JP2008197341A - Optical substrate, its manufacturing method, optical component having optical substrate, and electronic equipment having optical substrate - Google Patents

Optical substrate, its manufacturing method, optical component having optical substrate, and electronic equipment having optical substrate Download PDF

Info

Publication number
JP2008197341A
JP2008197341A JP2007031980A JP2007031980A JP2008197341A JP 2008197341 A JP2008197341 A JP 2008197341A JP 2007031980 A JP2007031980 A JP 2007031980A JP 2007031980 A JP2007031980 A JP 2007031980A JP 2008197341 A JP2008197341 A JP 2008197341A
Authority
JP
Japan
Prior art keywords
optical
substrate
optical substrate
face
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007031980A
Other languages
Japanese (ja)
Inventor
Koichi Kumai
晃一 熊井
Ikuo Hirota
郁夫 広田
Taketo Tsukamoto
健人 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2007031980A priority Critical patent/JP2008197341A/en
Publication of JP2008197341A publication Critical patent/JP2008197341A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical substrate in which damage is not liable to occur even in physical connection, and to provide a manufacturing method of the substrate. <P>SOLUTION: The optical substrate 50 is provided with a substrate body 52 and optical wiring 11 (optical waveguide core) imbedded in the substrate body 52. An incident/existing end face 12, situated at the end of the optical wiring 11, faces the end face 54 of the substrate body 52. The incident/exiting end face 12 is deflected inside the substrate body 52 from the end face 54 thereof. A recessed part 56 is provided in the end face 54 of the substrate body 52, while the incident/exiting end face 12 constitutes the bottom face of the recessed part 56. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、少なくとも1層の光配線を有する光基板、その製造方法および光基板を備える光部品並びに光基板を備える電子機器に関する。   The present invention relates to an optical substrate having at least one layer of optical wiring, a manufacturing method thereof, an optical component including the optical substrate, and an electronic device including the optical substrate.

光部品や光ファイバを光接続する場合、適切なコネクタフェルールに光部品や光ファイバの光導波路を固定し、フェルール同士を直列に突き合わせて物理的接触接合(フィジカルコンタクト)を行い、これにより光信号を伝達することが知られている(特許文献1参照)。
特開2006−284821
When optically connecting optical components and optical fibers, the optical waveguides of optical components and optical fibers are fixed to an appropriate connector ferrule, and the ferrules are butted in series to perform physical contact bonding (physical contact). Is known (see Patent Document 1).
JP 2006-284821 A

高分子材料で形成された光基板(高分子光導波路)と石英光ファイバを接続する場合も、各々を合致するフェルールに固定し、フェルールを物理的に接続することにより、光信号の伝達を行う。   Even when an optical substrate (polymer optical waveguide) made of a polymer material is connected to a quartz optical fiber, optical signals are transmitted by fixing the ferrules to each other and physically connecting the ferrules. .

しかしながら、石英光ファイバは高分子光導波路に比べ著しく硬度が高い。
したがって、図27に示すように、光基板2に設けられた光配線4(光導波路コア)の端面6と石英光ファイバ8との物理的接触接合により端面6が破損する問題がある。
However, quartz optical fibers have a significantly higher hardness than polymer optical waveguides.
Therefore, as shown in FIG. 27, there is a problem that the end face 6 is damaged by physical contact bonding between the end face 6 of the optical wiring 4 (optical waveguide core) provided on the optical substrate 2 and the quartz optical fiber 8.

光配線4の端面6が破損すると、光信号の接続特性が劣化し、光信号伝送ができなくなる。もしくは、環境耐性試験などでの長期信頼性が損なわれる問題がある。   If the end face 6 of the optical wiring 4 is damaged, the connection characteristic of the optical signal is deteriorated and the optical signal cannot be transmitted. Or, there is a problem that long-term reliability in an environmental resistance test or the like is impaired.

本発明はかかる従来技術の欠点に鑑みてなされたもので、物理的接続においても破損が起こりにくい光基板およびその製造方法を提供することを目的とする。
また光基板の光接続部分の構造を制御し、光ファイバ等との接続損失を低減することができる光基板およびその製造方法を提供することを目的とする。
また、これにより高信頼性かつ接続特性のよい光基板およびその製造方法を提供することを目的とする。
また、そのような光基板を備える光部品および電子機器を提供することを目的とする。
The present invention has been made in view of the drawbacks of the prior art, and an object of the present invention is to provide an optical substrate that is less likely to be damaged even in physical connection and a method for manufacturing the same.
It is another object of the present invention to provide an optical substrate that can control the structure of the optical connection portion of the optical substrate and reduce connection loss with an optical fiber and the like, and a method for manufacturing the same.
It is another object of the present invention to provide an optical substrate with high reliability and good connection characteristics and a method for manufacturing the same.
Moreover, it aims at providing an optical component and an electronic device provided with such an optical substrate.

上述の目的を達成するため、請求項1記載の発明は、基板本体と、前記基板本体に埋め込まれた光導波路コアとを備え、前記光導波路コアの端部に位置する入出射端面が前記基板本体の端面に臨む光基板であって、前記入出射端面は、前記基板本体の端面よりも前記基板本体の内側に偏位していることを特徴とする。
また、請求項2記載の発明は、前記基板本体の端面に凹部が設けられ、前記入出射端面は前記凹部の底面を構成していることを特徴とする。
また、請求項3記載の発明は、前記凹部は、前記入出射端面から前記基板本体の端面に向かうにつれて断面積が次第に大きくなる漏斗状に形成されていることを特徴としている。
また、請求項4記載の発明は、前記基板本体および前記光導波路コアは共に合成樹脂で形成されていることを特徴とする。
また、請求項5記載の発明は、前記凹部には屈折率整合剤が充填されていることを特徴とする。
また、請求項6記載の発明は、前記光導波路コアは複数設けられていることを特徴とする。
また、請求項7記載の発明は、前記基板本体の端面に凹部が設けられ、前記入出射端面は前記凹部の底面を構成し、前記基板本体の端面と前記入出射端面との距離は、10〜500μmであることを特徴とする。
また、請求項8記載の発明は、光基板の製造方法であって、線状の光導波路コアを所定の長さに切断し、製造すべき光基板に対応する形状のキャビティを有する金型の前記光基板の両端面に対応する箇所に、それら箇所の金型の厚さよりも長い寸法の中空パイプを予め挿通しておき、前記切断された光導波路コアの長手方向の両端を前記中空パイプ内に挿通し、前記キャビティに前記光基板の基板本体成形用の溶融状態の合成樹脂を流し込み、前記合成樹脂が硬化したならば、前記中空パイプを前記金型から取り外し、前記キャビティから光基板を取り出すようにしたことを特徴とする。
また、請求項9記載の発明は、前記中空パイプを前記金型から取り外すと、前記取り外された中空パイプにより光基板の端面に凹部が形成されており、前記光導波路コアの入出射端面は、前記凹部の底面を構成しており、前記凹部に屈折率整合剤を充填することを特徴とする。
また、請求項10記載の発明は、製造すべき光基板は複数の光導波路コアを有し、前記金型の前記光基板の両端面に対応する箇所に、前記複数の光導波路コアに対応してそれぞれ中空パイプが挿通されることを特徴とする。
また、請求項11記載の発明は、光部品であって請求項1乃至7に何れか1項記載の光基板を備えることを特徴とする。
また、請求項12の発明は、電子機器であって請求項1乃至7に何れか1項記載の光基板を備えることを特徴とする。
In order to achieve the above-mentioned object, the invention according to claim 1 includes a substrate body and an optical waveguide core embedded in the substrate body, and an incident / exit end face located at an end of the optical waveguide core is the substrate. An optical substrate facing an end surface of the main body, wherein the incident / exit end surface is offset to the inside of the substrate main body with respect to the end surface of the substrate main body.
The invention according to claim 2 is characterized in that a concave portion is provided on an end surface of the substrate body, and the incident / exit end surface constitutes a bottom surface of the concave portion.
The invention according to claim 3 is characterized in that the concave portion is formed in a funnel shape in which a cross-sectional area gradually increases from the incident / exit end surface toward the end surface of the substrate body.
The invention according to claim 4 is characterized in that both the substrate body and the optical waveguide core are made of synthetic resin.
The invention according to claim 5 is characterized in that the concave portion is filled with a refractive index matching agent.
The invention according to claim 6 is characterized in that a plurality of the optical waveguide cores are provided.
According to a seventh aspect of the present invention, a recess is provided on an end surface of the substrate body, the incident / exit end surface constitutes a bottom surface of the recess, and a distance between the end surface of the substrate body and the incident / exit end surface is 10 It is ˜500 μm.
The invention according to claim 8 is a method of manufacturing an optical substrate, wherein a linear optical waveguide core is cut into a predetermined length and a mold having a cavity corresponding to the optical substrate to be manufactured is provided. Hollow pipes having dimensions longer than the thickness of the molds are inserted in advance at locations corresponding to both end faces of the optical substrate, and both ends in the longitudinal direction of the cut optical waveguide core are inserted into the hollow pipe. The molten synthetic resin for molding the optical body of the optical substrate is poured into the cavity, and when the synthetic resin is cured, the hollow pipe is removed from the mold and the optical substrate is taken out from the cavity. It is characterized by doing so.
Further, in the invention according to claim 9, when the hollow pipe is removed from the mold, a concave portion is formed on the end face of the optical substrate by the removed hollow pipe, and the incident / exit end face of the optical waveguide core is: A bottom surface of the recess is formed, and the recess is filled with a refractive index matching agent.
According to a tenth aspect of the present invention, the optical substrate to be manufactured has a plurality of optical waveguide cores, and the optical substrate corresponds to the plurality of optical waveguide cores at locations corresponding to both end faces of the optical substrate of the mold. And a hollow pipe is inserted through each.
An eleventh aspect of the invention is an optical component comprising the optical substrate according to any one of the first to seventh aspects.
A twelfth aspect of the invention is an electronic apparatus comprising the optical substrate according to any one of the first to seventh aspects.

光導波路コアの入出射端面を基板本体の端面よりも基板本体の内側に偏位させることにより、石英光ファイバなどとの物理的接続時に、光導波路コアの入出射端面の破壊を防ぐ事ができる。これによりコネクタ接続時の長期信頼性が向上する効果がある。   By displacing the input / output end face of the optical waveguide core to the inside of the substrate body from the end face of the substrate body, it is possible to prevent the input / output end face of the optical waveguide core from being destroyed during physical connection with a quartz optical fiber or the like. . This has the effect of improving long-term reliability when the connector is connected.

次に本発明の光基板およびその製造方法の実施の形態について図面を参照して説明する。
図1は本実施の形態の光基板50の平面図である。
光基板50は、基板本体52と、基板本体52に埋め込まれた光配線11(光導波路コア)とを備えている。
光配線11の端部に位置する入出射端面12は基板本体52の端面54に臨んでいる。
入出射端面12は、基板本体52の端面54よりも基板本体52の内側に偏位している。
基板本体52の端面54に凹部56が設けられ、入出射端面12は凹部56の底面を構成している。
Next, embodiments of an optical substrate and a method for manufacturing the same according to the present invention will be described with reference to the drawings.
FIG. 1 is a plan view of an optical substrate 50 of the present embodiment.
The optical substrate 50 includes a substrate body 52 and an optical wiring 11 (optical waveguide core) embedded in the substrate body 52.
The incident / exit end face 12 located at the end of the optical wiring 11 faces the end face 54 of the substrate body 52.
The incident / exit end face 12 is offset from the end face 54 of the substrate body 52 to the inside of the substrate body 52.
A concave portion 56 is provided on the end surface 54 of the substrate body 52, and the incident / exit end surface 12 constitutes the bottom surface of the concave portion 56.

光基板50の製造方法は次のような工程を含む。
図2に示すように、あらかじめ形成した線状の光配線10(光導波路コア)を所定の長さに切断し、切断された光配線11を得る工程。
次いで、図3に示すように、製造すべき光基板に対応する形状のキャビティ20Aを有する金型20の光基板の両端面に対応する箇所である金型20の側壁に、それら箇所の金型20の厚さよりも長い寸法の中空パイプ30を予め挿通し、図4に示すように、切断された光配線10の長手方向の両端を中空パイプ30内に挿通する工程。
次いで、図5に示すように、キャビティ20Aに溶融状態の光導波路材料40(クラッド材料)、すなわち、光基板50の基板本体成形用の溶融状態の合成樹脂を流し込み充填する工程。
次いで、図6に示すように、光導波路材料40が硬化したならば、中空パイプ30を金型20から取り外す工程。
この際、中空パイプ30を金型20から取り外すと、取り外された中空パイプ30により光基板50の端面54に凹部56が形成され、光配線11の入出射端面12は、凹部56の底面を構成している。
次いで、図7に示すように、キャビティ20Aから光基板50を取り出す工程。
The manufacturing method of the optical substrate 50 includes the following steps.
As shown in FIG. 2, a process of obtaining a cut optical wiring 11 by cutting a previously formed linear optical wiring 10 (optical waveguide core) into a predetermined length.
Next, as shown in FIG. 3, the molds at those positions are formed on the side walls of the mold 20, which are positions corresponding to both end faces of the optical substrate of the mold 20 having the cavity 20 </ b> A having a shape corresponding to the optical substrate to be manufactured. A step of inserting a hollow pipe 30 having a dimension longer than the thickness of 20 in advance and inserting both ends of the cut optical wiring 10 in the longitudinal direction into the hollow pipe 30 as shown in FIG.
Next, as shown in FIG. 5, a process of pouring and filling molten optical waveguide material 40 (cladding material), that is, molten synthetic resin for molding the optical substrate 50 into the cavity 20A.
Next, as shown in FIG. 6, a step of removing the hollow pipe 30 from the mold 20 when the optical waveguide material 40 is cured.
At this time, when the hollow pipe 30 is removed from the mold 20, the removed hollow pipe 30 forms a recess 56 in the end surface 54 of the optical substrate 50, and the incident / exit end surface 12 of the optical wiring 11 constitutes the bottom surface of the recess 56. is doing.
Next, as shown in FIG. 7, a step of taking out the optical substrate 50 from the cavity 20A.

光配線10および光導波路材料40には、一般に用いられている高分子材料(合成樹脂材料)を用いることができる。
具体的には、カーボネート材料、エポキシ材料、アクリル材料、イミド材料、ウレタン材料、シリコーン材料、無機フィラー混入有機材料などが使用できるが、これに限定されるものではない。ただし、屈折率を制御した光学材料を用いることが望ましい。
For the optical wiring 10 and the optical waveguide material 40, a generally used polymer material (synthetic resin material) can be used.
Specifically, a carbonate material, an epoxy material, an acrylic material, an imide material, a urethane material, a silicone material, an organic material mixed with an inorganic filler, and the like can be used. However, the material is not limited thereto. However, it is desirable to use an optical material with a controlled refractive index.

光配線10は、ディスペンサー等による吐出法、型取り法、直接露光法などにより線状に形成することができる。   The optical wiring 10 can be formed in a linear shape by a discharge method using a dispenser or the like, a molding method, a direct exposure method, or the like.

金型20および中空パイプ30には、任意の有機材料および無機材料を使用する事ができる。
具体的には、アクリル材料、シリコーン材料、シリコンウェハ、金属材料、硝子材料などが使用できるが、これに限定されるものではない。離型/剥離性を高めるため、金型20および中空パイプ30の表面に離型/剥離層を設けることもできる。
Arbitrary organic materials and inorganic materials can be used for the mold 20 and the hollow pipe 30.
Specifically, acrylic materials, silicone materials, silicon wafers, metal materials, glass materials, and the like can be used, but are not limited thereto. In order to improve the mold release / peelability, a mold release / release layer may be provided on the surfaces of the mold 20 and the hollow pipe 30.

中空パイプ30は、光配線11の断面形状に合わせ任意の形状を取る事ができ、中空パイプ30の断面形状は、例えば、図26(A)に示す円形断面、あるいは、図26(B)に示す四角形断面などが挙げられるが、これら円形断面および四角形断面などに限定されるものではない。   The hollow pipe 30 can take any shape in accordance with the cross-sectional shape of the optical wiring 11. The cross-sectional shape of the hollow pipe 30 is, for example, a circular cross-section shown in FIG. Although the square cross section shown etc. are mentioned, it is not limited to these circular cross sections and square cross sections.

中空パイプ30中の任意の箇所で光配線11を固定する事で、図7に示すように、光基板50の端面54から光配線11の入出射端面12までの距離を制御することができる。
図1に示すように、光基板50の端面54から光配線11の入出射端面12までの距離は、光基板50と光ファイバ2等を接続した際、光配線11の入出射端面12に光ファイバ60等が接触しない程度の寸法とする。
光基板50の端面54から光配線11の入出射端面12までの距離が長すぎると光接続特性が劣化するため、この距離は、10〜500μm程度とすることが望ましい。
By fixing the optical wiring 11 at an arbitrary location in the hollow pipe 30, the distance from the end face 54 of the optical substrate 50 to the incident / exit end face 12 of the optical wiring 11 can be controlled as shown in FIG.
As shown in FIG. 1, the distance from the end surface 54 of the optical substrate 50 to the incident / exit end surface 12 of the optical wiring 11 is such that when the optical substrate 50 and the optical fiber 2 are connected, the light is incident on the incident / exit end surface 12 of the optical wiring 11. The dimensions are such that the fiber 60 does not come into contact.
If the distance from the end face 54 of the optical substrate 50 to the incident / exit end face 12 of the optical wiring 11 is too long, the optical connection characteristics deteriorate, so this distance is preferably about 10 to 500 μm.

金型20の任意の位置に中空パイプ30を設置することで、光配線11の配線パターンを制御する事ができる。
中空パイプ30の設置間隔を広げる事で、ピッチ変換配線などを形成することができる。
By installing the hollow pipe 30 at an arbitrary position of the mold 20, the wiring pattern of the optical wiring 11 can be controlled.
By increasing the installation interval of the hollow pipe 30, a pitch conversion wiring or the like can be formed.

また、中空パイプ30を任意の形状とすることで、光基板50の凹部56の形状(光基板50の端面54の窪み形状)を制御する事ができる。
例えば、図8に示すように、漏斗状の中空パイプ31を使用することで、図9に示すように、漏斗状の窪みを持った光基板50を形成することができる。
言い換えると、凹部56は、入出射端面12から基板本体52の端面54に向かうにつれて断面積が次第に大きくなる漏斗状に形成されている。
これにより、図9に示すように、光基板50と光ファイバ60を接続した際、相互の位置が自動的に合うセルフアライメント機能を付与することができる。
また、光口径を任意の大きさに変換することが可能となり、光ファイバ60と光配線11の接続特性を向上する上で有利となる。
Moreover, by making the hollow pipe 30 into an arbitrary shape, the shape of the concave portion 56 of the optical substrate 50 (the concave shape of the end surface 54 of the optical substrate 50) can be controlled.
For example, as shown in FIG. 8, by using a funnel-shaped hollow pipe 31, an optical substrate 50 having a funnel-shaped depression can be formed as shown in FIG.
In other words, the concave portion 56 is formed in a funnel shape in which the cross-sectional area gradually increases from the incident / exit end surface 12 toward the end surface 54 of the substrate body 52.
Accordingly, as shown in FIG. 9, when the optical substrate 50 and the optical fiber 60 are connected, a self-alignment function can be provided in which the mutual positions automatically match.
Further, the optical aperture can be converted to an arbitrary size, which is advantageous in improving the connection characteristics between the optical fiber 60 and the optical wiring 11.

また、図10に示すように、光基板50の凹部56に屈折率整合剤70を充填することで、光配線11と光ファイバ60等の屈折率差を整合する事ができ、これにより、相互の光接続特性が向上する。
屈折率整合剤70には任意の有機材料および無機材料を使用する事ができる。具体的には、アクリル材料、シリコーン材料、硝子材料などが使用できるが、これに限定されるものではない。
Further, as shown in FIG. 10, the refractive index difference between the optical wiring 11 and the optical fiber 60 can be matched by filling the concave portion 56 of the optical substrate 50 with the refractive index matching agent 70. The optical connection characteristics are improved.
Arbitrary organic materials and inorganic materials can be used for the refractive index matching agent 70. Specifically, an acrylic material, a silicone material, a glass material, or the like can be used, but is not limited thereto.

以下に本発明を実施例をもって説明するが、本発明はそれらに限定解釈されるものではない。また、以下の記載では、光基板の光配線を1層として説明するが、必ずしも1層である必要はない。また、以下の記載では光配線をマルチモードとして説明するが、必ずしもマルチモードである必要はない。   The present invention will be described below with reference to examples, but the present invention should not be construed as being limited thereto. In the following description, the optical wiring of the optical substrate is described as one layer, but it is not always necessary to be one layer. In the following description, the optical wiring is described as multi-mode, but it is not always necessary to be in multi-mode.

(実施例1)
実施例1について説明する。
まず図11に示すように、コア型80上にコア材料90(NTT-AT製紫外線硬化型エポキシ光導波路材料)を塗布、UV照射することで光配線10を形成した。
(Example 1)
Example 1 will be described.
First, as shown in FIG. 11, an optical wiring 10 was formed by applying a core material 90 (NTT-AT UV curable epoxy optical waveguide material) on a core mold 80 and irradiating with UV.

次に、図12に示すように、光配線10を任意の長さで切断し、光配線11を作成した。   Next, as shown in FIG. 12, the optical wiring 10 was cut | disconnected by arbitrary length, and the optical wiring 11 was created.

次に図13に示すように、光配線11を、金型20側面に設置した中空パイプ30に挿入した。   Next, as shown in FIG. 13, the optical wiring 11 was inserted into the hollow pipe 30 installed on the side surface of the mold 20.

次に図14に示すように、光配線11を、中空パイプ30中に固定した。このとき光基板50の端面54に対応する金型20の外壁2002(側壁)と光配線11の入出射端面12の距離を50μmとした。   Next, as shown in FIG. 14, the optical wiring 11 was fixed in the hollow pipe 30. At this time, the distance between the outer wall 2002 (side wall) of the mold 20 corresponding to the end face 54 of the optical substrate 50 and the incident / exit end face 12 of the optical wiring 11 was set to 50 μm.

次に図15に示すように、金型20のキャビティ20Aに光導波路材料40(NTT-AT製紫外線硬化型エポキシ光導波路材料)を充填し、UV照射を行った。   Next, as shown in FIG. 15, the cavity 20A of the mold 20 was filled with an optical waveguide material 40 (NTT-AT UV-curable epoxy optical waveguide material), and UV irradiation was performed.

次に図16に示すように、光導波路材料40が硬化したならば、中空パイプ30を金型20から取り外し、図17に示すように、キャビティ20Aから光基板50を取り外し、光基板50を得た。   Next, as shown in FIG. 16, when the optical waveguide material 40 is cured, the hollow pipe 30 is removed from the mold 20, and the optical substrate 50 is removed from the cavity 20A as shown in FIG. It was.

光基板50を光ファイバに接続し、挿抜試験を実施した。
その結果、1000回挿抜で±0.5dBの挿入損失変動を確認した。
The optical substrate 50 was connected to an optical fiber, and an insertion / extraction test was performed.
As a result, insertion loss fluctuation of ± 0.5 dB was confirmed after 1000 insertions.

(実施例2)
次に実施例2について説明する。
まず図18に示すように、コア型80上にコア材料90(NTT-AT製紫外線硬化型エポキシ光導波路材料)を塗布、UV照射することで光配線10を形成した。
(Example 2)
Next, Example 2 will be described.
First, as shown in FIG. 18, an optical wiring 10 was formed by applying a core material 90 (NTT-AT UV-curable epoxy optical waveguide material) on a core mold 80 and irradiating with UV.

次に、図19に示すように、光配線10を任意の長さで切断し、光配線11を作成した。   Next, as shown in FIG. 19, the optical wiring 10 was cut | disconnected by arbitrary length, and the optical wiring 11 was created.

次に図20に示すように、光配線11を、金型20側面に設置した漏斗状の中空パイプ31に挿入した。   Next, as shown in FIG. 20, the optical wiring 11 was inserted into a funnel-shaped hollow pipe 31 installed on the side surface of the mold 20.

次に図21に示すように、光配線11を、中空パイプ31中に固定した。このとき光基板50の端面54に対応する金型20の外壁2002(側壁)と光配線11の入出射端面12の距離を50μmとした。   Next, as shown in FIG. 21, the optical wiring 11 was fixed in the hollow pipe 31. At this time, the distance between the outer wall 2002 (side wall) of the mold 20 corresponding to the end face 54 of the optical substrate 50 and the incident / exit end face 12 of the optical wiring 11 was set to 50 μm.

次に図22に示すように、金型20に光導波路材料40(NTT-AT製紫外線硬化型エポキシ光導波路材料)を充填し、UV照射を行った。   Next, as shown in FIG. 22, the mold 20 was filled with an optical waveguide material 40 (NTT-AT UV curable epoxy optical waveguide material) and irradiated with UV.

次に図23に示すように、光導波路材料40が硬化したならば、中空パイプ30を金型20から取り外し、図24に示すように、キャビティ20Aから光基板50を取り外し、光基板50を得た。   Next, as shown in FIG. 23, when the optical waveguide material 40 is cured, the hollow pipe 30 is removed from the mold 20, and the optical substrate 50 is removed from the cavity 20A as shown in FIG. It was.

光基板50を光ファイバに接続し、挿抜試験を実施した。結果、1000回挿抜で±0.5dBの挿入損失変動を確認した。   The optical substrate 50 was connected to an optical fiber, and an insertion / extraction test was performed. As a result, insertion loss fluctuation of ± 0.5 dB was confirmed after 1000 insertions.

(実施例3)
次に実施例3について説明する。
図17に示す実施例1にて作成した光基板50の端面54の凹部56に、屈折率整合剤70を充填した。
(Example 3)
Next, Example 3 will be described.
A refractive index matching agent 70 was filled in the recess 56 of the end face 54 of the optical substrate 50 created in Example 1 shown in FIG.

光基板50を光ファイバに接続し、挿入損失測定を実施した。結果、屈折率整合剤70を充填することで、挿入損失が約0.8dB向上する事を確認した。   The optical substrate 50 was connected to an optical fiber, and insertion loss measurement was performed. As a result, it was confirmed that the insertion loss was improved by about 0.8 dB by filling the refractive index matching agent 70.

以上説明したように本実施の形態によれば次の効果が奏される。
第一に、光配線11の入出射端面12を基板本体52の端面54よりも基板本体52の内側に偏位させることにより、石英光ファイバなどとの物理的接続時に、光配線11の入出射端面54の破壊を防ぐ事ができる。これによりコネクタ接続時の長期信頼性が向上する効果がある。
As described above, according to the present embodiment, the following effects are produced.
First, the input / output end face 12 of the optical wiring 11 is displaced to the inside of the substrate main body 52 with respect to the end face 54 of the substrate main body 52, so that the input / output of the optical wiring 11 is physically connected to a quartz optical fiber or the like. Breakage of the end face 54 can be prevented. This has the effect of improving long-term reliability when the connector is connected.

第二に、光基板50の凹部56を、入出射端面12から基板本体52の端面54に向かうにつれて断面積が次第に大きくなる漏斗状に形成することにより、石英光ファイバなどとの物理的接続時に、入出射端面12と光ファイバ6の端面との位置を自動的に合わせて接合する事ができる。これにより接続位置精度が向上し、製造コストを下げる効果がある。   Second, the concave portion 56 of the optical substrate 50 is formed in a funnel shape in which the cross-sectional area gradually increases from the incident / exit end surface 12 toward the end surface 54 of the substrate body 52, so that it can be physically connected to a quartz optical fiber or the like. The positions of the input / output end face 12 and the end face of the optical fiber 6 can be automatically matched and joined. This improves the connection position accuracy and has the effect of reducing manufacturing costs.

第三に、光基板50の凹部56に屈折率整合材70を充填することで、光配線11と光ファイバ60などとの屈折率差を緩和することができる。これにより光接続特性が向上する効果がある。   Thirdly, by filling the concave portion 56 of the optical substrate 50 with the refractive index matching material 70, the refractive index difference between the optical wiring 11 and the optical fiber 60 can be reduced. This has the effect of improving the optical connection characteristics.

なお、実施の形態では、光基板50について説明したが、本発明はこのような光基板50を有する光部品および電子機器にも適用されることは無論であり、特に、精密に調整をしなくても位置合わせが容易であり、光ファイバとの接触で導波路側が破損することもないため、専門的な取り扱いが不要となる。業務用はもちろん、家庭用の光部品、電子機器にも適している。
すなわち、前記光部品としては、例えば、光インターコネクション(光電気配線板)、光コネクタ、光カプラ、光結合器、光スイッチ、光スプリッタ、光送受信機などを挙げることができる。
本発明の光基板を備えた光部品は、光ファイバとの接続を繰り返しても光導波路(光配線11の入出射端面12)の損傷を防止でき、また、光ファイバとの接続が容易であり作業時間の短縮につながるという効果が奏される。
また、前記電子機器としては、例えば、パソコン(業務用大型コンピュータを含む)、電話機、家庭用ゲーム機、録画再生機、テレビ、ルータ、など、大きな情報の出入力を伴う情報・通信機器が挙げられる。
本発明の光基板を備えた電子機器は、光ファイバとの接続を繰り返しても光導波路(光配線11の入出射端面12)の損傷を防止でき、また、光ファイバとの接続が容易であり作業時間の短縮につながるという効果が奏される。
In the embodiment, the optical substrate 50 has been described. However, the present invention is naturally applicable to an optical component and an electronic apparatus having such an optical substrate 50, and in particular, precise adjustment is not performed. However, alignment is easy, and the waveguide side is not damaged by contact with the optical fiber, so that specialized handling is not required. It is suitable not only for business use but also for household optical parts and electronic devices.
That is, examples of the optical component include an optical interconnection (photoelectric wiring board), an optical connector, an optical coupler, an optical coupler, an optical switch, an optical splitter, and an optical transceiver.
The optical component including the optical substrate according to the present invention can prevent damage to the optical waveguide (input / output end face 12 of the optical wiring 11) even when the connection with the optical fiber is repeated, and the connection with the optical fiber is easy. There is an effect that the working time is shortened.
In addition, examples of the electronic device include information / communication devices with large input / output such as a personal computer (including a large computer for business use), a telephone set, a home game machine, a recording / playback device, a television set, and a router. It is done.
The electronic device provided with the optical substrate of the present invention can prevent damage to the optical waveguide (input / output end face 12 of the optical wiring 11) even if the connection with the optical fiber is repeated, and the connection with the optical fiber is easy. There is an effect that the working time is shortened.

本発明の光基板の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the optical board | substrate of this invention. 本発明の光基板の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the optical board | substrate of this invention. 本発明の光基板の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the optical board | substrate of this invention. 本発明の光基板の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the optical board | substrate of this invention. 本発明の光基板の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the optical board | substrate of this invention. 本発明の光基板の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the optical board | substrate of this invention. 本発明の光基板の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the optical board | substrate of this invention. 本発明の光基板の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the optical board | substrate of this invention. 本発明の光基板の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the optical board | substrate of this invention. 本発明の光基板の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the optical board | substrate of this invention. 実施例1における光基板の製造方法の説明図である。6 is an explanatory diagram of a method for manufacturing an optical substrate in Example 1. FIG. 実施例1における光基板の製造方法の説明図である。6 is an explanatory diagram of a method for manufacturing an optical substrate in Example 1. FIG. 実施例1における光基板の製造方法の説明図である。6 is an explanatory diagram of a method for manufacturing an optical substrate in Example 1. FIG. 実施例1における光基板の製造方法の説明図である。6 is an explanatory diagram of a method for manufacturing an optical substrate in Example 1. FIG. 実施例1における光基板の製造方法の説明図である。6 is an explanatory diagram of a method for manufacturing an optical substrate in Example 1. FIG. 実施例1における光基板の製造方法の説明図である。6 is an explanatory diagram of a method for manufacturing an optical substrate in Example 1. FIG. 実施例1における光基板の製造方法の説明図である。6 is an explanatory diagram of a method for manufacturing an optical substrate in Example 1. FIG. 実施例2における光基板の製造方法の説明図である。10 is an explanatory diagram of a method for manufacturing an optical substrate in Example 2. FIG. 実施例2における光基板の製造方法の説明図である。10 is an explanatory diagram of a method for manufacturing an optical substrate in Example 2. FIG. 実施例2における光基板の製造方法の説明図である。10 is an explanatory diagram of a method for manufacturing an optical substrate in Example 2. FIG. 実施例2における光基板の製造方法の説明図である。10 is an explanatory diagram of a method for manufacturing an optical substrate in Example 2. FIG. 実施例2における光基板の製造方法の説明図である。10 is an explanatory diagram of a method for manufacturing an optical substrate in Example 2. FIG. 実施例2における光基板の製造方法の説明図である。10 is an explanatory diagram of a method for manufacturing an optical substrate in Example 2. FIG. 実施例2における光基板の製造方法の説明図である。FIG. 10 is an explanatory diagram of a method for manufacturing an optical substrate in Example 2. 実施例3における光基板の製造方法の説明図である。10 is an explanatory diagram of a method for manufacturing an optical substrate in Example 3. FIG. (A)、(B)は中空パイプ30と光配線11の説明図である。(A), (B) is explanatory drawing of the hollow pipe 30 and the optical wiring 11. FIG. 従来技術における不具合の説明図である。It is explanatory drawing of the malfunction in a prior art.

符号の説明Explanation of symbols

10……光配線、11……光配線、20……金型、30……中空パイプ、31……中空パイプ、40……光導波路材料、50……光基板、60……光ファイバ、70……屈折率整合材、80……コア型、90……コア材料。   DESCRIPTION OF SYMBOLS 10 ... Optical wiring, 11 ... Optical wiring, 20 ... Mold, 30 ... Hollow pipe, 31 ... Hollow pipe, 40 ... Optical waveguide material, 50 ... Optical substrate, 60 ... Optical fiber, 70 ... refractive index matching material, 80 ... core type, 90 ... core material.

Claims (12)

基板本体と、
前記基板本体に埋め込まれた光導波路コアとを備え、
前記光導波路コアの端部に位置する入出射端面が前記基板本体の端面に臨む光基板であって、
前記入出射端面は、前記基板本体の端面よりも前記基板本体の内側に偏位している、
ことを特徴とする光基板。
A substrate body;
An optical waveguide core embedded in the substrate body,
An input / output end face located at an end of the optical waveguide core is an optical substrate facing the end face of the substrate body,
The incident / exit end face is deviated inside the substrate body from the end face of the substrate body,
An optical substrate characterized by that.
前記基板本体の端面に凹部が設けられ、
前記入出射端面は前記凹部の底面を構成している、
ことを特徴とする請求項1記載の光基板。
A recess is provided on the end surface of the substrate body,
The incident / exit end surface constitutes the bottom surface of the recess,
The optical substrate according to claim 1.
前記凹部は、前記入出射端面から前記基板本体の端面に向かうにつれて断面積が次第に大きくなる漏斗状に形成されている、
ことを特徴とする請求項2記載の光基板。
The concave portion is formed in a funnel shape having a cross-sectional area that gradually increases from the incident / exit end surface toward the end surface of the substrate body,
The optical substrate according to claim 2.
前記基板本体および前記光導波路コアは共に合成樹脂で形成されている、
ことを特徴とする請求項1乃至3に何れか1項記載の光基板。
The substrate body and the optical waveguide core are both made of synthetic resin.
The optical substrate according to any one of claims 1 to 3, wherein the optical substrate is any one of the above.
前記凹部には屈折率整合剤が充填されている、
ことを特徴とする請求項2または3記載の光基板。
The recess is filled with a refractive index matching agent,
The optical substrate according to claim 2 or 3, wherein
前記光導波路コアは複数設けられている、
ことを特徴とする請求項1乃至5に何れか1項記載の光基板。
A plurality of the optical waveguide cores are provided,
The optical substrate according to claim 1, wherein the optical substrate is a substrate.
前記基板本体の端面に凹部が設けられ、
前記入出射端面は前記凹部の底面を構成し、
前記基板本体の端面と前記入出射端面との距離は、10〜500μmである、
ことを特徴とする請求項1乃至6に何れか1項記載の光基板。
A recess is provided on the end surface of the substrate body,
The incident / exit end surface constitutes the bottom surface of the recess,
The distance between the end face of the substrate body and the incident / exit end face is 10 to 500 μm,
The optical substrate according to claim 1, wherein:
線状の光導波路コアを所定の長さに切断し、
製造すべき光基板に対応する形状のキャビティを有する金型の前記光基板の両端面に対応する箇所に、それら箇所の金型の壁部の厚さよりも長い寸法の中空パイプを予め挿通しておき、
前記切断された光導波路コアの長手方向の両端を前記中空パイプ内に挿通し、
前記キャビティに前記光基板の基板本体成形用の溶融状態の合成樹脂を流し込み、
前記合成樹脂が硬化したならば、前記中空パイプを前記金型から取り外し、前記キャビティから光基板を取り出すようにした、
ことを特徴とする光基板の製造方法。
A linear optical waveguide core is cut into a predetermined length,
A hollow pipe having a dimension longer than the thickness of the wall portion of the mold is inserted in advance in a portion corresponding to both end faces of the optical substrate of the mold having a cavity having a shape corresponding to the optical substrate to be manufactured. Every
Inserting both ends in the longitudinal direction of the cut optical waveguide core into the hollow pipe,
Pour molten synthetic resin for forming the substrate body of the optical substrate into the cavity,
When the synthetic resin is cured, the hollow pipe is removed from the mold, and the optical substrate is taken out from the cavity.
An optical substrate manufacturing method characterized by the above.
前記中空パイプを前記金型から取り外すと、前記取り外された中空パイプにより光基板の端面に凹部が形成されており、
前記光導波路コアの入出射端面は、前記凹部の底面を構成しており、
前記凹部に屈折率整合剤を充填する、
ことを特徴とする請求項8記載の光基板の製造方法。
When the hollow pipe is removed from the mold, a concave portion is formed on the end surface of the optical substrate by the removed hollow pipe,
The incident / exit end face of the optical waveguide core constitutes the bottom face of the recess,
Filling the recess with a refractive index matching agent;
The method of manufacturing an optical substrate according to claim 8.
製造すべき光基板は複数の光導波路コアを有し、
前記金型の前記光基板の両端面に対応する箇所に、前記複数の光導波路コアに対応してそれぞれ中空パイプが挿通される、
ことを特徴とする請求項9記載の光基板の製造方法。
The optical substrate to be manufactured has a plurality of optical waveguide cores,
Hollow pipes are respectively inserted corresponding to the plurality of optical waveguide cores at locations corresponding to both end faces of the optical substrate of the mold.
The method for producing an optical substrate according to claim 9.
請求項1乃至7に何れか1項記載の光基板を備える光部品。   An optical component comprising the optical substrate according to claim 1. 請求項1乃至7に何れか1項記載の光基板を備える電子機器。   An electronic device comprising the optical substrate according to claim 1.
JP2007031980A 2007-02-13 2007-02-13 Optical substrate, its manufacturing method, optical component having optical substrate, and electronic equipment having optical substrate Pending JP2008197341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007031980A JP2008197341A (en) 2007-02-13 2007-02-13 Optical substrate, its manufacturing method, optical component having optical substrate, and electronic equipment having optical substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007031980A JP2008197341A (en) 2007-02-13 2007-02-13 Optical substrate, its manufacturing method, optical component having optical substrate, and electronic equipment having optical substrate

Publications (1)

Publication Number Publication Date
JP2008197341A true JP2008197341A (en) 2008-08-28

Family

ID=39756348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007031980A Pending JP2008197341A (en) 2007-02-13 2007-02-13 Optical substrate, its manufacturing method, optical component having optical substrate, and electronic equipment having optical substrate

Country Status (1)

Country Link
JP (1) JP2008197341A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018141910A (en) * 2017-02-28 2018-09-13 住友ベークライト株式会社 Optical waveguide, optical waveguide connection, and electronic apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6377010A (en) * 1986-09-19 1988-04-07 Fujitsu Ltd Connecting method for optical fiber
JPH05232347A (en) * 1992-02-20 1993-09-10 Hitachi Ltd Optical branching device made of resin and production thereof
JPH0667061A (en) * 1992-08-20 1994-03-11 Nippon Sheet Glass Co Ltd Structure for connecting optical waveguide to optical fiber
JPH06324227A (en) * 1993-04-05 1994-11-25 Motorola Inc Photoelectric coupling device and manufacture thereof
JP2001255428A (en) * 2000-03-10 2001-09-21 Toppan Printing Co Ltd Optical wiring layer having optical fiber connecting hole, its manufacturing method, and optical/electric wiring substrate and optical/electric mounting substrate using it
JP2006154417A (en) * 2004-11-30 2006-06-15 Hitachi Chem Co Ltd Flexible optical waveguide, manufacturing method and manufacturing apparatus therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6377010A (en) * 1986-09-19 1988-04-07 Fujitsu Ltd Connecting method for optical fiber
JPH05232347A (en) * 1992-02-20 1993-09-10 Hitachi Ltd Optical branching device made of resin and production thereof
JPH0667061A (en) * 1992-08-20 1994-03-11 Nippon Sheet Glass Co Ltd Structure for connecting optical waveguide to optical fiber
JPH06324227A (en) * 1993-04-05 1994-11-25 Motorola Inc Photoelectric coupling device and manufacture thereof
JP2001255428A (en) * 2000-03-10 2001-09-21 Toppan Printing Co Ltd Optical wiring layer having optical fiber connecting hole, its manufacturing method, and optical/electric wiring substrate and optical/electric mounting substrate using it
JP2006154417A (en) * 2004-11-30 2006-06-15 Hitachi Chem Co Ltd Flexible optical waveguide, manufacturing method and manufacturing apparatus therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018141910A (en) * 2017-02-28 2018-09-13 住友ベークライト株式会社 Optical waveguide, optical waveguide connection, and electronic apparatus
JP7031125B2 (en) 2017-02-28 2022-03-08 住友ベークライト株式会社 Optical Waveguide, Optical Waveguide Connectivity and Electronic Devices

Similar Documents

Publication Publication Date Title
US7234881B2 (en) Molding apparatus for a reinforcement resin coating of glass optical fiber exposing portion of an optical fiber junction, method for molding reinforcement resin coating of a glass optical fiber exposing portion of an optical fiber junction, and optical fiber cable
US9393718B2 (en) Method of forming single-mode polymer waveguide array assembly
US10025040B2 (en) Connector for multilayered optical waveguide
Yakabe et al. Multi-channel single-mode polymer waveguide fabricated using the Mosquito method
JP5851947B2 (en) Optical fiber guide parts
JP2019003024A (en) Method of manufacturing optical connection component
US20210088728A1 (en) 3d printed fiber optic connector end face and method of manufacture
CN103777280B (en) A kind of optical fiber assembly with angle of inclination and assembly method thereof
Hendrickx et al. Embedded micromirror inserts for optical printed circuit boards
JP5462080B2 (en) Fiber optic connector
JP2008197341A (en) Optical substrate, its manufacturing method, optical component having optical substrate, and electronic equipment having optical substrate
JP2008164943A (en) Multichannel optical path conversion element and its manufacturing method
JP2007121503A (en) Method for splicing optical fibers
JP2008046178A (en) Holder for connecting optical fiber and connecting method using the same
KR100935866B1 (en) Optical waveguide using epoxy resin and the fabricating methods thereof
JP2004020656A (en) Optical waveguide apparatus and method for manufacturing optical waveguide apparatus
JPH11202158A (en) Optical element
JP4524390B2 (en) Manufacturing method of optical connection device
JP5652106B2 (en) Optical connector manufacturing method and optical connector
JP2012032733A (en) Optical module and method for manufacturing the same
JP5066040B2 (en) Flexible optical waveguide and flexible opto-electric hybrid board
JP5280966B2 (en) Manufacturing method of optical waveguide
JP2007139898A (en) Method for manufacturing optical waveguide device
KR20150117876A (en) Optical alignment one body type polymer optical device and Method for manufacturing the same
JP2007264312A (en) Optical coupler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110801