JP2019174436A - Magnetic sensor - Google Patents

Magnetic sensor Download PDF

Info

Publication number
JP2019174436A
JP2019174436A JP2018209344A JP2018209344A JP2019174436A JP 2019174436 A JP2019174436 A JP 2019174436A JP 2018209344 A JP2018209344 A JP 2018209344A JP 2018209344 A JP2018209344 A JP 2018209344A JP 2019174436 A JP2019174436 A JP 2019174436A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
detection unit
magnetoresistive
differential amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018209344A
Other languages
Japanese (ja)
Other versions
JP7225694B2 (en
Inventor
圭 田邊
Kei Tanabe
圭 田邊
勇一郎 山地
Yuichiro Yamaji
勇一郎 山地
晶裕 海野
Akihiro Unno
晶裕 海野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Publication of JP2019174436A publication Critical patent/JP2019174436A/en
Application granted granted Critical
Publication of JP7225694B2 publication Critical patent/JP7225694B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

To provide a magnetic sensor capable of suppressing noise.SOLUTION: A magnetic sensor comprises: a magnetic detection part that includes first to fourth magnetoresistance effect elements (10, 20, 30, and 40) to which a first magnetic field as a detection object is applied; a magnetic field generating conductor 70 that generates a second magnetic field for making the magnetic detection part kept in magnetic equilibrium; and a current supplying circuit 50 to which an output voltage of the magnetic detection part is input and which supplies a current for generating the second magnetic field to the magnetic field generating conductor 70. The current supplying circuit 50 supplies the current of a predetermined value except zero to the magnetic field generating conductor 70 when the first magnetic field does not exist.SELECTED DRAWING: Figure 7

Description

本発明は、磁気検出部に印加される検出対象磁界に応じた電流を磁界発生導体に流す構成の磁気センサに関する。   The present invention relates to a magnetic sensor having a configuration in which a current corresponding to a detection target magnetic field applied to a magnetic detection unit is passed through a magnetic field generating conductor.

下記特許文献1は、微小な磁界の検出が可能な磁界検出センサを開示する。この磁界検出センサは、ブリッジ回路を成す4つの磁気抵抗効果素子と、磁性体とを備える。当該4つの磁気抵抗効果素子の固定磁化方向は互いに同じである。磁性体は、ブリッジ回路からみて垂直方向の検出対象磁界を集磁し、集磁された当該検出磁界を、当該ブリッジ回路を構成する4つの磁気抵抗効果素子が有する固定磁化方向と概ね平行になる方向へ変化させる。ブリッジ回路からの差動出力は、差動演算回路に入力され、差動演算回路は、磁界発生導体に帰還電流を流す。帰還電流が流れる磁界発生導体は、4つの磁気抵抗効果素子に対して、検出対象磁界の向きとは逆方向の磁界を発生させる。帰還電流を測定することにより、検出対象磁界が測定される。   Patent Document 1 below discloses a magnetic field detection sensor capable of detecting a minute magnetic field. This magnetic field detection sensor includes four magnetoresistive elements forming a bridge circuit and a magnetic body. The fixed magnetization directions of the four magnetoresistive elements are the same. The magnetic body collects the magnetic field to be detected in the vertical direction as viewed from the bridge circuit, and the collected magnetic field is approximately parallel to the fixed magnetization direction of the four magnetoresistive elements constituting the bridge circuit. Change the direction. The differential output from the bridge circuit is input to a differential arithmetic circuit, and the differential arithmetic circuit passes a feedback current through the magnetic field generating conductor. The magnetic field generating conductor through which the feedback current flows causes the four magnetoresistive elements to generate a magnetic field in a direction opposite to the direction of the detection target magnetic field. The magnetic field to be detected is measured by measuring the feedback current.

特開2015−219061号公報Japanese Patent Laid-Open No. 2015-219061

特許文献1の磁気センサは、4つの磁気抵抗効果素子からなるブリッジ回路からの差動出力が実質ゼロとなるように(各磁気抵抗効果素子の位置での感磁面と平行な磁界が実質ゼロとなるように)、磁界発生導体に帰還電流を流す。このため、磁気抵抗効果素子のフリー層磁化方向が不安定で変動しやすく、センサ出力に現れるノイズが大きくなる。ノイズが大きくなると、S/N(SN比)が低下し、磁気センサの分解能が低下する。   In the magnetic sensor of Patent Document 1, the differential output from the bridge circuit composed of four magnetoresistive effect elements is substantially zero (the magnetic field parallel to the magnetosensitive surface at the position of each magnetoresistive effect element is substantially zero. A feedback current is passed through the magnetic field generating conductor. For this reason, the free layer magnetization direction of the magnetoresistive effect element is unstable and easily fluctuates, and noise appearing in the sensor output increases. When the noise increases, the S / N (SN ratio) decreases and the resolution of the magnetic sensor decreases.

本発明はこうした状況を認識してなされたものであり、その目的は、ノイズを抑制することの可能な磁気センサを提供することにある。   The present invention has been made in recognition of such a situation, and an object thereof is to provide a magnetic sensor capable of suppressing noise.

本発明のある態様は、磁気センサである。この磁気センサは、
検出対象の第1磁界が印加される少なくとも1つの磁気抵抗効果素子を含む磁気検出部と、
前記磁気検出部を磁気平衡状態にする第2磁界を発生する磁界発生導体と、
前記磁気検出部の出力電圧が入力され、前記第2磁界を発生するための電流を前記磁界発生導体に供給する電流供給回路と、を備え、
前記電流供給回路は、前記第1磁界が存在しない場合に、前記磁界発生導体にゼロではない所定値の電流を供給する。
One embodiment of the present invention is a magnetic sensor. This magnetic sensor
A magnetic detection unit including at least one magnetoresistance effect element to which a first magnetic field to be detected is applied;
A magnetic field generating conductor for generating a second magnetic field for bringing the magnetic detection unit into a magnetic equilibrium state;
A current supply circuit that receives an output voltage of the magnetic detection unit and supplies a current for generating the second magnetic field to the magnetic field generating conductor;
The current supply circuit supplies a non-zero current of a predetermined value to the magnetic field generating conductor when the first magnetic field does not exist.

前記電流供給回路は、
前記磁気検出部の出力電圧が入力される第1差動増幅器と、
一方の入力端子に前記第1差動増幅器の出力電圧が入力され、他方の入力端子にバイアス電圧が入力され、出力端子から前記磁界発生導体に電流を供給する第2差動増幅器と、を有してもよい。
The current supply circuit includes:
A first differential amplifier to which an output voltage of the magnetic detection unit is input;
An output voltage of the first differential amplifier is input to one input terminal, a bias voltage is input to the other input terminal, and a second differential amplifier that supplies current from the output terminal to the magnetic field generating conductor is provided. May be.

前記電流供給回路は、前記磁気検出部の出力電圧が入力される差動増幅器を含み、
前記差動増幅器は、オフセット調整機能を有し、自身への入力電圧がゼロの場合にゼロではない所定値の電流を出力するように調整されていてもよい。
The current supply circuit includes a differential amplifier to which an output voltage of the magnetic detection unit is input,
The differential amplifier may have an offset adjustment function and may be adjusted so as to output a current of a predetermined value that is not zero when the input voltage to the differential amplifier is zero.

前記磁気検出部は、ブリッジ接続された複数の磁気抵抗効果素子を含んでもよい。   The magnetic detection unit may include a plurality of magnetoresistive elements that are bridge-connected.

前記磁気検出部は、無磁界の場合にゼロではない所定値の電圧を出力するように構成されてもよい。   The magnetic detection unit may be configured to output a voltage having a predetermined value that is not zero when there is no magnetic field.

前記磁気検出部は、ブリッジ接続された複数の磁気抵抗効果素子を含み、
前記複数の磁気抵抗効果素子のうちの少なくとも1つの磁気抵抗効果素子は、前記複数の磁気抵抗効果素子のうちの他の磁気抵抗効果素子と、無磁界の場合の抵抗値が異なってもよい。
The magnetic detection unit includes a plurality of magnetoresistive elements that are bridge-connected,
At least one magnetoresistive effect element of the plurality of magnetoresistive effect elements may be different in resistance value in the absence of a magnetic field from other magnetoresistive effect elements of the plurality of magnetoresistive effect elements.

前記磁気検出部は、無磁界の場合の抵抗値が互いに等しいブリッジ接続された複数の磁気抵抗効果素子に抵抗を付加した構成であってもよい。   The magnetic detector may have a configuration in which resistance is added to a plurality of bridge-connected magnetoresistive elements having the same resistance value when there is no magnetic field.

前記磁気抵抗効果素子は、外部磁界によらず磁化方向が一定の固定層と、外部磁界によって磁化方向が変化するフリー層と、を含んでもよい。   The magnetoresistive effect element may include a fixed layer having a constant magnetization direction regardless of an external magnetic field, and a free layer whose magnetization direction is changed by an external magnetic field.

なお、以上の構成要素の任意の組合せ、本発明の表現を方法やシステムなどの間で変換したものもまた、本発明の態様として有効である。   It should be noted that any combination of the above-described constituent elements, and those obtained by converting the expression of the present invention between methods and systems are also effective as aspects of the present invention.

本発明によれば、ノイズを抑制することの可能な磁気センサを提供することができる。   According to the present invention, a magnetic sensor capable of suppressing noise can be provided.

本発明の実施の形態1に係る磁気センサの磁気検出部を構成するブリッジ回路の概略回路図。1 is a schematic circuit diagram of a bridge circuit constituting a magnetic detection unit of a magnetic sensor according to a first embodiment of the present invention. 前記磁気センサにおける磁気検出部及びその近傍の概略断面図。FIG. 2 is a schematic cross-sectional view of a magnetic detection unit and its vicinity in the magnetic sensor. 同概略平面図。FIG. 前記磁気センサにおける磁界発生導体の配線パターン説明図。The wiring pattern explanatory drawing of the magnetic field generation | occurrence | production conductor in the said magnetic sensor. 図1に示すブリッジ回路の各磁気抵抗効果素子の位置における検出対象磁界の向き及びそれによる各磁気抵抗効果素子の抵抗値変化を示す模式図。The schematic diagram which shows the direction of the detection object magnetic field in the position of each magnetoresistive effect element of the bridge circuit shown in FIG. 1, and the resistance value change of each magnetoresistive effect element by it. 図5の変形例を示す模式図。The schematic diagram which shows the modification of FIG. 実施の形態1に係る磁気センサの概略回路図。1 is a schematic circuit diagram of a magnetic sensor according to a first embodiment. 前記磁気センサの磁気検出部に印加されるバイアス磁界と、前記磁気センサの磁気分解能と、の関係を示すグラフ。The graph which shows the relationship between the bias magnetic field applied to the magnetic detection part of the said magnetic sensor, and the magnetic resolution of the said magnetic sensor. 検出対象磁界に対するセンサ出力の理想特性と実際の特性とを示すグラフ。The graph which shows the ideal characteristic of the sensor output with respect to a detection target magnetic field, and an actual characteristic. 比較例に係る磁気センサの概略回路図。The schematic circuit diagram of the magnetic sensor which concerns on a comparative example. 磁気抵抗効果素子の磁界(感磁方向成分)に対する抵抗の特性、並びに当該特性上における実施の形態1及び比較例の各々における磁気抵抗効果素子の動作点を示す概略グラフ。The schematic graph which shows the characteristic of resistance with respect to the magnetic field (magnetic-sensitive direction component) of a magnetoresistive effect element, and the operating point of the magnetoresistive effect element in each of Embodiment 1 and a comparative example on the said characteristic. 本発明の実施の形態2に係る磁気センサの概略回路図。The schematic circuit diagram of the magnetic sensor which concerns on Embodiment 2 of this invention.

以下、図面を参照しながら本発明の好適な実施の形態を詳述する。なお、各図面に示される同一または同等の構成要素、部材等には同一の符号を付し、適宜重複した説明は省略する。また、実施の形態は発明を限定するものではなく例示であり、実施の形態に記述されるすべての特徴やその組み合わせは必ずしも発明の本質的なものであるとは限らない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or equivalent component, member, etc. which are shown by each drawing, and the overlapping description is abbreviate | omitted suitably. In addition, the embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.

(実施の形態1)
図1は、本発明の実施の形態1に係る磁気センサの磁気検出部を構成するブリッジ回路の概略回路図である。このブリッジ回路は、第1磁気抵抗効果素子10、第2磁気抵抗効果素子20、第3磁気抵抗効果素子30、及び第4磁気抵抗効果素子40、を備える。第1から第4磁気抵抗効果素子(10、20、30、40)は、外部磁界によらず磁化方向が一定の固定層と、外部磁界によって磁化方向が変化するフリー層と、を含み、固定層磁化方向は互いに同じである。第1磁気抵抗効果素子10の一端と、第2磁気抵抗効果素子20の一端は、第1電源電圧Vccが供給される第1電源ラインに接続される。第1磁気抵抗効果素子10の他端は、第4磁気抵抗効果素子40の一端に接続される。第2磁気抵抗効果素子20の他端は、第3磁気抵抗効果素子30の一端に接続される。第3磁気抵抗効果素子30の他端と、第4磁気抵抗効果素子40の他端は、第2電源電圧−Vccが供給される第2電源ラインに接続される。第1磁気抵抗効果素子10と第4磁気抵抗効果素子40の相互接続点に出力される電圧をVa、第2磁気抵抗効果素子20と第3磁気抵抗効果素子30の相互接続点に出力される電圧をVbとする。
(Embodiment 1)
FIG. 1 is a schematic circuit diagram of a bridge circuit constituting the magnetic detection unit of the magnetic sensor according to the first embodiment of the present invention. The bridge circuit includes a first magnetoresistive effect element 10, a second magnetoresistive effect element 20, a third magnetoresistive effect element 30, and a fourth magnetoresistive effect element 40. The first to fourth magnetoresistance effect elements (10, 20, 30, 40) include a fixed layer having a constant magnetization direction regardless of an external magnetic field, and a free layer whose magnetization direction is changed by an external magnetic field, and is fixed. The layer magnetization directions are the same. One end of the first magnetoresistance effect element 10 and one end of the second magnetoresistance effect element 20 are connected to a first power supply line to which a first power supply voltage Vcc is supplied. The other end of the first magnetoresistance effect element 10 is connected to one end of the fourth magnetoresistance effect element 40. The other end of the second magnetoresistive element 20 is connected to one end of the third magnetoresistive element 30. The other end of the third magnetoresistance effect element 30 and the other end of the fourth magnetoresistance effect element 40 are connected to a second power supply line to which a second power supply voltage −Vcc is supplied. The voltage output to the interconnection point between the first magnetoresistance effect element 10 and the fourth magnetoresistance effect element 40 is output to Va, and the voltage output to the interconnection point between the second magnetoresistance effect element 20 and the third magnetoresistance effect element 30. The voltage is Vb.

図2は、実施の形態1に係る磁気センサにおける磁気検出部及びその近傍の概略断面図である。図3は、同概略平面図である。図2及び図3により、直交三軸であるXYZ軸を定義する。また、図2及び図3において、検出対象磁界の磁力線を併せて示している。本実施の形態の磁気センサにおいて、第1から第4磁気抵抗効果素子(10、20、30、40)は、磁界発生導体70と共に、積層体5に設けられ、積層体5の表面上には磁性体80が設けられる。図3に示すように、 第1磁気抵抗効果素子10と第3磁気抵抗効果素子30は、X方向における位置が互いに等しい。同様に、第2磁気抵抗効果素子20と第4磁気抵抗効果素子40は、X方向における位置が互いに等しい。また、第1磁気抵抗効果素子10と第2磁気抵抗効果素子20は、Y方向における位置が互いに等しい。同様に、第3磁気抵抗効果素子30と第4磁気抵抗効果素子40は、Y方向における位置が互いに等しい。   FIG. 2 is a schematic cross-sectional view of a magnetic detection unit and the vicinity thereof in the magnetic sensor according to the first embodiment. FIG. 3 is a schematic plan view of the same. 2 and 3, the XYZ axes that are orthogonal three axes are defined. 2 and 3 also show the lines of magnetic force of the magnetic field to be detected. In the magnetic sensor of the present embodiment, the first to fourth magnetoresistive elements (10, 20, 30, 40) are provided in the multilayer body 5 together with the magnetic field generating conductor 70, and on the surface of the multilayer body 5 A magnetic body 80 is provided. As shown in FIG. 3, the first magnetoresistive element 10 and the third magnetoresistive element 30 have the same position in the X direction. Similarly, the second magnetoresistive element 20 and the fourth magnetoresistive element 40 have the same position in the X direction. Further, the first magnetoresistive element 10 and the second magnetoresistive element 20 have the same position in the Y direction. Similarly, the third magnetoresistive element 30 and the fourth magnetoresistive element 40 have the same position in the Y direction.

図3において、第1磁気抵抗効果素子10及び第3磁気抵抗効果素子30の配置と、第2磁気抵抗効果素子20及び第4磁気抵抗効果素子40の配置と、が線対称となるX方向の中心線をAとする。また、第1磁気抵抗効果素子10及び第2磁気抵抗効果素子20の配置と、第3磁気抵抗効果素子30及び第4磁気抵抗効果素子40の配置と、が線対称となるY方向の中心線をBとする。磁性体80は、磁性体80のX方向の中心線とY方向の中心線がそれぞれAとBに合致する位置に配置されることが好ましい。また、磁性体80は、第1磁気抵抗効果素子10及び第2磁気抵抗効果素子20のY方向側に延在し、かつ、第3磁気抵抗効果素子30と第4磁気抵抗効果素子40の−Y方向側に延在することが好ましい。さらに、磁性体80は、積層体5側の端面がZ方向において第1から第4磁気抵抗効果素子(10、20、30、40)に最も近づいた配置、すなわち積層体5側の端面が積層体5の表面に接触していることが好ましい。このように配置にすることで、検出対象磁界の変化に応じた第1から第4磁気抵抗効果素子(10、20、30、40)の抵抗変化が、効率良く、さらに均等に発生することになる。また、積層体5内における、磁界発生導体70を形成する層は、第1から第4磁気抵抗効果素子(10、20、30、40)が形成される層よりも下層(−Z方向側の層)であることが好ましい。磁界発生導体70を第1から第4磁気抵抗効果素子(10、20、30、40)が形成される層より下層に配置することで、磁性体80と第1から第4磁気抵抗効果素子(10、20、30、40)のZ方向の距離を近づけることができ、これにより検出対象磁界の変化に第1から第4磁気抵抗効果素子(10、20、30、40)が効率良く応答可能になる。磁性体80は軟磁性体であってもよい。磁性体80は、Z方向の検出対象磁界を集磁し、集磁した検出対象磁界を、第1から第4磁気抵抗効果素子(10、20、30、40)が有する固定層磁化方向と概ね平行になる方向へ変化させる。   In FIG. 3, the arrangement of the first magnetoresistive effect element 10 and the third magnetoresistive effect element 30 and the arrangement of the second magnetoresistive effect element 20 and the fourth magnetoresistive effect element 40 are axisymmetric in the X direction. Let A be the center line. A center line in the Y direction in which the arrangement of the first magnetoresistive effect element 10 and the second magnetoresistive effect element 20 and the arrangement of the third magnetoresistive effect element 30 and the fourth magnetoresistive effect element 40 are axisymmetric. Is B. The magnetic body 80 is preferably disposed at a position where the center line in the X direction and the center line in the Y direction of the magnetic body 80 match A and B, respectively. Further, the magnetic body 80 extends to the Y direction side of the first magnetoresistive effect element 10 and the second magnetoresistive effect element 20, and − of the third magnetoresistive effect element 30 and the fourth magnetoresistive effect element 40. It is preferable to extend in the Y direction side. Furthermore, the magnetic body 80 is arranged such that the end face on the laminated body 5 side is closest to the first to fourth magnetoresistive elements (10, 20, 30, 40) in the Z direction, that is, the end face on the laminated body 5 side is laminated. It is preferable to be in contact with the surface of the body 5. By arranging in this way, the resistance change of the first to fourth magnetoresistance effect elements (10, 20, 30, 40) according to the change of the magnetic field to be detected is efficiently and evenly generated. Become. The layer forming the magnetic field generating conductor 70 in the multilayer body 5 is lower than the layer where the first to fourth magnetoresistance effect elements (10, 20, 30, 40) are formed (on the −Z direction side). Layer). By disposing the magnetic field generating conductor 70 below the layer where the first to fourth magnetoresistive elements (10, 20, 30, 40) are formed, the magnetic body 80 and the first to fourth magnetoresistive elements ( 10, 20, 30, 40) can be made closer to each other in the Z direction, so that the first to fourth magnetoresistive elements (10, 20, 30, 40) can respond efficiently to changes in the detection target magnetic field. become. The magnetic body 80 may be a soft magnetic body. The magnetic body 80 collects the magnetic field to be detected in the Z direction, and the magnetic field to be detected is approximately the same as the fixed layer magnetization direction of the first to fourth magnetoresistive elements (10, 20, 30, 40). Change to parallel direction.

図4は、実施の形態1の磁気センサにおける磁界発生導体70の配線パターン説明図である。本図では、積層体5内の磁界発生導体70の配線パターンを実線で示している。磁界発生導体70は、第1から第4磁気抵抗効果素子(10、20、30、40)と同じ積層体5内の好ましくは単一の層に形成される。図4の例では、磁界発生導体70は、1ターンに満たないU字状の平面コイルとしているが、スパイラル状に複数ターン周回する平面コイルであってもよい。磁界発生導体70の両端は、スルーホール等の端子部(ターミナル)71、72にそれぞれ電気的に接続される。磁界発生導体70は、図7で後述のように、磁気検出部を磁気平衡状態にする第2磁界を発生する。   FIG. 4 is an explanatory diagram of a wiring pattern of the magnetic field generating conductor 70 in the magnetic sensor according to the first embodiment. In this figure, the wiring pattern of the magnetic field generating conductor 70 in the multilayer body 5 is indicated by a solid line. The magnetic field generating conductor 70 is preferably formed in a single layer in the same laminate 5 as the first to fourth magnetoresistive elements (10, 20, 30, 40). In the example of FIG. 4, the magnetic field generating conductor 70 is a U-shaped planar coil that is less than one turn, but may be a planar coil that circulates a plurality of turns in a spiral shape. Both ends of the magnetic field generating conductor 70 are electrically connected to terminal portions (terminals) 71 and 72 such as through holes, respectively. As will be described later with reference to FIG. 7, the magnetic field generating conductor 70 generates a second magnetic field that brings the magnetic detection unit into a magnetic equilibrium state.

図5は、図1に示すブリッジ回路の各磁気抵抗効果素子の位置における検出対象磁界の向き及びそれによる各磁気抵抗効果素子の抵抗値変化を示す模式図である。なお、図5及び図6では、後述のバイアス磁界は無視している。図5において検出対象磁界は、磁性体80が存在しなければ全体的に−Z方向と平行な磁界であり、磁性体80があることにより部分的に曲げられて、第1から第4磁気抵抗効果素子(10、20、30、40)の位置において図5に示す方向の成分を持つようになっている。第1磁気抵抗効果素子10においては、検出対象磁界の方向は固定層磁化方向と同一方向となる成分を持つため、フリー層磁化方向が固定層磁化方向と一致し、第1磁気抵抗効果素子10の抵抗値は、無磁界時の抵抗値R0から−ΔRだけ変化する。一方、第2磁気抵抗効果素子20においては、検出対象磁界の方向は固定層磁化方向と逆方向となる成分を持つため、フリー層磁化方向が固定層磁化方向と逆になり、第2磁気抵抗効果素子20の抵抗値は、無磁界時の抵抗値R0から+ΔRだけ変化する。同様に、第3磁気抵抗効果素子30の抵抗値は無磁界時と比較して−ΔRだけ変化し、第4磁気抵抗効果素子40の抵抗値は無磁界時と比較して+ΔRだけ変化する。このような第1から第4磁気抵抗効果素子(10、20、30、40)の抵抗変化により、電圧Vaは無磁界時と比較して高くなり、電圧Vbは無磁界時と比較して低くなる。ゆえに、第1から第4磁気抵抗効果素子(10、20、30、40)のブリッジ回路は、差動出力、すなわち検出対象磁界の変化に応じて互いに逆の変化をする電圧Vaと電圧Vbの出力が可能となっている。なお、図6のようにブリッジ回路の配線を変更し、かつ第3磁気抵抗効果素子30及び第4磁気抵抗効果素子40の固定層磁化方向を変更しても、同様に差動出力が可能である。   FIG. 5 is a schematic diagram showing the direction of the magnetic field to be detected at the position of each magnetoresistive element in the bridge circuit shown in FIG. 1 and the change in resistance value of each magnetoresistive element due to this. In FIGS. 5 and 6, a bias magnetic field which will be described later is ignored. In FIG. 5, the magnetic field to be detected is a magnetic field that is entirely parallel to the −Z direction when the magnetic body 80 is not present, and is partially bent due to the presence of the magnetic body 80, so that the first to fourth magnetoresistances At the position of the effect element (10, 20, 30, 40), it has a component in the direction shown in FIG. In the first magnetoresistance effect element 10, the direction of the magnetic field to be detected has a component that is the same as the magnetization direction of the fixed layer. Therefore, the magnetization direction of the free layer coincides with the magnetization direction of the fixed layer. The resistance value changes by −ΔR from the resistance value R0 in the absence of a magnetic field. On the other hand, in the second magnetoresistance effect element 20, since the direction of the magnetic field to be detected has a component opposite to the fixed layer magnetization direction, the free layer magnetization direction is opposite to the fixed layer magnetization direction. The resistance value of the effect element 20 changes by + ΔR from the resistance value R0 when there is no magnetic field. Similarly, the resistance value of the third magnetoresistive effect element 30 changes by −ΔR as compared to when there is no magnetic field, and the resistance value of the fourth magnetoresistive effect element 40 changes by + ΔR as compared with when there is no magnetic field. Due to the resistance change of the first to fourth magnetoresistive elements (10, 20, 30, 40), the voltage Va becomes higher than that in the absence of a magnetic field, and the voltage Vb becomes lower than that in the absence of a magnetic field. Become. Therefore, the bridge circuit of the first to fourth magnetoresistive elements (10, 20, 30, 40) has a differential output, that is, a voltage Va and a voltage Vb that change in opposite directions according to the change in the detection target magnetic field. Output is possible. In addition, even if the wiring of the bridge circuit is changed as shown in FIG. 6 and the fixed layer magnetization directions of the third magnetoresistive effect element 30 and the fourth magnetoresistive effect element 40 are changed, the differential output can be similarly performed. is there.

図7は、実施の形態1に係る磁気センサの概略回路図である。ブリッジ接続された第1から第4磁気抵抗効果素子(10、20、30、40)は、検出対象の第1磁界が印加される磁気検出部を構成する。第1差動増幅器51は、反転入力端子が第1磁気抵抗効果素子10と第4磁気抵抗効果素子40の相互接続点に接続され、非反転入力端子が第2磁気抵抗効果素子20と第3磁気抵抗効果素子30の相互接続点に接続され、出力端子が第2差動増幅器52の反転入力端子に接続される。第1差動増幅器51の出力端子とグランドとの間に、必要に応じて、第1差動増幅器51の出力端子の電圧を確実に決めるための抵抗を設けてもよい。第1差動増幅器51及び第2差動増幅器52はそれぞれ、単体の演算増幅器であってもよいし、演算増幅器と複数の抵抗を組み合わせたものであってもよい。第2差動増幅器52の非反転入力端子は、バイアス電圧源53のプラス端子に接続される。バイアス電圧源53のマイナス端子は、固定電圧端子としてのグランドに接続される。   FIG. 7 is a schematic circuit diagram of the magnetic sensor according to the first embodiment. The first to fourth magnetoresistance effect elements (10, 20, 30, 40) connected in a bridge form a magnetic detection unit to which a first magnetic field to be detected is applied. The first differential amplifier 51 has an inverting input terminal connected to the interconnection point of the first magnetoresistive effect element 10 and the fourth magnetoresistive effect element 40, and a non-inverting input terminal connected to the second magnetoresistive effect element 20 and the third magnetoresistive effect element 20. The magnetoresistive effect element 30 is connected to the interconnection point, and the output terminal is connected to the inverting input terminal of the second differential amplifier 52. A resistor for surely determining the voltage of the output terminal of the first differential amplifier 51 may be provided between the output terminal of the first differential amplifier 51 and the ground, if necessary. Each of the first differential amplifier 51 and the second differential amplifier 52 may be a single operational amplifier or a combination of an operational amplifier and a plurality of resistors. The non-inverting input terminal of the second differential amplifier 52 is connected to the plus terminal of the bias voltage source 53. The negative terminal of the bias voltage source 53 is connected to the ground as a fixed voltage terminal.

バイアス電圧源53は、例えば、第1電源電圧Vccの電圧を所定の分圧比で分圧する2つの抵抗で構成できる。この場合、少なくとも一方の抵抗をトリミング可能な抵抗とすることで、任意の分圧比を設定できる。第2差動増幅器52の出力端子は、磁界発生導体70の一端に接続される。磁界発生導体70の他端とグランドとの間に、検出抵抗Rsが設けられる。第1差動増幅器51及び第2差動増幅器52は、共に両電源駆動であり、第1電源電圧Vccが供給される第1電源ラインと、第2電源電圧−Vccが供給される第2電源ラインと、にそれぞれ接続される。   The bias voltage source 53 can be composed of, for example, two resistors that divide the voltage of the first power supply voltage Vcc at a predetermined voltage dividing ratio. In this case, an arbitrary voltage dividing ratio can be set by making at least one of the resistors trimmable. The output terminal of the second differential amplifier 52 is connected to one end of the magnetic field generating conductor 70. A detection resistor Rs is provided between the other end of the magnetic field generating conductor 70 and the ground. Both the first differential amplifier 51 and the second differential amplifier 52 are driven by both power sources, and the first power source line to which the first power source voltage Vcc is supplied and the second power source to which the second power source voltage -Vcc is supplied. Connected to the line respectively.

第1差動増幅器51は、磁気検出部の出力電圧(電圧Va,Vb)が入力される。第2差動増幅器52は、反転入力端子に第1差動増幅器51の出力電圧が入力され、非反転入力端子にバイアス電圧源53の出力電圧(バイアス電圧)が入力され、出力端子から磁界発生導体70に負帰還電流を供給する。磁界発生導体70は、第2差動増幅器52が出力する負帰還電流が流れることにより、磁気検出部を磁気平衡状態にする第2磁界を発生する。第1差動増幅器51、第2差動増幅器52、及びバイアス電圧源53は、電流供給回路50を構成する。第2差動増幅器52及びバイアス電圧源53は、バイアス回路を構成する。電流供給回路50は、磁気検出部の出力電圧が入力され、前記第2磁界を発生するための電流(負帰還電流)を磁界発生導体70に供給する。   The first differential amplifier 51 receives the output voltages (voltages Va and Vb) of the magnetic detection unit. In the second differential amplifier 52, the output voltage of the first differential amplifier 51 is input to the inverting input terminal, the output voltage (bias voltage) of the bias voltage source 53 is input to the non-inverting input terminal, and a magnetic field is generated from the output terminal. A negative feedback current is supplied to the conductor 70. The magnetic field generating conductor 70 generates a second magnetic field that brings the magnetic detection unit into a magnetic equilibrium state when a negative feedback current output from the second differential amplifier 52 flows. The first differential amplifier 51, the second differential amplifier 52, and the bias voltage source 53 constitute a current supply circuit 50. The second differential amplifier 52 and the bias voltage source 53 constitute a bias circuit. The current supply circuit 50 receives the output voltage of the magnetic detection unit and supplies a current (negative feedback current) for generating the second magnetic field to the magnetic field generating conductor 70.

電流供給回路50は、第1差動増幅器51の出力電圧と、バイアス電圧源53の出力電圧と、が略一致するところで動作が安定する構成である。第2差動増幅器52は、第1差動増幅器51の出力電圧がバイアス電圧源53の出力電圧と略一致するように、すなわち第1差動増幅器51に入力される電圧Va,Vbの差がゼロではない所定値となるように、磁界発生導体70に負帰還電流を供給する。このため、本実施の形態の磁気センサにおいては、磁気検出部に印加される磁界が電圧Va,Vbの差を前記所定値にする状態が、磁気検出部の磁気平衡状態(閉ループの帰還点)となる。   The current supply circuit 50 has a configuration in which the operation is stabilized when the output voltage of the first differential amplifier 51 and the output voltage of the bias voltage source 53 substantially match. The second differential amplifier 52 is configured so that the output voltage of the first differential amplifier 51 substantially matches the output voltage of the bias voltage source 53, that is, the difference between the voltages Va and Vb input to the first differential amplifier 51. A negative feedback current is supplied to the magnetic field generating conductor 70 so that the predetermined value is not zero. For this reason, in the magnetic sensor of the present embodiment, the state in which the magnetic field applied to the magnetic detection unit sets the difference between the voltages Va and Vb to the predetermined value is the magnetic equilibrium state (closed loop feedback point) of the magnetic detection unit. It becomes.

磁界発生導体70に流れる負帰還電流は、磁界発生導体70に直列接続された抵抗Rsにも流れる。検出抵抗Rsの両端の電圧が、磁気センサとしての出力電圧Voutとなる。図7に示すように負帰還電流をIとすると、出力電圧Voutは、Vout=Rs×Iとなる。負帰還電流は、検出対象磁界(第1磁界)の大きさと一対一で対応するため、出力電圧Voutにより、検出対象磁界を検出することができる。なお、電流供給回路50は、検出対象磁界が存在しない場合に、磁界発生導体70にゼロではない所定値の電流(バイアス電流)を供給するため、出力電圧Voutは、検出対象磁界が存在しなくてもゼロにはならない。よって、検出対象磁界が存在するときの出力電圧Voutから、検出対象磁界が存在しないときの出力電圧Vout(既定値)を減じた電圧が、検出対象磁界に起因する電圧となる。   The negative feedback current flowing through the magnetic field generating conductor 70 also flows through the resistor Rs connected in series with the magnetic field generating conductor 70. The voltage across the detection resistor Rs becomes the output voltage Vout as a magnetic sensor. As shown in FIG. 7, when the negative feedback current is I, the output voltage Vout is Vout = Rs × I. Since the negative feedback current has a one-to-one correspondence with the magnitude of the detection target magnetic field (first magnetic field), the detection target magnetic field can be detected by the output voltage Vout. Since the current supply circuit 50 supplies a non-zero current (bias current) to the magnetic field generating conductor 70 when the detection target magnetic field does not exist, the output voltage Vout does not include the detection target magnetic field. But it will not be zero. Therefore, the voltage resulting from the detection target magnetic field is the voltage obtained by subtracting the output voltage Vout (predetermined value) when there is no detection target magnetic field from the output voltage Vout when the detection target magnetic field exists.

図8は、実施の形態1に係る磁気センサの磁気検出部に印加されるバイアス磁界と、前記磁気センサの磁気分解能と、の関係を示すグラフである。図8の横軸のバイアス磁界は、検出対象磁界が存在しない場合に磁気検出部に印加される磁界であり、同場合の第2差動増幅器52の出力電流(バイアス電流)に比例し、かつバイアス電圧源53の出力電圧(バイアス電圧)に比例する。図8から明らかなように、磁気検出部に印加するバイアス磁界をゼロから高めていくことで、磁気分解能を改善できる。これは、第1から第4磁気抵抗効果素子(10、20、30、40)のフリー層磁化方向が拘束されることで、ノイズが抑制されることによる。但し、バイアス磁界をある程度以上高めると、第1から第4磁気抵抗効果素子(10、20、30、40)の感度が低下する影響により、磁気分解能が悪化する。本実施の形態では、バイアス磁界がゼロの場合よりも磁気分解能が良好となるようにバイアス磁界を設定する。   FIG. 8 is a graph showing the relationship between the bias magnetic field applied to the magnetic detection unit of the magnetic sensor according to the first embodiment and the magnetic resolution of the magnetic sensor. The bias magnetic field on the horizontal axis in FIG. 8 is a magnetic field applied to the magnetic detection unit when there is no detection target magnetic field, and is proportional to the output current (bias current) of the second differential amplifier 52 in that case. It is proportional to the output voltage (bias voltage) of the bias voltage source 53. As is apparent from FIG. 8, the magnetic resolution can be improved by increasing the bias magnetic field applied to the magnetic detection unit from zero. This is because noise is suppressed by restraining the free layer magnetization direction of the first to fourth magnetoresistive elements (10, 20, 30, 40). However, if the bias magnetic field is increased to some extent, the magnetic resolution is deteriorated due to the effect of the sensitivity of the first to fourth magnetoresistive elements (10, 20, 30, 40) being lowered. In the present embodiment, the bias magnetic field is set so that the magnetic resolution is better than when the bias magnetic field is zero.

図9は、検出対象磁界に対するセンサ出力の理想特性と実際の特性とを示すグラフである。図9に示す理想特性は、磁気分解能が極小であって僅かな磁界変化も検出できる磁気センサの出力特性であり、センサ出力が検出対象磁界に対して完全にリニアな特性となっている。一方、図9に示す実際の特性は、磁気分解能が任意の値の磁気センサの出力特性であり、センサ出力が検出対象磁界に対してステップ状の特性となっている。実際の特性では、識別できる最小のステップ(磁界変化)が、ノイズ成分を含むため、ある程度の幅を持っている。   FIG. 9 is a graph showing ideal characteristics and actual characteristics of the sensor output with respect to the detection target magnetic field. The ideal characteristic shown in FIG. 9 is an output characteristic of a magnetic sensor that can detect a slight magnetic field change with a minimum magnetic resolution, and the sensor output is a completely linear characteristic with respect to the detection target magnetic field. On the other hand, the actual characteristic shown in FIG. 9 is an output characteristic of a magnetic sensor having an arbitrary magnetic resolution, and the sensor output has a step-like characteristic with respect to the detection target magnetic field. In actual characteristics, the smallest step (magnetic field change) that can be identified includes a noise component, and thus has a certain width.

図10は、比較例に係る磁気センサの概略回路図である。図10に示す比較例の磁気センサは、図7に示す実施の形態1の磁気センサと比較して、第2差動増幅器52及びバイアス電圧源53が無くなり、第1差動増幅器51の出力端子が磁界発生導体70の一端に接続されている点で相違し、その他の点で一致する。比較例の磁気センサでは、磁気検出部の磁界が電圧Va,Vbの差を略ゼロにする状態が、磁気平衡状態(閉ループの帰還点)となる。   FIG. 10 is a schematic circuit diagram of a magnetic sensor according to a comparative example. Compared to the magnetic sensor of the first embodiment shown in FIG. 7, the magnetic sensor of the comparative example shown in FIG. 10 eliminates the second differential amplifier 52 and the bias voltage source 53, and the output terminal of the first differential amplifier 51. Are different from each other in that they are connected to one end of the magnetic field generating conductor 70, and are the same in other points. In the magnetic sensor of the comparative example, a state where the magnetic field of the magnetic detection unit makes the difference between the voltages Va and Vb substantially zero is a magnetic equilibrium state (closed loop feedback point).

図11は、磁気抵抗効果素子の磁界(感磁方向成分)に対する抵抗の特性、並びに当該特性上における実施の形態1及び比較例の各々における磁気抵抗効果素子の動作点を示す概略グラフである。比較例の磁気センサの各磁気抵抗効果素子の動作点がゼロ磁界点であるのに対し、実施の形態1の磁気センサの各磁気抵抗効果素子の動作点は、ゼロ磁界点から所定量だけシフトされている。   FIG. 11 is a schematic graph showing the resistance characteristic of the magnetoresistive element with respect to the magnetic field (magnetically sensitive direction component) and the operating point of the magnetoresistive element in each of the first embodiment and the comparative example on the characteristic. The operating point of each magnetoresistive element of the magnetic sensor of the comparative example is a zero magnetic field point, whereas the operating point of each magnetoresistive element of the magnetic sensor of the first embodiment is shifted by a predetermined amount from the zero magnetic field point. Has been.

本実施の形態によれば、下記の効果を奏することができる。   According to the present embodiment, the following effects can be achieved.

(1) 第2差動増幅器52及びバイアス電圧源53により、磁気検出部の磁気平衡状態(磁気センサの閉ループの帰還点)をゼロ磁界点からシフトするため、第1から第4磁気抵抗効果素子(10、20、30、40)のフリー層磁化方向がある程度拘束され、フリー層磁化方向の変動が抑制される。このため、センサ出力に現れるノイズを抑制でき、S/N(SN比)を高め、磁気センサの分解能を良好にすることができる。 (1) The first to fourth magnetoresistive elements are used to shift the magnetic equilibrium state (the feedback point of the closed loop of the magnetic sensor) from the zero magnetic field point by the second differential amplifier 52 and the bias voltage source 53. The free layer magnetization direction of (10, 20, 30, 40) is restricted to some extent, and fluctuations in the free layer magnetization direction are suppressed. For this reason, the noise which appears in a sensor output can be suppressed, S / N (SN ratio) can be raised, and the resolution of a magnetic sensor can be made favorable.

(2) 磁気検出部を磁気平衡状態とするための磁界を発生させる磁界発生導体70をバイアス磁界発生に用いるため、磁気センサの閉ループの帰還点をゼロ磁界点からシフトするために別途永久磁石や磁界発生導体を設ける必要がなく、部品点数とコストの増加を抑制できる。 (2) Since the magnetic field generating conductor 70 that generates a magnetic field for bringing the magnetic detection unit into a magnetic equilibrium state is used for generating a bias magnetic field, a separate permanent magnet or There is no need to provide a magnetic field generating conductor, and an increase in the number of parts and cost can be suppressed.

(3) ブリッジ接続された第1から第4磁気抵抗効果素子(10、20、30、40)を磁気検出部としているため、磁界検出の分解能を高めることができる。 (3) Since the first to fourth magnetoresistive elements (10, 20, 30, 40) connected in a bridge are used as the magnetic detection unit, the resolution of the magnetic field detection can be increased.

(4) 負帰還電流により磁気検出部における磁気平衡を保持することにより、第1から第4磁気抵抗効果素子(10、20、30、40)における環境温度による抵抗変化率の変化を抑え、検出精度を維持することができる。 (4) By holding the magnetic balance in the magnetic detection unit by the negative feedback current, the change in the resistance change rate due to the environmental temperature in the first to fourth magnetoresistance effect elements (10, 20, 30, 40) is suppressed and detected. Accuracy can be maintained.

(5) 磁界発生導体70は、第1から第4磁気抵抗効果素子(10、20、30、40)と同じ積層体5内に形成されるため、別体のソレノイドコイルを用いる場合よりも製品の小型化に有利になるほか、製造時における位置精度のバラつきを抑えることが可能となる。 (5) Since the magnetic field generating conductor 70 is formed in the same laminate 5 as the first to fourth magnetoresistive elements (10, 20, 30, 40), the product is more than the case where a separate solenoid coil is used. In addition to being advantageous for downsizing, it is possible to suppress variations in positional accuracy during manufacturing.

(実施の形態2)
図12は、本発明の実施の形態2に係る磁気センサの概略回路図である。本実施の形態の磁気センサは、図10に示す比較例の磁気センサと比較して、磁気検出部に抵抗Raが付加された点で相違し、その他の点で一致する。抵抗Raの一端は、第1電源電圧Vccが供給される第1電源ラインに接続される。抵抗Raの他端は、第1磁気抵抗効果素子10と第4磁気抵抗効果素子40の相互接続点に接続される。
(Embodiment 2)
FIG. 12 is a schematic circuit diagram of the magnetic sensor according to the second embodiment of the present invention. The magnetic sensor according to the present embodiment is different from the magnetic sensor of the comparative example shown in FIG. 10 in that a resistance Ra is added to the magnetic detection unit, and is identical in other points. One end of the resistor Ra is connected to a first power supply line to which the first power supply voltage Vcc is supplied. The other end of the resistor Ra is connected to an interconnection point between the first magnetoresistance effect element 10 and the fourth magnetoresistance effect element 40.

第1から第4磁気抵抗効果素子(10、20、30、40)の無磁界時の抵抗値R0が互いに等しいため、抵抗Raの存在により、抵抗Raが無い場合と比較して、無磁界時に、第1磁気抵抗効果素子10と第4磁気抵抗効果素子40の相互接続点に出力される電圧Vaが、第2磁気抵抗効果素子20と第3磁気抵抗効果素子30の相互接続点に出力される電圧Vbよりも高くなる。すなわち、磁気検出部は、無磁界時に、ゼロではない所定値の電圧(Va−Vb)を出力するように構成される。第1差動増幅器51は、電圧Vaが電圧Vbと一致するように磁界発生導体70に電流を供給するため、磁気検出部の磁気平衡状態(磁気センサの閉ループの帰還点)がゼロ磁界点からシフトする。本実施の形態によれば、抵抗Raの追加を要するものの、実施の形態1の電流供給回路50から第2差動増幅器52及びバイアス電圧源53を省略しながら、磁気検出部の磁気平衡状態(磁気センサの閉ループの帰還点)をゼロ磁界点からシフトし、S/Nを高め、磁気センサの分解能を良好にすることができる。   Since the resistance values R0 of the first to fourth magnetoresistive elements (10, 20, 30, 40) in the absence of a magnetic field are equal to each other, the presence of the resistance Ra causes a resistance in the absence of a magnetic field compared to the absence of the resistance Ra. The voltage Va output to the interconnection point between the first magnetoresistance effect element 10 and the fourth magnetoresistance effect element 40 is output to the interconnection point between the second magnetoresistance effect element 20 and the third magnetoresistance effect element 30. Higher than the voltage Vb. That is, the magnetic detection unit is configured to output a voltage (Va−Vb) of a predetermined value that is not zero when there is no magnetic field. Since the first differential amplifier 51 supplies a current to the magnetic field generating conductor 70 so that the voltage Va matches the voltage Vb, the magnetic equilibrium state of the magnetic detection unit (the closed loop feedback point of the magnetic sensor) starts from the zero magnetic field point. shift. According to the present embodiment, although the addition of the resistor Ra is required, the magnetic balance state of the magnetic detection unit (with the second differential amplifier 52 and the bias voltage source 53 omitted from the current supply circuit 50 of the first embodiment ( The feedback point of the closed loop of the magnetic sensor) is shifted from the zero magnetic field point, the S / N can be increased, and the resolution of the magnetic sensor can be improved.

本実施の形態において、抵抗Raの一端の接続先は、グランド以外の電圧となる固定電圧端子であれば、第1電源ラインに限定されない。抵抗Raの一端の接続先は、第2電源電圧−Vccが供給される第2電源ラインであってもよい。抵抗Raの他端の接続先は、第2磁気抵抗効果素子20と第3磁気抵抗効果素子30の相互接続点であってもよい。抵抗Raは、第1から第4磁気抵抗効果素子(10、20、30、40)からなるブリッジ回路の抵抗バランスを偏らせることができる任意の位置、すなわち無磁界時のブリッジ回路の出力電圧をゼロでは無い所定値にシフトさせることができる任意の位置に接続すればよい。   In the present embodiment, the connection destination of one end of the resistor Ra is not limited to the first power supply line as long as it is a fixed voltage terminal that is a voltage other than the ground. The connection destination of one end of the resistor Ra may be a second power supply line to which the second power supply voltage −Vcc is supplied. The connection destination of the other end of the resistor Ra may be an interconnection point between the second magnetoresistance effect element 20 and the third magnetoresistance effect element 30. The resistor Ra is an arbitrary position where the resistance balance of the bridge circuit composed of the first to fourth magnetoresistive effect elements (10, 20, 30, 40) can be biased, that is, the output voltage of the bridge circuit in the absence of a magnetic field. What is necessary is just to connect to the arbitrary positions which can be shifted to the predetermined value which is not zero.

(実施の形態3)
本実施の形態の磁気センサは、図10に示す比較例の磁気センサと比較して、第1磁気抵抗効果素子10の無磁界時の抵抗値が、第2から第4磁気抵抗効果素子(20、30、40)の無磁界時の抵抗値R0と異なる値とされた点で相違し、その他の点で一致する。第1磁気抵抗効果素子10の印加磁界に対する抵抗変化率は、第2から第4磁気抵抗効果素子(20、30、40)の印加磁界に対する抵抗変化率ΔR/R0と一致することが望ましい。
(Embodiment 3)
Compared with the magnetic sensor of the comparative example shown in FIG. 10, the magnetic sensor of the present embodiment has a resistance value of the first magnetoresistive element 10 in the absence of a magnetic field of the second to fourth magnetoresistive elements (20 , 30, 40) are different from the resistance value R0 in the absence of a magnetic field, and are different in other points. It is desirable that the rate of resistance change with respect to the applied magnetic field of the first magnetoresistive effect element 10 matches the rate of resistance change ΔR / R0 with respect to the applied magnetic field of the second to fourth magnetoresistive effect elements (20, 30, 40).

本実施の形態では、第1から第4磁気抵抗効果素子(10、20、30、40)からなるブリッジ回路の抵抗バランスが偏り、無磁界時のブリッジ回路の出力電圧がゼロでは無い所定値にシフトする。第1差動増幅器51は、電圧Vaが電圧Vbと一致するように磁界発生導体70に電流を供給するため、磁気検出部の磁気平衡状態(磁気センサの閉ループの帰還点)がゼロ磁界点からシフトする。本実施の形態によれば、実施の形態1の電流供給回路50から第2差動増幅器52及びバイアス電圧源53を省略しながら、磁気検出部の磁気平衡状態(磁気センサの閉ループの帰還点)をゼロ磁界点からシフトし、S/Nを高め、磁気センサの分解能を良好にすることができる。   In the present embodiment, the resistance balance of the bridge circuit including the first to fourth magnetoresistive elements (10, 20, 30, 40) is biased, and the output voltage of the bridge circuit when no magnetic field is set to a predetermined value that is not zero. shift. Since the first differential amplifier 51 supplies a current to the magnetic field generating conductor 70 so that the voltage Va matches the voltage Vb, the magnetic equilibrium state of the magnetic detection unit (the closed loop feedback point of the magnetic sensor) starts from the zero magnetic field point. shift. According to the present embodiment, the second differential amplifier 52 and the bias voltage source 53 are omitted from the current supply circuit 50 of the first embodiment, and the magnetic detection state of the magnetic detection unit (the closed loop feedback point of the magnetic sensor). Can be shifted from the zero magnetic field point, S / N can be increased, and the resolution of the magnetic sensor can be improved.

本実施の形態において、第1磁気抵抗効果素子10の無磁界時の抵抗値を変化させることに替えて又はそれに加えて、第3磁気抵抗効果素子30の無磁界時の抵抗値を変化させてもよい。あるいは、第1磁気抵抗効果素子10と第3磁気抵抗効果素子30の無磁界時の抵抗値は変化させず、第2磁気抵抗効果素子20と第4磁気抵抗効果素子40の少なくとも一方の無磁界時の抵抗値を変化させてもよい。第1から第4磁気抵抗効果素子(10、20、30、40)からなるブリッジ回路の抵抗バランスが偏るように、すなわち無磁界時のブリッジ回路の出力電圧をゼロでは無い所定値になるように、少なくとも1つの磁気抵抗効果素子の無磁界時の抵抗値を変化させればよい。   In the present embodiment, instead of or in addition to changing the resistance value of the first magnetoresistance effect element 10 in the absence of a magnetic field, the resistance value of the third magnetoresistance effect element 30 in the absence of a magnetic field is changed. Also good. Alternatively, the resistance value of the first magnetoresistive effect element 10 and the third magnetoresistive effect element 30 when there is no magnetic field is not changed, and at least one of the second magnetoresistive effect element 20 and the fourth magnetoresistive effect element 40 is free of magnetic field. The resistance value at the time may be changed. The resistance balance of the bridge circuit composed of the first to fourth magnetoresistive elements (10, 20, 30, 40) is biased, that is, the output voltage of the bridge circuit when no magnetic field is set to a predetermined value that is not zero. The resistance value in the absence of a magnetic field of at least one magnetoresistive element may be changed.

(実施の形態4)
本実施の形態の磁気センサは、図10に示す比較例の磁気センサと比較して、第1差動増幅器51が、オフセット調整機能を有するものであって、自身への入力電圧がゼロの場合に、ゼロではない所定値の電流を出力するように調整されている点で相違し、その他の点で一致する。第1差動増幅器51のオフセット調整機能は、周知のとおり、第1差動増幅器51への入力電圧がゼロの場合に第1差動増幅器51の出力電圧がゼロになるように調整する機能である。本実施の形態では、このオフセット調整機能を利用して、第1差動増幅器51への入力電圧がゼロの場合の第1差動増幅器51の出力電圧を敢えてゼロでは無い所定値に設定することで、磁気検出部の磁気平衡状態(磁気センサの閉ループの帰還点)をゼロ磁界点からシフトする。本実施の形態によれば、実施の形態1の電流供給回路50から第2差動増幅器52及びバイアス電圧源53を省略しながら、磁気検出部の磁気平衡状態(磁気センサの閉ループの帰還点)をゼロ磁界点からシフトし、S/Nを高め、磁気センサの分解能を良好にすることができる。
(Embodiment 4)
In the magnetic sensor of the present embodiment, the first differential amplifier 51 has an offset adjustment function and the input voltage to itself is zero as compared with the magnetic sensor of the comparative example shown in FIG. However, it is different in that it is adjusted so as to output a current of a predetermined value that is not zero, and is identical in other points. As is well known, the offset adjustment function of the first differential amplifier 51 is a function of adjusting the output voltage of the first differential amplifier 51 to zero when the input voltage to the first differential amplifier 51 is zero. is there. In the present embodiment, by using this offset adjustment function, the output voltage of the first differential amplifier 51 when the input voltage to the first differential amplifier 51 is zero is set to a predetermined value that is not zero. Thus, the magnetic equilibrium state of the magnetic detector (the closed loop feedback point of the magnetic sensor) is shifted from the zero magnetic field point. According to the present embodiment, the second differential amplifier 52 and the bias voltage source 53 are omitted from the current supply circuit 50 of the first embodiment, and the magnetic equilibrium state of the magnetic detection unit (the closed loop feedback point of the magnetic sensor). Can be shifted from the zero magnetic field point, S / N can be increased, and the resolution of the magnetic sensor can be improved.

以上、実施の形態を例に本発明を説明したが、実施の形態の各構成要素や各処理プロセスには請求項に記載の範囲で種々の変形が可能であることは当業者に理解されるところである。以下、変形例について触れる。   The present invention has been described above by taking the embodiment as an example. However, it is understood by those skilled in the art that various modifications can be made to each component and each processing process of the embodiment within the scope of the claims. By the way. Hereinafter, modifications will be described.

磁気検出素子の個数は、実施の形態で例示した4つに限定されず、1つ以上の任意の個数でよい。実施の形態では4つの磁気抵抗効果素子がフルブリッジ接続された磁気検出部を例に説明したが、磁気検出部は、2つの磁気抵抗効果素子がハーフブリッジ接続されたものであってもよいし、1つの磁気抵抗効果素子と1つの固定抵抗とがハーフブリッジ接続されたものであってもよい。磁気検出素子及び磁界発生導体は、共通の積層体に構成される場合に限定されず、互いに別々に設けられてもよい。磁気検出部、第1差動増幅器51、及び第2差動増幅器52は、両電源駆動に限定されず、片電源駆動であってもよい。   The number of magnetic detection elements is not limited to the four exemplified in the embodiment, and may be one or more arbitrary numbers. In the embodiment, a magnetic detection unit in which four magnetoresistive effect elements are connected in a full bridge has been described as an example. However, the magnetic detection unit may be a structure in which two magnetoresistive effect elements are connected in a half bridge. One magnetoresistive element and one fixed resistor may be half-bridge connected. The magnetic detection element and the magnetic field generating conductor are not limited to being configured in a common laminated body, and may be provided separately from each other. The magnetic detection unit, the first differential amplifier 51, and the second differential amplifier 52 are not limited to the dual power supply drive, but may be a single power supply drive.

5 積層体、10 第1磁気抵抗効果素子、20 第2磁気抵抗効果素子、30 第3磁気抵抗効果素子、40 第4磁気抵抗効果素子、50 電流供給回路、51 第1差動増幅器、52 第2差動増幅器、53 バイアス電圧源、70 磁界発生導体、80 磁性体 5 Stack, 10 1st magnetoresistive effect element, 20 2nd magnetoresistive effect element, 30 3rd magnetoresistive effect element, 40 4th magnetoresistive effect element, 50 Current supply circuit, 51 1st differential amplifier, 52 1st 2 differential amplifiers, 53 bias voltage source, 70 magnetic field generating conductor, 80 magnetic material

Claims (8)

検出対象の第1磁界が印加される少なくとも1つの磁気抵抗効果素子を含む磁気検出部と、
前記磁気検出部を磁気平衡状態にする第2磁界を発生する磁界発生導体と、
前記磁気検出部の出力電圧が入力され、前記第2磁界を発生するための電流を前記磁界発生導体に供給する電流供給回路と、を備え、
前記電流供給回路は、前記第1磁界が存在しない場合に、前記磁界発生導体にゼロではない所定値の電流を供給する、磁気センサ。
A magnetic detection unit including at least one magnetoresistance effect element to which a first magnetic field to be detected is applied;
A magnetic field generating conductor for generating a second magnetic field for bringing the magnetic detection unit into a magnetic equilibrium state;
A current supply circuit that receives an output voltage of the magnetic detection unit and supplies a current for generating the second magnetic field to the magnetic field generating conductor;
The magnetic sensor, wherein the current supply circuit supplies a non-zero current of a predetermined value to the magnetic field generating conductor when the first magnetic field does not exist.
前記電流供給回路は、
前記磁気検出部の出力電圧が入力される第1差動増幅器と、
一方の入力端子に前記第1差動増幅器の出力電圧が入力され、他方の入力端子にバイアス電圧が入力され、出力端子から前記磁界発生導体に電流を供給する第2差動増幅器と、を有する、請求項1に記載の磁気センサ。
The current supply circuit includes:
A first differential amplifier to which an output voltage of the magnetic detection unit is input;
An output voltage of the first differential amplifier is input to one input terminal, a bias voltage is input to the other input terminal, and a second differential amplifier supplies current from the output terminal to the magnetic field generating conductor. The magnetic sensor according to claim 1.
前記電流供給回路は、前記磁気検出部の出力電圧が入力される差動増幅器を含み、
前記差動増幅器は、オフセット調整機能を有し、自身への入力電圧がゼロの場合にゼロではない所定値の電流を出力するように調整されている、請求項1に記載の磁気センサ。
The current supply circuit includes a differential amplifier to which an output voltage of the magnetic detection unit is input,
The magnetic sensor according to claim 1, wherein the differential amplifier has an offset adjustment function and is adjusted so as to output a current of a predetermined value that is not zero when an input voltage to the differential amplifier is zero.
前記磁気検出部は、ブリッジ接続された複数の磁気抵抗効果素子を含む、請求項1から3のいずれか一項に記載の磁気センサ。   The magnetic sensor according to claim 1, wherein the magnetic detection unit includes a plurality of magnetoresistive elements that are bridge-connected. 前記磁気検出部は、無磁界の場合にゼロではない所定値の電圧を出力するように構成される、請求項1に記載の磁気センサ。   The magnetic sensor according to claim 1, wherein the magnetic detection unit is configured to output a voltage of a predetermined value that is not zero when there is no magnetic field. 前記磁気検出部は、ブリッジ接続された複数の磁気抵抗効果素子を含み、
前記複数の磁気抵抗効果素子のうちの少なくとも1つの磁気抵抗効果素子は、前記複数の磁気抵抗効果素子のうちの他の磁気抵抗効果素子と、無磁界の場合の抵抗値が異なる、請求項1から5のいずれか一項に記載の磁気センサ。
The magnetic detection unit includes a plurality of magnetoresistive elements that are bridge-connected,
2. At least one magnetoresistive effect element of the plurality of magnetoresistive effect elements is different in resistance value in the absence of a magnetic field from other magnetoresistive effect elements of the plurality of magnetoresistive effect elements. To 5. The magnetic sensor according to any one of items 5 to 5.
前記磁気検出部は、無磁界の場合の抵抗値が互いに等しいブリッジ接続された複数の磁気抵抗効果素子に抵抗を付加した構成である、請求項1から5のいずれか一項に記載の磁気センサ。   6. The magnetic sensor according to claim 1, wherein the magnetic detection unit has a configuration in which resistance is added to a plurality of bridge-connected magnetoresistive effect elements having equal resistance values in the absence of a magnetic field. . 前記磁気抵抗効果素子は、外部磁界によらず磁化方向が一定の固定層と、外部磁界によって磁化方向が変化するフリー層と、を含む、請求項1から5のいずれか一項に記載の磁気センサ。   6. The magnetism according to claim 1, wherein the magnetoresistive element includes a fixed layer having a constant magnetization direction regardless of an external magnetic field, and a free layer whose magnetization direction is changed by an external magnetic field. Sensor.
JP2018209344A 2018-03-27 2018-11-07 magnetic sensor Active JP7225694B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018060944 2018-03-27
JP2018060944 2018-03-27

Publications (2)

Publication Number Publication Date
JP2019174436A true JP2019174436A (en) 2019-10-10
JP7225694B2 JP7225694B2 (en) 2023-02-21

Family

ID=68168678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018209344A Active JP7225694B2 (en) 2018-03-27 2018-11-07 magnetic sensor

Country Status (1)

Country Link
JP (1) JP7225694B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04133221A (en) * 1990-09-26 1992-05-07 Nec Corp Magnetic sensor
JPH0888423A (en) * 1994-09-19 1996-04-02 Asahi Chem Ind Co Ltd Magnetic sensor
JPH09318386A (en) * 1996-05-28 1997-12-12 Mitsubishi Electric Corp Detector
WO2014006914A1 (en) * 2012-07-06 2014-01-09 アルプス・グリーンデバイス株式会社 Method for manufacturing current sensor, and current sensor
JP2014174061A (en) * 2013-03-11 2014-09-22 Hitachi Metals Ltd Magnetic sensor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04133221A (en) * 1990-09-26 1992-05-07 Nec Corp Magnetic sensor
JPH0888423A (en) * 1994-09-19 1996-04-02 Asahi Chem Ind Co Ltd Magnetic sensor
JPH09318386A (en) * 1996-05-28 1997-12-12 Mitsubishi Electric Corp Detector
WO2014006914A1 (en) * 2012-07-06 2014-01-09 アルプス・グリーンデバイス株式会社 Method for manufacturing current sensor, and current sensor
JP2014174061A (en) * 2013-03-11 2014-09-22 Hitachi Metals Ltd Magnetic sensor device

Also Published As

Publication number Publication date
JP7225694B2 (en) 2023-02-21

Similar Documents

Publication Publication Date Title
CN110494760B (en) Magnetic sensor
JP4722934B2 (en) Resistor having a predetermined temperature coefficient
CN113203885B (en) Current sensor, magnetic sensor and circuit
JPWO2014203862A1 (en) Current sensor
WO2018159776A1 (en) Magnetic sensor
JP7119633B2 (en) magnetic sensor
JP2007033222A (en) Current sensor
JP2019174436A (en) Magnetic sensor
JP7286932B2 (en) magnetic sensor
JP5891516B2 (en) Current sensor
JP4521808B2 (en) Encoder
JP2016115240A (en) Multiplication circuit and power sensor including the same
JP7119695B2 (en) magnetic sensor
JP6346045B2 (en) Magnetic field sensor
WO2017141763A1 (en) Current sensor
JP2016142651A (en) Power sensor
JP2016121941A (en) Power sensor
WO2007097268A1 (en) Magnetic switch
JP2015172554A (en) Sensor threshold determination circuit
JP2013134084A (en) Magnetic sensor
JP2013181770A (en) Magnetic sensor signal detection circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221103

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230123

R150 Certificate of patent or registration of utility model

Ref document number: 7225694

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150