JP2008203202A - Sensor threshold circuit - Google Patents

Sensor threshold circuit Download PDF

Info

Publication number
JP2008203202A
JP2008203202A JP2007042543A JP2007042543A JP2008203202A JP 2008203202 A JP2008203202 A JP 2008203202A JP 2007042543 A JP2007042543 A JP 2007042543A JP 2007042543 A JP2007042543 A JP 2007042543A JP 2008203202 A JP2008203202 A JP 2008203202A
Authority
JP
Japan
Prior art keywords
sensor
current
threshold
circuit
hysteresis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007042543A
Other languages
Japanese (ja)
Other versions
JP4976882B2 (en
Inventor
Sayaka Yoshioka
沙耶香 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Electronics Co Ltd
Original Assignee
Asahi Kasei Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Electronics Co Ltd filed Critical Asahi Kasei Electronics Co Ltd
Priority to JP2007042543A priority Critical patent/JP4976882B2/en
Publication of JP2008203202A publication Critical patent/JP2008203202A/en
Application granted granted Critical
Publication of JP4976882B2 publication Critical patent/JP4976882B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sensor threshold circuit capable of providing a hysteresis width independent of variation of threshold point. <P>SOLUTION: By generating bias current IB from threshold current IO and hysteresis current IH, the hysteresis width ¾BH¾ is provided using a resistance ratio A and hence determining A keeps the hysteresis width ¾BH¾ constant regardless of a sensor current detecting resistor RS1. When the constant A is determined, the hysteresis width ¾BH¾ is determined as single value, and dispersion, temperature variation, and variation with time are not caused. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、各種センサに適応可能なセンサ閾値回路に関し、特にセンサ出力インピーダンスとバイアス電流との積によりセンサ出力のデジタル出力化の為の閾値を決めるセンサ閾値回路に関する。   The present invention relates to a sensor threshold circuit applicable to various sensors, and more particularly to a sensor threshold circuit that determines a threshold for digital output of a sensor output by a product of sensor output impedance and bias current.

図5に、従来のセンサ閾値回路を示す。このセンサ閾値回路は、4端子型センサ10と、電圧比較器20と、センサ駆動電流検出回路30と、センサバイアス電流発生回路55と、バイアス電流切り替え回路380とを具備し、外部から印加される例えば磁場のようなセンサ入力BINに対して、センサ出力VSO(=VP−VN)を得る。ここで、バイアス電流切り替え回路380で抵抗器RO、RRを切り替え、バイアス電流IBを変化させることにより、センサ入力BINに対して、図6に示すようなヒステリシス特性をもつデジタル出力VOを得ることができる回路である(例えば、特許文献1参照)。   FIG. 5 shows a conventional sensor threshold circuit. This sensor threshold circuit includes a four-terminal sensor 10, a voltage comparator 20, a sensor drive current detection circuit 30, a sensor bias current generation circuit 55, and a bias current switching circuit 380, and is applied from the outside. For example, a sensor output VSO (= VP−VN) is obtained for a sensor input BIN such as a magnetic field. Here, by switching the resistors RO and RR by the bias current switching circuit 380 and changing the bias current IB, a digital output VO having hysteresis characteristics as shown in FIG. 6 can be obtained with respect to the sensor input BIN. A circuit that can be used (see, for example, Patent Document 1).

図6はヒステリシス特性をもつセンサ閾値回路のセンサ入力BINと出力電圧VOの関係を示す図である。センサ入力BINを増加させると閾値BOPにおいて出力電圧VOはVOHからVOLに減少する。一方、センサ入力BINを減少させると閾値BOPより小さい閾値BRPにおいて出力電圧VOは逆にVOLからVOHに増加し、ヒステリシス幅|BH|を備えたヒステリシス特性をもつデジタル出力VOを得る。   FIG. 6 is a diagram showing the relationship between the sensor input BIN and the output voltage VO of the sensor threshold circuit having hysteresis characteristics. When the sensor input BIN is increased, the output voltage VO decreases from VOH to VOL at the threshold BOP. On the other hand, when the sensor input BIN is decreased, the output voltage VO is increased from VOL to VOH at a threshold BRP smaller than the threshold BOP, and a digital output VO having a hysteresis characteristic with a hysteresis width | BH | is obtained.

次に、従来のセンサ閾値回路の動作を、図5を参照して説明する。
始めに、図5におけるバイアス電流切り替え回路380のスイッチSWOが導通し、スイッチSWRが開放している時の閾値点について、図7を参照して説明する。図7は、説明を簡単にするために、図5のバイアス電流切り替え回路95のスイッチSWOが導通し、スイッチSWRが開放している状態で、4端子型センサ10、電圧比較器20、バイアス電流IBOを取り出した回路構成を示す図である。
Next, the operation of the conventional sensor threshold circuit will be described with reference to FIG.
First, the threshold point when the switch SWO of the bias current switching circuit 380 in FIG. 5 is conductive and the switch SWR is open will be described with reference to FIG. FIG. 7 shows the four-terminal sensor 10, the voltage comparator 20, the bias current with the switch SWO of the bias current switching circuit 95 of FIG. 5 turned on and the switch SWR opened for the sake of simplicity. It is a figure which shows the circuit structure which took out IBO.

まず、解析しやすくするため、センサ駆動電流を検出する抵抗器RSの抵抗値をセンサ抵抗器R1、R2、R3、R4の抵抗値に比べて非常に小さいと考え、それによりセンサの駆動端子電圧VCC2はVCCに等しいとする。後で導かれる結果から、センサ駆動電圧VCCに閾値点が依存しないことがわかるので、センサ駆動電流検出抵抗器RSの抵抗値は、任意の値でかまわない。
このとき、センサバイアス電流発生回路90が発生する電流IBOはセンサ駆動電流ISを用いて次の式(1)となる。
IBO=IS×RS/RO …(1)
ここで簡単にする為に、次のように電流ミラー比1/KOを定義する。
1/KO=RS/RO …(2)
First, for ease of analysis, the resistance value of the resistor RS that detects the sensor driving current is considered to be very small compared to the resistance values of the sensor resistors R1, R2, R3, and R4, and thereby the driving terminal voltage of the sensor. Assume that VCC2 is equal to VCC. Since the result derived later indicates that the threshold point does not depend on the sensor drive voltage VCC, the resistance value of the sensor drive current detection resistor RS may be an arbitrary value.
At this time, the current IBO generated by the sensor bias current generation circuit 90 is expressed by the following equation (1) using the sensor drive current IS.
IBO = IS × RS / RO (1)
For simplicity, the current mirror ratio 1 / KO is defined as follows.
1 / KO = RS / RO (2)

このとき、図7に示すように、センサ抵抗器R1に流れる電流をI1、センサ抵抗器R3及びR4に流れる電流をI2とし、センサ抵抗器R1、R2の接続点の電位をVP、センサ抵抗器R3、R4の接続点の電位をVNとすると、次の式(3a)〜(3c)が成り立つ。
I1=(VCC−VP)/R1 …(3a)
I2=VCC/(R3+R4) …(3b)
VP/R2=I1+(I1+I2)/KO …(3c)
VPについて解くと、
VP=VCC×((1+1/KO)/R1+1/(KO×(R3+R4)))/(1/R2+(1+1/KO)/R1) …(4)
となる。電圧比較器20は、VP=VNとなる電圧でスイッチするので、次式(5)が成り立つ。
VCC×((1+1/KO)/R1+1/(KO×(R3+R4)))/(1/R2+(1+1/KO)/R1)=R4×VCC/(R3+R4) …(5)
At this time, as shown in FIG. 7, the current flowing through the sensor resistor R1 is I1, the current flowing through the sensor resistors R3 and R4 is I2, the potential at the connection point of the sensor resistors R1 and R2 is VP, and the sensor resistor When the potential at the connection point of R3 and R4 is VN, the following equations (3a) to (3c) hold.
I1 = (VCC-VP) / R1 (3a)
I2 = VCC / (R3 + R4) (3b)
VP / R2 = I1 + (I1 + I2) / KO (3c)
Solving for VP,
VP = VCC × ((1 + 1 / KO) / R1 + 1 / (KO × (R3 + R4))) / (1 / R2 + (1 + 1 / KO) / R1) (4)
It becomes. Since the voltage comparator 20 switches at a voltage satisfying VP = VN, the following equation (5) is established.
VCC × ((1 + 1 / KO) / R1 + 1 / (KO × (R3 + R4))) / (1 / R2 + (1 + 1 / KO) / R1) = R4 × VCC / (R3 + R4) (5)

4端子型センサ10は、外部から印加されるセンサ入力BINに応じて、抵抗器R1、R2、R3、R4がバランスを崩し、R1=R4=R+ΔR、R2=R3=R−ΔR、または、R1=R4=R−ΔR、R2=R3=R+ΔRとなりセンサ出力電圧VSO(=VP−VN)を発生すると考えることができる。これより、R1=R4=R+ΔR、R2=R3=R−ΔRとすると、
((1+1/KO)/(R+ΔR)+1/(KO×(R−ΔR+R+ΔR)))/(1/( R−ΔR)+(1+1/KO)/( R+ΔR)=( R+ΔR)/( R−ΔR + R+ΔR) …(6)
In the four-terminal sensor 10, the resistors R1, R2, R3, and R4 lose their balance according to the sensor input BIN applied from the outside, and R1 = R4 = R + ΔR, R2 = R3 = R−ΔR, or R1 = R4 = R−ΔR, R2 = R3 = R + ΔR, and it can be considered that the sensor output voltage VSO (= VP−VN) is generated. From this, when R1 = R4 = R + ΔR and R2 = R3 = R−ΔR,
((1 + 1 / KO) / (R + ΔR) + 1 / (KO × (R−ΔR + R + ΔR))) / (1 / (R−ΔR) + (1 + 1 / KO) / (R + ΔR) = (R + ΔR) / (R−ΔR) + R + ΔR) (6)

上式(6)が成り立つΔR/Rを求める。
ΔR/R=1/(2×KO×(1+1/(2×KO))
≒1/(2×KO) ≡BOP …(7)
すなわち、上式(7)が成り立つΔR/Rが閾値点BOPとなる。ここで、通常のセンサ出力電圧は数百μVから数十mV程度であり、センサ駆動電圧は1Vから5V程度である。これより、KOは十分に大きい値として近似をおこなっている。
ΔR / R that satisfies the above equation (6) is obtained.
ΔR / R = 1 / (2 × KO × (1 + 1 / (2 × KO))
≒ 1 / (2 × KO) ≡BOP (7)
That is, ΔR / R where the above equation (7) holds is the threshold point BOP. Here, the normal sensor output voltage is about several hundred μV to several tens mV, and the sensor drive voltage is about 1 V to 5 V. Accordingly, KO is approximated as a sufficiently large value.

同様にして、図5におけるバイアス電流切り替え回路380のスイッチSWOが開放し、スイッチSWRが導通している時の閾値点について、図8を参照して説明する。図8は、説明を簡単にするために、図5のバイアス電流切り替え回路95のスイッチSWOが開放し、スイッチSWRが導通している状態で、4端子型センサ10、電圧比較器20、バイアス電流IBRを取り出した回路構成を示す図である。   Similarly, threshold points when the switch SWO of the bias current switching circuit 380 in FIG. 5 is open and the switch SWR is conductive will be described with reference to FIG. FIG. 8 shows a four-terminal sensor 10, a voltage comparator 20, a bias current in a state in which the switch SWO of the bias current switching circuit 95 in FIG. It is a figure which shows the circuit structure which took out IBR.

このとき、センサバイアス電流発生回路55が発生する電流IBRは次の式(8)となる。
IBR=IS×RS/RR …(8)
ここで簡単にする為に、次のように電流ミラー比1/KRを定義する。
1/KR=RS/RR …(9)
このとき、図8に示すように電流を定めバイアス電流IBRの時の電流ミラー比1/KOを1/KRとすることで同様に考えることができ、VP=VNが成り立つときのΔR/Rは次の式(10)で与えられる。
ΔR/R≒1/(2×KR) ≡BRP …(10)
すなわち、上式(10)が成り立つΔR/Rが閾値BRPとなる。
At this time, the current IBR generated by the sensor bias current generating circuit 55 is expressed by the following equation (8).
IBR = IS × RS / RR (8)
For simplicity, the current mirror ratio 1 / KR is defined as follows.
1 / KR = RS / RR (9)
At this time, as shown in FIG. 8, it is possible to consider the same by setting the current and setting the current mirror ratio 1 / KO at the time of the bias current IBR to 1 / KR, and ΔR / R when VP = VN is established. It is given by the following equation (10).
ΔR / R≈1 / (2 × KR) ≡BRP (10)
That is, ΔR / R that satisfies the above equation (10) is the threshold value BRP.

次に、バイアス電流切り替え回路380のスイッチSWO、スイッチSWRの切り替えによってつくられるヒステリシス幅|BH|を考える。
ヒステリシス幅|BH|は以下の式(11)で書ける。
|BH|=|BOP−BRP|=|1/(2×KO)−1/(2×KR)|
=|RS×(1/RO−1/RR)/2| …(11)
Next, a hysteresis width | BH | created by switching the switches SWO and SWR of the bias current switching circuit 380 will be considered.
The hysteresis width | BH | can be expressed by the following equation (11).
| BH | = | BOP-BRP | = | 1 / (2 × KO) −1 / (2 × KR) |
= | RS × (1 / RO−1 / RR) / 2 | (11)

上式(7)、(10)、(11)から得られる閾値BOP及びBRP、ヒステリシス幅|BH|とセンサ駆動電流検出抵抗器RSの関係を図9に示す。
この図9に示すように、従来のセンサ閾値回路においては、センサ駆動電流検出回路30の抵抗器RSを変化させることで閾値点を変化させた場合、ヒステリシス幅|BH|も同様に変化することが分かる。これは、上式(11)からも分かる。
特開2001−108480号公報
FIG. 9 shows the relationship between the threshold values BOP and BRP and the hysteresis width | BH | obtained from the above equations (7), (10), and (11) and the sensor drive current detection resistor RS.
As shown in FIG. 9, in the conventional sensor threshold circuit, when the threshold point is changed by changing the resistor RS of the sensor drive current detection circuit 30, the hysteresis width | BH | changes similarly. I understand. This can also be seen from the above equation (11).
JP 2001-108480 A

しかし、従来のセンサ閾値回路においては、上記のように抵抗器RSを変化させることで閾値点を変化させた際に、これと同様に変化するヒステリシス幅|BH|は、センサ出力ノイズによる出力のばらつきを軽減させる働きをする。このため、閾値点を変化させた場合には、ヒステリシス幅|BH|の変化によりセンサ出力ノイズによるばらつきの影響が異なることが生じる問題があった。
本発明は、このような課題に鑑みてなされたものであり、閾値点の変化に依存しないヒステリシス幅を与えることができるセンサ閾値回路を提供することを目的としている。
However, in the conventional sensor threshold circuit, when the threshold point is changed by changing the resistor RS as described above, the hysteresis width | BH | that changes in the same manner is the output of the sensor output noise. It works to reduce variation. For this reason, when the threshold point is changed, there is a problem in that the influence of variation due to sensor output noise differs depending on the change in the hysteresis width | BH |.
The present invention has been made in view of such a problem, and an object of the present invention is to provide a sensor threshold circuit capable of providing a hysteresis width that does not depend on a change in threshold point.

上記目的を達成するために、本発明の請求項1によるセンサ閾値回路は、センサの入力に対しヒステリシス特性をもったデジタル信号を出力するセンサ閾値回路において、前記センサの出力電圧を2値化する電圧比較器と、前記センサの駆動電流を検出する第1のセンサ駆動電流検出回路と、前記第1のセンサ駆動電流検出回路で検出されたセンサ駆動電流の1/K倍(K>0)の閾値電流を発生する閾値電流発生回路と、前記センサの駆動電流を検出する第2のセンサ駆動電流検出回路と、前記第2のセンサ駆動電流検出回路で検出されたセンサ駆動電流の1/A倍(A>0)のヒステリシス電流を発生するヒステリシス電流発生回路と、前記電圧比較器により2値化された信号に基づいて前記ヒステリシス電流を制御すると共に、前記閾値電流と前記制御されたヒステリシス電流に基づいたバイアス電流を、前記センサの出力電圧を出力する端子に供給するバイアス電流切り替え回路とを具備することを特徴とする。   To achieve the above object, a sensor threshold circuit according to claim 1 of the present invention binarizes an output voltage of the sensor in a sensor threshold circuit that outputs a digital signal having hysteresis characteristics with respect to an input of the sensor. A voltage comparator, a first sensor drive current detection circuit for detecting the drive current of the sensor, and 1 / K times (K> 0) of the sensor drive current detected by the first sensor drive current detection circuit A threshold current generating circuit for generating a threshold current, a second sensor driving current detecting circuit for detecting a driving current of the sensor, and a sensor driving current detected by the second sensor driving current detecting circuit 1 / A times A hysteresis current generating circuit for generating a hysteresis current of (A> 0), and controlling the hysteresis current based on a signal binarized by the voltage comparator; A bias current based current and the controlled hysteresis current, characterized by comprising a bias current switching circuit that supplies the terminal for outputting the output voltage of the sensor.

また、本発明の請求項2によるセンサ閾値回路は、請求項1において、前記バイアス電流切り替え回路は、第1及び第2のスイッチを備え、前記第1及び第2のスイッチを切り替えることにより前記ヒステリシス電流を制御し、前記閾値電流と前記ヒステリシス電流との減算を行い、バイアス電流を発生させることを特徴とする。
また、本発明の請求項3によるセンサ閾値回路は、請求項1において、前記バイアス電流切り替え回路は、第1及び第2のスイッチを備え、前記第1及び第2のスイッチを切り替えることにより前記ヒステリシス電流を制御し、前記閾値電流と前記ヒステリシス電流との加算を行い、バイアス電流を発生させることを特徴とする。
また、本発明の請求項4によるセンサ閾値回路は、請求項1から3の何れか1項において、前記センサは、4端子型のセンサであって、ホール素子、磁気抵抗素子、歪みセンサ、圧力センサ、温度センサ、加速度センサのいずれか1つであることを特徴とする。
A sensor threshold circuit according to a second aspect of the present invention is the sensor threshold circuit according to the first aspect, wherein the bias current switching circuit includes first and second switches, and the hysteresis is switched by switching the first and second switches. A bias current is generated by controlling current and subtracting the threshold current and the hysteresis current.
According to a third aspect of the present invention, there is provided the sensor threshold circuit according to the first aspect, wherein the bias current switching circuit includes first and second switches, and the hysteresis is switched by switching the first and second switches. A bias current is generated by controlling a current and adding the threshold current and the hysteresis current.
A sensor threshold circuit according to a fourth aspect of the present invention is the sensor threshold circuit according to any one of the first to third aspects, wherein the sensor is a four-terminal type sensor, and includes a Hall element, a magnetoresistive element, a strain sensor, a pressure sensor. It is any one of a sensor, a temperature sensor, and an acceleration sensor.

以上説明したように本発明によれば、バイアス電流IBを閾値電流IOとヒステリシス電流IHで発生することにより、ヒステリシス幅|BH|は抵抗比Aにより与えられるので、Aが決定されればヒステリシス幅|BH|はセンサ電流検出抵抗RS1によらず、一定に保たれる。また、定数Aが決定されれば、ヒステリシス幅|BH|はひとつの値にきまり、ばらつきや温度変動、経時変化がない。従って、本発明によれば、センサ駆動電流検出抵抗器RS1に依存しないヒステリシス幅|BH|を得ることを可能としたセンサ閾値回路を提供することができるという効果がある。   As described above, according to the present invention, by generating the bias current IB with the threshold current IO and the hysteresis current IH, the hysteresis width | BH | is given by the resistance ratio A. Therefore, if A is determined, the hysteresis width | BH | is kept constant irrespective of the sensor current detection resistor RS1. If the constant A is determined, the hysteresis width | BH | becomes a single value, and there are no variations, temperature fluctuations, and changes with time. Therefore, according to the present invention, it is possible to provide a sensor threshold circuit capable of obtaining the hysteresis width | BH | independent of the sensor drive current detection resistor RS1.

以下、本発明の実施形態を、図面を参照して説明する。但し、本明細書中の全図において相互に対応する部分には同一符号を付し、重複部分においては後述での説明を適時省略する。
但し、本発明の構成回路として2つの実施形態があるので、これらを第1及び第2の実施形態として各々説明し、この後に双方の作用及び効果を纏めて説明する。
Embodiments of the present invention will be described below with reference to the drawings. However, parts corresponding to each other in all the drawings in this specification are denoted by the same reference numerals, and description of the overlapping parts will be omitted as appropriate.
However, since there are two embodiments as the constituent circuit of the present invention, these will be described as the first and second embodiments, respectively, and then the actions and effects of both will be described together.

(第1の実施形態の構成)
図1は、本発明の第1の実施形態におけるセンサ閾値回路の構成を示す回路図である。
このセンサ閾値回路は、4端子型センサ10と、電圧比較器20と、センサ駆動電流検出回路(第1のセンサ駆動電流検出回路)40及びセンサ駆動電流検出回路(第2のセンサ駆動電流検出回路)50と、閾値電流発生回路60と、ヒステリシス電流発生回路70と、バイアス電流切り替え回路180とを備えて構成されている。なお、4端子型センサ10は、例えばホール素子、磁気抵抗素子、歪みセンサ、圧力センサ、温度センサ、加速度センサのいずれかである。
(Configuration of the first embodiment)
FIG. 1 is a circuit diagram showing a configuration of a sensor threshold circuit according to the first embodiment of the present invention.
The sensor threshold circuit includes a four-terminal sensor 10, a voltage comparator 20, a sensor drive current detection circuit (first sensor drive current detection circuit) 40, and a sensor drive current detection circuit (second sensor drive current detection circuit). ) 50, a threshold current generation circuit 60, a hysteresis current generation circuit 70, and a bias current switching circuit 180. The 4-terminal sensor 10 is, for example, any one of a Hall element, a magnetoresistive element, a strain sensor, a pressure sensor, a temperature sensor, and an acceleration sensor.

また、このセンサ閾値回路は、4端子型センサ10の出力端子にバイアス電流切り替え回路180で発生したセンサバイアス電流IBを流し込み、センサバイアス電流IBと4端子型センサ10の出力端子VPのインピーダンスROUTとの積IB×ROUTによる電圧ドロップを利用し、センサ出力VSO(=VP−VN)にヒステリシス特性を有している。
このような構成のセンサ閾値回路において、センサ駆動電流検出回路40の抵抗器RS1を用いてセンサ駆動電流ISを検出し、抵抗器RS1、抵抗器RO、演算増幅器61及びPMOSトランジスタ62からなる閾値電流発生回路60でセンサ駆動電流ISの1/K倍(K>0)の閾値電流IOを発生する。
Further, the sensor threshold circuit feeds the sensor bias current IB generated by the bias current switching circuit 180 into the output terminal of the four-terminal sensor 10, and the sensor bias current IB and the impedance ROUT of the output terminal VP of the four-terminal sensor 10 The sensor output VSO (= VP−VN) has a hysteresis characteristic using a voltage drop due to the product IB × ROUT.
In the sensor threshold circuit having such a configuration, the sensor drive current IS is detected using the resistor RS1 of the sensor drive current detection circuit 40, and the threshold current composed of the resistor RS1, the resistor RO, the operational amplifier 61, and the PMOS transistor 62 is detected. The generation circuit 60 generates a threshold current IO that is 1 / K times (K> 0) the sensor drive current IS.

また、センサ駆動電流検出回路50の抵抗器RS2を用いてセンサ駆動電流ISを検出し、抵抗器RS2、抵抗器RH、演算増幅器71及びNMOSトランジスタ72からなるヒステリシス電流発生回路70でセンサ駆動電流ISの1/A倍(A>0)のヒステリシス電流IHを発生する。
また、バイアス電流切り替え回路180のスイッチ切り替えにより、閾値電流IOを用いてバイアス電流IBOを発生し、閾値電流IOとヒステリシス電流IHを減算することによりバイアス電流IBRを発生する。
The sensor drive current IS is detected using the resistor RS2 of the sensor drive current detection circuit 50, and the sensor drive current IS is detected by the hysteresis current generation circuit 70 including the resistor RS2, the resistor RH, the operational amplifier 71, and the NMOS transistor 72. 1 / A times (A> 0) of hysteresis current IH.
Further, by switching the bias current switching circuit 180, the bias current IBO is generated using the threshold current IO, and the bias current IBR is generated by subtracting the threshold current IO and the hysteresis current IH.

(第2の実施形態の構成)
図2は、本発明の第2の実施形態におけるセンサ閾値回路の構成を示す回路図である。
このセンサ閾値回路は、4端子型センサ10と、電圧比較器20と、センサ駆動電流検出回路40及び50と、閾値電流発生回路60と、ヒステリシス電流発生回路70と、バイアス電流切り替え回路280とを備えて構成されている。
また、このセンサ閾値回路は、4端子型センサ10の出力端子にバイアス電流切り替え回路280で発生したセンサバイアス電流IBを流し込み、センサバイアス電流IBと4端子型センサ10の出力端子VPのインピーダンスROUTとの積IB×ROUTによる電圧ドロップを利用し、センサ出力VSO(=VP−VN)にヒステリシス特性をもつセンサ閾値回路である。
(Configuration of Second Embodiment)
FIG. 2 is a circuit diagram showing a configuration of a sensor threshold circuit according to the second embodiment of the present invention.
This sensor threshold circuit includes a four-terminal sensor 10, a voltage comparator 20, sensor drive current detection circuits 40 and 50, a threshold current generation circuit 60, a hysteresis current generation circuit 70, and a bias current switching circuit 280. It is prepared for.
Further, the sensor threshold circuit feeds the sensor bias current IB generated by the bias current switching circuit 280 to the output terminal of the four-terminal sensor 10, and the sensor bias current IB and the impedance ROUT of the output terminal VP of the four-terminal sensor 10 This is a sensor threshold circuit having a hysteresis characteristic in the sensor output VSO (= VP−VN) using a voltage drop due to the product IB × ROUT.

このような構成のセンサ閾値回路では、センサ駆動電流検出回路40の抵抗器RS1を用いてセンサ駆動電流ISを検出し、抵抗器RS1、抵抗器RO、演算増幅器61及びPMOSトランジスタ62からなる閾値電流発生回路60でセンサ駆動電流ISの1/K倍(K>0)の閾値電流IOを発生する。
また、センサ駆動電流検出回路50の抵抗器RS2を用いてセンサ駆動電流ISを検出し、抵抗器RS2と抵抗器RHと演算増幅器71とNMOSトランジスタ72からなるヒステリシス電流発生回路70でセンサ駆動電流ISの1/A倍(A>0)のヒステリシス電流IHを発生する。
また、バイアス電流切り替え回路280のスイッチ切り替えにより、閾値電流IOとヒステリシス電流IHを加算することによりバイアス電流IBOを発生し、閾値電流IOを用いてバイアス電流IBRを発生する。
In the sensor threshold circuit having such a configuration, the sensor drive current IS is detected using the resistor RS1 of the sensor drive current detection circuit 40, and the threshold current composed of the resistor RS1, the resistor RO, the operational amplifier 61, and the PMOS transistor 62 is detected. The generation circuit 60 generates a threshold current IO that is 1 / K times (K> 0) the sensor drive current IS.
Further, the sensor drive current IS is detected using the resistor RS2 of the sensor drive current detection circuit 50, and the sensor drive current IS is detected by the hysteresis current generation circuit 70 including the resistor RS2, the resistor RH, the operational amplifier 71, and the NMOS transistor 72. 1 / A times (A> 0) of hysteresis current IH.
Further, by switching the bias current switching circuit 280, the bias current IBO is generated by adding the threshold current IO and the hysteresis current IH, and the bias current IBR is generated using the threshold current IO.

(第1及び第2の実施形態の作用及び効果)
本発明のセンサ閾値回路の要点は、従来技術において与えられるバイアス電流IBを、閾値電流IOとヒステリシス電流IHを演算することによりセンサバイアス電流を発生させるようにしたことである。
本発明を理解する為に、まず、図1におけるヒステリシス電流IHと閾値電流IOとについて考察する。また、理解を簡単にする為に、センサ駆動電流を検出する抵抗器RS1、RS2の抵抗値を、センサ抵抗器R1、R2、R3、R4の抵抗値に比べて非常に小さいと考え、それによりセンサの駆動端子電圧VCC2はVCCに等しいとし、センサの駆動端子電圧GND2はGNDに等しいとした。後で導かれる結果から、センサ駆動電圧VCCに閾値点が依存しないことがわかるので、センサ駆動電流検出抵抗器の抵抗値は、任意の値でかまわない。
(Operations and effects of the first and second embodiments)
The main point of the sensor threshold circuit of the present invention is that the bias current IB given in the prior art is generated by calculating the threshold current IO and the hysteresis current IH.
In order to understand the present invention, first, the hysteresis current IH and the threshold current IO in FIG. 1 are considered. In order to simplify the understanding, the resistance values of the resistors RS1 and RS2 that detect the sensor drive current are considered to be very small compared to the resistance values of the sensor resistors R1, R2, R3, and R4. The sensor drive terminal voltage VCC2 is assumed to be equal to VCC, and the sensor drive terminal voltage GND2 is assumed to be equal to GND. Since the result derived later indicates that the threshold point does not depend on the sensor drive voltage VCC, the resistance value of the sensor drive current detection resistor may be an arbitrary value.

まず、閾値電流IOはセンサ駆動電流ISを用いて次式(12)で表される。
IO=IS×RS1/RO …(12)
ここで簡単にする為に、次のように閾値電流発生回路の電流ミラー比1/Kを定義する。
1/K=RS1/RO …(13)
また、ヒステリシス電流IHは、センサ駆動電流ISを用いて次式(14)で表される。
IH=IS×RS2/RH …(14)
ここで簡単にする為に、次のようにヒステリシス電流発生回路の電流ミラー比1/Aを定義する。
1/A=RS2/RH …(15)
First, the threshold current IO is expressed by the following equation (12) using the sensor drive current IS.
IO = IS × RS1 / RO (12)
For simplicity, the current mirror ratio 1 / K of the threshold current generation circuit is defined as follows.
1 / K = RS1 / RO (13)
The hysteresis current IH is expressed by the following equation (14) using the sensor drive current IS.
IH = IS × RS2 / RH (14)
For simplicity, the current mirror ratio 1 / A of the hysteresis current generating circuit is defined as follows.
1 / A = RS2 / RH (15)

次に、図3のように電流を定める。図3は、説明を簡単にするために、図1に示すセンサ閾値回路の内、4端子型センサ10と、バイアス電流切り替え回路180と、電圧比較器20とを取り出し、これに閾値電流IOとヒステリシス電流IHが流れる構成の回路図である。
図3に示すバイアス電流切り替え回路の第1のスイッチSW1が導通し、第2のスイッチSW2が開放している時の閾値点を考える。
この時、バイアス電流IBOは次式(16)で表される。
IBO=IO …(16)
Next, the current is determined as shown in FIG. FIG. 3 shows the four-terminal sensor 10, the bias current switching circuit 180, and the voltage comparator 20 extracted from the sensor threshold circuit shown in FIG. It is a circuit diagram of the structure through which the hysteresis current IH flows.
Consider the threshold point when the first switch SW1 of the bias current switching circuit shown in FIG. 3 is conducting and the second switch SW2 is open.
At this time, the bias current IBO is expressed by the following equation (16).
IBO = IO (16)

この時の閾値点は、図5で示した従来回路の抵抗器RO又は抵抗器RRを抵抗器ROとし、センサバイアス電流発生回路90の電流ミラー比1/KO又は1/KRを1/Kと置き換えることにより、従来回路と同様に求めることができる。
ΔR/R≒1/(2×K) ≡BOP …(17)
すなわち、上式(17)が成り立つΔR/Rが閾値BOPとなる。
The threshold points at this time are the resistor RO or resistor RR of the conventional circuit shown in FIG. 5 as the resistor RO, and the current mirror ratio 1 / KO or 1 / KR of the sensor bias current generating circuit 90 is 1 / K. By replacing, it can be obtained in the same manner as the conventional circuit.
ΔR / R≈1 / (2 × K) ≡BOP (17)
That is, ΔR / R that satisfies the above equation (17) is the threshold value BOP.

次に、図3においてバイアス電流切り替え回路180の第2のスイッチSW2が導通し、第1のスイッチSW1が開放している時の閾値点を考える。
この時、バイアス電流IBRは次式(18)で表される。
IBR=IO−IH …(18)
このとき、次の式(19a)〜(19c)が成り立つ。
I1=(VCC−VP)/R1 …(19a)
I2=VCC/(R3+R4) …(19b)
VP/R2=I1+((I1+I2)/K−(I1+I2)/A)) …(19c)
VPについて解くと、
VP=VCC×((1+1/K−1/A)/R1+(1/K−1/A)/(R3+R4)))/(1/R2+(1+1/K−1/A)/R1) …(20)
となる。電圧比較器20は、VP=VNとなる電圧でスイッチするので、次の式(21)が成り立つ。
VCC×((1+1/K−1/A)/R1+(1/K−1/A)/(R3+R4))/(1/R2+(1+1/K−1/A)/R1)=R4×VCC/(R3+R4) …(21)
Next, a threshold point when the second switch SW2 of the bias current switching circuit 180 is turned on and the first switch SW1 is opened in FIG. 3 will be considered.
At this time, the bias current IBR is expressed by the following equation (18).
IBR = IO-IH (18)
At this time, the following equations (19a) to (19c) hold.
I1 = (VCC-VP) / R1 (19a)
I2 = VCC / (R3 + R4) (19b)
VP / R2 = I1 + ((I1 + I2) / K- (I1 + I2) / A)) (19c)
Solving for VP,
VP = VCC × ((1 + 1 / K−1 / A) / R1 + (1 / K−1 / A) / (R3 + R4))) / (1 / R2 + (1 + 1 / K−1 / A) / R1) ( 20)
It becomes. Since the voltage comparator 20 switches at a voltage satisfying VP = VN, the following equation (21) is established.
VCC × ((1 + 1 / K−1 / A) / R1 + (1 / K−1 / A) / (R3 + R4)) / (1 / R2 + (1 + 1 / K−1 / A) / R1) = R4 × VCC / (R3 + R4) (21)

4端子型センサ10は、外部から印加されるセンサ入力BINに応じて抵抗器R1、R2、R3、R4がバランスを崩しR1=R4=R+ΔR、R2=R3=R−ΔR、または、R1=R4=R−ΔR、R2=R3=R+ΔRとなりセンサ出力電圧VSO(=VP−VN)を発生すると考えることができる。これより、R1=R4=R+ΔR、R2=R3=R−ΔRとすると、
((1+1/K−1/A)/(R+ΔR)+(1/K−1/A)/ (R−ΔR+R+ΔR))/(1/( R−ΔR)+(1+1/K−1/A)/( R+ΔR))=( R+ΔR)/( R−ΔR + R+ΔR) …(22)
In the four-terminal sensor 10, the resistors R1, R2, R3, and R4 lose their balance according to the sensor input BIN applied from the outside, and R1 = R4 = R + ΔR, R2 = R3 = R−ΔR, or R1 = R4 = R−ΔR, R2 = R3 = R + ΔR, and it can be considered that the sensor output voltage VSO (= VP−VN) is generated. From this, when R1 = R4 = R + ΔR and R2 = R3 = R−ΔR,
((1 + 1 / K−1 / A) / (R + ΔR) + (1 / K−1 / A) / (R−ΔR + R + ΔR)) / (1 / (R−ΔR) + (1 + 1 / K−1 / A) / (R + ΔR)) = (R + ΔR) / (R−ΔR + R + ΔR) (22)

上式(22)が成り立つΔR/Rを求める。
ΔR/R=(1/K−1/A)/(2×(1+1/2×(1/K−1/A)))
≒1/(2×K)−1/(2×A)≡BRP …(23)
すなわち、上式(23)が成り立つΔR/Rが閾値BRPとなる。ここで、今考えている範囲では定数K、Aは十分に大きい値として扱えることを利用し近似をおこなった。
ΔR / R where the above equation (22) holds is obtained.
ΔR / R = (1 / K−1 / A) / (2 × (1 + 1/2 × (1 / K−1 / A)))
≈ 1 / (2 × K) −1 / (2 × A) ≡BRP (23)
That is, ΔR / R where the above equation (23) holds is the threshold value BRP. Here, approximation was performed using the fact that the constants K and A can be handled as sufficiently large values in the range considered now.

次に、バイアス電流切り替え回路180の第1のスイッチSW1、第2のスイッチSW2を切り替えることにより作られるヒステリシス幅|BH|について考える。
この時、ヒステリシス幅|BH|は次式(24)で表される。
|BH|=|BOP―BRP|=|1/(2×K)−(1/(2×K)−1/(2×A))|
=|1/(2×A)| …(24)
Next, a hysteresis width | BH | created by switching the first switch SW1 and the second switch SW2 of the bias current switching circuit 180 will be considered.
At this time, the hysteresis width | BH | is expressed by the following equation (24).
| BH | = | BOP-BRP | = | 1 / (2 × K) − (1 / (2 × K) −1 / (2 × A)) |
= | 1 / (2 × A) | (24)

また、上式(17)、(23)の比較により、バイアス電流をヒステリシス電流IHだけ変化させることで、閾値点を1/(2×A)移動させることができるということがわかる。これより、図2に示すように閾値電流IOとヒステリシス電流IHを加算することによりバイアス電流IBOを発生し、閾値電流IOを用いてバイアス電流IBRを発生した場合のヒステリシス幅|BH|は以下の様に表される。
|BH|=|BOP―BRP|=|1/(2×K)+1/(2×A)−1/(2×K)|
=|1/(2×A)| …(25)
Further, it can be seen from the comparison of the above equations (17) and (23) that the threshold point can be moved by 1 / (2 × A) by changing the bias current by the hysteresis current IH. Thus, as shown in FIG. 2, the threshold current IO and the hysteresis current IH are added to generate the bias current IBO, and when the bias current IBR is generated using the threshold current IO, the hysteresis width | BH | It is expressed as
| BH | = | BOP-BRP | = | 1 / (2 × K) + 1 / (2 × A) −1 / (2 × K) |
= | 1 / (2 × A) | (25)

ここで、簡単にする為にバイアス電流切り替え回路のPMOS282、PMOS283のサイズ比を1倍とし、電流ミラー比を1倍として扱った。このミラー比をC倍(C>0)とする時には、上記の式において1/AをC/Aとして扱うことで同様に考えることができる。
上式(17)、(23)、(24)、(25)から得られる閾値BOP及びBRP、ヒステリシス幅|BH|とセンサ駆動電流検出抵抗器RS1の関係を図4に示す。
Here, for simplification, the size ratio of the PMOS 282 and the PMOS 283 of the bias current switching circuit is set to 1 time, and the current mirror ratio is set to 1 time. When this mirror ratio is C times (C> 0), it can be considered similarly by treating 1 / A as C / A in the above equation.
FIG. 4 shows the relationship between the threshold values BOP and BRP and the hysteresis width | BH | obtained from the above equations (17), (23), (24), and (25) and the sensor drive current detection resistor RS1.

第1及び第2の実施形態で求められた上式(24)、(25)、図4において重要なことは、閾値BOP及びBRPをセンサ電流検出回路40の抵抗器RS1を用いて変化させた場合にヒステリシス幅|BH|は、ヒステリシス電流発生回路70の電流ミラー比係数Aに依存して変化するということである。また、上式(24)、(25)から、センサ駆動電圧VCCにヒステリシス幅|BH|が依存しないことがわかる。
上記の定数Aは、抵抗比によって与えられるので、定数Aが決まればヒステリシス幅|BH|はひとつの値に決まり、ばらつきや温度変動、経時変化がない。
従って、第1及び第2のセンサ閾値回路によれば、閾値点の変化に依存しないヒステリシス幅を与えることができる。
What is important in the above formulas (24), (25), and FIG. 4 obtained in the first and second embodiments is that the threshold values BOP and BRP are changed using the resistor RS1 of the sensor current detection circuit 40. In this case, the hysteresis width | BH | changes depending on the current mirror ratio coefficient A of the hysteresis current generating circuit 70. Also, from the above equations (24) and (25), it can be seen that the hysteresis width | BH | does not depend on the sensor drive voltage VCC.
Since the above constant A is given by the resistance ratio, if the constant A is determined, the hysteresis width | BH | is determined as one value, and there is no variation, temperature variation, or change with time.
Therefore, according to the first and second sensor threshold circuits, it is possible to provide a hysteresis width that does not depend on a change in threshold point.

本発明の第1の実施形態におけるセンサ閾値回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the sensor threshold value circuit in the 1st Embodiment of this invention. 本発明の第2の実施形態におけるセンサ閾値回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the sensor threshold value circuit in the 2nd Embodiment of this invention. 図1の4端子型センサとバイアス電流演算回路、電圧比較器、閾値電流IO及びヒステリシス電流IHを取り出した回路構成を示す回路図である。FIG. 2 is a circuit diagram illustrating a circuit configuration in which a four-terminal sensor, a bias current calculation circuit, a voltage comparator, a threshold current IO, and a hysteresis current IH in FIG. 1 are extracted. 第1及び第2の実施の形態における閾値点とセンサ電流検出抵抗器RSの関係を示す図である。It is a figure which shows the relationship between the threshold point in 1st and 2nd embodiment, and sensor current detection resistor RS. 従来のセンサ閾値回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the conventional sensor threshold value circuit. ヒステリシス特性をもつセンサ閾値回路のセンサ入力と出力電圧の関係を示す図である。It is a figure which shows the relationship between the sensor input of a sensor threshold circuit with a hysteresis characteristic, and an output voltage. 図5のバイアス電流切り替え回路の第1のスイッチが導通状態、第2のスイッチSW2が開放状態において4端子型センサ、バイアス電流IBO及び電圧比較器を取り出した回路構成を示す回路図である。FIG. 6 is a circuit diagram illustrating a circuit configuration in which a four-terminal sensor, a bias current IBO, and a voltage comparator are taken out when the first switch of the bias current switching circuit of FIG. 5 is in a conductive state and the second switch SW2 is in an open state. 図5のバイアス電流切り替え回路の第1のスイッチが開放状態、第2のスイッチSW2が導通状態において4端子型センサmバイアス電流IBR及び電圧比較器を取り出した回路構成を示す回路図である。FIG. 6 is a circuit diagram illustrating a circuit configuration in which a four-terminal sensor m bias current IBR and a voltage comparator are extracted when the first switch of the bias current switching circuit of FIG. 5 is in an open state and the second switch SW2 is in a conductive state. 従来のセンサ閾値回路における閾値点とセンサ電流検出抵抗器の関係を示す図である。It is a figure which shows the relationship between the threshold value point and sensor current detection resistor in the conventional sensor threshold circuit.

符号の説明Explanation of symbols

10 4端子型センサ
20 電圧比較器
30 センサ駆動電圧源
40、50 センサ駆動電流検出回路
60 閾値電流発生回路
70 ヒステリシス電流発生回路
180、280、380 バイアス電流切り替え回路
90 センサバイアス電流発生回路
61、71、92 演算増幅器
SW1、SW2 スイッチ
62、282、283、91 PMOSトランジスタ
72 NMOSトランジスタ
181、281、381 インバータ
R1、R2、R3、R4、RS、RS1、RS2、RO、RH、RR 抵抗器
DESCRIPTION OF SYMBOLS 10 4 terminal type sensor 20 Voltage comparator 30 Sensor drive voltage source 40, 50 Sensor drive current detection circuit 60 Threshold current generation circuit 70 Hysteresis current generation circuit 180, 280, 380 Bias current switching circuit 90 Sensor bias current generation circuit 61, 71 , 92 operational amplifier SW1, SW2 switch 62, 282, 283, 91 PMOS transistor 72 NMOS transistor 181, 281, 381 inverter R1, R2, R3, R4, RS, RS1, RS2, RO, RH, RR resistor

Claims (4)

センサの入力に対しヒステリシス特性をもったデジタル信号を出力するセンサ閾値回路において、
前記センサの出力電圧を2値化する電圧比較器と、
前記センサの駆動電流を検出する第1のセンサ駆動電流検出回路と、
前記第1のセンサ駆動電流検出回路で検出されたセンサ駆動電流の1/K倍(K>0)の閾値電流を発生する閾値電流発生回路と、
前記センサの駆動電流を検出する第2のセンサ駆動電流検出回路と、
前記第2のセンサ駆動電流検出回路で検出されたセンサ駆動電流の1/A倍(A>0)のヒステリシス電流を発生するヒステリシス電流発生回路と、
前記電圧比較器により2値化された信号に基づいて前記ヒステリシス電流を制御すると共に、前記閾値電流と前記制御されたヒステリシス電流に基づいたバイアス電流を、前記センサの出力電圧を出力する端子に供給するバイアス電流切り替え回路と
を具備することを特徴とするセンサ閾値回路。
In the sensor threshold circuit that outputs a digital signal with hysteresis characteristics to the sensor input,
A voltage comparator that binarizes the output voltage of the sensor;
A first sensor driving current detection circuit for detecting a driving current of the sensor;
A threshold current generation circuit for generating a threshold current that is 1 / K times (K> 0) the sensor drive current detected by the first sensor drive current detection circuit;
A second sensor drive current detection circuit for detecting a drive current of the sensor;
A hysteresis current generating circuit for generating a hysteresis current 1 / A times (A> 0) the sensor driving current detected by the second sensor driving current detection circuit;
The hysteresis current is controlled based on a signal binarized by the voltage comparator, and a bias current based on the threshold current and the controlled hysteresis current is supplied to a terminal that outputs an output voltage of the sensor. And a bias current switching circuit.
前記バイアス電流切り替え回路は、第1及び第2のスイッチを備え、前記第1及び第2のスイッチを切り替えることにより前記ヒステリシス電流を制御し、前記閾値電流と前記ヒステリシス電流との減算を行い、バイアス電流を発生させることを特徴とする請求項1に記載のセンサ閾値回路。   The bias current switching circuit includes first and second switches, controls the hysteresis current by switching the first and second switches, performs subtraction between the threshold current and the hysteresis current, and bias The sensor threshold circuit according to claim 1, wherein a current is generated. 前記バイアス電流切り替え回路は、第1及び第2のスイッチを備え、前記第1及び第2のスイッチを切り替えることにより前記ヒステリシス電流を制御し、前記閾値電流と前記ヒステリシス電流との加算を行い、バイアス電流を発生させることを特徴とする請求項1に記載のセンサ閾値回路。   The bias current switching circuit includes first and second switches, controls the hysteresis current by switching the first and second switches, adds the threshold current and the hysteresis current, and biases The sensor threshold circuit according to claim 1, wherein a current is generated. 前記センサは、4端子型のセンサであって、ホール素子、磁気抵抗素子、歪みセンサ、圧力センサ、温度センサ、加速度センサのいずれか1つであることを特徴とする請求項1から3の何れか1項に記載のセンサ閾値回路。   4. The sensor according to claim 1, wherein the sensor is a four-terminal sensor, and is any one of a Hall element, a magnetoresistive element, a strain sensor, a pressure sensor, a temperature sensor, and an acceleration sensor. The sensor threshold circuit according to claim 1.
JP2007042543A 2007-02-22 2007-02-22 Sensor threshold circuit Expired - Fee Related JP4976882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007042543A JP4976882B2 (en) 2007-02-22 2007-02-22 Sensor threshold circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007042543A JP4976882B2 (en) 2007-02-22 2007-02-22 Sensor threshold circuit

Publications (2)

Publication Number Publication Date
JP2008203202A true JP2008203202A (en) 2008-09-04
JP4976882B2 JP4976882B2 (en) 2012-07-18

Family

ID=39780859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007042543A Expired - Fee Related JP4976882B2 (en) 2007-02-22 2007-02-22 Sensor threshold circuit

Country Status (1)

Country Link
JP (1) JP4976882B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041241A1 (en) * 2007-09-28 2009-04-02 Asahi Kasei Microdevices Corporation Sensor threshold value circuit
JP2014102095A (en) * 2012-11-16 2014-06-05 Asahi Kasei Electronics Co Ltd Sensor threshold decision circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001108480A (en) * 1999-10-06 2001-04-20 Asahi Kasei Microsystems Kk Sensor threshold circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001108480A (en) * 1999-10-06 2001-04-20 Asahi Kasei Microsystems Kk Sensor threshold circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041241A1 (en) * 2007-09-28 2009-04-02 Asahi Kasei Microdevices Corporation Sensor threshold value circuit
US8054093B2 (en) 2007-09-28 2011-11-08 Asahi Kasei Microdevices Corporation Sensor threshold circuit
JP2014102095A (en) * 2012-11-16 2014-06-05 Asahi Kasei Electronics Co Ltd Sensor threshold decision circuit

Also Published As

Publication number Publication date
JP4976882B2 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
JP4809472B2 (en) Sensor threshold circuit
US9128127B2 (en) Sensor device
JP2010117271A (en) Sensor circuit
US20120280681A1 (en) Magnetic Field Sensor Having A Control Node To Receive A Control Signal To Adjust A Threshold
JP6339833B2 (en) Sensor device
US8207778B2 (en) Physical quantity sensor
JP4976882B2 (en) Sensor threshold circuit
US9523743B2 (en) Magnetic sensor capable of identifying an individual having a high offset voltage
JP4976881B2 (en) Sensor threshold circuit
JP4233711B2 (en) Sensor threshold circuit
JP5729254B2 (en) Hysteresis device
JP5129302B2 (en) Sensor threshold value determination circuit
JP6192251B2 (en) Current sensor
JP6110639B2 (en) Sensor threshold value determination circuit
JP5856557B2 (en) Sensor threshold value determination circuit
JP2009047478A (en) Sensor circuit
JP6339388B2 (en) Sensor threshold value determination circuit
JP5636866B2 (en) Magnetic detector
JP7332852B2 (en) Current detection resistor switching device for APC circuit
JP5944669B2 (en) Sensor threshold value determination circuit
JP2019174436A (en) Magnetic sensor
JP2007124259A (en) Offset-voltage removing method and circuit
JP2011120377A (en) Inverter device
JP2015172553A (en) Sensor threshold determination circuit
KR20160095427A (en) Current mirror circuit, piezoresistive acceleration sensor and method for outputting current using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120413

R150 Certificate of patent or registration of utility model

Ref document number: 4976882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees