JP2008196916A - Optical element evaluation method, optical surface evaluation method, and optical surface evaluation device - Google Patents

Optical element evaluation method, optical surface evaluation method, and optical surface evaluation device Download PDF

Info

Publication number
JP2008196916A
JP2008196916A JP2007031160A JP2007031160A JP2008196916A JP 2008196916 A JP2008196916 A JP 2008196916A JP 2007031160 A JP2007031160 A JP 2007031160A JP 2007031160 A JP2007031160 A JP 2007031160A JP 2008196916 A JP2008196916 A JP 2008196916A
Authority
JP
Japan
Prior art keywords
point image
optical element
group
numerical value
parallel light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007031160A
Other languages
Japanese (ja)
Inventor
Mitsugi Fukushima
貢 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Imaging Corp
Original Assignee
Olympus Imaging Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Imaging Corp filed Critical Olympus Imaging Corp
Priority to JP2007031160A priority Critical patent/JP2008196916A/en
Publication of JP2008196916A publication Critical patent/JP2008196916A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical element evaluation method capable of simply measuring (evaluating) the degree of difference of measuring wave surface data of a test lens from a design value without manufacturing a reference lens. <P>SOLUTION: In this optical element evaluation method, a parallel light flux is allowed to enter the reference lens 14a by simulation, and the first numerical value group determined by totalizing a total distance value from a point image group encircling a point image to a center point image and a total distance value between each adjacent point image group, relative to each point image in the point image group by the emission light flux, is compared with the second numerical value group determined by totalizing the total distance value from the point image group encircling the point image to the center point image and the total distance value between each adjacent point image group, by using a porous plate 5A for allowing a parallel light flux which is the same as the parallel light flux to enter the test lens 8 and a CCD camera 9 for imaging the light flux to acquire it as a point image group, and the result is visualized and expressed, to thereby evaluate the test lens 8. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光学素子、または、光学面の評価方法、さらに、光学面評価装置に関する。   The present invention relates to an optical element or an optical surface evaluation method, and further to an optical surface evaluation apparatus.

従来からカメラ用レンズとして球面レンズ、または、非球面レンズが多用されている。レンズの加工精度を向上させても完全に設計通りに投影光学系を製造することは困難であり、実際に製造された投影光学系には様々な要因に起因する諸収差が残存している。このため、実際に製造された投影光学系の光学特性は、設計上の光学特性とは異なるものになってしまう。その誤差を検査するにはスキャンヘッドを用いた機械的測定方法や干渉計による検査が知られているが、このような方法は、検査に長い時間を要し、被検光学素子の位置調節も困難である。また、検査装置自体も高価である。   Conventionally, spherical lenses or aspherical lenses are frequently used as camera lenses. Even if the processing accuracy of the lens is improved, it is difficult to manufacture the projection optical system as designed completely, and various aberrations due to various factors remain in the actually manufactured projection optical system. For this reason, the optical characteristics of the actually produced projection optical system will be different from the designed optical characteristics. In order to inspect the error, a mechanical measurement method using a scan head and an inspection using an interferometer are known. However, such a method requires a long time for the inspection and also adjusts the position of the optical element to be detected. Have difficulty. Also, the inspection device itself is expensive.

そこで、上記実際に製造された投影光学系の収差等の光学特性を測定するための様々な技術が提案されている。例えば、ハルトマン方式の波面収差測定技術は、ピンホールを用いて発生させた球面波を被検光学系に入射し、該被検光学系を通過した光を平行光に変換した後に波面分割を行い、分割波面ごとにスポット像の形成位置に基づいて被検光学の波面収差を測定するものである。   Therefore, various techniques for measuring optical characteristics such as aberration of the actually produced projection optical system have been proposed. For example, in the Hartmann wavefront aberration measurement technique, a spherical wave generated using a pinhole is incident on a test optical system, and the light passing through the test optical system is converted into parallel light, and then the wavefront is divided. The wavefront aberration of the test optical is measured based on the spot image formation position for each divided wavefront.

このハルトマン方式を採用する波面収差測定装置(波面測定装置)は、例えば、入射光を波面分割して、該分割波面ごとにスポット像を形成する波面分割素子として、平行光の波面と平行な2次元平面に沿って微小な集光素子が多数配列されたマイクロレンズアレイを採用する。そして、該マイクロレンズアレイが形成した多数のスポット像をCCD等の撮像素子により撮像して各スポット像の撮像波形の重心を求め、スポット像位置を検出する。このようにして検出された各スポット光像の位置は、各マイクロレンズに入射した光の波面の局所的な傾きを表している。そこで、その波面の局所的な傾きを積分する等の演算により被検光学系の波面形状を2次元的に再構成して波面収差を求める。   A wavefront aberration measuring apparatus (wavefront measuring apparatus) that employs the Hartmann method is, for example, a wavefront dividing element that divides incident light into wavefronts and forms a spot image for each divided wavefront. A microlens array in which a number of minute condensing elements are arranged along a dimensional plane is adopted. Then, a large number of spot images formed by the microlens array are picked up by an image pickup device such as a CCD, the center of gravity of the picked-up waveform of each spot image is obtained, and the spot image position is detected. The position of each spot light image detected in this way represents the local inclination of the wavefront of the light incident on each microlens. Therefore, the wavefront aberration is obtained by reconstructing the wavefront shape of the optical system to be measured two-dimensionally by an operation such as integrating the local inclination of the wavefront.

上記のマイクロレンズアレイを適用した波面収差測定装置によれば、各分割波面を形成する多数のスポット像を一挙に撮像することができるので敏速な波面収差の測定が可能である。   According to the wavefront aberration measuring apparatus to which the above-described microlens array is applied, a large number of spot images forming each divided wavefront can be picked up at once, so that prompt wavefront aberration can be measured.

上記従来の波面収差測定装置では、測定された波面収差が設計値からどの程度変動しているかを検査する場合、基準となるレンズを用いた測定データが必要になる。しかし、設計値通りの基準レンズの製作は、非常に困難であり、長い製作時間を必要とし、また、高価なものとなってしまう。   In the conventional wavefront aberration measuring apparatus, when inspecting how much the measured wavefront aberration varies from the design value, measurement data using a reference lens is required. However, it is very difficult to manufacture a reference lens as designed, which requires a long manufacturing time and is expensive.

本発明は、上述の問題を解決するためになされたものであり、基準レンズを製作することなしに、被検体であるレンズの測定波面データが設計値に対してどの程度異なるかをより簡単に測定(評価)することができる光学素子評価方法、光学面評価方法、または、光学面評価装置を提供することを目的とする。   The present invention has been made to solve the above-described problem, and it is easier to determine how much the measured wavefront data of a lens as a subject differs from a design value without manufacturing a reference lens. An object is to provide an optical element evaluation method, an optical surface evaluation method, or an optical surface evaluation apparatus that can be measured (evaluated).

本発明の請求項1記載の光学素子評価方法は、シミュレーションにより、設計上の理想光学素子に対して光軸と平行な複数の平行光束を入射させ、該理想光学素子からの射出光束により複数の点像群を生成させ、該点像群の所定の点像それぞれにおいて、該所定の点像を中心として取り囲む所定の数の点像から該中心点像までの全ての距離の合計数値、または、該合計数値と該周囲の隣り合う点像同士間の全ての距離の合計数値とを合計した理想の総計数値を演算した第一の数値群と、製造された光学素子に上記平行光束と同じ複数の平行光束を入射させる平行光束入射手段と、上記製造された光学素子から射出される上記光束を撮像し、点像群として捉える撮像手段と、を用い、上記点像群の所定の点像それぞれにおいて、該所定の点像を中心として取り囲む所定の数の点像から該中心点像までの全ての距離の合計数値、または、該合計数値と該周囲の隣り合う点像同士間の全ての距離の合計数値とを合計した実際の総計数値を演算した第二の数値群と、を基に上記所定の点像位置ごとに上記第一の数値群と上記第二の数値群とを比較演算し、該比較結果を視覚化して表現する。   According to an optical element evaluation method of the present invention, a plurality of parallel light beams parallel to the optical axis are made incident on a designed ideal optical element by simulation, and a plurality of parallel light beams are emitted from the ideal optical element by simulation. Generating a point image group, and in each of the predetermined point images of the point image group, a total numerical value of all distances from the predetermined number of point images surrounding the predetermined point image to the central point image, or A first numerical value group obtained by calculating an ideal total count value obtained by adding the total numerical value and the total numerical value of all the distances between adjacent neighboring point images; Each of the predetermined point images of the point image group using parallel light beam incident means for making the parallel light beam incident thereon and imaging means for capturing the light beam emitted from the manufactured optical element and capturing it as a point image group The predetermined point image The total value of all the distances from a predetermined number of point images enclosing as a heart to the central point image, or the sum of the total value and the total value of all the distances between adjacent neighboring point images The first numerical value group and the second numerical value group are compared and calculated for each predetermined point image position based on the second numerical value group obtained by calculating the total count value, and the comparison result is visualized. Express.

本発明の請求項2の光学素子評価方法は、請求項1に記載の光学素子評価方法において、上記第一の数値群および上記第二の数値群は、上記点像群ごとに上記所定の点像を格子状に取り囲む点像群を基に演算される。   The optical element evaluation method according to a second aspect of the present invention is the optical element evaluation method according to the first aspect, wherein the first numerical value group and the second numerical value group are the predetermined points for each point image group. Calculation is performed based on a point image group surrounding the image in a lattice pattern.

本発明の請求項3の光学素子評価方法は、請求項1に記載の光学素子評価方法において、上記第一の数値群及び第二の数値群は、上記点像群ごとに上記所定の点像を多角形状に取り囲む点像群を基に演算される。   The optical element evaluation method according to a third aspect of the present invention is the optical element evaluation method according to the first aspect, wherein the first numerical group and the second numerical group are the predetermined point image for each point image group. Is calculated on the basis of a point image group surrounding the polygonal shape.

本発明の請求項4の光学素子評価方法は、シミュレーションにより、設計上の理想光学素子の光軸を中心とする所定領域内に対して上記光軸と平行な複数の平行光束を入射させ、該理想光学素子からの射出光束により所定の複数の点像群を生成させ、該点像群の所定の点像それぞれにおいて、該所定の点像を中心として取り囲む所定の数の点像から該中心点像までの全ての距離の合計数値、または、該合計数値と該周囲の隣り合う点像同士間の全ての距離の合計数値とを合計した理想の総計数値を演算した第一の数値群と、製造された光学素子の光軸を中心とする上記所定領域内に上記平行光束と同じ複数の平行光束を入射させる平行光束入射手段と、上記製造された光学素子から射出される上記光束を撮像し、点像群として捉える撮像手段と、を用い、上記点像群の所定の点像それぞれにおいて、該所定の点像を中心として取り囲む所定の数の点像から該中心点像までの全ての距離の合計数値、または、該合計数値と該周囲の隣り合う点像同士間の全ての距離の合計数値とを合計した実際の総計数値を演算した第二の数値群と、を基に上記所定の点像位置ごとに第一の数値群と第二の数値群とを比較演算し、該比較結果の中の最大値と最小値との差をもって上記製造された光学素子を評価する。   According to an optical element evaluation method of a fourth aspect of the present invention, a plurality of parallel light beams parallel to the optical axis are made incident on a predetermined region centered on the optical axis of the designed ideal optical element by simulation. A plurality of predetermined point image groups are generated by the light beam emitted from the ideal optical element, and the center point is determined from a predetermined number of point images surrounding the predetermined point image in each of the predetermined point images of the point image group. A total number of all distances to the image, or a first group of numerical values obtained by calculating an ideal total count value obtained by summing the total number and the total number of all distances between adjacent neighboring point images; Imaging parallel light beam incident means for causing a plurality of parallel light beams that are the same as the parallel light beam to enter the predetermined area centered on the optical axis of the manufactured optical element; and imaging the light beam emitted from the manufactured optical element. Imaging means for capturing as a point image group In each of the predetermined point images of the point image group, the total numerical value of all the distances from the predetermined number of point images surrounding the predetermined point image to the central point image, or the total numerical value And a second numerical value group obtained by calculating an actual total count value obtained by adding up the total numerical values of all the distances between neighboring point images around the first numerical value for each predetermined point image position based on The group is compared with the second numerical value group, and the manufactured optical element is evaluated based on the difference between the maximum value and the minimum value in the comparison result.

本発明の請求項5に記載の光学素子評価方法は、シミュレーションにより、設計上の理想光学素子の光軸を中心とする所定領域内に対して上記光軸と平行な複数の平行光束を入射させ、該理想光学素子からの射出光束により所定の複数の点像群を生成させ、該点像群の各点像それぞれにおいて、該点像を中心として取り囲む所定の数の点像から該中心点像までの全ての距離の合計数値、または、該合計数値と該周囲の隣り合う点像同士間の全ての距離の合計数値とを合計した理想の総計数値を演算した第一の数値群と、製造された光学素子の光軸を中心とする上記所定領域内に上記平行光束と同じ複数の平行光束を入射させる平行光束入射手段と、上記製造された光学素子から射出される上記光束を撮像し、点像群として捉える撮像手段と、を用い、上記点像群の所定の点像それぞれにおいて、該所定の点像を中心として取り囲む所定の数の点像から該中心点像までの全ての距離の合計数値、または、該合計数値と該周囲の隣り合う点像同士間のすべて距離の合計数値とを合計した実際の総計数値を演算した第二の数値群と、を基に上記所定の点像位置ごとに第一の数値群と第二の数値群とを比較演算し、該比較結果の数値群の平均値をもって上記製造された光学素子を評価する。   In the optical element evaluation method according to claim 5 of the present invention, a plurality of parallel light beams parallel to the optical axis are made incident on a predetermined region centered on the optical axis of the ideal optical element in design by simulation. , A plurality of predetermined point image groups are generated by the light flux emitted from the ideal optical element, and the center point image is generated from a predetermined number of point images surrounding each point image in each point image of the point image group. A first numerical value group in which an ideal total count value obtained by summing up the total numerical value of all the distances up to, or the total numerical value and the total numerical value of all the distances between adjacent neighboring point images, Imaging the luminous flux emitted from the manufactured optical element, and a parallel luminous flux incident means for making the same parallel luminous flux as the parallel luminous flux enter the predetermined area centered on the optical axis of the optical element, Imaging means for capturing as a point image group; In each of the predetermined point images of the point image group, the total numerical value of all the distances from the predetermined number of point images surrounding the predetermined point image to the central point image, or the total numerical value and the Based on a second numerical group obtained by calculating an actual total count value obtained by summing up the total numerical values of all distances between adjacent neighboring point images, the first numerical group and the first numerical group for each predetermined point image position based on The two optical value groups are compared, and the manufactured optical element is evaluated with the average value of the numerical value groups of the comparison results.

本発明の請求項6に記載の光学素子評価方法は、請求項5に記載の光学素子評価方法において、上記比較結果の数値群の絶対値の平均値をもって上記製造された光学素子を評価する。   An optical element evaluation method according to a sixth aspect of the present invention is the optical element evaluation method according to the fifth aspect, wherein the manufactured optical element is evaluated with an average value of absolute values of a numerical group of the comparison result.

本発明の請求項7に記載の光学面評価装置は、複数の平行光束を発生させる平行光束発生手段と、上記複数の平行光束を被検体である光学素子に入射させる入射手段と、上記光学素子から射出した複数の射出光束像を捉える撮像手段と、上記光学素子から射出した上記複数の平行光束の射出光束像と、シミュレーション上の理想光学素子に上記複数の平行光束と同じシミュレーション上の複数の平行光束を入射させ該理想光学素子から射出させた該シミュレーション上の複数の模擬射出光束像とを比較し、上記複数の模擬射出光束像それぞれと該それぞれに対応する上記射出光束像との間の複数の相対距離をデータとしてツェルニケ多項式により上記理想光学素子の光学面とのずれを表す曲面を演算生成する演算手段とを有する。   An optical surface evaluation apparatus according to a seventh aspect of the present invention includes a parallel light beam generating unit that generates a plurality of parallel light beams, an incident unit that causes the plurality of parallel light beams to enter an optical element that is a subject, and the optical element. Imaging means that captures a plurality of emitted light flux images emitted from the optical element, an emitted light flux image of the plurality of parallel light fluxes emitted from the optical element, and a plurality of simulation light images that are the same as the plurality of parallel light fluxes on the ideal optical element in the simulation. Comparing a plurality of simulated exit light flux images on the simulation in which a parallel light flux is incident and exited from the ideal optical element, and between each of the plurality of simulated exit light flux images and the corresponding exit light flux images. And a calculation means for calculating and generating a curved surface representing a deviation from the optical surface of the ideal optical element by a Zernike polynomial using a plurality of relative distances as data.

本発明の請求項8に記載の光学面評価装置は、請求項7に記載の光学面評価装置において、上記平行光束発生手段は、光源と、該光源からの光束を平行光に変換するコリメータレンズと、該コリメータレンズから射出される平行光束を複数の平行光束から複数の平行光束を生成する多穴板とを有し、該多穴板の穴の内の少なくとも一つは、他の穴に対して穴の形状が異なる。   An optical surface evaluation apparatus according to an eighth aspect of the present invention is the optical surface evaluation apparatus according to the seventh aspect, wherein the parallel light beam generating means converts a light source and a light beam from the light source into parallel light. And a multi-hole plate that generates a plurality of parallel light beams from a plurality of parallel light beams, and at least one of the holes of the multi-hole plate is in another hole. The hole shape is different.

本発明の請求項9に記載の光学面評価方法は、複数の平行光束を発生させる平行光束発生手段から複数の平行光束を発生させ、該光束を被検体である光学素子に入射させ、上記光学素子から射出した上記複数の平行光束の射出光束像と、シミュレーション上の理想光学素子に上記複数の平行光束と同じシミュレーション上の複数の平行光束を入射させ該理想光学素子から射出させた該シミュレーション上の複数の模擬射出光束像とを比較し、上記模擬射出光束像それぞれと該それぞれに対応する上記射出光束像との複数の相対距離をデータとしてツェルニケ多項式により曲面を演算生成し、この曲面の形状により上記光学素子の光学面を評価する。   According to a ninth aspect of the present invention, there is provided an optical surface evaluation method in which a plurality of parallel light beams are generated from a parallel light beam generating unit that generates a plurality of parallel light beams, and the light beams are incident on an optical element that is a subject. In the simulation of the emitted light image of the plurality of parallel light beams emitted from the element and the plurality of parallel light beams in the same simulation as the plurality of parallel light beams incident on the ideal optical element in the simulation and emitted from the ideal optical element And calculating and generating a curved surface by Zernike polynomials using a plurality of relative distances between each of the simulated emitted light beam images and the corresponding emitted light beam images as data. To evaluate the optical surface of the optical element.

本発明によれば、基準レンズの製作を必要とせず、被検レンズの測定波面データが設計値に対してどの程度異なるかをより簡単に測定(評価)することができる光学素子評価方法、光学面評価方法、または、光学面評価装置を提供することができる。   According to the present invention, an optical element evaluation method, an optical device, and an optical element evaluation method that can more easily measure (evaluate) how much the measurement wavefront data of a lens to be measured differs from a design value without requiring the production of a reference lens. A surface evaluation method or an optical surface evaluation apparatus can be provided.

以下、図を用いて本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態としての光学面評価装置であるレンズ面測定評価装置のブロック構成図である。図2は、上記レンズ面測定評価装置に適用される多穴板の拡大図である。   FIG. 1 is a block configuration diagram of a lens surface measurement evaluation apparatus which is an optical surface evaluation apparatus as an embodiment of the present invention. FIG. 2 is an enlarged view of a multi-hole plate applied to the lens surface measurement and evaluation apparatus.

本実施形態のレンズ面測定評価装置10は、光源部1と、光源部1の前方に光軸Oに沿って配されるピンホール板2と、フィルタ3と、平行光束発生手段であるコリメータレンズ(テレセントリックレンズ光学系)4と、多穴板5Aと、絞り板6と、絞り板6上に固着され、製造された光学素子(被検体)である被検レンズ8が取り付けられるレンズ受け台7と、光軸O上に配される撮像手段であるCCDカメラ9と、CCDカメラ9の撮影画像出力信号を取り込み、画像処理を行う画像処理部11と、被検レンズ8に対応する理想的光学素子である基準レンズ14aのシミュレーションを行うシミュレーション処理部14と、画像処理部11およびシミュレーション処理の出力データを取り込み、レンズ測定処理を行う演算処理部12と、該レンズ精度測定の処理結果、評価等を表示するための表示部13とからなる。   A lens surface measurement and evaluation apparatus 10 according to the present embodiment includes a light source unit 1, a pinhole plate 2 disposed in front of the light source unit 1 along an optical axis O, a filter 3, and a collimator lens that is a parallel light flux generating unit. (Telecentric lens optical system) 4, multi-hole plate 5 </ b> A, diaphragm plate 6, and lens holder 7 to which a test lens 8 that is an optical element (subject) manufactured and fixed is attached. And an ideal optical device corresponding to the lens 8 to be inspected and the CCD camera 9 which is an image pickup means disposed on the optical axis O, an image processing unit 11 which takes a captured image output signal of the CCD camera 9 and performs image processing. A simulation processing unit 14 for simulating a reference lens 14a, which is an element, an image processing unit 11 and an arithmetic processing unit 12 for capturing output data of the simulation processing and performing lens measurement processing; Processing result of the lens accuracy measurement, and a display unit 13. for displaying the evaluation, and the like.

光源部1は、例えば、ハロゲン電球の白色光源、あるいは、LED等である。   The light source unit 1 is, for example, a white light source of a halogen bulb or an LED.

フィルタ3は、光源光の所定の波長の光を透過させるための赤,緑等の単色フィルタである。上記波長は、上記基準レンズ14aのシミュレーションの演算に適用される光源光の波長に合わせるものとする。なお、フィルタ3は、光源部1からCCDカメラ9の間のどこに配置されていてもよい。また、光源がLED等の単色光であるならば、上記フィルタは不要である。   The filter 3 is a monochromatic filter such as red or green for transmitting light of a predetermined wavelength of the light source light. The wavelength is adjusted to the wavelength of the light source light applied to the simulation calculation of the reference lens 14a. The filter 3 may be disposed anywhere between the light source unit 1 and the CCD camera 9. In addition, if the light source is monochromatic light such as an LED, the filter is not necessary.

コリメータレンズ4は、光源部1の光を平行光にして多穴板側に射出する。   The collimator lens 4 converts the light from the light source unit 1 into parallel light and emits it to the multi-hole plate side.

多穴板5Aは、光源光から複数の平行光束を生成するため、板を貫通した小径穴群が所定の範囲に配された検査用多穴板である。図2に示すように多穴板5Aには、被検レンズ8の有効径D0 よりも広い範囲に小径の円形小穴群Snが格子状に配されている。小穴群Snは、それぞれが、例えば、直径0.08mmを有している。但し、光軸O上に位置する基準小穴S0 は、他の小穴群Snに対して識別可能なようにより大きな直径を有している。また、該格子のピッチは、例えば、0.19mmとする。   The multi-hole plate 5A is an inspection multi-hole plate in which small-diameter hole groups penetrating the plate are arranged in a predetermined range in order to generate a plurality of parallel light beams from the light source light. As shown in FIG. 2, the multi-hole plate 5A has small-diameter circular hole groups Sn arranged in a lattice shape in a range wider than the effective diameter D0 of the lens 8 to be examined. Each of the small hole groups Sn has a diameter of 0.08 mm, for example. However, the reference small hole S0 located on the optical axis O has a larger diameter so that it can be distinguished from other small hole groups Sn. Further, the pitch of the lattice is, for example, 0.19 mm.

また、上記基準小穴S0 は、光軸O上に配置したが、このように配置せずに光軸周囲に他の穴より大きな直径の穴を複数配置して、それらの穴群の中心位置を光軸に合わせるようにしてもよい。さらに、上記穴は、丸穴形状の他に任意形状としてもよい。   Further, the reference small hole S0 is arranged on the optical axis O, but without arranging in this way, a plurality of holes having a diameter larger than other holes are arranged around the optical axis, and the center positions of these hole groups are set. You may make it match | combine with an optical axis. Further, the hole may have an arbitrary shape in addition to the round hole shape.

なお、多穴板5Aに替えて図3に示す多穴板5Bを適用することも可能である。多穴板5Bは、被検レンズ8の有効径D0 の範囲内に小径の円形の小穴群Snが格子状に配される。他の仕様は、多穴板5Aと同様とする。この多穴板5Bを用いることにより絞り板6が不要となる。   It is also possible to apply a multi-hole plate 5B shown in FIG. 3 instead of the multi-hole plate 5A. The multi-hole plate 5B has a small-diameter group of small holes Sn arranged in a lattice shape within the effective diameter D0 of the lens 8 to be examined. Other specifications are the same as those of the multi-hole plate 5A. By using this multi-hole plate 5B, the diaphragm plate 6 becomes unnecessary.

さらに、多穴板5Aに替えて図4に示す多穴板5Cを適用することも可能である。多穴板5Cには左右の交差角度60°で交差する所定のピッチの線群K1 〜K4 等の交差点上に綾目状(千鳥状)に配される小径の円形小穴群Snが設けられている。この場合も光軸O上に位置する基準小穴S0 は、他の小穴群Snに対して識別可能なようにより大きな直径を有している。   Furthermore, it is also possible to apply the multi-hole plate 5C shown in FIG. 4 instead of the multi-hole plate 5A. The multi-hole plate 5C is provided with small-diameter circular small hole groups Sn arranged in a twill shape (staggered shape) on the intersections of the line groups K1 to K4 having a predetermined pitch that intersect at a right and left intersection angle of 60 °. Yes. In this case as well, the reference small hole S0 located on the optical axis O has a larger diameter so that it can be distinguished from the other small hole group Sn.

絞り板6は、レンズ有効径D0 の開口を有する絞りであり、レンズ受け台7の下面に密着保持されている。但し、上述したように多穴板5Bのような板を適用するときは、この絞り板6は、不要である。   The aperture plate 6 is an aperture having an opening having an effective lens diameter D0 and is held in close contact with the lower surface of the lens receiving base 7. However, when a plate such as the multi-hole plate 5B is applied as described above, the diaphragm plate 6 is not necessary.

レンズ受け台7は、被検レンズ8がガタなく嵌入する受け部を有している。   The lens cradle 7 has a receiving part into which the test lens 8 is fitted without play.

被検レンズ8は、製造された被検査用光学素子であって、ガラスレンズ,プラスチックレンズからなる入射面側が平面(曲面であってもよい)である球面、または、非球面レンズ、または、複数のレンズを組み合わせた接合レンズなどである。また、レンズ8は、光軸O位置ずれの影響をなくすためにレンズ受け台7上で光軸O中心に180°回転可能に支持されている。   The lens 8 to be inspected is a manufactured optical element to be inspected, and is a spherical surface, an aspherical lens, or a plurality of surfaces on which the incident surface side made of a glass lens and a plastic lens is flat (may be a curved surface). This is a cemented lens combining these lenses. Further, the lens 8 is supported on the lens base 7 so as to be rotatable about the optical axis O by 180 ° in order to eliminate the influence of the positional deviation of the optical axis O.

CCDカメラ9は、撮像面9aを有するCCDおよび撮像信号処理部等を内蔵している。撮像面9a上には、多穴板5A、5B、または、5C等の小穴群Snおよび基準小穴S0 を透過した複数の平行光束が被検レンズ8から射出されて点像群となる。なお、撮像面9aの光軸O方向の位置は所定離間距離H0 に合わせるために調節可能である。但し、レンズ受け台7,多穴板5A,コリメータレンズ4側を前後位置調節してもよい。また、撮像面9aは、光軸Oを中心とする直交座標であるxy座標系を有するものとする。このxy座標系は、後述する基準レンズ14a、被検レンズ8,多穴板にも適用する。   The CCD camera 9 includes a CCD having an imaging surface 9a, an imaging signal processing unit, and the like. On the imaging surface 9a, a plurality of parallel light beams that have passed through the small hole group Sn such as the multi-hole plates 5A, 5B, or 5C and the reference small hole S0 are emitted from the test lens 8 to form a point image group. Note that the position of the imaging surface 9a in the direction of the optical axis O can be adjusted to match the predetermined separation distance H0. However, the front and rear positions of the lens base 7, the multi-hole plate 5A, and the collimator lens 4 may be adjusted. The imaging surface 9a is assumed to have an xy coordinate system that is an orthogonal coordinate centered on the optical axis O. This xy coordinate system is also applied to a reference lens 14a, a test lens 8 and a multi-hole plate which will be described later.

画像処理部11は、CCDカメラ9から出力される上記点像群の撮像信号を取り込み、画像処理を行って点像群からなる測定画像データを出力する。   The image processing unit 11 captures the image signal of the point image group output from the CCD camera 9, performs image processing, and outputs measurement image data including the point image group.

演算処理部12は、画像処理部11から出力される上記測定画像データに基づいて得られる測定輝点位置データ(後述)と、シミュレーション処理部14から出力されるシミュレーション輝点位置データ(後述)とを比較し、被検レンズ8が後述する基準レンズ14aに対して面精度(面の精度)、および、波面精度(アス成分,コマ成分)の評価を行う。なお、処理の詳細は、後で説明する。   The arithmetic processing unit 12 includes measurement bright spot position data (described later) obtained based on the measurement image data output from the image processing unit 11, and simulation bright spot position data (described later) output from the simulation processing unit 14. Are compared, and the test lens 8 evaluates the surface accuracy (surface accuracy) and the wavefront accuracy (ass component, coma component) with respect to a reference lens 14a described later. Details of the process will be described later.

シミュレーション処理部14は、被検レンズ8に対応する光学設計上の理想光学素子である基準レンズ14aを用いた場合を想定して、光軸Oと平行な想定光束が多穴板5A、5B、または、5Cの小穴群Snおよび基準小穴S0 を通過し、基準レンズ14aから射出し、撮像面9a上の複数の点像を仮定して、小穴群Snおよび基準小穴S0 対応の複数の模擬射出光束像である想定点像群の位置を演算し、シミュレーション輝点位置データとして出力する。上記演算に際して撮像面9aと基準レンズ14aとの間隔は、前述した所定離間距離H0 を採用する。   Assuming the case where the reference lens 14a, which is an ideal optical element in optical design corresponding to the lens 8 to be tested, is used, the simulation processing unit 14 generates an assumed light beam parallel to the optical axis O in the multi-hole plates 5A, 5B, Alternatively, a plurality of simulated exit beams corresponding to the small hole group Sn and the reference small hole S0 are assumed by passing through the small hole group Sn and the reference small hole S0 of 5C, exiting from the reference lens 14a, and assuming a plurality of point images on the imaging surface 9a. The position of the assumed point image group, which is an image, is calculated and output as simulation bright spot position data. In the above calculation, the predetermined separation distance H0 described above is adopted as the distance between the imaging surface 9a and the reference lens 14a.

本レンズ面測定評価装置10による上記面精度、および、波面精度の評価のための測定処理方法について、以下、詳しく説明する。   The measurement processing method for evaluating the surface accuracy and the wavefront accuracy by the lens surface measurement and evaluation apparatus 10 will be described in detail below.

まず、面精度の評価、すなわち、光学面の凹凸の具合は、上記シミュレーション輝点位置データに対して上記レンズ輝点位置データの各輝点位置のずれを求め、被検レンズ8の表面が基準レンズ14aに対してどのような状態にあるかを評価することになる。詳しくは、演算処理部12にて、シミュレーション処理部14によって得られた基準レンズのシミュレーション輝点位置データに関して各小穴群Snおよび基準小穴S0 の1つ1つを透過した想定光束による複数の点像群を基準レンズ14aによる注目輝点群(以下、これらの各輝点群をSIM注目輝点群と呼ぶ)として設定する。さらに、該点像群を囲み、隣接する複数の点像群を基準レンズ14aの周辺輝点群(以下、これらの各輝点群をSIM周辺輝点群と呼ぶ)として設定する。そして、該SIM注目輝点群および該SIM周辺輝点群の撮像面上相当位置データをSIM輝点位置xy座標データとして記憶する。   First, the evaluation of surface accuracy, that is, the degree of unevenness of the optical surface is obtained by obtaining the deviation of each bright spot position of the lens bright spot position data with respect to the simulation bright spot position data, and the surface of the lens 8 to be tested is used as a reference. The state of the lens 14a will be evaluated. Specifically, in the arithmetic processing unit 12, a plurality of point images of the assumed light fluxes that have passed through each of the small hole group Sn and the reference small hole S 0 with respect to the simulation bright spot position data of the reference lens obtained by the simulation processing unit 14. The group is set as a target bright spot group by the reference lens 14a (hereinafter, each of these bright spot groups is referred to as a SIM target bright spot group). Further, a plurality of adjacent point image groups surrounding the point image group are set as the peripheral bright spot group of the reference lens 14a (hereinafter, each bright spot group is referred to as a SIM peripheral bright spot group). Then, the equivalent position data on the imaging surface of the SIM attention bright spot group and the SIM peripheral bright spot group is stored as SIM bright spot position xy coordinate data.

さらに、画像処理部11から出力される被検レンズの測定画像データに基づいて撮像面9a上の点像群の輝点位置データを演算する。但し、該点像の輝点位置は、小穴群Snおよび基準小穴S0 による点像の重心位置を求め輝点位置とする。そして、各小穴群Snおよび基準小穴S0 の1つ1つを透過した光による複数の点像の中心点を被検レンズ8の点像群の測定注目輝点群として設定する。さらに、各測定注目輝点像を囲み、隣接する周辺の点像群を被検レンズ8の測定周辺輝点群として設定する。そして、各測定注目輝点、および、該測定注目輝点それぞれの測定周辺輝点群の撮像面上の位置データを測定輝点位置xy座標データとして記憶する。   Furthermore, the bright spot position data of the point image group on the imaging surface 9a is calculated based on the measurement image data of the lens to be tested output from the image processing unit 11. However, the bright spot position of the point image is determined as the bright spot position by obtaining the barycentric position of the point image by the small hole group Sn and the reference small hole S0. Then, the center point of a plurality of point images by the light transmitted through each of the small hole group Sn and the reference small hole S0 is set as a measurement target bright point group of the point image group of the lens 8 to be examined. Further, each measurement target bright spot image is surrounded, and adjacent peripheral point image groups are set as measurement peripheral bright spot groups of the lens 8 to be examined. Then, the position data on the imaging surface of each measurement target bright spot and the measurement peripheral bright spot group of each measurement target bright spot is stored as measurement bright spot position xy coordinate data.

多穴板5A、または、5Bを適用した場合の基準レンズ14aによる上記SIM注目輝点とこのSIM注目輝点の周囲のSIM周辺輝点の具体例を図5に示す。図中、多穴板5A(図2)、または、5B(図3)の1つの小穴S1 に対応するSIM注目輝点をP1 で示す。小穴S1 の周辺の小穴S2 〜S8 に対応するSIM周辺輝点をP2 〜P8 で示す。   FIG. 5 shows specific examples of the SIM noticed bright spot by the reference lens 14a when the multi-hole plate 5A or 5B is applied and the SIM peripheral bright spots around the SIM noticeable bright spot. In the drawing, a SIM notice bright spot corresponding to one small hole S1 of the multi-hole plate 5A (FIG. 2) or 5B (FIG. 3) is indicated by P1. The SIM peripheral bright spots corresponding to the small holes S2 to S8 around the small hole S1 are denoted by P2 to P8.

また、多穴板5A、または、5Bを適用した場合の被検レンズ8の上記測定注目輝点とその周りの測定周辺輝点の具体例を図6に示す。図中、多穴板の1つの小穴S1 に対応する点像の測定注目輝点をP1 ′で示す。小穴S1 の周辺の小穴S2 〜S8 に対応する点像の測定周辺輝点をP2 ′〜P8 ′で示す。図6に示すように被検レンズ8の面の精度によって測定注目輝点P1 ′のまわりの測定周辺輝点P2 ′〜P8 ′にそれぞれ位置ずれが生じる。   Moreover, the specific example of the said measurement attention luminescent spot of the to-be-tested lens 8 at the time of applying multi-hole plate 5A or 5B and the measurement periphery luminescent spot around it is shown in FIG. In the figure, P1 'indicates the measurement target bright spot of the point image corresponding to one small hole S1 of the multi-hole plate. The measurement peripheral bright spots of the point images corresponding to the small holes S2 to S8 around the small hole S1 are denoted by P2 'to P8'. As shown in FIG. 6, the measurement peripheral bright spots P2 'to P8' around the measurement target bright spot P1 'are displaced by the accuracy of the surface of the lens 8 to be tested.

上述したシミュレーション(SIM)による輝点離間距離の演算および測定輝点離間距離の演算は、多穴板5A、5B、または、後述する5Cの場合、図2、3、または、4(後述)のレンズ有効径D0 (例えば、6.51mm)より所定寸法小さい指定エリアの評価対象径D1 内(例えば、6.00mm)に存在するすべての小穴群S0 ,Snによる点像群を注目輝点として演算が行われる。このように指定エリアを設定するのは、測定輝点離間距離を演算する場合、注目輝点の外側にも周辺輝点のための小穴が必要であるためである。   The calculation of the bright spot separation distance and the measurement bright spot separation distance by the simulation (SIM) described above is performed in the case of the multi-hole plate 5A, 5B, or 5C described later, as shown in FIG. The point image group by all the small hole groups S0 and Sn existing within the evaluation target diameter D1 (for example, 6.00 mm) of the designated area smaller than the effective lens diameter D0 (for example, 6.51 mm) is calculated as the target bright spot. Is done. The reason why the designated area is set in this way is that, when calculating the measured bright spot separation distance, a small hole for the peripheral bright spot is also required outside the target bright spot.

演算処理部12において、基準レンズのSIM輝点位置xy座標データからSIM注目輝点P1 および該輝点P1 を囲むSIM周辺輝点P2 〜P8 の間の相互離間距離を演算する。詳しくは、SIM注目輝点P1 とSIM周辺輝点P2 ,4 ,6 ,8 と間の距離であるSIM輝点離間距離La〜Ldと、SIM周辺輝点P2 〜P9 の互いに隣り合う輝点間の距離であるSIM輝点離間距離Le〜Lmを算出する。輝点P1 と輝点P3 ,P5 ,P7 ,P9 との間を演算してもよいが、この実施形態では省略する。   The arithmetic processing unit 12 calculates the mutual separation distance between the SIM target bright spot P1 and the SIM peripheral bright spots P2 to P8 surrounding the bright spot P1 from the SIM bright spot position xy coordinate data of the reference lens. Specifically, the SIM bright spot separation distances La to Ld, which are the distances between the SIM focused bright spot P1 and the SIM peripheral bright spots P2, 4, 6, 8, and the adjacent bright spots of the SIM peripheral bright spots P2 to P9. SIM bright spot separation distances Le to Lm, which are the distances of. Calculations between the bright spot P1 and the bright spots P3, P5, P7, and P9 may be made, but are omitted in this embodiment.

そして、SIM輝点離間距離La〜LdおよびLe〜Lmを合計したSIM輝点離間距離加算値Lsumを算出する。すなわち、
Lsum=La+Lb+…+Lk+Lm …(1)
を算出する。
Then, a SIM bright spot separation distance addition value Lsum obtained by summing the SIM bright spot separation distances La to Ld and Le to Lm is calculated. That is,
Lsum = La + Lb +... + Lk + Lm (1)
Is calculated.

このSIM輝点離間距離加算値Lsumは、すべてのSIM注目輝点Pについて計算され、理想の総計数値である第一の数値群として、各SIM注目輝点Pに対するSIM輝点離間距離加算値(群)Lsum-Z、すなわち、Lsum-1,2,3…が記憶される。   This SIM bright spot separation distance addition value Lsum is calculated for all SIM attention bright spots P, and as the first numerical group that is an ideal total count value, the SIM bright spot separation distance addition value ( Group) Lsum-Z, that is, Lsum-1, 2, 3,.

一方、被検レンズの測定輝点位置xy座標データから測定注目輝点P1 ′および該輝点P1 ′を囲む測定周辺輝点P2 ′〜P8 ′の間の相互離間距離を演算する。詳しくは、測定注目輝点P1 ′と測定周辺輝点P2 ′,4 ′,6 ′,8 ′と間の距離である測定輝点離間距離La′〜Ld′と、測定周辺輝点P2 ′〜P9 ′の互いに隣り合う輝点間の距離である測定輝点離間距離Le′〜Lm′を算出する。そして、測定輝点離間距離La′〜Ld′およびLe′〜Lm′を合計した測定輝点離間距離加算値Lsum′を算出する。すなわち、
Lsum′=La′+Lb′+…+Lk′+Lm′ …(2)
を算出する。
On the other hand, the mutual separation distance between the measured bright spot P1 'and the measured peripheral bright spots P2' to P8 'surrounding the bright spot P1' is calculated from the measured bright spot position xy coordinate data of the lens to be examined. Specifically, the measurement bright spot separation distances La ′ to Ld ′, which are distances between the measurement target bright spot P1 ′ and the measurement peripheral bright spots P2 ′, 4 ′, 6 ′ and 8 ′, and the measurement peripheral bright spots P2 ′ to Measured bright spot separation distances Le 'to Lm' which are distances between adjacent bright spots of P9 'are calculated. Then, a measured bright spot separation distance addition value Lsum ′ obtained by adding the measured bright spot separation distances La ′ to Ld ′ and Le ′ to Lm ′ is calculated. That is,
Lsum ′ = La ′ + Lb ′ +... + Lk ′ + Lm ′ (2)
Is calculated.

上記測定輝点離間距離加算値Lsum′は、すべての測定注目輝点P′について計算され、実際の総計数値である第二の数値群として各測定注目輝点P′に対する測定輝点離間距離加算値(群)Lsum-Z′、すなわち、Lsum-1′,2′,3′…がメモリに記憶される。   The measured bright spot separation distance addition value Lsum ′ is calculated for all the measurement bright spots P ′, and is added as a second numerical group that is an actual total count value. The value (group) Lsum-Z ′, that is, Lsum−1 ′, 2 ′, 3 ′... Is stored in the memory.

続いて、被検レンズ8の各測定注目輝点P′について測定輝点離間距離加算値(群)Lsum-Z′と、それに対応するSIM注目輝点PのSIM輝点離間距離加算値(群)Lsum-Zとの差を被検レンズ8の各測定注目輝点P′に関する測定輝点離間距離差値(群)ΔLsum-Z′として算出する。詳しくは、測定注目輝点P′の総数をn として、
ΔLsum-1′=Lsum-1′−Lsum-1
ΔLsum-2′=Lsum-2′−Lsum-2

ΔLsum-n′=Lsum-n′−Lsum-n …(3)
が算出され、それぞれメモリに記憶される。
Subsequently, the measured bright spot separation distance addition value (group) Lsum-Z ′ and the SIM bright spot separation distance addition value (group) of the SIM attention bright spot P corresponding to each measurement notice bright spot P ′ of the test lens 8. ) The difference from Lsum-Z is calculated as a measured bright spot separation distance difference value (group) ΔLsum-Z ′ for each measured bright spot P ′ of the lens 8 to be examined. Specifically, let n be the total number of bright spots P ′ to be measured.
ΔLsum-1 ′ = Lsum-1′−Lsum-1
ΔLsum-2 '= Lsum-2'-Lsum-2
...
ΔLsum-n ′ = Lsum-n′−Lsum-n (3)
Are calculated and stored in the memory respectively.

なお、上述した各測定輝点離間距離差値(群)ΔLsum-Z′は、被検レンズ8の当該注目輝点P′のまわりの面の精度、すなわち、被検レンズ8の面が基準レンズ14aの面に対してより凸状(値が+の場合)であるか、より凹状(値が−の場合)であるかの程度を示す値となる。   Each of the measured bright spot separation distance difference (group) ΔLsum-Z ′ described above is the accuracy of the surface around the target bright spot P ′ of the test lens 8, that is, the surface of the test lens 8 is the reference lens. It is a value indicating the degree of whether it is more convex (when the value is +) or more concave (when the value is-) with respect to the surface 14a.

次に、多穴板5Cを適用した場合の演算処理について説明すると、図7は、多穴板5Cを適用したときの基準レンズ14aによる上記SIM注目輝点とSIM周辺輝点の分布の具体例を示す図である。図中、多穴板5Cの1つの小穴S11に対応するSIM注目輝点をP11で示す。小穴S11の周辺の小穴S12〜S17に対応するSIM周辺輝点をP12〜P17で示す。   Next, calculation processing when the multi-hole plate 5C is applied will be described. FIG. 7 shows a specific example of the distribution of the SIM noticeable luminescent spot and the SIM peripheral luminescent spot by the reference lens 14a when the multi-hole plate 5C is applied. FIG. In the figure, a SIM notice bright spot corresponding to one small hole S11 of the multi-hole plate 5C is indicated by P11. The SIM peripheral bright spots corresponding to the small holes S12 to S17 around the small hole S11 are denoted by P12 to P17.

また、多穴板5Cを適用した場合の被検レンズ8の上記測定注目輝点と測定周辺輝点の具体例を図8に示す。図中、多穴板の1つの小穴S11に対応する点像の測定注目輝点をP11′で示す。小穴S11の周辺の小穴S12〜S17に対応する点像の測定周辺輝点をP12′〜P17′で示す。図8に示すように被検レンズ8の面の精度によって測定注目輝点P11′のまわりの測定周辺輝点P12′〜P17′にそれぞれ位置ずれが生じる。   Moreover, the specific example of the said measurement attention luminescent spot and measurement peripheral luminescent spot of the to-be-tested lens 8 at the time of applying the multi-hole plate 5C is shown in FIG. In the figure, the measurement target bright spot of the point image corresponding to one small hole S11 of the multi-hole plate is indicated by P11 '. The measurement peripheral bright spots of the point images corresponding to the small holes S12 to S17 around the small hole S11 are denoted by P12 'to P17'. As shown in FIG. 8, the measurement peripheral bright spots P12 'to P17' around the measurement target bright spot P11 'are displaced by the accuracy of the surface of the lens 8 to be examined.

演算処理部12にてSIM輝点位置xy座標データからSIM注目輝点P11および各SIM周辺輝点P12〜P17の相互離間距離であるSIM輝点離間距離Ln〜Lyを算出する。また、測定輝点位置xy座標データから測定注目輝点P11′および各測定周辺輝点P12′〜P17′の相互離間距離である測定輝点離間距離Ln′〜Ly′を算出する。   The arithmetic processing unit 12 calculates SIM bright spot separation distances Ln to Ly, which are mutual separation distances between the SIM bright spot P11 and the SIM peripheral bright spots P12 to P17, from the SIM bright spot position xy coordinate data. Further, from the measured bright spot position xy coordinate data, the measured bright spot separation distances Ln ′ to Ly ′, which are the mutual separation distances of the measurement target bright spot P11 ′ and the respective measurement peripheral bright spots P12 ′ to P17 ′, are calculated.

演算処理部12においてSIM輝点位置xy座標データからSIM注目輝点P11および該輝点P11を囲むSIM周辺輝点P12〜P17の間の相互離間距離を演算する。詳しくは、SIM注目輝点P11とSIM周辺輝点P12〜P17と間の距離であるSIM輝点離間距離Ln〜Lsと、SIM周辺輝点P12〜P17の互いに隣り合う輝点間の距離であるSIM輝点離間距離Lt〜Lyを算出する。一方、測定輝点位置xy座標データから測定注目輝点P11′および該輝点P11′を囲む測定周辺輝点P12′〜P17′の間の相互離間距離を演算する。詳しくは、測定注目輝点P11′と測定周辺輝点P12′〜P17′と間の距離である測定輝点離間距離Ln′〜Ls′と、測定周辺輝点P12′〜P17′の互いに隣り合う輝点間の距離である測定輝点離間距離Lt′〜Ly′を算出する。   The arithmetic processing unit 12 calculates the mutual separation distance between the SIM attention bright spot P11 and the SIM peripheral bright spots P12 to P17 surrounding the bright spot P11 from the SIM bright spot position xy coordinate data. Specifically, the SIM bright spot separation distances Ln to Ls, which are the distances between the SIM notice bright spot P11 and the SIM peripheral bright spots P12 to P17, and the distance between adjacent bright spots of the SIM peripheral bright spots P12 to P17. SIM bright spot separation distances Lt to Ly are calculated. On the other hand, from the measured bright spot position xy coordinate data, the mutual separation distance between the measurement target bright spot P11 'and the measurement peripheral bright spots P12' to P17 'surrounding the bright spot P11' is calculated. Specifically, the measurement bright spot separation distances Ln ′ to Ls ′, which are distances between the measurement target bright spot P11 ′ and the measurement peripheral bright spots P12 ′ to P17 ′, and the measurement peripheral bright spots P12 ′ to P17 ′ are adjacent to each other. The measured bright spot separation distances Lt ′ to Ly ′, which are the distances between the bright spots, are calculated.

そして、SIM輝点離間距離Ln〜LsおよびLt〜Lyを合計したSIM輝点離間距離加算値Lsumを算出し、さらに、測定輝点離間距離Ln′〜Ls′およびLt′〜Ly′を合計した測定輝点離間距離加算値Lsum′を算出する。   Then, a SIM bright spot separation distance addition value Lsum obtained by summing the SIM bright spot separation distances Ln to Ls and Lt to Ly is calculated, and the measurement bright spot separation distances Ln ′ to Ls ′ and Lt ′ to Ly ′ are summed. The measured bright spot separation distance addition value Lsum ′ is calculated.

この多穴板5Cを適用した場合も同様に被検レンズ8の各測定注目輝点P′について測定輝点離間距離加算値(群)Lsum-Z′と、対応するSIM輝点離間距離加算値(群)Lsum-Zとの差を被検レンズ8の各測定注目輝点P′に関する測定輝点離間距離差値(群)ΔLsum-Z′として算出し、記憶する。   Similarly, when this multi-hole plate 5C is applied, the measured bright spot separation distance addition value (group) Lsum-Z 'and the corresponding SIM bright spot separation distance addition value for each measurement target bright spot P ′ of the lens 8 to be tested. The difference from (group) Lsum-Z is calculated and stored as a measured bright spot separation distance difference value (group) ΔLsum-Z ′ for each measured target bright spot P ′ of the test lens 8.

なお、上述した多穴板5A,5B,5Cを適用した例では、注目輝点とに対する周辺輝点で形成される多角形が正方形、または、正六角形である場合について説明したが、これに限らず他の多穴板を用い、他の多角形を適用して周辺輝点を指定することも可能である。   In the example in which the multi-hole plates 5A, 5B, and 5C described above are applied, the polygon formed by the peripheral bright spots with respect to the target bright spot has been described as a square or a regular hexagon. However, the present invention is not limited to this. It is possible to specify peripheral bright spots using other multi-hole plates and applying other polygons.

本レンズ面測定評価装置10においては、面の精度(面の歪み具合)を目視的に評価する方法を用いることができる。この方法は、被検レンズ8の面の精度の程度を目視により判別するために、例えば、各測定注目輝点における測定輝点離間距離差値(群)ΔLsum-Z′の値の範囲を任意の対応色で表示して、被検レンズ8の指定エリアの各測定注目輝点まわりの面の精度の変化具合を色表示により認識する方法である。   In the lens surface measurement and evaluation apparatus 10, a method of visually evaluating the surface accuracy (surface distortion) can be used. In this method, in order to visually discriminate the degree of accuracy of the surface of the lens 8 to be examined, for example, the range of the measurement bright spot separation distance difference value (group) ΔLsum-Z ′ at each measurement target bright spot is arbitrarily set. This is a method of recognizing the change in accuracy of the surface around each measurement target luminescent spot in the designated area of the lens 8 to be detected by color display.

図9は、測定輝点離間距離差値(群)ΔLsum-Z′の値の範囲と各表示色との対応関係を示し、また、後述の図10にて適用する上記各対応表示色の代わりに用いる表示図形との対応も示している。本図に示すように測定輝点離間距離差値(群)ΔLsum-Z′の値の各範囲、例えば、2.5μm以上と、2.5〜1.5μmと、…、−1.5〜−2.5μmと、−2.5μm以下と、に対して、それぞれ紫、藍、…、橙、赤の各色を対応させる。   FIG. 9 shows the correspondence relationship between the range of the measured bright spot separation distance difference value (group) ΔLsum-Z ′ and each display color, and instead of the corresponding display color applied in FIG. 10 described later. The correspondence with the display figure used for is also shown. As shown in the figure, each range of measured bright spot separation distance difference (group) ΔLsum-Z ′, for example, 2.5 μm or more, 2.5 to 1.5 μm,..., −1.5 to Each color of purple, indigo,..., Orange, and red corresponds to −2.5 μm and −2.5 μm or less.

図10は、被検レンズの実測結果の一例を示すもので被検レンズによる各注目輝点に関する測定輝点離間距離差値(群)ΔLsum-Z′の分布を対応表示色に代えて対応パターンで示した図である。   FIG. 10 shows an example of the actual measurement result of the lens to be measured. The distribution of the measured bright spot separation distance difference value (group) ΔLsum-Z ′ for each target bright spot by the test lens is replaced with the corresponding display color and the corresponding pattern. It is the figure shown by.

図10上ではパターン表示であるが、実用には色によって測定輝点離間距離差値ΔLsum-Z′の被検レンズ8面上での分布を認識することができ、レンズ面の精度を容易に評価できる。例えば、被検レンズ8の指定エリア8aにて表示パターン(緑色)Zd部分に近い部分が多ければ、当該被検レンズ8の面の精度がよく、表示パターン(赤色)Zgや表示パターン(紫色)Zaに近い部分が多ければ、当該被検レンズ8の面の精度は悪いといえる。   Although the pattern display is shown in FIG. 10, the distribution of the measured bright spot separation distance difference value ΔLsum-Z ′ on the surface of the lens 8 to be measured can be recognized depending on the color, and the accuracy of the lens surface can be easily achieved. Can be evaluated. For example, if there are many portions near the display pattern (green) Zd portion in the designated area 8a of the test lens 8, the accuracy of the surface of the test lens 8 is good, and the display pattern (red) Zg or display pattern (purple) If there are many portions close to Za, it can be said that the accuracy of the surface of the lens 8 is poor.

本レンズ面測定評価装置10により面の精度(面の歪み具合)を数値的に評価する場合、上述した測定輝点離間距離差値(群)ΔLsum-Z′に基づいて次の三通りの方法を選択して評価することができる。すなわち、第一の評価方法として指定エリア内における各測定輝点離間距離差値(群)ΔLsum-Z′の中の最大値と最小値の差を評価する評価方法と、第二の評価方法として指定エリア内の各測定輝点離間距離差値(群)ΔLsum-Z′の各絶対値の平均値を指定エリア全面について評価する評価方法と、第三の評価方法として指定エリア内の各測定輝点離間距離差値(群)ΔLsum-Z′のそのもの(+−を考慮)の平均値を指定エリア全面について評価する評価方法とを選択して適用することができる。   When the surface accuracy (surface distortion) is numerically evaluated by the lens surface measurement / evaluation apparatus 10, the following three methods are performed based on the measured bright spot separation distance difference (group) ΔLsum-Z ′. Can be selected and evaluated. That is, as the first evaluation method, an evaluation method for evaluating the difference between the maximum value and the minimum value in each measured bright spot separation distance difference value (group) ΔLsum-Z ′ in the designated area, and the second evaluation method An evaluation method for evaluating the absolute value of each absolute value of each measured bright spot separation distance value (group) ΔLsum-Z ′ in the designated area, and a third evaluation method for each measured brightness in the designated area It is possible to select and apply an evaluation method that evaluates the average value of the point separation distance difference value (group) ΔLsum-Z ′ itself (considering + −) for the entire designated area.

第一の評価方法においては、上記指定エリア内の各測定輝点離間距離差値(群)ΔLsum-Z′のうちの最大値ΔLsum-max′と最小値ΔLsum-min′の差によって評価を行う。   In the first evaluation method, the evaluation is performed based on the difference between the maximum value ΔLsum-max ′ and the minimum value ΔLsum-min ′ of each measured bright spot separation distance difference value (group) ΔLsum-Z ′ in the designated area. .

第二の評価方法においては、上記指定エリアの各測定輝点離間距離差値(群)ΔLsum-Z′の各絶対値の平均値ΔLab-sum-avg′によって評価を行う。上記各絶対値の平均値ΔLab-sum-avg′は、測定注目輝点数をn として、
ΔLab-sum-avg′=( Σ|ΔLsum-Z′| )/n
=( |ΔLsum-1′|+…+|ΔLsum-n′| )/n …(4)
で与えられる。
In the second evaluation method, the evaluation is performed based on an average value ΔLab-sum-avg ′ of absolute values of each measured bright spot separation distance difference value (group) ΔLsum-Z ′ in the designated area. The average value ΔLab-sum-avg ′ of each absolute value is n as the number of bright spots to be measured.
ΔLab-sum-avg ′ = (Σ | ΔLsum-Z ′ |) / n
= (| ΔLsum-1 '| + ... + | ΔLsum-n' |) / n (4)
Given in.

第三の評価方法においては、上記指定エリアの各測定輝点離間距離差値(群)ΔLsum-Z′の+−値を考慮した(絶対値を用いない)平均値ΔLsum-avg′によって評価を行う。上記平均値ΔLsum-avg′は、測定注目輝点数をn として、
ΔLsum-avg′=( ΣΔLsum-Z′ )/n
=( ΔLsum-1′+…+ΔLsum-n′ )/n …(5)
で与えられる。
In the third evaluation method, the evaluation is performed based on an average value ΔLsum-avg ′ (without using an absolute value) in consideration of the + −value of each measured bright spot separation distance value (group) ΔLsum-Z ′ in the designated area. Do. The average value ΔLsum-avg ′ is defined as n as the number of measurement bright spots.
ΔLsum-avg ′ = (ΣΔLsum-Z ′) / n
= (ΔLsum-1 ′ +... + ΔLsum-n ′) / n (5)
Given in.

上述した第一〜三の方法により被検レンズ8の面の精度を定量的に評価することができる。   The accuracy of the surface of the test lens 8 can be quantitatively evaluated by the first to third methods described above.

なお、上述した測定注目輝点および測定周辺輝点を測定するために多穴板5A,5B,5Cの小穴群による撮像面9a上の点像位置を測定する際、測定精度を上げるために次に説明する点像(輝点)位置の補正が必要である。   To measure the point image position on the imaging surface 9a by the small hole group of the multi-hole plates 5A, 5B, and 5C in order to measure the above-described measurement target bright spot and measurement peripheral bright spot, It is necessary to correct the position of the point image (bright spot) described below.

まず、被検レンズ8の光軸O位置の偏心によるレンズ受け台への取り付け誤差をなくすために、被検レンズ8を最初の装着位置で点像(輝点)位置を測定後、180°回転させて再度、点像(輝点)位置を測定する。最初の装着位置で測定した点像位置のxy座標と180°回転後、測定した点像位置のxy座標を平均した点像(輝点)位置を前述した測定輝点位置xy座標データの演算に用いる。この点像位置の平均化により被検レンズ8の光軸O位置の偏心による誤差をなくすことができる。   First, in order to eliminate an error in attaching the lens 8 to the lens cradle due to the eccentricity of the optical axis O position of the lens 8 to be tested, the point image (bright spot) position is measured at the initial mounting position and then rotated 180 °. Then, the point image (bright spot) position is measured again. A point image (bright spot) position obtained by averaging the xy coordinates of the point image position measured at the first mounting position and the xy coordinates of the measured point image position after 180 ° rotation is used for the calculation of the measured bright spot position xy coordinate data described above. Use. By averaging the point image positions, errors due to the eccentricity of the optical axis O position of the test lens 8 can be eliminated.

また、被検レンズ8の点像(輝点)位置を測定する際、CCDカメラ9の光軸O方向の位置を前述したレンズと撮像面間を所定の離間距離H0 (シミュレーションで適用する距離)に合わせ込む。しかし、完全に離間距離H0 に一致させることは困難である。レンズと撮像面間の距離が所定の離間距離H0 に位置しない状態では、基準レンズ14aによるシミュレーションによる点像位置と被検レンズ8により測定される点像位置との間に倍率誤差が生じるので、倍率誤差補正を行う必要がある。さらに、光軸Oから各点像(輝点)位置までの離間距離L50(測定値)に応じて像面湾曲による誤差補正を加える必要がある。なお、上記離間距離H0 の設計値を、例えば、50mmとする。   Further, when measuring the position of the point image (bright spot) of the lens 8 to be examined, the position of the CCD camera 9 in the direction of the optical axis O is a predetermined separation distance H0 (distance applied in the simulation) between the aforementioned lens and the imaging surface. To fit. However, it is difficult to completely match the separation distance H0. In a state where the distance between the lens and the imaging surface is not located at the predetermined separation distance H0, a magnification error occurs between the point image position by the simulation by the reference lens 14a and the point image position measured by the lens 8 to be examined. It is necessary to perform magnification error correction. Further, it is necessary to add an error correction due to field curvature according to the separation distance L50 (measured value) from the optical axis O to each point image (bright spot) position. The design value of the separation distance H0 is, for example, 50 mm.

そこで、CCDカメラ9の光軸O方向の位置を所定の離間距離H0 にある程度の誤差の範囲で合わせ込み、実測したレンズと撮像面間の実距離により上記離間距離H0 との差から測定倍率補正係数(big-ratio)Bmを求める。   Therefore, the position of the CCD camera 9 in the direction of the optical axis O is adjusted to a predetermined distance H0 within a certain range of error, and the measurement magnification is corrected from the difference between the distance H0 and the actual distance between the actually measured lens and the imaging surface. A coefficient (big-ratio) Bm is obtained.

さらに、離間距離L50を利用して各点像(輝点)位置の像面湾曲誤差を消すための像面湾曲補正係数Wcを求める。この像面湾曲補正係数Wcは、
Wc=((1−W50)/(1−Bm0))×(Bm−1)+1…(6)
で与えられる。
Further, using the separation distance L50, a field curvature correction coefficient Wc for eliminating the field curvature error at each point image (bright spot) position is obtained. This field curvature correction coefficient Wc is
Wc = ((1-W50) / (1-Bm0)) * (Bm-1) +1 (6)
Given in.

像面湾曲補正係数Wcは、レンズと撮像面間の距離誤差が0のとき、1となる係数である。そして、測定倍率補正係数Bmが所定の補正係数Bm0であるとき、像面湾曲補正係数WcがW50となるものとして、他の測定倍率補正係数Bmであるときの像面湾曲補正係数Wcが式(6)により求めることができる。但し、W50の値は、離間距離が−50μmのとき(すなわち、離間距離H0 より50μm手前に撮像面が位置する状態)、シミュレーションにより求められる像面湾曲補正係数である。また、Bm0の値は、設計されるレンズ仕様により異なるので、予め、演算処理部12のメモリに記憶しておく。   The field curvature correction coefficient Wc is a coefficient that becomes 1 when the distance error between the lens and the imaging surface is 0. When the measurement magnification correction coefficient Bm is a predetermined correction coefficient Bm0, the field curvature correction coefficient Wc is assumed to be W50, and the field curvature correction coefficient Wc when another measurement magnification correction coefficient Bm is 6). However, the value of W50 is a field curvature correction coefficient obtained by simulation when the separation distance is -50 .mu.m (that is, the imaging surface is located 50 .mu.m before the separation distance H0). Since the value of Bm0 varies depending on the designed lens specifications, it is stored in the memory of the arithmetic processing unit 12 in advance.

測定輝点位置データの倍率補正および像面湾曲補正を行うには、上記(6)式による像面湾曲補正係数Wcと測定倍率補正係数Bmとを用いて上記光軸Oから各点像(輝点)位置までの離間距離L50(測定値)を補正する。すなわち、離間距離L50の補正後の値L50補正値は、
L50補正値=L50/(Bm×Wc)…(7)
で求められる。
In order to perform magnification correction and field curvature correction of the measured bright spot position data, each point image (brightness) is obtained from the optical axis O using the field curvature correction coefficient Wc and the measurement magnification correction coefficient Bm according to the above equation (6). The separation distance L50 (measured value) to the point) position is corrected. That is, the corrected value L50 of the separation distance L50 is
L50 correction value = L50 / (Bm × Wc) (7)
Is required.

(7)式を適用して離間距離L50(測定値)の倍率補正および像面湾曲補正を行って補正済みの測定輝点位置データ(L50補正値)が求められる。   The corrected measurement bright spot position data (L50 correction value) is obtained by applying the equation (7) and performing magnification correction and field curvature correction of the separation distance L50 (measurement value).

次に、本実施形態のレンズ面測定評価装置10による面精度評価方法の変形例について説明する。この変形例の面精度評価方法ではSIMおよび測定輝点離間距離の演算および測定輝点離間距離差の演算を行う場合、図2、または、3,4に示す多穴板の評価対象径D1 内部に対応する被検レンズ8の指定エリア領域8aを4種類の分割方法で分割する(図11〜14)。そして、各分割エリアにおける各注目輝点の測定輝点離間距離差の平均値を求め、その平均値の各分割エリア間での最大値と最小値との差を求め、APV値とする。このAPV値により被検レンズ8の面の精度評価を行う。   Next, a modification of the surface accuracy evaluation method by the lens surface measurement evaluation apparatus 10 of the present embodiment will be described. In the surface accuracy evaluation method of this modification, when the calculation of the SIM, the measurement bright spot separation distance and the calculation of the measurement bright spot separation distance is performed, the inside of the evaluation target diameter D1 of the multi-hole plate shown in FIG. The designated area 8a of the test lens 8 corresponding to is divided by four types of division methods (FIGS. 11 to 14). Then, the average value of the measured bright spot separation distances of each target bright spot in each divided area is obtained, and the difference between the maximum value and the minimum value of the average value between the divided areas is obtained as an APV value. The accuracy of the surface of the test lens 8 is evaluated based on the APV value.

図11,12,13,14は、それぞれ第一,二,三,四のエリア分割方法により上記指定エリアを分割した状態を示している。   11, 12, 13, and 14 show a state in which the designated area is divided by the first, second, third, and fourth area dividing methods, respectively.

図11,12に示す第一,二のエリア分割方法は、ともに被検レンズ8の指定エリア領域8aを所定の直径の円である分割線円Q0 を境に内外周に2分割し、さらに、光軸Oを通る複数の直線の分割線により分割線円Q0 の内側の内周側エリアを周方向に互いに等角度で扇状に8分割し、同様に分割線円Q0 の外側の外周側エリアを扇状に16分割して、エリア全体を24分割する。   The first and second area division methods shown in FIGS. 11 and 12 both divide the designated area 8a of the lens 8 to be divided into two on the inner and outer circumferences with a dividing line circle Q0 as a circle of a predetermined diameter. A plurality of straight dividing lines passing through the optical axis O divide the inner peripheral area on the inner side of the dividing line circle Q0 into eight parts at equal angles in the circumferential direction, and similarly, the outer peripheral area on the outer side of the dividing line circle Q0. The area is divided into 16 parts, and the entire area is divided into 24 parts.

但し、図11による第一のエリア分割方法では、内周側エリアをx軸,y軸に沿った径方向2分割線と、傾斜角45°の傾斜径方向2分割線とで8等分割する(分割エリアE1 ,E2 等)。さらに、外周側エリアをx軸,y軸に沿った上記径方向2分割線と上記傾斜径方向分割線との間をさらに径方向分割線で分割し、16等分割する(分割エリアE3 ,E4 等)。   However, in the first area dividing method according to FIG. 11, the inner peripheral area is divided into eight equal parts by a radial dividing line along the x axis and the y axis and an inclined radial dividing line with an inclination angle of 45 °. (Divided areas E1, E2, etc.). Further, the outer peripheral area is further divided by the radial direction dividing line between the radial direction dividing line and the inclined radial direction dividing line along the x-axis and y-axis to be divided into 16 equal parts (divided areas E3, E4). etc).

一方、図12による第二の分割方法では、内周側エリアをx軸,y軸を跨いだ状態の径方向分割線で周方向に8等分割する(分割エリアE11,E12等)。さらに、外周側エリアをx軸,y軸を跨いだ状態の径方向分割線と傾斜角45°の傾斜線を跨いだ状態の分割線とにより周方向に16等分割する(分割エリアE13,E14等)。第一の分割方法による上記各径方向分割線と第二の分割方法による上記各径方向分割線とは重ならないが、分割線円Q0 は、共通である。また、第二のエリア分割方法の場合、上記各分割線は、互いに交差することがない。また、なお、第一,二のエリア分割方法ともに光軸OまわりのエリアE0 は、上記内周側エリアから除外する。   On the other hand, in the second division method shown in FIG. 12, the inner circumferential area is divided into eight equal parts in the circumferential direction along the radial dividing line across the x axis and the y axis (divided areas E11, E12, etc.). Furthermore, the outer peripheral side area is divided into 16 equal parts in the circumferential direction by a radial dividing line in a state straddling the x-axis and the y-axis and a dividing line in a state straddling an inclined line having an inclination angle of 45 ° (divided areas E13, E14). etc). The radial dividing lines according to the first dividing method and the radial dividing lines according to the second dividing method do not overlap, but the dividing line circle Q0 is common. In the case of the second area dividing method, the dividing lines do not intersect each other. In addition, the area E0 around the optical axis O is excluded from the inner peripheral area in both the first and second area dividing methods.

図13,14に示す第三,四のエリア分割方法は、ともに被検レンズ8の指定エリア領域8aを所定の小、大径の分割線円Q1 ,Q2 でリング形に切り出し、さらに、そのリング状エリアを光軸Oを通る6本の径方向分割線で扇状に12分割する(分割エリアE21,E22等、または、分割エリアE31,E32等)。それらの一つ一つの分割エリアの面積は、第一,第二エリア分割方法による分割エリアの面積に略等しくとる。なお、図13の第三のエリア分割方法では、上記6本の分割線のうちの2本は、光軸Oを通るx軸,y軸に沿った分割線である。また、図14の第四の分割方法では、上記6本の分割線のうちの4本は、光軸Oを通るx軸,y軸を跨ぐ分割線である。また、周方向分割線Q1 ,Q2 は、第一,二の分割方法における周方向分割線Q0 と重ならない位置にある。   In the third and fourth area dividing methods shown in FIGS. 13 and 14, the designated area 8a of the lens 8 to be examined is cut into a ring shape with predetermined small and large dividing line circles Q1 and Q2, and the ring is further divided. The area is divided into 12 fan-shaped sections along six radial dividing lines passing through the optical axis O (divided areas E21, E22, etc., or divided areas E31, E32, etc.). The area of each of these divided areas is approximately equal to the area of the divided areas obtained by the first and second area dividing methods. In the third area dividing method of FIG. 13, two of the six dividing lines are dividing lines along the x-axis and y-axis passing through the optical axis O. In the fourth dividing method of FIG. 14, four of the six dividing lines are dividing lines that cross the x axis and the y axis that pass through the optical axis O. Further, the circumferential dividing lines Q1, Q2 are at positions that do not overlap with the circumferential dividing line Q0 in the first and second dividing methods.

上述した第一,二,三,四の分割方法により被検レンズ8の指定エリア領域8aは、72種類のエリアが存在する。各分割方法にて分割された各分割エリアごとに、例えば、各注目輝点に関して求められる測定輝点離間距離差値(群)ΔLsum-Z′を求める((3)式)。さらに、上記分割エリアごとに測定輝点離間距離差値(群)ΔLsum-Z′の平均値ΔLsum-avg′を求める((5)式)。72種類のエリアにおける平均値ΔLsum-avg′の最大値と最小値との差をA PV値とし、このA PV値により被検レンズ8の面の精度を評価する。   According to the first, second, third, and fourth division methods described above, the designated area 8a of the test lens 8 has 72 types of areas. For each divided area divided by each division method, for example, a measured bright spot separation distance difference value (group) ΔLsum-Z ′ obtained for each target bright spot is obtained (Equation (3)). Further, an average value ΔLsum-avg ′ of the measured bright spot separation distance difference (group) ΔLsum-Z ′ is obtained for each divided area (Equation (5)). The difference between the maximum value and the minimum value of the average value ΔLsum-avg ′ in the 72 types of areas is defined as an APV value, and the accuracy of the surface of the lens 8 to be examined is evaluated based on the APV value.

なお、上記測定輝点離間距離差値(群)の平均値ΔLsum-avg′は、(4)式に示すような測定輝点離間距離差値(群)ΔLsum-Z′の絶対値による平均値ΔLab-sum-avg′を当てることもできる。   The average value ΔLsum-avg ′ of the measured bright spot separation distance difference value (group) is an average value of the absolute values of the measured bright spot separation distance difference value (group) ΔLsum-Z ′ as shown in the equation (4). ΔLab-sum-avg ′ can also be applied.

上述したエリア分割方法を適用した被検レンズ8の面の精度の評価方法によれば、レンズを複数の分割エリア単位にみたときの精度を評価することができ、後述するツェルニケの多項式を適用してレンズのAS、COMA成分を検出する方法と異なる評価が得られる。   According to the method for evaluating the accuracy of the surface of the lens 8 to be tested to which the area dividing method described above is applied, the accuracy when the lens is viewed in a plurality of divided area units can be evaluated, and a Zernike polynomial described later is applied. Thus, evaluation different from the method of detecting the AS and COMA components of the lens can be obtained.

そして、上述のように第一の分割方法と第二の分割方法とで径方向分割線が互いに重ならないようになっているため、一方の分割方法で径方向分割線が通ることにより失われる平均値データが他方の分割方法で求められる。さらに、第一,二の分割方法における周方向分割線が通るエリアは、第三,四の分割方法で測定することができるので第一,二の分割方法にて周方向分割線により失われる平均値データを第三,四の分割方法により求めることができる。また、第三と第四の分割方法では互いの径方向分割線が重ならないようになっており、一方の分割方法にて径方向分割線で失われる平均値データが他方の分割方法で求められる。このように分割線により失われてしまう検出できない平均値データなくなるので見落としのない状態で面の精度、換言すれば、光学面の部分部分の凹凸具合を評価することができる。   And since the radial dividing lines do not overlap with each other in the first dividing method and the second dividing method as described above, the average lost by passing the radial dividing lines in one dividing method Value data is obtained by the other division method. Furthermore, since the area through which the circumferential dividing line in the first and second dividing methods passes can be measured by the third and fourth dividing methods, the average lost by the circumferential dividing line in the first and second dividing methods. Value data can be obtained by the third and fourth division methods. Further, in the third and fourth dividing methods, the radial dividing lines do not overlap each other, and the average value data lost in the radial dividing line in one dividing method is obtained by the other dividing method. . In this way, since there is no undetectable average value data lost due to the dividing line, it is possible to evaluate the accuracy of the surface without any oversight, in other words, the unevenness of the portion of the optical surface.

以上の説明では、注目輝点である点像を中心にして取り囲む所定の数の点像から中心点像までの距離全ての合計数値と、該周囲の隣り合う点像同士間の全ての距離の合計数値とを合計した総計数値を演算したが、これを簡略化し、注目輝点である点像を中心にして取り囲む所定の数の点像から該中心点像までの距離全ての合計数値のみを基に評価を行うようにしてもよい。   In the above description, the total value of all the distances from a predetermined number of point images surrounding the point image that is the target bright point to the center point image, and all the distances between adjacent neighboring point images. The total count value obtained by summing up the total numerical values was calculated, but this was simplified, and only the total numerical values of all the distances from the predetermined number of point images surrounding the point image that is the target bright point to the central point image were calculated. You may make it evaluate based on.

次に、本レンズ面測定評価装置10を用いてアス(AS)成分およびコマ(COMA)成分等を含んだレンズ波面精度についての評価する方法、換言すれば、光学面全体の、理想光学面からの形状のずれを評価する方法について説明する。上記アス成分およびコマ成分の評価は、ツェルニケ(Zernike)多項式に対して基準レンズ14aのシミュレーション結果と被検レンズ8の実測結果を適用することにより行う。   Next, a method for evaluating the lens wavefront accuracy including an as (AS) component and a coma (COMA) component using the lens surface measurement and evaluation apparatus 10, in other words, from the ideal optical surface of the entire optical surface. A method for evaluating the deviation of the shape will be described. The above-described as component and coma component are evaluated by applying the simulation result of the reference lens 14a and the actual measurement result of the test lens 8 to a Zernike polynomial.

上記ツェルニケ多項式であるレンズの波面の形状を与える円筒関数w(r,θ)は、次式で示される。すなわち、
w(r,θ)=Z1 +Z2 ×r×cosθ+Z3 ×r×sinθ+Z4 ×(2r2−1)
+Z5 ×r2×cos2θ+Z6 ×r2×sin2θ+… (8)
である。但し、r,θは、極座標による撮像面上の、例えば、多穴板5Aによる輝点位置を与える半径と角度を示す。Znは、レンズの形状による係数である。
The cylindrical function w (r, θ) that gives the shape of the wavefront of the lens, which is the Zernike polynomial, is expressed by the following equation. That is,
w (r, θ) = Z 1 + Z 2 × r × cos θ + Z 3 × r × sin θ + Z 4 × (2r 2 −1)
+ Z5 × r 2 × cos 2θ + Z 6 × r 2 × sin 2θ + (8)
It is. However, r and (theta) show the radius and angle which give the luminescent point position by the multi-hole plate 5A on the imaging surface by a polar coordinate, for example. Zn is a coefficient depending on the shape of the lens.

上記円筒関数中、被検レンズ8のアス成分ASは、基準レンズ14aに対する被検レンズ8の波面形状差から求められる(8)式の係数Z5 ,Z6 により与えられ、
AS=2×(Z5 2+Z6 21/2 …(9)
で示される。
In the cylindrical function, the as component AS of the test lens 8 is given by the coefficients Z5 and Z6 of the equation (8) obtained from the wavefront shape difference of the test lens 8 with respect to the reference lens 14a.
AS = 2 × (Z5 2 + Z6 2 ) 1/2 (9)
Indicated by

上記円筒関数中、被検レンズ8のコマ成分COMAは、同様に(8)式の係数Z7 ,Z8 により与えられ、
COMA=3×(Z7 2+Z8 21/2 …(10)
で示される。
In the cylindrical function, the coma component COMA of the lens 8 to be examined is similarly given by the coefficients Z7 and Z8 in the equation (8).
COMA = 3 × (Z7 2 + Z8 2 ) 1/2 (10)
Indicated by

一方、前述した基準レンズ14aと被検レンズ8との輝点位置データのずれ量x,yは、撮像面9a上にて直交座標系であるxy座標によって与えられるので、
x=r×cosθ
y=r×sinθ
を用いて座標変換を行う。
On the other hand, the deviation amounts x and y of the bright spot position data between the reference lens 14a and the test lens 8 described above are given by the xy coordinates which are orthogonal coordinate systems on the imaging surface 9a.
x = r × cos θ
y = r × sinθ
Perform coordinate transformation using.

そして、r0 をレンズ有効径D0 の1/2として、ρ=r/r0 を適用し、
r0 ×∂w(ρ,θ)/∂x=∂w(ρ,θ)/∂ρ×cosθ
+∂w(ρ,θ)/∂θ×sinθ/ρ …(11)
r0 ×∂w(ρ,θ)/∂y=∂w(ρ,θ)/∂ρ×sinθ
+∂w(ρ,θ)/∂θ×cosθ/ρ …(12)
とし、上記(11),(12)式を基準レンズ14aと被検レンズ8との輝点位置データのずれ量x,yにより最小二乗法で解き、フィッティグする係数Znを求める。
Then, let r0 be 1/2 of the lens effective diameter D0, and apply ρ = r / r0.
r0 × ∂w (ρ, θ) / ∂x = ∂w (ρ, θ) / ∂ρ × cosθ
+ ∂w (ρ, θ) / ∂θ × sinθ / ρ (11)
r0 × ∂w (ρ, θ) / ∂y = ∂w (ρ, θ) / ∂ρ × sinθ
+ ∂w (ρ, θ) / ∂θ × cosθ / ρ (12)
Then, the above equations (11) and (12) are solved by the least square method based on the deviations x and y of the bright spot position data between the reference lens 14a and the test lens 8, and the coefficient Zn to be fitted is obtained.

求められた係数Z5 ,Z6 および係数Z7 ,Z8 を(9)式、または、(10)式に代入して、ASとCOMAを求める。   AS and COMA are obtained by substituting the obtained coefficients Z5 and Z6 and coefficients Z7 and Z8 into the equation (9) or (10).

上述のように基準レンズ14aによる基準レンズ14aのシミュレーション結果と被検レンズ8の測定結果からレンズ波面精度のアス成分(AS)およびコマ成分(COMA)を求めることができる。すなわち、これらの演算により得られた曲面およびツェルニケ多項式の各項の値により製作されたレンズ(光学素子)の光学面を評価することができる。   As described above, the as component (AS) and the coma component (COMA) of the lens wavefront accuracy can be obtained from the simulation result of the reference lens 14a by the reference lens 14a and the measurement result of the test lens 8. That is, it is possible to evaluate the optical surface of the lens (optical element) manufactured based on the curved surface obtained by these operations and the value of each term of the Zernike polynomial.

本レンズ面測定評価装置10によれば、複数の平行光束をレンズに入射させ、射出される光束の点像同士間の距離について基準レンズのシミュレーションによった結果と被検レンズによる実測値との差を評価することにより特に高精度であり高価な基準レンズを製作することなく、手早くレンズ面の精度を判定することができる。   According to the lens surface measurement and evaluation apparatus 10, a plurality of parallel light beams are incident on the lens, and the distance between the point images of the emitted light beam is obtained by the simulation of the reference lens and the actually measured value of the test lens. By evaluating the difference, it is possible to quickly determine the accuracy of the lens surface without producing a highly accurate and expensive reference lens.

本発明による光学素子評価方法、または、光学面評価方法は、基準レンズを製作することなしに、被検レンズの測定波面データが設計値に対してどの程度異なるかをより簡単に測定(評価)することができる方法として利用することができる。   The optical element evaluation method or the optical surface evaluation method according to the present invention more easily measures (evaluates) how much the measurement wavefront data of the lens to be measured differs from the design value without manufacturing a reference lens. Can be used as a method that can.

本発明の一実施形態としての光学面評価装置であるレンズ面測定評価装置のブロック構成図である。It is a block block diagram of the lens surface measurement evaluation apparatus which is an optical surface evaluation apparatus as one Embodiment of this invention. 図1のレンズ面測定評価装置に適用される多穴板の拡大図である。It is an enlarged view of the multi-hole plate applied to the lens surface measurement evaluation apparatus of FIG. 図1のレンズ面測定評価装置に適用される別の形状の多穴板の拡大図である。It is an enlarged view of the multi-hole board of another shape applied to the lens surface measurement evaluation apparatus of FIG. 図1のレンズ面測定評価装置に適用されるさらに別の形状の多穴板の拡大図である。It is an enlarged view of the multi-hole board of another shape applied to the lens surface measurement evaluation apparatus of FIG. 図1のレンズ面測定評価装置において、図2,3に示す多穴板を適用した場合の基準レンズによるSIM注目輝点とSIM周辺輝点の分布の一例を示す図である。FIG. 4 is a diagram illustrating an example of a distribution of SIM attention luminescent spots and SIM peripheral luminescent spots by a reference lens when the multi-hole plate shown in FIGS. 2 and 3 is applied in the lens surface measurement and evaluation apparatus of FIG. 1. 図1のレンズ面測定評価装置において、図2,3に示す多穴板を適用した場合の被検レンズによる測定注目輝点と測定周辺輝点の分布の一例を示す図である。FIG. 4 is a diagram showing an example of distribution of measurement target luminescent spots and measurement peripheral luminescent spots by a test lens when the multi-hole plate shown in FIGS. 2 and 3 is applied in the lens surface measurement and evaluation apparatus of FIG. 1. 図1のレンズ面測定評価装置において、図4に示す多穴板を適用したときの基準レンズによるSIM注目輝点とSIM周辺輝点の分布の一例を示す図である。FIG. 5 is a diagram illustrating an example of a distribution of SIM attention luminescent spots and SIM peripheral luminescent spots by a reference lens when the multi-hole plate shown in FIG. 4 is applied in the lens surface measurement and evaluation apparatus of FIG. 1. 図1のレンズ面測定評価装置において、図4に示す多穴板を適用した場合の被検レンズによる測定注目輝点と測定周辺輝点の分布の一例を示す図である。FIG. 5 is a diagram illustrating an example of a distribution of a measurement target bright spot and a measurement peripheral bright spot by a test lens when the multi-hole plate shown in FIG. 4 is applied in the lens surface measurement evaluation apparatus of FIG. 1. 図1のレンズ面測定評価装置における測定輝点離間距離差値ΔLsum-Z′の値の範囲と各表示色との対応関係を示す図である。It is a figure which shows the correspondence of the range of the value of measured bright spot separation distance difference value (DELTA) Lsum-Z 'and each display color in the lens surface measurement evaluation apparatus of FIG. 図1のレンズ面測定評価装置による被検レンズの実測結果の一例を示すもので各注目輝点に関する測定輝点離間距離差値ΔLsum-Z′の分布を対応表示色に代えて対応図形で示した図である。1 shows an example of the actual measurement result of the lens to be measured by the lens surface measurement and evaluation apparatus in FIG. 1, and shows the distribution of the measured bright spot separation distance difference value ΔLsum-Z ′ for each target bright spot with a corresponding figure instead of the corresponding display color. It is a figure. 図1のレンズ面測定評価装置における面精度評価方法の変形例に適用される第一のエリア分割方法によりレンズの指定エリアを分割した状態を示している。The state which divided | segmented the designated area of the lens with the 1st area division method applied to the modification of the surface accuracy evaluation method in the lens surface measurement evaluation apparatus of FIG. 1 is shown. 図1のレンズ面測定評価装置における面精度評価方法の変形例に適用される第二のエリア分割方法によりレンズの指定エリアを分割した状態を示している。The state which divided | segmented the designated area of the lens with the 2nd area division method applied to the modification of the surface accuracy evaluation method in the lens surface measurement evaluation apparatus of FIG. 1 is shown. 図1のレンズ面測定評価装置における面精度評価方法の変形例に適用される第三のエリア分割方法によりレンズの指定エリアを分割した状態を示している。The state which divided | segmented the designated area of the lens with the 3rd area division method applied to the modification of the surface accuracy evaluation method in the lens surface measurement evaluation apparatus of FIG. 1 is shown. 図1のレンズ面測定評価装置における面精度評価方法の変形例に適用される第四のエリア分割方法によりレンズの指定エリアを分割した状態を示している。The state which divided | segmented the designated area of the lens by the 4th area division method applied to the modification of the surface accuracy evaluation method in the lens surface measurement evaluation apparatus of FIG. 1 is shown.

符号の説明Explanation of symbols

4…コリメータレンズ(平行光束入射手段)
8 …被検レンズ(製造された光学素子)
9…CCDカメラ(撮像手段)
14a…基準レンズ(理想光学素子)
Lsum-Z …SIM輝点離間距離加算値(群)
(第一の数値群)
Lsum-Z′…測定輝点離間距離加算値(群)
(第二の数値群)
P1 〜P9 ,P11〜P17
…輝点
(理想光学素子による点像の位置)
P1 ′〜P9 ′,P11′〜P17′
…輝点
(製造された光学素子による点像の位置)
ΔLsum-max′…最大値
ΔLsum-min′…最小値
ΔLab-sum-avg′…絶対値の平均値
ΔLsum-avg′…平均値
4 ... Collimator lens (parallel beam incident means)
8 ... Test lens (manufactured optical element)
9 ... CCD camera (imaging means)
14a: Reference lens (ideal optical element)
Lsum-Z ... SIM bright spot separation added value (group)
(First numerical group)
Lsum-Z '... Measured bright spot separation distance addition value (group)
(Second numerical group)
P1 to P9, P11 to P17
... Bright spot (point image position by ideal optical element)
P1 'to P9', P11 'to P17'
... Bright spot (Position of point image by manufactured optical element)
ΔLsum-max ′: Maximum value ΔLsum-min ′: Minimum value ΔLab-sum-avg ′: Average value of absolute value ΔLsum-avg ′: Average value

Claims (9)

シミュレーションにより、設計上の理想光学素子に対して光軸と平行な複数の平行光束を入射させ、該理想光学素子からの射出光束により複数の点像群を生成させ、該点像群の所定の点像それぞれにおいて、該所定の点像を中心として取り囲む所定の数の点像から該中心点像までの全ての距離の合計数値、または、該合計数値と該周囲の隣り合う点像同士間の全ての距離の合計数値とを合計した理想の総計数値を演算した第一の数値群と、
製造された光学素子に上記平行光束と同じ複数の平行光束を入射させる平行光束入射手段と、上記製造された光学素子から射出される上記光束を撮像し、点像群として捉える撮像手段と、を用い、上記点像群の所定の点像それぞれにおいて、該所定の点像を中心として取り囲む所定の数の点像から該中心点像までの全ての距離の合計数値、または、該合計数値と該周囲の隣り合う点像同士間の全ての距離の合計数値とを合計した実際の総計数値を演算した第二の数値群と、
を基に上記所定の点像位置ごとに上記第一の数値群と上記第二の数値群とを比較演算し、該比較結果を視覚化して表現することを特徴とする光学素子評価方法。
By simulation, a plurality of parallel light beams parallel to the optical axis are made incident on the ideal optical element in the design, and a plurality of point image groups are generated by the light beams emitted from the ideal optical element. In each point image, the total numerical value of all distances from the predetermined number of point images surrounding the predetermined point image to the central point image, or between the total numerical value and the neighboring point images around it A first group of numerical values obtained by calculating an ideal total count value obtained by summing up the total numbers of all distances;
A parallel light beam incident means for causing a plurality of parallel light beams that are the same as the parallel light flux to enter the manufactured optical element; and an imaging means for capturing the light beam emitted from the manufactured optical element and capturing it as a point image group. In each of the predetermined point images of the point image group, the total numerical value of all the distances from the predetermined number of point images surrounding the predetermined point image to the central point image, or the total numerical value and the A second numerical value group obtained by calculating an actual total count value obtained by summing the total numerical values of all the distances between adjacent neighboring point images;
An optical element evaluation method comprising: comparing and calculating the first numerical value group and the second numerical value group for each of the predetermined point image positions based on the above, and visualizing and expressing the comparison result.
上記第一の数値群および上記第二の数値群は、上記点像群ごとに上記所定の点像を格子状に取り囲む点像群を基に演算されることを特徴とする請求項1に記載の光学素子評価方法。 2. The first numerical value group and the second numerical value group are calculated based on a point image group surrounding the predetermined point image in a lattice shape for each point image group. Optical element evaluation method. 上記第一の数値群及び第二の数値群は、上記点像群ごとに上記所定の点像を多角形状に取り囲む点像群を基に演算されることを特徴とする請求項1に記載の光学素子評価方法。 The first numerical value group and the second numerical value group are calculated based on a point image group that surrounds the predetermined point image in a polygonal shape for each point image group. Optical element evaluation method. シミュレーションにより、設計上の理想光学素子の光軸を中心とする所定領域内に対して上記光軸と平行な複数の平行光束を入射させ、該理想光学素子からの射出光束により所定の複数の点像群を生成させ、該点像群の所定の点像それぞれにおいて、該所定の点像を中心として取り囲む所定の数の点像から該中心点像までの全ての距離の合計数値、または、該合計数値と該周囲の隣り合う点像同士間の全ての距離の合計数値とを合計した理想の総計数値を演算した第一の数値群と、
製造された光学素子の光軸を中心とする上記所定領域内に上記平行光束と同じ複数の平行光束を入射させる平行光束入射手段と、上記製造された光学素子から射出される上記光束を撮像し、点像群として捉える撮像手段と、を用い、上記点像群の所定の点像それぞれにおいて、該所定の点像を中心として取り囲む所定の数の点像から該中心点像までの全ての距離の合計数値、または、該合計数値と該周囲の隣り合う点像同士間の全ての距離の合計数値とを合計した実際の総計数値を演算した第二の数値群と、
を基に上記所定の点像位置ごとに第一の数値群と第二の数値群とを比較演算し、該比較結果の中の最大値と最小値との差をもって上記製造された光学素子を評価することを特徴とする光学素子評価方法。
By simulation, a plurality of parallel light beams parallel to the optical axis are made incident on a predetermined region centered on the optical axis of the designed ideal optical element, and a plurality of predetermined points are obtained by the light beam emitted from the ideal optical element. Generating an image group, and in each of the predetermined point images of the point image group, a total numerical value of all distances from a predetermined number of point images surrounding the predetermined point image to the central point image, or A first numerical value group obtained by calculating an ideal total count value obtained by summing the total numerical value and the total numerical value of all distances between adjacent neighboring point images;
Imaging parallel light beam incident means for causing a plurality of parallel light beams that are the same as the parallel light beam to enter the predetermined area centered on the optical axis of the manufactured optical element; and imaging the light beam emitted from the manufactured optical element. All distances from the predetermined number of point images surrounding the predetermined point image to the central point image in each of the predetermined point images of the point image group. A second numerical group obtained by calculating an actual total count value obtained by summing the total numerical value, or the total numerical value and the total numerical value of all the distances between adjacent neighboring point images,
The first numerical value group and the second numerical value group are compared for each predetermined point image position on the basis of the above, and the manufactured optical element has a difference between the maximum value and the minimum value in the comparison result. An optical element evaluation method characterized by evaluating.
シミュレーションにより、設計上の理想光学素子の光軸を中心とする所定領域内に対して上記光軸と平行な複数の平行光束を入射させ、該理想光学素子からの射出光束により所定の複数の点像群を生成させ、該点像群の各点像それぞれにおいて、該点像を中心として取り囲む所定の数の点像から該中心点像までの全ての距離の合計数値、または、該合計数値と該周囲の隣り合う点像同士間の全ての距離の合計数値とを合計した理想の総計数値を演算した第一の数値群と、
製造された光学素子の光軸を中心とする上記所定領域内に上記平行光束と同じ複数の平行光束を入射させる平行光束入射手段と、上記製造された光学素子から射出される上記光束を撮像し、点像群として捉える撮像手段と、を用い、上記点像群の所定の点像それぞれにおいて、該所定の点像を中心として取り囲む所定の数の点像から該中心点像までの全ての距離の合計数値、または、該合計数値と該周囲の隣り合う点像同士間のすべて距離の合計数値とを合計した実際の総計数値を演算した第二の数値群と、
を基に上記所定の点像位置ごとに第一の数値群と第二の数値群とを比較演算し、該比較結果の数値群の平均値をもって上記製造された光学素子を評価することを特徴とする光学素子評価方法。
By simulation, a plurality of parallel light beams parallel to the optical axis are made incident on a predetermined region centered on the optical axis of the designed ideal optical element, and a plurality of predetermined points are obtained by the light beam emitted from the ideal optical element. Generating an image group, and for each point image of the point image group, a total numerical value of all distances from a predetermined number of point images surrounding the point image to the central point image, or the total numerical value A first numerical value group obtained by calculating an ideal total count value obtained by adding up the total numerical values of all distances between adjacent neighboring point images;
Imaging parallel light beam incident means for causing a plurality of parallel light beams that are the same as the parallel light beam to enter the predetermined area centered on the optical axis of the manufactured optical element; and imaging the light beam emitted from the manufactured optical element. All distances from the predetermined number of point images surrounding the predetermined point image to the central point image in each of the predetermined point images of the point image group. Or a second numerical value group obtained by calculating an actual total count value obtained by summing the total numerical value and the total numerical value of all the distances between adjacent neighboring point images,
The first numerical value group and the second numerical value group are compared and calculated for each predetermined point image position based on the above, and the manufactured optical element is evaluated with an average value of the numerical value groups of the comparison results An optical element evaluation method.
上記比較結果の数値群の絶対値の平均値をもって上記製造された光学素子を評価することを特徴とする請求項5に記載の光学素子評価方法。 The optical element evaluation method according to claim 5, wherein the manufactured optical element is evaluated with an average value of absolute values of a numerical group of the comparison result. 複数の平行光束を発生させる平行光束発生手段と、
上記複数の平行光束を被検体である光学素子に入射させる入射手段と、
上記光学素子から射出した複数の射出光束像を捉える撮像手段と、
上記光学素子から射出した上記複数の平行光束の射出光束像と、シミュレーション上の理想光学素子に上記複数の平行光束と同じシミュレーション上の複数の平行光束を入射させ該理想光学素子から射出させた該シミュレーション上の複数の模擬射出光束像とを比較し、上記複数の模擬射出光束像それぞれと該それぞれに対応する上記射出光束像との間の複数の相対距離をデータとしてツェルニケ多項式により上記理想光学素子の光学面とのずれを表す曲面を演算生成する演算手段と、
を有することを特徴とする光学面評価装置。
A parallel light flux generating means for generating a plurality of parallel light fluxes;
An incident means for making the plurality of parallel light beams incident on an optical element as a subject;
Imaging means for capturing a plurality of emitted light flux images emitted from the optical element;
The emitted light beam images of the plurality of parallel light beams emitted from the optical element, and the plurality of parallel light beams on the same simulation as the plurality of parallel light beams are incident on the ideal optical element on the simulation and are emitted from the ideal optical element. A plurality of simulated exit beam images on the simulation are compared, and the ideal optical element is expressed by a Zernike polynomial using a plurality of relative distances between the plurality of simulated exit beam images and the corresponding exit beam images as data. Computing means for computing and generating a curved surface representing a deviation from the optical surface of
An optical surface evaluation apparatus comprising:
上記平行光束発生手段は、光源と、該光源からの光束を平行光に変換するコリメータレンズと、該コリメータレンズから射出される平行光束を複数の平行光束から複数の平行光束を生成する多穴板とを有し、該多穴板の穴の内の少なくとも一つは、他の穴に対して穴の形状が異なることを特徴とする請求項7に記載の光学面評価装置。 The parallel light beam generating means includes a light source, a collimator lens that converts the light beam from the light source into parallel light, and a multi-hole plate that generates a plurality of parallel light beams from the parallel light beams emitted from the collimator lens. The optical surface evaluation apparatus according to claim 7, wherein at least one of the holes of the multi-hole plate has a hole shape different from that of the other holes. 複数の平行光束を発生させる平行光束発生手段から複数の平行光束を発生させ、該光束を被検体である光学素子に入射させ、
上記光学素子から射出した上記複数の平行光束の射出光束像と、シミュレーション上の理想光学素子に上記複数の平行光束と同じシミュレーション上の複数の平行光束を入射させ該理想光学素子から射出させた該シミュレーション上の複数の模擬射出光束像とを比較し、
上記模擬射出光束像それぞれと該それぞれに対応する上記射出光束像との複数の相対距離をデータとしてツェルニケ多項式により曲面を演算生成し、この曲面の形状により上記光学素子の光学面を評価することを特徴とする光学面評価方法。
A plurality of parallel light beams are generated from a parallel light beam generating means for generating a plurality of parallel light beams, and the light beams are incident on an optical element as a subject,
The emitted light beam images of the plurality of parallel light beams emitted from the optical element, and the plurality of parallel light beams on the same simulation as the plurality of parallel light beams are incident on the ideal optical element on the simulation and are emitted from the ideal optical element. Compare multiple simulated light flux images on the simulation,
Calculating and generating a curved surface by a Zernike polynomial using a plurality of relative distances between each of the simulated emitted light beam images and the corresponding emitted light beam images as data, and evaluating the optical surface of the optical element by the shape of the curved surface; An optical surface evaluation method characterized.
JP2007031160A 2007-02-09 2007-02-09 Optical element evaluation method, optical surface evaluation method, and optical surface evaluation device Pending JP2008196916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007031160A JP2008196916A (en) 2007-02-09 2007-02-09 Optical element evaluation method, optical surface evaluation method, and optical surface evaluation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007031160A JP2008196916A (en) 2007-02-09 2007-02-09 Optical element evaluation method, optical surface evaluation method, and optical surface evaluation device

Publications (1)

Publication Number Publication Date
JP2008196916A true JP2008196916A (en) 2008-08-28

Family

ID=39756009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007031160A Pending JP2008196916A (en) 2007-02-09 2007-02-09 Optical element evaluation method, optical surface evaluation method, and optical surface evaluation device

Country Status (1)

Country Link
JP (1) JP2008196916A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009229422A (en) * 2008-03-25 2009-10-08 Fujifilm Corp Optical device defect inspection method and optical device defect inspecting apparatus
WO2011049075A1 (en) * 2009-10-20 2011-04-28 株式会社ニコン Wave aberration measuring method and wave aberration measuring device
CN102353526A (en) * 2011-07-14 2012-02-15 中国科学院上海光学精密机械研究所 Device and method for detecting uniformity of plate color glass filter
DE102016209720A1 (en) * 2016-06-02 2017-12-07 Humanoptics Ag Method for testing individually produced intraocular lenses
WO2019069693A1 (en) * 2017-10-04 2019-04-11 ソニーセミコンダクタソリューションズ株式会社 Inspection device, inspection method, and program

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009229422A (en) * 2008-03-25 2009-10-08 Fujifilm Corp Optical device defect inspection method and optical device defect inspecting apparatus
WO2011049075A1 (en) * 2009-10-20 2011-04-28 株式会社ニコン Wave aberration measuring method and wave aberration measuring device
US8836928B2 (en) 2009-10-20 2014-09-16 Nikon Corporation Method for measuring wavefront aberration and wavefront aberration measuring apparatus
CN102353526A (en) * 2011-07-14 2012-02-15 中国科学院上海光学精密机械研究所 Device and method for detecting uniformity of plate color glass filter
CN102353526B (en) * 2011-07-14 2013-11-20 中国科学院上海光学精密机械研究所 Device and method for detecting uniformity of plate color glass filter
DE102016209720A1 (en) * 2016-06-02 2017-12-07 Humanoptics Ag Method for testing individually produced intraocular lenses
WO2019069693A1 (en) * 2017-10-04 2019-04-11 ソニーセミコンダクタソリューションズ株式会社 Inspection device, inspection method, and program
CN111164405A (en) * 2017-10-04 2020-05-15 索尼半导体解决方案公司 Inspection device, inspection method, and program
US11215526B2 (en) 2017-10-04 2022-01-04 Sony Semiconductor Solutions Corporation Inspection apparatus and inspection method

Similar Documents

Publication Publication Date Title
CN108332708B (en) Automatic detection system and detection method for laser level meter
JP4774332B2 (en) Eccentricity measurement method
CN109307480B (en) Method for detecting multi-surface shape of transmission element
CN108592953B (en) Three-dimensional calibration target and method for applying three-dimensional calibration target to positioning measured object in vision measurement
JP2007327771A5 (en)
JP2013029494A (en) Method for determining tilt of image sensor
JP2008292365A (en) Shape evaluation method, shape evaluation device, and three-dimensional inspection device
US11092432B2 (en) Reference plate and method for calibrating and/or checking a deflectometry sensor system
JP2008196916A (en) Optical element evaluation method, optical surface evaluation method, and optical surface evaluation device
JP6000578B2 (en) Aspherical surface measuring method, aspherical surface measuring device, optical element processing apparatus, and optical element manufacturing method
JP2012058139A (en) Lens inspection apparatus and method
CN107525652A (en) Lens distortion method of testing, apparatus and system
CN105051486A (en) Shape inspection device
CN104870932A (en) Facility for measuring the thickness of the wall of containers
CN103968787B (en) The measuring method and system that position for the element to structure measures
JP2009264894A (en) Inspection device
CN104111161B (en) Wave aberration measuring device
JPH03222936A (en) Apparatus for measuring shape of cornea
CN111610000B (en) Method for measuring multiplying power chromatic aberration of star sensor optical system based on angle
JP2006275971A (en) Lens meter
JP2005024504A (en) Eccentricity measuring method, eccentricity measuring instrument, and object measured thereby
CN103994875A (en) Lens distortion measuring method based on large-viewing-angle collimator tube
JP6912071B2 (en) Lens meter
JP2006226736A (en) Lens meter
JP2009198234A (en) Optical system evaluating device