode active material can be performed, for example, by appropriately setting the amount of the negative electrode active material composition applied per unit area of the negative electrode current collector (the coating amount in terms of solid content). The initial capacity ratio may be about 1.3 to 1.7, for example. A lithium secondary battery having an initial capacity ratio (N / P) that is too smaller than the above range tends to have an increased initial resistance compared to a lithium secondary battery that does not have a filler layer. On the other hand, a lithium secondary battery having an initial capacity ratio (N / P) that is larger than the above range has a large irreversible capacity value with respect to the initial capacity of the battery, and a small battery capacity (energy density) per fixed volume. Tend to be. By setting the initial capacity ratio (N / P) within the above-mentioned preferable range, a lithium secondary battery exhibiting good battery performance (low initial resistance and / or high energy density) can be realized regardless of the formation of the filler layer. obtain.

上記負極原材の初期容量(N)は、例えば以下の方法により測定することができる。すなわち、該負極原材を所定のサイズに打ち抜いたものを測定電極とし、対極に金属リチウム電極を用いて測定用セル(半電池)を構築する。その測定用セルについて、上記測定電極の電位が0.01V(金属リチウム基準。以下、金属リチウム基準の電圧を「V(対Li/Li)」と表す。)になるまで負極活物質にリチウムイオンを挿入し、次いで該リチウムイオンを放出(典型的には、上記測定電極の電位が0.5V(対Li/Li)になるまでリチウムイオンを放出)させる初回の充放電サイクルを行うことにより、負極原材の単位面積当たりの初期容量(N[mAh/cm])が求められる。 The initial capacity (N) of the negative electrode raw material can be measured, for example, by the following method. That is, a measurement cell (half-cell) is constructed by punching the negative electrode raw material into a predetermined size as a measurement electrode and using a metal lithium electrode as a counter electrode. For the measurement cell, lithium was used as the negative electrode active material until the potential of the measurement electrode was 0.01 V (based on metallic lithium; hereinafter, the voltage based on metallic lithium was expressed as “V (vs. Li / Li + )”). Performing an initial charge / discharge cycle in which ions are inserted and then the lithium ions are released (typically, lithium ions are released until the potential of the measurement electrode reaches 0.5 V (vs. Li / Li + )). Thus, the initial capacity (N [mAh / cm 2 ]) per unit area of the negative electrode raw material is obtained.

また、上記正極の初期容量(P)は、例えば以下の方法により測定することができる。すなわち、該正極を所定のサイズに打ち抜いたものを測定電極とし、対極に金属リチウム電極を用いて測定用セル(半電池)を構築する。その測定用セルについて、上記測定電極の電位が4.3V(対Li/Li)になるまで正極活物質からリチウムイオンを脱離させ、次いで該正極活物質にリチウムイオンを挿入(典型的には、上記測定電極の電位が3.0V(対Li/Li)になるまでリチウムイオンを挿入)する初回の充放電サイクルを行うことにより、正極の単位面積当たりの初期容量(P[mAh/cm])が求められる。 The initial capacity (P) of the positive electrode can be measured, for example, by the following method. That is, a measurement cell (half-cell) is constructed by using a positive electrode punched into a predetermined size as a measurement electrode and using a metal lithium electrode as a counter electrode. For the measurement cell, lithium ions were desorbed from the positive electrode active material until the potential of the measurement electrode reached 4.3 V (vs. Li / Li + ), and then lithium ions were inserted into the positive electrode active material (typically Is the initial capacity per unit area of the positive electrode (P [mAh / Pb] by performing an initial charge / discharge cycle in which lithium ions are inserted until the potential of the measurement electrode reaches 3.0 V (vs. Li / Li + ). cm 2 ]).

上述した好ましい初期容量比が実現され得る限りにおいて、負極活物質組成物の塗布量(集電体の単位面積当たりの塗布量(固形分換算))は特に限定されず、負極および電池の形状や目標性能等に応じて適当な塗布量に設定され得る。例えば、上述のような捲回型の電極体を備えるリチウム二次電池の構築に使用される負極を作製する場合には、箔状集電体(例えば、厚さ10〜30μm程度の金属箔(銅箔等)を好ましく用いることができる。)の表面に上記組成物を、固形分換算の塗布量(すなわち、乾燥後の質量)が凡そ5〜20mg/cm程度(両面に塗布する場合には該両面の合計量として)となるように塗布するとよい。かかる塗布量の負極活物質組成物を集電体の片面に塗布してもよく、集電体の両面に負極活物質組成物を塗布してその合計塗布量が上記範囲となるようにしてもよい。集電体の両面に負極活物質組成物を塗布する(集電体の両面に負極活物質層を設ける)態様を好ましく採用することができる。塗布後、適当な乾燥手段で塗布物を乾燥し、必要に応じてプレスすることによって、負極集電体の表面に負極活物質層を形成することができる。 As long as the above-described preferred initial capacity ratio can be realized, the coating amount of the negative electrode active material composition (coating amount per unit area of the current collector (in terms of solid content)) is not particularly limited. An appropriate coating amount can be set according to the target performance or the like. For example, when producing a negative electrode used for the construction of a lithium secondary battery having a wound electrode body as described above, a foil-like current collector (for example, a metal foil having a thickness of about 10 to 30 μm ( Copper foil etc.) can be preferably used.) When the above composition is applied to the surface of solid content, the coating amount in terms of solid content (that is, the mass after drying) is about 5 to 20 mg / cm 2 (when applied on both sides). Is preferably applied so that the total amount of the both surfaces becomes). Such a coating amount of the negative electrode active material composition may be applied to one side of the current collector, or the negative electrode active material composition may be applied to both sides of the current collector so that the total coating amount falls within the above range. Good. An embodiment in which the negative electrode active material composition is applied to both sides of the current collector (a negative electrode active material layer is provided on both sides of the current collector) can be preferably employed. After coating, the coated material is dried by an appropriate drying means, and pressed as necessary, whereby a negative electrode active material layer can be formed on the surface of the negative electrode current collector.

特に限定するものではないが、上記負極活物質層の密度は例えば凡そ1.1〜1.5g/cm程度であり得る。該負極活物質層の密度が例えば凡そ1.1〜1.3g/cm程度であってもよい。このような密度を有する負極活物質層が形成されるように上記プレスの条件を設定するとよい。なお、プレス方法としては、ロールプレス法、平板プレス法等の従来公知の各種プレス方法を適宜採用することができる。 Although not particularly limited, the density of the negative electrode active material layer may be, for example, about 1.1 to 1.5 g / cm 3 . The density of the negative electrode active material layer may be, for example, about 1.1 to 1.3 g / cm 3 . The press conditions may be set so that a negative electrode active material layer having such a density is formed. In addition, as a press method, conventionally well-known various press methods, such as a roll press method and a flat plate press method, can be employ | adopted suitably.

ここに開示される負極は、上記負極活物質層の表面に、絶縁性フィラー(例えばアルミナ粒子)とバインダとを含むフィラー層を有する。該フィラー層は、負極活物質層表面のほぼ全範囲に形成されていてもよく、負極活物質層表面のうち一部範囲のみに形成されていてもよい。通常は、フィラー層を設けることによる効果および該フィラー層の耐久性等の観点から、少なくとも負極活物質層表面のほぼ全範囲を覆うようにフィラー層が形成された構成とすることが好ましい。なお、負極集電体上に負極活物質層が形成された態様の負極において該集電体の一部に負極活物質層の形成されていない部分(負極活物質層未形成部分)が残されている場合、本発明の効果を顕著に損なわない範囲で、上記フィラー層の一部が負極活物質層上から上記負極活物質層未形成部分にまで延長して設けられた構成としてもよい。   The negative electrode disclosed herein has a filler layer containing an insulating filler (for example, alumina particles) and a binder on the surface of the negative electrode active material layer. The filler layer may be formed in almost the entire range of the negative electrode active material layer surface, or may be formed in only a partial range of the negative electrode active material layer surface. Usually, from the viewpoint of the effect of providing the filler layer and the durability of the filler layer, it is preferable to have a configuration in which the filler layer is formed so as to cover at least almost the entire surface of the negative electrode active material layer surface. Note that, in the negative electrode in which the negative electrode active material layer is formed on the negative electrode current collector, a portion where the negative electrode active material layer is not formed (a portion where the negative electrode active material layer is not formed) is left in a part of the current collector. In such a case, a part of the filler layer may extend from the negative electrode active material layer to the portion where the negative electrode active material layer is not formed as long as the effect of the present invention is not significantly impaired.

上記フィラー層を構成する絶縁性フィラーとしては、非導電性(絶縁性)を示す種々の無機材料および/または有機材料(樹脂材料、紙、木材等)を主構成成分とするフィラーを使用し得る。耐久性および信頼性の観点から、無機材料を主体とするフィラー(無機フィラー)の使用が好ましい。例えば、上記絶縁性フィラーとして、非導電性(絶縁性)の無機化合物からなる粒子(セラミック粒子)を好ましく用いることができる。該無機化合物は、金属元素または非金属元素の酸化物、炭化物、珪化物、窒化物等であり得る。化学的安定性や原料コスト等の観点から、アルミナ(Al)、シリカ(SiO)、ジルコニア(ZrO),マグネシア(MgO)等の酸化物粒子からなるフィラー(すなわち無機酸化物フィラー)を好ましく使用することができる。また、炭化珪素(SiC)等の珪化物粒子、窒化アルミニウム(AlN)等の窒化物粒子も使用可能である。 As the insulating filler constituting the filler layer, fillers mainly composed of various inorganic materials and / or organic materials (resin material, paper, wood, etc.) exhibiting non-conductivity (insulating properties) can be used. . From the viewpoint of durability and reliability, it is preferable to use a filler mainly composed of an inorganic material (inorganic filler). For example, particles (ceramic particles) made of a non-conductive (insulating) inorganic compound can be preferably used as the insulating filler. The inorganic compound may be an oxide, carbide, silicide, nitride or the like of a metal element or a nonmetal element. From the viewpoint of chemical stability, raw material cost, etc., a filler composed of oxide particles such as alumina (Al 2 O 3 ), silica (SiO 2 ), zirconia (ZrO 2 ), magnesia (MgO) (ie, inorganic oxide filler) ) Can be preferably used. Further, silicide particles such as silicon carbide (SiC) and nitride particles such as aluminum nitride (AlN) can also be used.

本発明における絶縁性フィラーとして、例えば、上記特許文献2に記載された技術における無機酸化物フィラーと同様のα−アルミナ粒子を好ましく採用することができる。該α−アルミナ粒子は、特許文献2に記載の技術と同様に、複数の(例えば2〜10個程度の)一次粒子が連結した性状の粒子(連結粒子)であり得る。このような連結粒子は、特許文献2および/または他の公知文献に記載された内容および当該分野における技術常識に基づいて製造することができ、あるいは該当する市販品を入手することができる。   As the insulating filler in the present invention, for example, α-alumina particles similar to the inorganic oxide filler in the technique described in Patent Document 2 can be preferably used. Similar to the technique described in Patent Document 2, the α-alumina particles may be particles (connected particles) having properties in which a plurality of (for example, about 2 to 10) primary particles are connected. Such linked particles can be produced based on the contents described in Patent Document 2 and / or other known documents and the common general technical knowledge in the field, or a corresponding commercial product can be obtained.

使用する絶縁性フィラー(好ましくは無機酸化物フィラー、例えばアルミナ粒子)の平均粒径は、例えば凡そ0.1〜15μm程度であり得る。ここでいう平均粒径としては、一般的な市販の粒度計(レーザ回折式粒度分布測定装置等)を用いて測定された体積基準の平均粒径(D50)を採用することができる。該平均粒径が凡そ0.2〜1.5μm程度であるフィラーの使用が好ましい。この程度の平均粒径を有するフィラーを用いて形成されたフィラー層によると、本発明の適用効果がよりよく発揮され得る。また、このようなフィラー層が負極活物質上に設けられた構成の負極を用いて構築されたリチウム二次電池は、より良好な電池性能を発揮するものであり得る。 The average particle size of the insulating filler used (preferably inorganic oxide filler such as alumina particles) may be about 0.1 to 15 μm, for example. The average particle size referred to here, can be employed common commercial granulometer an average particle size of the measured volume basis using a (laser diffraction particle size distribution measuring apparatus or the like) (D 50). It is preferable to use a filler having an average particle size of about 0.2 to 1.5 μm. According to the filler layer formed using the filler having an average particle size of this degree, the application effect of the present invention can be exhibited better. Moreover, the lithium secondary battery constructed | assembled using the negative electrode of the structure by which such a filler layer was provided on the negative electrode active material may exhibit more favorable battery performance.

上記フィラー層は、上記絶縁性フィラー(例えば無機酸化物フィラー)の他に、該フィラーを結着させるバインダ(ポリマー成分)を含有することができる。該バインダとしては、例えば、負極活物質組成物に配合され得るバインダとして例示したポリマーから適宜選択される一種または二種以上の材料を好適に使用することができる。また、上記で具体的に例示したポリマー以外に好ましく使用し得るバインダとして、アクリロニトリル−ブタジエン共重合体ゴム(NBR)、アクリロニトリル−イソプレン共重合体ゴム(NIR)、アクリロニトリル−ブタジエン−イソプレン共重合体ゴム(NBIR)等の、共重合成分としてアクリロニトリルを含むゴム;アクリル酸、メタクリル酸、アクリル酸エステルまたはメタクリル酸エステル(例えばアルキルエステル)を主な共重合成分とするアクリル系ポリマー;ポリ酢酸ビニル、エチレン−酢酸ビニル共重合体(EVA)等の酢酸ビニル系樹脂;等を例示することができる。   The filler layer can contain a binder (polymer component) for binding the filler in addition to the insulating filler (for example, an inorganic oxide filler). As this binder, the 1 type, or 2 or more types of material suitably selected from the polymer illustrated as a binder which can be mix | blended with a negative electrode active material composition can be used suitably, for example. In addition to the polymers specifically exemplified above, binders that can be preferably used include acrylonitrile-butadiene copolymer rubber (NBR), acrylonitrile-isoprene copolymer rubber (NIR), and acrylonitrile-butadiene-isoprene copolymer rubber. (NBIR) or other rubber containing acrylonitrile as a copolymerization component; acrylic polymer having acrylic acid, methacrylic acid, acrylic acid ester or methacrylic acid ester (eg alkyl ester) as the main copolymerization component; polyvinyl acetate, ethylene -Vinyl acetate resin such as vinyl acetate copolymer (EVA);

負極活物質層の形成に用いられるバインダとフィラー層の形成に用いられるバインダとは同一であってもよく異なってもよい。ここに開示される発明は、両層に用いられるバインダが互いに異なる種類のバインダである態様で好ましく実施され得る。例えば、負極活物質層およびフィラー層のうちいずれか一方には水溶性(CMC等)のバインダおよび/または水分散性のバインダ(SBR等)を使用し、他方には有機溶媒に溶解するバインダ(PVDF、有機溶媒溶解性のアクリル系ポリマー等)を用いることができる。このことは、フィラー層の形成による他の電池性能への影響がより高度に抑制されたリチウム二次電池を構築する上で有利である。   The binder used for forming the negative electrode active material layer and the binder used for forming the filler layer may be the same or different. The invention disclosed herein can be preferably implemented in a mode in which the binders used in both layers are different types of binders. For example, a water-soluble (CMC or the like) binder and / or a water-dispersible binder (SBR or the like) is used for either one of the negative electrode active material layer and the filler layer, and the other is a binder that dissolves in an organic solvent ( PVDF, organic solvent-soluble acrylic polymer, etc.) can be used. This is advantageous in constructing a lithium secondary battery in which the influence on the other battery performance due to the formation of the filler layer is further suppressed.

上記フィラー層に含まれるフィラーとバインダとの質量比(フィラー:バインダ)は、例えば凡そ80:20〜99.5:0.5とすることができる。上記質量比が凡そ95:5〜99:1であってもよい。上記質量比よりもバインダの割合が少なすぎると、フィラー層の耐久性が不足しがちとなることがある。一方、上記質量比よりもバインダの割合が多すぎると、該フィラー層を設けたことによる電池性能への影響(初期容量の低下等)が顕在化しやすくなることがある。   The mass ratio between the filler and the binder contained in the filler layer (filler: binder) can be, for example, approximately 80:20 to 99.5: 0.5. The mass ratio may be about 95: 5 to 99: 1. If the ratio of the binder is less than the above mass ratio, the durability of the filler layer tends to be insufficient. On the other hand, when the proportion of the binder is too much than the above mass ratio, the influence on the battery performance (such as a decrease in the initial capacity) due to the provision of the filler layer may become apparent.

負極活物質層の表面にフィラー層を形成する方法としては、例えば、フィラー(例えばセラミック粒子)とバインダとを含むコート剤(フィラー層形成用組成物)を用意し、該コート剤を負極活物質層に付与する方法を好ましく採用することができる。通常は、上記フィラーとバインダとを適当な溶媒に分散または溶解させた液状コート剤(典型的にはペーストまたはスラリー状)を負極活物質層の表面に付与(典型的には塗布)し、その付与された液状コート剤を乾燥させる方法が簡便であり好ましい。上記溶媒(フィラー等の分散媒)としては、水(例えばイオン交換水)、有機溶媒(例えばN−メチルピロリドン)、水と有機溶媒との混合溶媒のいずれも使用可能である。特に限定するものではないが、かかる液状コート剤の固形分濃度(該コート剤に占めるフィラー層形成成分の割合)は、例えば凡そ30〜80質量%程度とすることができる。該固形分濃度が高すぎると液状コート剤の取扱性(塗布性等)が低下傾向となる場合がある。一方、上記固形分濃度が低すぎると電池の製造効率が低下しやすくなる。また、該液状コート剤の溶媒組成等によっては、フィラー層の形成による電池性能への影響(初期容量の低下等)が顕在化しやすくなる場合がある。   As a method for forming the filler layer on the surface of the negative electrode active material layer, for example, a coating agent (filler layer forming composition) containing a filler (for example, ceramic particles) and a binder is prepared, and the coating agent is used as the negative electrode active material. A method of imparting to the layer can be preferably employed. Usually, a liquid coating agent (typically paste or slurry) in which the filler and binder are dispersed or dissolved in a suitable solvent is applied (typically applied) to the surface of the negative electrode active material layer, and the A method of drying the applied liquid coating agent is simple and preferable. As the solvent (dispersion medium such as filler), any of water (for example, ion-exchanged water), an organic solvent (for example, N-methylpyrrolidone), and a mixed solvent of water and an organic solvent can be used. Although not particularly limited, the solid content concentration of the liquid coating agent (the ratio of the filler layer-forming component in the coating agent) can be, for example, about 30 to 80% by mass. If the solid content concentration is too high, the handling property (coating property, etc.) of the liquid coating agent tends to decrease. On the other hand, if the solid content concentration is too low, the production efficiency of the battery tends to decrease. In addition, depending on the solvent composition of the liquid coating agent, the influence on the battery performance due to the formation of the filler layer (decrease in initial capacity, etc.) may be easily manifested.

負極活物質組成物に用いられる溶媒と液状コート剤に用いられる溶媒とは同一であっても異なってもよい。ここに開示される技術では、液状コート剤の溶媒として、負極活物質組成物の溶媒とは異なる溶媒を好ましく採用し得る。例えば、負極活物質組成物の溶媒が水系溶媒(例えば水)である場合、N−メチルピロリドン(NMP)等の有機溶媒を含む液状コート剤を好ましく用いることができる。このように、水系の負極活物質組成物(典型的には、水溶性のバインダおよび/または水分散性のバインダを含有する。)を用いて形成された負極活物質層の上に有機溶媒系(溶剤系ともいう。典型的には、有機溶媒に可溶なバインダ(好ましくは正極活物質組成物を構成する水系溶媒に対しては溶解または膨潤しにくいバインダ、典型的には該水系溶媒に不溶なバインダ)を含有する。)の液状コート剤を付与してフィラー層を形成することにより、付与された液状コート剤が負極活物質層の状態に影響を及ぼす(例えば膨潤を引き起こす)事象をよりよく回避し得るという効果が得られる。また、このことによって液状コート剤に含まれるバインダ(すなわち、フィラー層を構成するバインダ)が負極活物質層内に染み込みにくくなるので、負極活物質層上にフィラー層が形成された構成においても該負極活物質層に含まれる負極活物質の性能を適切に発揮させることができる。したがって、より電池性能のよいリチウム二次電池を構築することができる。かかる効果は、溶剤系の負極活物質組成物(典型的には、有機溶媒に可溶なバインダを含有する。)と水系の液状コート剤(典型的には、水溶性のバインダおよび/または水分散性のバインダを含有する。)との組み合わせによっても実現され得る。   The solvent used for the negative electrode active material composition and the solvent used for the liquid coating agent may be the same or different. In the technique disclosed herein, a solvent different from the solvent of the negative electrode active material composition can be preferably employed as the solvent of the liquid coating agent. For example, when the solvent of the negative electrode active material composition is an aqueous solvent (for example, water), a liquid coating agent containing an organic solvent such as N-methylpyrrolidone (NMP) can be preferably used. Thus, an organic solvent system is formed on the negative electrode active material layer formed using the aqueous negative electrode active material composition (typically containing a water-soluble binder and / or a water-dispersible binder). (Also referred to as a solvent system. Typically, a binder that is soluble in an organic solvent (preferably a binder that hardly dissolves or swells in the aqueous solvent constituting the positive electrode active material composition, typically in the aqueous solvent. Insoluble binder))) is applied to form a filler layer, whereby the applied liquid coating agent affects the state of the negative electrode active material layer (for example, causes swelling). The effect of being able to avoid better is obtained. In addition, this makes it difficult for the binder contained in the liquid coating agent (that is, the binder constituting the filler layer) to penetrate into the negative electrode active material layer. Therefore, even in the configuration in which the filler layer is formed on the negative electrode active material layer, The performance of the negative electrode active material contained in the negative electrode active material layer can be appropriately exhibited. Therefore, a lithium secondary battery with better battery performance can be constructed. Such effects include a solvent-based negative electrode active material composition (typically containing a binder soluble in an organic solvent) and a water-based liquid coating agent (typically water-soluble binder and / or water). It can also be realized in combination with a dispersible binder).

ここに開示される技術において、フィラー層に含まれる細孔(空隙)の平均孔径や、該細孔の合計体積がフィラー層全体の体積に占める割合(気孔率)、フィラー層の厚み等は、該フィラー層の形成目的(電池の信頼性向上、より具体的には内部短絡の防止等)が適切に達成され、かつ所望の電池特性が確保されるように設定すればよく、特に限定されない。平均孔径が凡そ0.01〜10μm(好ましくは凡そ0.1〜4μm)であるフィラー層、気孔率が凡そ20〜75体積%(好ましくは凡そ35〜70%)であるフィラー層、厚みが凡そ1〜10μm(好ましくは凡そ2〜6μm)であるフィラー層等は、本発明に係るリチウム二次電池に備えられるフィラー層の好適例である。なお、上記平均孔径および気孔率は、市販の水銀ポロシメータ等を用いて測定することができる。   In the technology disclosed herein, the average pore diameter of pores (voids) contained in the filler layer, the ratio of the total volume of the pores to the volume of the entire filler layer (porosity), the thickness of the filler layer, etc. There is no particular limitation as long as it is set so that the purpose of forming the filler layer (improvement of battery reliability, more specifically, prevention of internal short circuit, etc.) is appropriately achieved and desired battery characteristics are secured. A filler layer having an average pore diameter of about 0.01 to 10 μm (preferably about 0.1 to 4 μm), a filler layer having a porosity of about 20 to 75% by volume (preferably about 35 to 70%), and a thickness of about A filler layer of 1 to 10 μm (preferably about 2 to 6 μm) is a suitable example of the filler layer provided in the lithium secondary battery according to the present invention. The average pore diameter and porosity can be measured using a commercially available mercury porosimeter or the like.

本発明により提供され得るリチウム二次電池は、上述した構成の負極(上述した方法により製造された負極を包含する。)および正極を用いる点以外は、従来のこの種の二次電池と同様にして製造することができる。上記リチウム二次電池は、典型的には、ここに開示される構成の正極および負極と、それら正負極を離隔するセパレータ(例えば、正負極の間に挟まれる多孔質樹脂シート)と、該正負極間に配置される電解質(典型的には非水電解液)とを備える。電池の外容器の構造(例えば金属製の筐体やラミネートフィルム構造物)やサイズ、あるいは正負極を主構成要素とする電極体の構造(例えば捲回構造や積層構造)等について特に制限はない。   The lithium secondary battery that can be provided by the present invention is the same as the conventional secondary battery of this type except that the negative electrode (including the negative electrode manufactured by the above-described method) and the positive electrode having the above-described configuration are used. Can be manufactured. The lithium secondary battery typically includes a positive electrode and a negative electrode having a configuration disclosed herein, a separator separating the positive and negative electrodes (for example, a porous resin sheet sandwiched between the positive and negative electrodes), and the positive and negative electrodes. And an electrolyte (typically a non-aqueous electrolyte) disposed between the negative electrodes. There is no particular limitation on the structure (for example, a metal casing or laminate film structure) and size of the battery outer container, or the structure of the electrode body (for example, a wound structure or a laminated structure) having positive and negative electrodes as main components. .

以下、図面を参照しつつ、本発明により提供され得るリチウム二次電池およびその製造方法に係る一実施形態を説明する。   Hereinafter, an embodiment according to a lithium secondary battery that can be provided by the present invention and a manufacturing method thereof will be described with reference to the drawings.

図1〜4に示されるように、本実施形態に係るリチウム二次電池10は、金属製(樹脂製又はラミネートフィルム製も好適である。)の筐体(外容器)12を備えており、この筐体12の中に、長尺シート状の正極30、セパレータ50A、負極40およびセパレータ50Bをこの順に積層し次いで捲回する(本実施形態では扁平形状に捲回する)ことにより構成された捲回電極体20が収容される。   As shown in FIGS. 1 to 4, the lithium secondary battery 10 according to the present embodiment includes a metal (resin or laminate film) casing (outer container) 12. The long sheet-like positive electrode 30, separator 50A, negative electrode 40, and separator 50B are stacked in this order in this casing 12, and then wound (in this embodiment, rolled into a flat shape). The wound electrode body 20 is accommodated.

正極30は、長尺状の正極集電体32と、その表面に形成された正極活物質層35とを備える。正極集電体32としては、アルミニウム、ニッケル、チタン等の金属からなるシート材(典型的にはアルミニウム箔等の金属箔)を使用し得る。正極活物質層35は、上述したような好適な正極活物質組成物を正極集電体32に付与して得られたものであり得る。典型的には、該組成物を正極集電体32の両サイドの表面に塗布する。かかる塗布物には水分が含まれているため、次に正極活物質が変性しない程度の適当な温度域(典型的には70〜200℃)で塗布物を乾燥させる。これにより、正極集電体32の両サイドの表面の所望する部位に正極活物質層35を形成することができる(図2)。また、必要に応じて適当なプレス処理(例えばロールプレス処理)を施すことによって、正極活物質層35の厚みや密度を適宜調整することができる。   The positive electrode 30 includes a long positive electrode current collector 32 and a positive electrode active material layer 35 formed on the surface thereof. As the positive electrode current collector 32, a sheet material (typically a metal foil such as an aluminum foil) made of a metal such as aluminum, nickel, or titanium can be used. The positive electrode active material layer 35 may be obtained by applying a suitable positive electrode active material composition as described above to the positive electrode current collector 32. Typically, the composition is applied to the surfaces of both sides of the positive electrode current collector 32. Since the coated material contains moisture, the coated material is then dried in an appropriate temperature range (typically 70 to 200 ° C.) that does not denature the positive electrode active material. Thereby, the positive electrode active material layer 35 can be formed in the desired site | part of the surface of the both sides of the positive electrode collector 32 (FIG. 2). Moreover, the thickness and density of the positive electrode active material layer 35 can be appropriately adjusted by performing an appropriate press process (for example, a roll press process) as necessary.

他方、負極40は、長尺状の負極集電体42と、その負極集電体の表面に形成された負極活物質層45と、該負極活物質層の表面に形成されたフィラー層48とを備える(図2および図3)。負極集電体42としては銅等の金属から成るシート材(典型的には銅箔等の金属箔)を使用し得る。負極活物質層45は、正極側と同様、上述したような好適な負極活物質組成物を負極集電体45の両サイドの表面に塗布して適当な温度で乾燥させ、必要に応じて適当なプレス処理(例えばロールプレス処理)を施すことにより負極活物質層45の厚みや密度を調整して得られたものであり得る。フィラー層48は、上述したような好適なコート剤(典型的には液状コート剤)を用意し、上記負極活物質層45の表面に該コート剤を塗布し、適当な温度で乾燥させて形成されたものである。なお、図2では、本発明の理解を容易にするため負極40の一部(図中の左下部分)でフィラー層48の一部を取り除いてその下の負極活物質層45が見えるようにしているが、実際にはこの部分を含めて負極活物質層45の実質的に全範囲がフィラー層48で覆われている。   On the other hand, the negative electrode 40 includes a long negative electrode current collector 42, a negative electrode active material layer 45 formed on the surface of the negative electrode current collector, and a filler layer 48 formed on the surface of the negative electrode active material layer. (FIGS. 2 and 3). As the negative electrode current collector 42, a sheet material (typically a metal foil such as a copper foil) made of a metal such as copper can be used. As with the positive electrode side, the negative electrode active material layer 45 is coated with a suitable negative electrode active material composition as described above on the surfaces of both sides of the negative electrode current collector 45 and dried at an appropriate temperature. It may be obtained by adjusting the thickness and density of the negative electrode active material layer 45 by performing a pressing process (for example, a roll pressing process). The filler layer 48 is formed by preparing a suitable coating agent (typically a liquid coating agent) as described above, applying the coating agent to the surface of the negative electrode active material layer 45, and drying it at an appropriate temperature. It has been done. In FIG. 2, in order to facilitate understanding of the present invention, a part of the filler layer 48 is removed from a part of the negative electrode 40 (lower left part in the figure) so that the negative electrode active material layer 45 below can be seen. Actually, however, substantially the entire range of the negative electrode active material layer 45 including this portion is covered with the filler layer 48.

これら正極30および負極40と重ね合わせて使用されるセパレータ50A,50Bとしては、非水電解液を備えるリチウム二次電池用のセパレータに利用し得ることが知られている各種の多孔質シートを用いることができる。例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂から成る多孔質樹脂シート(フィルム)を好適に使用し得る。特に限定するものではないが、好ましい多孔質シート(典型的には多孔質樹脂シート)の性状として、平均孔径が0.0005〜30μm(より好ましくは0.001〜15μm)程度であり、厚みが5〜100μm(より好ましくは10〜30μm)程度である多孔質樹脂シートが例示される。該多孔質シートの気孔率は、例えば凡そ20〜90体積%(好ましくは30〜80体積%)程度であり得る。   As the separators 50A and 50B that are used while being overlapped with the positive electrode 30 and the negative electrode 40, various porous sheets that are known to be usable for separators for lithium secondary batteries including a non-aqueous electrolyte are used. be able to. For example, a porous resin sheet (film) made of a polyolefin resin such as polyethylene or polypropylene can be preferably used. Although it does not specifically limit, as a property of a preferable porous sheet (typically porous resin sheet), an average pore diameter is about 0.0005-30 micrometers (more preferably 0.001-15 micrometers), and thickness is. The porous resin sheet which is about 5-100 micrometers (more preferably 10-30 micrometers) is illustrated. The porosity of the porous sheet may be, for example, about 20 to 90% by volume (preferably 30 to 80% by volume).

図2に示すように、正極シート30の長手方向に沿う一方の端部には、上記正極活物質組成物が塗布されず、よって正極活物質層35が形成されない部分(活物質層未形成部分)が設けられている。また、負極シート40の長手方向に沿う一方の端部には、上記負極活物質組成物およびコート剤が塗布されず、よって負極活物質層45およびフィラー層48が形成されない部分が設けられている。正負極シート30,40を二枚のセパレータ50A,50Bとともに重ね合わせる際には、両活物質層35,45を重ね合わせるとともに正極シートの活物質層未形成部分と負極シートの活物質層未形成部分とが長手方向に沿う一方の端部と他方の端部に別々に配置されるように、正負極シート30,40をややずらして重ね合わせる。この状態で計四枚のシート30,40,50A,50Bを捲回し、次いで得られた捲回体を側面方向から押しつぶして拉げさせることによって扁平形状の捲回電極体20が得られる。   As shown in FIG. 2, the positive electrode active material composition is not applied to one end portion along the longitudinal direction of the positive electrode sheet 30, and thus a portion where the positive electrode active material layer 35 is not formed (active material layer unformed portion). ) Is provided. In addition, at one end portion along the longitudinal direction of the negative electrode sheet 40, a portion where the negative electrode active material composition and the coating agent are not applied and thus the negative electrode active material layer 45 and the filler layer 48 are not formed is provided. . When the positive and negative electrode sheets 30 and 40 are overlapped with the two separators 50A and 50B, the active material layers 35 and 45 are overlapped and the active material layer non-formed portion of the positive electrode sheet and the active material layer of the negative electrode sheet are not formed. The positive and negative electrode sheets 30 and 40 are slightly shifted and overlapped so that the portions are separately arranged at one end and the other end along the longitudinal direction. In this state, a total of four sheets 30, 40, 50 </ b> A, 50 </ b> B are wound, and then the obtained wound body is crushed from the lateral direction to be ablated, thereby obtaining a flat wound electrode body 20.

次いで、得られた捲回電極体20を筐体12に収容するとともに(図4)、上記正極活物質層未形成部分及び負極活物質層未形成部分を、一部が筐体12の外部に配置される外部接続用正極端子14及び外部接続用負極端子16の各々と電気的に接続する。   Next, the obtained wound electrode body 20 is accommodated in the housing 12 (FIG. 4), and the positive electrode active material layer unformed portion and the negative electrode active material layer unformed portion are partly outside the housing 12. The external connection positive terminal 14 and the external connection negative terminal 16 are electrically connected to each other.

そして、適当な非水電解液(例えばLiPF等のリチウム塩を適当量含むジエチルカーボネートとエチレンカーボネートとの混合溶媒のような非水電解液)を筐体12内に配置(注液)し、筐体12の開口部を当該筐体とそれに対応する蓋部材13との溶接等により封止して、本実施形態に係るリチウム二次電池10の構築(組み立て)が完成する。なお、筐体12の封止プロセスや電解液配置(注液)プロセスは、従来のリチウム二次電池の製造で行われている手法と同様でよく、本発明を特徴付けるものではない。 Then, an appropriate non-aqueous electrolyte (for example, a non-aqueous electrolyte such as a mixed solvent of diethyl carbonate and ethylene carbonate containing an appropriate amount of a lithium salt such as LiPF 6 ) is placed (injected) in the casing 12, The opening of the housing 12 is sealed by welding the housing and the lid member 13 corresponding to the housing, and the construction (assembly) of the lithium secondary battery 10 according to the present embodiment is completed. In addition, the sealing process of the housing | casing 12 and an electrolyte solution arrangement | positioning (injection) process may be the same as the method currently performed by manufacture of the conventional lithium secondary battery, and do not characterize this invention.

本発明に係るリチウム二次電池は、上記のとおり、フィラー層を有することから信頼性が高く、しかも優れた電池性能を有する。例えば、フィラー層を有しない構成のリチウム二次電池と略同等の電池性能を示すリチウム二次電池(典型的には、上記フィラー層を有しないリチウム二次電池との初期抵抗および/または初期容量の差異が±10%、より好ましくは±5%以下のリチウム二次電池)であり得る。かかる特性により、本発明に係るリチウム二次電池は、特に自動車等の車両に搭載されるモーター(電動機)用電源として好適に使用し得る。したがって本発明は、図6に模式的に示すように、かかるリチウム二次電池10(当該リチウム二次電池10を複数個直列に接続して形成される組電池の形態であり得る。)を電源として備える車両(典型的には自動車、特にハイブリッド自動車、電気自動車、燃料電池自動車のような電動機を備える自動車)1を提供する。   Since the lithium secondary battery according to the present invention has the filler layer as described above, the lithium secondary battery has high reliability and excellent battery performance. For example, a lithium secondary battery that exhibits substantially the same battery performance as a lithium secondary battery having no filler layer (typically, an initial resistance and / or initial capacity with a lithium secondary battery that does not have the filler layer) Difference of ± 10%, more preferably ± 5% or less lithium secondary battery). Due to such characteristics, the lithium secondary battery according to the present invention can be suitably used as a power source for a motor (electric motor) mounted on a vehicle such as an automobile. Accordingly, as schematically shown in FIG. 6, the present invention provides a power source for such a lithium secondary battery 10 (which may be in the form of an assembled battery formed by connecting a plurality of lithium secondary batteries 10 in series). A vehicle (typically a vehicle, in particular a vehicle including a motor such as a hybrid vehicle, an electric vehicle, and a fuel cell vehicle) 1 is provided.

本発明を実施するにあたって、正極と負極との初期容量比を所定範囲とすることによりフィラー層の形成に拘わらず良好な電池性能が実現される理由を明らかにする必要はないが、一つの要因として以下のことが考えられる。すなわち、上記コート剤の付与等の手法によって負極活物質層上にフィラー層を形成すると、該コート剤の一部が負極活物質層内に染み込むことがあり得る。その染み込んだフィラー層形成成分(特にバインダ)は、負極活物質へのリチウムイオンの出入りを妨げる要因となり得る。例えば、上記バインダが負極活物質の周囲に付着することで上記リチウムイオンの出入りが阻害され得る。ここに開示される発明によると、正極と負極との初期容量比(N/P)を上述した好ましい範囲とする(典型的には、フィラー層を有しない場合における好適な初期容量比よりも意図的に高くする)ことにより、フィラー層が形成された負極活物質層において、該負極活物質層に含まれる負極活物質量に対する上記染み込んだ成分量の比率を相対的に小さくすることができる。このことによって電池性能への影響が抑えられるものと考えられる。また、正極の初期容量と負極の初期容量の両方を増すのではなく、正極に対する負極の初期容量比を大きくする(典型的には、正極活物質の使用量は変えずに負極活物質の使用量を増す)ことにより、一定体積当たりの電池容量の減少(エネルギー密度の低下)を抑えつつ、上記電池性能への影響防止効果が効率よく実現されるものと考えられる。   In carrying out the present invention, it is not necessary to clarify the reason why good battery performance is realized regardless of the formation of the filler layer by setting the initial capacity ratio between the positive electrode and the negative electrode within a predetermined range. The following can be considered. That is, when the filler layer is formed on the negative electrode active material layer by a technique such as application of the coating agent, a part of the coating agent may penetrate into the negative electrode active material layer. The soaked filler layer forming component (particularly the binder) can be a factor that hinders lithium ions from entering and leaving the negative electrode active material. For example, when the binder adheres around the negative electrode active material, the lithium ions can be prevented from entering and exiting. According to the invention disclosed herein, the initial capacity ratio (N / P) between the positive electrode and the negative electrode is set to the above-described preferred range (typically more suitable than the suitable initial capacity ratio when the filler layer is not provided). In the negative electrode active material layer in which the filler layer is formed, the ratio of the amount of the soaked component to the amount of the negative electrode active material contained in the negative electrode active material layer can be relatively reduced. This is considered to suppress the influence on the battery performance. Also, rather than increasing both the initial capacity of the positive electrode and the initial capacity of the negative electrode, the ratio of the initial capacity of the negative electrode to the positive electrode is increased (typically, the use of the negative electrode active material is unchanged without changing the amount of positive electrode active material used). By increasing the amount), it is considered that the effect of preventing the influence on the battery performance is efficiently realized while suppressing a decrease in battery capacity per unit volume (decrease in energy density).

以下、本発明に関する試験例につき説明するが、本発明をかかる具体例に示すものに限定することを意図したものではない。   Hereinafter, although the test example regarding this invention is demonstrated, it is not intending to limit this invention to what is shown to this specific example.

<例1:フィラー層を有し初期容量比が1.1である電池の作製>
以下のようにして正極を作製した。すなわち、正極活物質としてのニッケル酸リチウム(LiNiO)粉末とアセチレンブラックとカルボキシメチルセルロース(CMC)とポリテトラフルオロエチレンとを、これら材料の質量比が87:11:1:1であり且つ固形分濃度が45質量%となるようにイオン交換水と混合して、ペースト状の正極活物質組成物を調製した。かかる組成物を、正極集電体としての厚み約15μmの長尺状アルミニウム箔の両面に、それら両面の合計塗布量(固形分換算)が13mg/cmとなるように塗布して乾燥させることにより、該正極集電体の両面に厚み120μmの正極活物質層を形成し、次いで正極全体の厚さが85μmとなるようにプレスして正極シートを得た。
<Example 1: Production of a battery having a filler layer and an initial capacity ratio of 1.1>
A positive electrode was produced as follows. That is, lithium nickelate (LiNiO 2 ) powder, acetylene black, carboxymethylcellulose (CMC), and polytetrafluoroethylene as a positive electrode active material have a mass ratio of 87: 11: 1: 1 and a solid content. A paste-like positive electrode active material composition was prepared by mixing with ion-exchanged water so that the concentration was 45% by mass. Applying such a composition to both sides of a long aluminum foil having a thickness of about 15 μm as a positive electrode current collector so that the total coating amount (in terms of solid content) of both surfaces is 13 mg / cm 2 and drying. Thus, a positive electrode active material layer having a thickness of 120 μm was formed on both surfaces of the positive electrode current collector, and then pressed so that the total thickness of the positive electrode was 85 μm, to obtain a positive electrode sheet.

また、以下のようにして負極原材を作製した。すなわち、平均粒径10μmの天然黒鉛(負極活物質)とスチレンブタジエンゴムとカルボキシメチルセルロースとを、これら材料の質量比が98:1:1であり且つ固形分濃度が45質量%となるようにイオン交換水と混合して、スラリー状の負極活物質組成物を調製した。負極集電体としての厚み約15μmの長尺状銅箔の両面に上記組成物を、それら両面の合計塗布量(固形分換算)が8.6mg/cmとなるように塗布して乾燥させ、次いで負極活物質層の密度が1.3g/cmとなるようにプレスした。このようにして、負極集電体の表面に負極活物質層を有する負極原材を得た。 Moreover, the negative electrode raw material was produced as follows. That is, natural graphite (negative electrode active material) having an average particle diameter of 10 μm, styrene butadiene rubber and carboxymethyl cellulose are ionized so that the mass ratio of these materials is 98: 1: 1 and the solid content concentration is 45 mass%. A slurry-like negative electrode active material composition was prepared by mixing with exchange water. The above composition is applied to both sides of a long copper foil having a thickness of about 15 μm as a negative electrode current collector so that the total coating amount (in terms of solid content) on both sides is 8.6 mg / cm 2 and dried. Then, the negative electrode active material layer was pressed so that the density was 1.3 g / cm 3 . Thus, a negative electrode raw material having a negative electrode active material layer on the surface of the negative electrode current collector was obtained.

上記で作製した正極シートおよび負極原材の初期容量をそれぞれ測定した。   The initial capacities of the positive electrode sheet and negative electrode raw material prepared above were measured, respectively.

すなわち、該正極シートを所定の大きさ(面積2cmの円形状)に打ち抜いて測定電極を用意した。この測定電極と同サイズの金属リチウム箔(対極)とをセパレータ(厚さ0.02mmの多孔質ポリエチレンシートを用いた)を挟んで対向配置し、電解液とともにステンレス製容器に組み込んで、厚さ2mm、直径32mm(2032型)のコイン型セル(測定用セル)を構築した。電解液としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)との3:7(体積比)混合溶媒に1mol/Lの濃度で支持塩(ここではLiPF)を溶解した組成の非水電解液を使用した。そして、上記測定用セルについて、0.1mA/cmの電流密度で測定電極の電位が4.3V(対Li/Li)になるまで正極活物質からリチウムイオンを脱離させ、次いで0.1mA/cmの電流密度で測定電極の電位が3.0V(対Li/Li)になるまでリチウムイオンを挿入することにより、正極シートの単位面積当たりの初期容量(正極の初期容量P[mAh/cm])を求めた。 That is, the positive electrode sheet was punched into a predetermined size (circular shape with an area of 2 cm 2 ) to prepare a measurement electrode. This measurement electrode and a metal lithium foil (counter electrode) of the same size are placed opposite to each other with a separator (using a porous polyethylene sheet having a thickness of 0.02 mm) interposed between the measurement electrode and a stainless steel container together with the electrolyte. A coin-type cell (measuring cell) having a diameter of 2 mm and a diameter of 32 mm (2032 type) was constructed. As the electrolytic solution, non-aqueous electrolysis having a composition in which a supporting salt (here, LiPF 6 ) is dissolved in a 3: 7 (volume ratio) mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) at a concentration of 1 mol / L. The liquid was used. In the measurement cell, lithium ions are desorbed from the positive electrode active material at a current density of 0.1 mA / cm 2 until the potential of the measurement electrode becomes 4.3 V (vs. Li / Li + ). By inserting lithium ions at a current density of 1 mA / cm 2 until the potential of the measurement electrode becomes 3.0 V (vs. Li / Li + ), the initial capacity per unit area of the positive electrode sheet (the initial capacity P [ mAh / cm 2 ]).

また、該負極原材を所定の大きさ(面積2cmの円形状)に打ち抜いて測定電極を用意した。この測定電極と同サイズの金属リチウム箔(対極)とをセパレータ(厚さ0.02mmの多孔質ポリエチレンシートを用いた)を挟んで対向配置し、上記非水電解液とともにステンレス製容器に組み込んで、厚さ2mm、直径32mm(2032型)のコイン型セル(測定用セル)を構築した。そして、上記測定用セルについて、0.1mA/cmの電流密度で測定電極の電位が0.01V(対Li/Li)になるまで負極活物質にリチウムイオンを挿入し、次いで0.1mA/cmの電流密度で測定電極の電位が0.5V(対Li/Li)になるまでリチウムイオンを放出させることにより、負極原材の単位面積当たりの初期容量(負極原材の初期容量N[mAh/cm])を求めた。 The negative electrode raw material was punched into a predetermined size (circular shape with an area of 2 cm 2 ) to prepare a measurement electrode. This measurement electrode and a metallic lithium foil (counter electrode) of the same size are placed opposite to each other with a separator (using a porous polyethylene sheet having a thickness of 0.02 mm) interposed in the stainless steel container together with the non-aqueous electrolyte. A coin type cell (measuring cell) having a thickness of 2 mm and a diameter of 32 mm (2032 type) was constructed. Then, for the measurement cell, inserting lithium ions into the negative electrode active material until the potential of the measuring electrode at a current density of 0.1mA / cm 2 is 0.01 V (vs. Li / Li +), then 0.1mA The initial capacity per unit area of the negative electrode raw material (the initial capacity of the negative electrode raw material) is obtained by releasing lithium ions until the potential of the measurement electrode becomes 0.5 V (vs. Li / Li + ) at a current density of / cm 2. N [mAh / cm 2 ]).

これらの測定結果から算出した正極シート(正極)と負極原材との初期容量比(N/P)は1.1であった。   The initial capacity ratio (N / P) between the positive electrode sheet (positive electrode) and the negative electrode raw material calculated from these measurement results was 1.1.

上記負極原材を構成する負極活物質層の表面にフィラー層を形成した。すなわち、平均粒径0.6μmのα−アルミナ粒子(連結粒子)と、バインダとしてのアクリル系ポリマーとを、これら材料の質量比が96:4であり且つ固形分濃度が40質量%となるようにN−メチルピロリドン(NMP)と混合して、スラリー状のコート剤(液状コート剤)を調製した。この液状コート剤を負極活物質層の表面全体を覆うように塗布して乾燥させた。上記コート剤の塗布量は、乾燥後に得られるフィラー層の厚みが4μmとなる分量とした。   A filler layer was formed on the surface of the negative electrode active material layer constituting the negative electrode raw material. That is, α-alumina particles (linked particles) having an average particle diameter of 0.6 μm and acrylic polymer as a binder are such that the mass ratio of these materials is 96: 4 and the solid content concentration is 40% by mass. Was mixed with N-methylpyrrolidone (NMP) to prepare a slurry coating agent (liquid coating agent). This liquid coating agent was applied and dried so as to cover the entire surface of the negative electrode active material layer. The coating amount of the coating agent was such that the thickness of the filler layer obtained after drying was 4 μm.

このようにして得られた負極と上記正極(正極シート)とを用いて、以下に示す手順で、直径18mm、高さ65mm(即ち18650型)の一般的な円筒型リチウムイオン電池100(図5参照)を作製した。   Using the negative electrode thus obtained and the positive electrode (positive electrode sheet), a general cylindrical lithium ion battery 100 having a diameter of 18 mm and a height of 65 mm (that is, 18650 type) (FIG. 5) in the following procedure. Reference) was made.

非水電解質(電解液)としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)との3:7(体積比)混合溶媒に1mol/Lの濃度で支持塩(ここではLiPF)を溶解した組成の非水電解質(電解液)を使用した。 As a non-aqueous electrolyte (electrolytic solution), a supporting salt (here, LiPF 6 ) was dissolved at a concentration of 1 mol / L in a 3: 7 (volume ratio) mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC). A non-aqueous electrolyte (electrolytic solution) having a composition was used.

そして、上記で作製した負極と正極とを2枚のセパレータ(ここでは多孔質ポリエチレンシートを用いた。)とともに積層し、この積層シートを捲回して捲回電極体を作製した。この電極体を非水電解質とともに容器に収容し、容器開口部を封止してリチウムイオン電池を構築した。その後、適当なコンディショニング処理(例えば、1/10Cの充電レートで3時間の定電流充電を行い、次いで1/3Cの充電レートで4.1Vまで定電流定電圧で充電する操作と、1/3Cの放電レートで3.0Vまで定電流放電させる操作とを2〜3回繰り返す初期充放電処理)を行った。このようにして、正極の初期容量(P)と、フィラー層を有しない場合における負極の初期容量(すなわち負極原材の初期容量)(N)との比(N/P)が1.1となるように構成された、18650型の円筒形状リチウムイオン電池を得た。   And the negative electrode and positive electrode which were produced above were laminated | stacked with two separators (here the porous polyethylene sheet was used), this laminated sheet was wound, and the wound electrode body was produced. This electrode body was housed in a container together with a nonaqueous electrolyte, and the container opening was sealed to construct a lithium ion battery. Thereafter, an appropriate conditioning process (for example, a constant current charging for 3 hours at a charging rate of 1/10 C, and then charging at a constant current constant voltage up to 4.1 V at a charging rate of 1/3 C; The initial charge / discharge treatment was repeated 2 to 3 times with a constant current discharge to 3.0 V at a discharge rate of 2 to 3 times. Thus, the ratio (N / P) of the initial capacity (P) of the positive electrode to the initial capacity of the negative electrode without the filler layer (ie, the initial capacity of the negative electrode raw material) (N) is 1.1. Thus, a 18650 type cylindrical lithium ion battery configured as described above was obtained.

<例2:フィラー層を有し初期容量比が1.2である電池の作製>
例1に係る負極原材の作製と同様にして、ただし負極活物質組成物の負極集電体への塗布量(固形分換算の合計塗布量[mg/cm])が例1の塗布量に対して1.2/1.1倍となるように塗布条件を変更して、例2に係る負極原材を作製した。負極活物質層のプレスは、プレス後の負極活物質層の密度が例1と同じ密度(1.3g/cm)となるように行った(以下の例においても同じ。)。この負極原材の表面に例1と同様にしてフィラー層を形成して例2に係る負極を得た。そして、例1に係る負極に代えて本例に係る負極を用いた点以外は例1と同様にして、正極の初期容量(P)と、フィラー層を有しない場合における負極の初期容量(N)との比(N/P)が1.2となるように構成されたリチウムイオン電池を得た。
<Example 2: Production of battery having filler layer and initial capacity ratio of 1.2>
As in the preparation of the negative electrode raw material according to Example 1, except that the coating amount of the negative electrode active material composition on the negative electrode current collector (total coating amount in terms of solid content [mg / cm 2 ]) is the coating amount of Example 1 The negative electrode raw material which concerns on Example 2 was produced by changing application | coating conditions so that it might be 1.2 / 1.1 times with respect to this. The negative electrode active material layer was pressed so that the density of the negative electrode active material layer after the press was the same density (1.3 g / cm 3 ) as in Example 1 (the same applies to the following examples). A filler layer was formed on the surface of this negative electrode raw material in the same manner as in Example 1 to obtain a negative electrode according to Example 2. Then, in the same manner as in Example 1 except that the negative electrode according to this example was used instead of the negative electrode according to Example 1, the initial capacity (P) of the positive electrode and the initial capacity (N of the negative electrode without the filler layer) ) To obtain a lithium ion battery having a ratio (N / P) of 1.2.

<例3:フィラー層を有し初期容量比が1.4である電池の作製>
例1に係る負極原材の作製と同様にして、ただし負極活物質組成物の負極集電体への塗布量(固形分換算の合計塗布量[mg/cm])が例1の塗布量に対して1.4/1.1倍となるように塗布条件を変更して、例3に係る負極原材を作製した。この負極原材の表面に例1と同様にしてフィラー層を形成して例3に係る負極を得た。そして、例1に係る負極に代えて本例に係る負極を用いた点以外は例1と同様にして、正極の初期容量(P)と、フィラー層を有しない場合における負極の初期容量(N)との比(N/P)が1.4となるように構成されたリチウムイオン電池を得た。
<Example 3: Production of battery having filler layer and initial capacity ratio of 1.4>
As in the preparation of the negative electrode raw material according to Example 1, except that the coating amount of the negative electrode active material composition on the negative electrode current collector (total coating amount in terms of solid content [mg / cm 2 ]) is the coating amount of Example 1 The negative electrode raw material which concerns on Example 3 was produced by changing application | coating conditions so that it might become 1.4 / 1.1 times with respect to this. A filler layer was formed on the surface of this negative electrode raw material in the same manner as in Example 1 to obtain a negative electrode according to Example 3. Then, in the same manner as in Example 1 except that the negative electrode according to this example was used instead of the negative electrode according to Example 1, the initial capacity (P) of the positive electrode and the initial capacity (N of the negative electrode without the filler layer) ) To obtain a lithium ion battery having a ratio (N / P) of 1.4.

<例4:フィラー層を有し初期容量比が2.0である電池の作製>
例1に係る負極原材の作製と同様にして、ただし負極活物質組成物の負極集電体への塗布量(固形分換算の合計塗布量[mg/cm])が例1の塗布量に対して2.0/1.1倍となるように塗布条件を変更して、例4に係る負極原材を作製した。この負極原材の表面に例1と同様にしてフィラー層を形成して例4に係る負極を得た。そして、例1に係る負極に代えて本例に係る負極を用いた点以外は例1と同様にして、正極の初期容量(P)と、フィラー層を有しない場合における負極の初期容量(N)との比(N/P)が2.0となるように構成されたリチウムイオン電池を得た。
<Example 4: Production of battery having filler layer and initial capacity ratio of 2.0>
As in the preparation of the negative electrode raw material according to Example 1, except that the coating amount of the negative electrode active material composition on the negative electrode current collector (total coating amount in terms of solid content [mg / cm 2 ]) is the coating amount of Example 1 The negative electrode raw material which concerns on Example 4 was produced by changing coating conditions so that it might be 2.0 / 1.1 times with respect to this. A filler layer was formed on the surface of this negative electrode raw material in the same manner as in Example 1 to obtain a negative electrode according to Example 4. Then, in the same manner as in Example 1 except that the negative electrode according to this example was used instead of the negative electrode according to Example 1, the initial capacity (P) of the positive electrode and the initial capacity (N of the negative electrode without the filler layer) ) To obtain a lithium ion battery having a ratio (N / P) of 2.0.

<例5:フィラー層を有し初期容量比が2.1である電池の作製>
例1に係る負極原材の作製と同様にして、ただし負極活物質組成物の負極集電体への塗布量(固形分換算の合計塗布量[mg/cm])が例1の塗布量に対して2.1/1.1倍となるように塗布条件を変更して、例5に係る負極原材を作製した。この負極原材の表面に例1と同様にしてフィラー層を形成して例5に係る負極を得た。そして、例1に係る負極に代えて本例に係る負極を用いた点以外は例1と同様にして、正極の初期容量(P)と、フィラー層を有しない場合における負極の初期容量(N)との比(N/P)が2.1となるように構成されたリチウムイオン電池を得た。
<Example 5: Production of battery having filler layer and initial capacity ratio of 2.1>
As in the preparation of the negative electrode raw material according to Example 1, except that the coating amount of the negative electrode active material composition on the negative electrode current collector (total coating amount in terms of solid content [mg / cm 2 ]) is the coating amount of Example 1 The negative electrode raw material which concerns on Example 5 was produced by changing coating conditions so that it might become 2.1 / 1.1 times with respect to this. A filler layer was formed on the surface of this negative electrode raw material in the same manner as in Example 1 to obtain a negative electrode according to Example 5. Then, in the same manner as in Example 1 except that the negative electrode according to this example was used instead of the negative electrode according to Example 1, the initial capacity (P) of the positive electrode and the initial capacity (N of the negative electrode without the filler layer) ) To obtain a lithium ion battery having a ratio (N / P) of 2.1.

<例6:初期容量比が1.1でありフィラー層を有しない電池の作製>
本例では、例1で作製した負極原材をそのまま(すなわち、負極活物質層の表面にフィラー層を形成することなく)負極に使用した。その他の点については例1と同様にして、正極の初期容量(P)と負極の初期容量(N)との比(N/P)が1.1となるように構成された、負極活物質の表面にフィラー層を有しないリチウムイオン電池を得た。
<Example 6: Production of battery having initial capacity ratio of 1.1 and no filler layer>
In this example, the negative electrode raw material produced in Example 1 was used for the negative electrode as it was (that is, without forming a filler layer on the surface of the negative electrode active material layer). In other respects, the negative electrode active material was configured in the same manner as in Example 1 so that the ratio (N / P) of the initial capacity (P) of the positive electrode to the initial capacity (N) of the negative electrode was 1.1. A lithium ion battery having no filler layer on the surface was obtained.

[初期抵抗値の測定]
例1〜例6により得られたリチウムイオン電池について、各電池の25℃における初期抵抗値(IV抵抗値)を測定した。
[Measurement of initial resistance]
For the lithium ion batteries obtained in Examples 1 to 6, the initial resistance value (IV resistance value) at 25 ° C. of each battery was measured.

すなわち、25℃の温度条件下にて、定電流定電圧(CC−CV)充電によって各電池を60%の充電状態(SOC;State of Charge)に調整した。その後、25℃にて0.2C、0.5Cおよび1Cの条件で10秒間の放電と充電を交互に行い、放電開始から10秒後の電圧値をプロットしてI−V特性グラフを作成した。このI−V特性グラフの傾きから、25℃における初期IV抵抗値(mΩ)を算出した。   That is, each battery was adjusted to a 60% charge state (SOC; State of Charge) by constant current constant voltage (CC-CV) charging under a temperature condition of 25 ° C. Thereafter, discharging and charging for 10 seconds were alternately performed at 25 ° C. under the conditions of 0.2C, 0.5C, and 1C, and voltage values 10 seconds after the start of discharge were plotted to create an IV characteristic graph. . From the slope of the IV characteristic graph, the initial IV resistance value (mΩ) at 25 ° C. was calculated.

[電池の初期容量の測定]
例1〜例6により得られたリチウムイオン電池について、各電池の25℃における初期放電容量(初期容量)を測定した。
[Measurement of initial battery capacity]
For the lithium ion batteries obtained in Examples 1 to 6, the initial discharge capacity (initial capacity) at 25 ° C. of each battery was measured.

すなわち、25℃の温度条件下にて、各電池を1Cの定電流で4.1Vの上限電圧まで充電し、次いで1Cの定電流で3.0Vまで放電させることにより、各電池の4.1V−3.0V放電容量を測定した。   That is, by charging each battery to an upper limit voltage of 4.1 V with a constant current of 1 C under a temperature condition of 25 ° C., and then discharging to 3.0 V with a constant current of 1 C, 4.1 V of each battery. The -3.0V discharge capacity was measured.

上記測定により得られた各電池の初期抵抗値および初期容量の値を、例6に係るリチウムイオン電池(初期容量比が1.1であってフィラー層を有しない電池)について測定された初期抵抗値および初期容量値を100とし、他の電池の測定値については例6に係るリチウムイオン電池の測定値に対する比率として表1に示す。   The initial resistance value and the initial capacity value of each battery obtained by the above measurement were measured for the initial resistance measured for the lithium ion battery according to Example 6 (battery having an initial capacity ratio of 1.1 and no filler layer). The value and the initial capacity value are set to 100, and the measured values of other batteries are shown in Table 1 as ratios to the measured values of the lithium ion battery according to Example 6.

Figure 2008204753
Figure 2008204753

表1に示す結果から明らかなように、負極活物質層の表面にフィラー層が形成された構成のリチウムイオン電池において初期容量比(N/P)を1.2以上とすることにより(例2〜5)、該フィラー層の形成にも拘わらず、初期容量比(N/P)が1.1であってフィラー層を有しない構成のリチウムイオン電池(例6)と略同等の良好な初期抵抗値が実現された。さらに、フィラー層を有し初期容量比(N/P)が1.2〜2.0の範囲にあるリチウムイオン電池(例2〜4)によると、上記良好な初期抵抗値とともに、フィラー層を有しないリチウムイオン電池(例6)と略同等の良好な初期容量が実現された。これら例2〜4に係るリチウムイオン電池の初期抵抗および初期容量は、例6に係るリチウムイオン電池の初期抵抗および初期容量との差異がいずれも±5%以下であった。フィラー層を有し初期容量比(N/P)が1.3〜1.7の範囲にあるリチウムイオン電池(例3)では特に良好な結果が得られた。このようにフィラー層の形成(ひいては信頼性の向上)と良好な電池性能(例えば、初期抵抗および初期容量)の維持という相反する効果の両立は、表1によく示されるように、初期容量比(N/P)が所定範囲にあるときに特異的に現れる効果であった。   As is apparent from the results shown in Table 1, by setting the initial capacity ratio (N / P) to 1.2 or more in a lithium ion battery having a structure in which a filler layer is formed on the surface of the negative electrode active material layer (Example 2) To 5), despite the formation of the filler layer, the initial capacity ratio (N / P) is 1.1, and the good initial stage is substantially the same as that of the lithium ion battery (Example 6) having no filler layer. Resistance value was realized. Furthermore, according to the lithium ion battery (Examples 2 to 4) having the filler layer and the initial capacity ratio (N / P) in the range of 1.2 to 2.0, the filler layer is A good initial capacity substantially equal to that of the lithium ion battery (Example 6) not having was realized. The initial resistance and initial capacity of the lithium ion batteries according to Examples 2 to 4 were different from each other by ± 5% or less from the initial resistance and initial capacity of the lithium ion battery according to Example 6. Particularly good results were obtained with a lithium ion battery (Example 3) having a filler layer and an initial capacity ratio (N / P) in the range of 1.3 to 1.7. Thus, the compatibility of the conflicting effects of the formation of the filler layer (and hence the improvement in reliability) and the maintenance of good battery performance (for example, the initial resistance and the initial capacity), as well shown in Table 1, This is an effect that appears specifically when (N / P) is within a predetermined range.

以上、本発明を詳細に説明したが、上記実施形態および実施例は例示にすぎず、ここで開示される発明には上述の具体例を様々に変形、変更したものが含まれる。例えば、上述した捲回型の電池に限られず、種々の形状のリチウム二次電池に適用することができる。   As mentioned above, although this invention was demonstrated in detail, the said embodiment and Example are only illustrations and what changed and changed the above-mentioned specific example is contained in the invention disclosed here. For example, the present invention is not limited to the above-described wound type battery, and can be applied to various shapes of lithium secondary batteries.

一実施形態に係るリチウム二次電池の外形を模式的に示す斜視図である。It is a perspective view which shows typically the external shape of the lithium secondary battery which concerns on one Embodiment. 一実施形態に係る捲回電極体を構成する正負極およびセパレータを示す一部破断の平面図である。It is a partially broken top view which shows the positive / negative electrode and separator which comprise the wound electrode body which concerns on one Embodiment. 図2におけるIII−III線断面図である。It is the III-III sectional view taken on the line in FIG. 図1におけるIV−IV線断面図である。It is the IV-IV sectional view taken on the line in FIG. 実施例として作製した18650型リチウムイオン電池の形状を模式的に示す斜視図である。It is a perspective view which shows typically the shape of the 18650 type lithium ion battery produced as an Example. 本発明のリチウム二次電池を備えた車両(自動車)を模式的に示す側面図である。It is a side view which shows typically the vehicle (automobile) provided with the lithium secondary battery of this invention.

符号の説明Explanation of symbols

1 車両(自動車)
10,100 リチウム二次電池
12 筐体
20 捲回電極体
30 正極
32 正極集電体
35 正極活物質層
40 負極
42 負極集電体
45 負極活物質層
48 フィラー層
50A,50B セパレータ
1 Vehicle (Automobile)
DESCRIPTION OF SYMBOLS 10,100 Lithium secondary battery 12 Case 20 Winding electrode body 30 Positive electrode 32 Positive electrode current collector 35 Positive electrode active material layer 40 Negative electrode 42 Negative electrode current collector 45 Negative electrode active material layer 48 Filler layer 50A, 50B Separator

Claims (7)

正極活物質を主成分とする正極活物質層を有する正極と、
負極活物質を主成分とする負極活物質層と、該負極活物質層の表面に形成され絶縁性フィラーとバインダとを含む多孔性のフィラー層とを有する負極と、
を備えるリチウム二次電池であって、
前記正極の初期容量(P[mAh/cm])と、前記フィラー層を有しない場合における前記負極の初期容量(N[mAh/cm])との比(N/P)が1.2〜2.0となるように構成されている、リチウム二次電池。
A positive electrode having a positive electrode active material layer mainly composed of a positive electrode active material;
A negative electrode having a negative electrode active material layer mainly composed of a negative electrode active material, and a porous filler layer formed on the surface of the negative electrode active material layer and containing an insulating filler and a binder;
A lithium secondary battery comprising:
The ratio (N / P) of the initial capacity (P [mAh / cm 2 ]) of the positive electrode to the initial capacity (N [mAh / cm 2 ]) of the negative electrode without the filler layer is 1.2. A lithium secondary battery configured to be -2.0.
前記絶縁性フィラーは無機酸化物フィラーである、請求項1に記載のリチウム二次電池。   The lithium secondary battery according to claim 1, wherein the insulating filler is an inorganic oxide filler. 前記無機酸化物フィラーはアルミナ粒子である、請求項2に記載のリチウム二次電池。   The lithium secondary battery according to claim 2, wherein the inorganic oxide filler is alumina particles. 前記フィラー層は、前記絶縁性フィラーおよび前記バインダを含むスラリーを前記負極活物質層に塗布して成る、請求項1から3のいずれか一項に記載のリチウム二次電池。   4. The lithium secondary battery according to claim 1, wherein the filler layer is formed by applying a slurry containing the insulating filler and the binder to the negative electrode active material layer. 5. 前記スラリーは、前記絶縁性フィラーと前記バインダとを80:20〜99.5:0.5の質量比で含有する、請求項4に記載のリチウム二次電池。   The lithium secondary battery according to claim 4, wherein the slurry contains the insulating filler and the binder in a mass ratio of 80:20 to 99.5: 0.5. 正極活物質を主成分とする正極活物質層を有し、所定の初期容量(P[mAh/cm])を示す正極を用意すること;
負極活物質を主成分とする負極活物質層を有し、前記正極の初期容量に対して1.2〜2.0倍の初期容量(N[mAh/cm])を示す負極原材を用意すること;
絶縁性フィラーとバインダとを含むスラリーを前記負極活物質層に塗布することにより該負極活物質層の表面に多孔性のフィラー層が形成された負極を作製すること;および、
前記正極と前記負極とを用いてリチウム二次電池を構築すること;
を包含する、リチウム二次電池の製造方法。
Providing a positive electrode having a positive electrode active material layer mainly composed of a positive electrode active material and exhibiting a predetermined initial capacity (P [mAh / cm 2 ]);
A negative electrode raw material having a negative electrode active material layer mainly composed of a negative electrode active material and having an initial capacity (N [mAh / cm 2 ]) of 1.2 to 2.0 times the initial capacity of the positive electrode. To prepare;
Producing a negative electrode in which a porous filler layer is formed on the surface of the negative electrode active material layer by applying a slurry containing an insulating filler and a binder to the negative electrode active material layer; and
Constructing a lithium secondary battery using the positive electrode and the negative electrode;
A method for manufacturing a lithium secondary battery.
請求項1から5のいずれか一項に記載のリチウム二次電池または請求項6に記載の方法により製造されたリチウム二次電池を備える車両。   A vehicle comprising the lithium secondary battery according to any one of claims 1 to 5 or the lithium secondary battery manufactured by the method according to claim 6.
JP2007038767A 2007-02-20 2007-02-20 Lithium secondary battery and manufacturing method thereof Active JP5168535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007038767A JP5168535B2 (en) 2007-02-20 2007-02-20 Lithium secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007038767A JP5168535B2 (en) 2007-02-20 2007-02-20 Lithium secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008204753A true JP2008204753A (en) 2008-09-04
JP5168535B2 JP5168535B2 (en) 2013-03-21

Family

ID=39782037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007038767A Active JP5168535B2 (en) 2007-02-20 2007-02-20 Lithium secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5168535B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014147958A1 (en) 2013-03-19 2014-09-25 ソニー株式会社 Separator, battery, battery pack, electronic apparatus, electric vehicle, power storage device, and power system
WO2014192208A1 (en) * 2013-05-30 2014-12-04 株式会社豊田自動織機 Battery provided with electrolyte solution holding layer
US9203076B2 (en) 2011-07-07 2015-12-01 Samsung Sdi Co., Ltd. Electrode for lithium secondary battery, method of manufacturing the same, and lithium secondary battery including the same
JP2017157516A (en) * 2016-03-04 2017-09-07 株式会社Gsユアサ Power storage element
CN114243092A (en) * 2021-12-20 2022-03-25 上海瑞浦青创新能源有限公司 Square lithium ion battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001143689A (en) * 1999-11-15 2001-05-25 Shin Kobe Electric Mach Co Ltd Lithium secondary cell
JP2005149867A (en) * 2003-11-14 2005-06-09 Yuasa Corp Lithium secondary battery and its manufacturing method
JP2005174792A (en) * 2003-12-12 2005-06-30 Matsushita Electric Ind Co Ltd Electrode plate of lithium ion secondary battery, and lithium ion secondary battery as well as manufacturing method of the same
JP2005327680A (en) * 2004-05-17 2005-11-24 Matsushita Electric Ind Co Ltd Lithium ion secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001143689A (en) * 1999-11-15 2001-05-25 Shin Kobe Electric Mach Co Ltd Lithium secondary cell
JP2005149867A (en) * 2003-11-14 2005-06-09 Yuasa Corp Lithium secondary battery and its manufacturing method
JP2005174792A (en) * 2003-12-12 2005-06-30 Matsushita Electric Ind Co Ltd Electrode plate of lithium ion secondary battery, and lithium ion secondary battery as well as manufacturing method of the same
JP2005327680A (en) * 2004-05-17 2005-11-24 Matsushita Electric Ind Co Ltd Lithium ion secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9203076B2 (en) 2011-07-07 2015-12-01 Samsung Sdi Co., Ltd. Electrode for lithium secondary battery, method of manufacturing the same, and lithium secondary battery including the same
WO2014147958A1 (en) 2013-03-19 2014-09-25 ソニー株式会社 Separator, battery, battery pack, electronic apparatus, electric vehicle, power storage device, and power system
KR20150131025A (en) 2013-03-19 2015-11-24 소니 주식회사 Separator, battery, battery pack, electronic apparatus, electric vehicle, power storage device, and power system
US10862093B2 (en) 2013-03-19 2020-12-08 Murata Manufacturing Co., Ltd. Separator, battery, battery pack, electronic apparatus, electric vehicle, power storage device, and electric power system
WO2014192208A1 (en) * 2013-05-30 2014-12-04 株式会社豊田自動織機 Battery provided with electrolyte solution holding layer
JP2014232683A (en) * 2013-05-30 2014-12-11 株式会社豊田自動織機 Battery with electrolyte-holding layer
JP2017157516A (en) * 2016-03-04 2017-09-07 株式会社Gsユアサ Power storage element
CN114243092A (en) * 2021-12-20 2022-03-25 上海瑞浦青创新能源有限公司 Square lithium ion battery

Also Published As

Publication number Publication date
JP5168535B2 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
JP4766348B2 (en) Lithium secondary battery and manufacturing method thereof
JP5218808B2 (en) Lithium ion battery
JP5201426B2 (en) Lithium ion battery and its use
JP4900695B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP5316905B2 (en) Lithium secondary battery
WO2010073924A1 (en) Method for manufacturing nonaqueous secondary battery electrode
JP5365842B2 (en) Lithium ion battery
WO2013080379A1 (en) Lithium secondary battery and method for manufacturing same
JP5590424B2 (en) Lithium ion secondary battery
TWI672842B (en) Lithium ion secondary battery and method of producing the same
JP2011096539A (en) Lithium secondary battery
JP5696904B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP2010282873A (en) Lithium secondary battery, and method of manufacturing the same
JP2010102868A (en) Lithium secondary battery
WO2015150901A1 (en) Nonaqueous electrolyte secondary battery
JP5168535B2 (en) Lithium secondary battery and manufacturing method thereof
JP7205717B2 (en) positive electrode
JP6008188B2 (en) Non-aqueous electrolyte secondary battery
CN105990549B (en) Electric storage element
WO2020050285A1 (en) Lithium ion secondary battery, method for producing same, and electrode for lithium ion secondary batteries
JP5418828B2 (en) Lithium secondary battery and manufacturing method thereof
JP6493766B2 (en) Lithium ion secondary battery
CN111201638A (en) Electrode plate, electricity storage element, and method for manufacturing electrode plate
JP2014130729A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP2014229554A (en) Secondary battery and method for manufacturing the same

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121212

R151 Written notification of patent or utility model registration

Ref document number: 5168535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160111

Year of fee payment: 3