JP2008196850A - Failure detection system of spring check valve - Google Patents

Failure detection system of spring check valve Download PDF

Info

Publication number
JP2008196850A
JP2008196850A JP2006287500A JP2006287500A JP2008196850A JP 2008196850 A JP2008196850 A JP 2008196850A JP 2006287500 A JP2006287500 A JP 2006287500A JP 2006287500 A JP2006287500 A JP 2006287500A JP 2008196850 A JP2008196850 A JP 2008196850A
Authority
JP
Japan
Prior art keywords
pressure
valve
differential pressure
flow
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006287500A
Other languages
Japanese (ja)
Inventor
Masaki Ito
雅喜 伊藤
Takashi Baba
崇 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Health Sciences Foundation
Original Assignee
Japan Health Sciences Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Health Sciences Foundation filed Critical Japan Health Sciences Foundation
Priority to JP2006287500A priority Critical patent/JP2008196850A/en
Publication of JP2008196850A publication Critical patent/JP2008196850A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a failure detection system of a spring check valve capable of effectively detecting the failure condition generated by biting a small foreign matter or the capability of generating the small amount of reverse flow which have been difficult to detect. <P>SOLUTION: The failure of the check valve is made to detect as follows: a pair of pressure sensors are arranged on the primary and the secondary sides adjacent to the spring check valve which is reversely biased against the liquid flow by a spring, at least more than one flow sensors are provided adjacent to the check valve on the flow path for making it possible to monitor the differential pressure and also make it possible to discriminate between the normal directional flow, reverse directional flow, and stationary water. Thereby, the check valve is constituted such that the failure of the check valve etc., are made to be detected. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、弁体・弁座間の異物噛み込みや給水圧低下などの異常を圧力・流量データから判別検知することができるバネ式逆流防止弁の異常検知システムに関するものである。   The present invention relates to an abnormality detection system for a spring-type backflow prevention valve capable of discriminating and detecting abnormalities such as a foreign object biting between a valve body and a valve seat and a decrease in feed water pressure from pressure / flow rate data.

近年、直結給水方式の普及と共に、給水装置が高度・多様化してきており、その種類、設置数も多くなっている。これら給水装置に対する不適切な施工管理は、建築物内の給水システムのみならず、水道配管系統へも悪影響を及ぼす恐れがあるため、給水装置における安全性の確保は重要課題の一つである。給水装置の重要構成要素である逆流防止装置について、これまでも、その特性を評価し、逆流の危険度に応じた効果的な逆流防止法が検討されてきたが、通常設置下での作動状況については未だ把握されてないのが現状である。
このような中、逆流防止弁の異常検知システムとして特許文献1・2に示される構成が公知である。
In recent years, with the spread of the direct water supply system, the water supply devices have become more sophisticated and diversified, and the types and number of installations have increased. Inappropriate construction management for these water supply devices may adversely affect not only the water supply system in the building but also the water supply piping system, so ensuring safety in the water supply device is one of the important issues. The characteristics of the backflow prevention device, which is an important component of the water supply equipment, have been evaluated so far, and effective backflow prevention methods according to the risk of backflow have been studied. The current situation is not yet known.
Under such circumstances, configurations shown in Patent Documents 1 and 2 are known as an abnormality detection system for a backflow prevention valve.

特開平8−178805号公報JP-A-8-178805 特開2006−177316号公報JP 2006-177316 A

ところで、逆流防止弁は、その名の通り、管路における逆流を防止するためのものであり、これに故障や異常が発生すれば当然に逆流が発生する恐れがある。言い換えれば、逆流があったときに逆流防止弁を異常と判断すればよく、逆流の流量が比較的大きな変化を示すとき、逆流防止弁の異常を疑うことは容易である。しかしながら、針金程度の小さな異物を噛み込んだような場合、流量の変化は極めて小さく、その原因を究明することは容易ではなかった。   By the way, as the name suggests, the backflow prevention valve is for preventing backflow in the pipeline, and if a failure or abnormality occurs in this, there is a possibility that backflow will naturally occur. In other words, it is only necessary to determine that the backflow prevention valve is abnormal when there is a backflow. When the flow rate of the backflow shows a relatively large change, it is easy to suspect the abnormality of the backflow prevention valve. However, when a small foreign object such as a wire is caught, the change in the flow rate is extremely small, and it is not easy to investigate the cause.

本発明は、上述した課題を解決するためになされたもので、その目的とするところは、従来の構成では検知が困難であった小さな異物を噛み込んだことによる逆流防止弁の異常状態や微量の逆流が発生する可能性をも効果的に検知することができるバネ式逆流防止弁の異常検知システムを提供することである。   The present invention has been made in order to solve the above-described problems. The object of the present invention is to detect an abnormal state or a minute amount of the check valve caused by biting a small foreign object that is difficult to detect with the conventional configuration. It is an object of the present invention to provide an abnormality detection system for a spring-type check valve that can effectively detect the possibility of the occurrence of backflow.

上述した目的を達成するために本発明では、バネ圧によって弁体を通水方向とは逆向きに付勢したバネ式の逆流防止弁と近接して、その一次側および二次側に一対の圧力センサを設け、流路上の前記逆流防止弁近傍に少なくとも一以上の流量センサを設け、当該一対の圧力センサにより逆流防止弁の一次側圧力と二次側圧力の弁差圧を監視可能とし、当該流量センサにより正流、逆流及び停水を判別可能とする手段を用いた。即ち、バネ圧によって弁体を通水方向とは逆向きに付勢したバネ式の逆流防止弁と、当該逆流防止弁と近接して、その一次側と二次側に設置した一対の圧力センサと、流路上の前記逆流防止弁近傍に設置した少なくとも一以上の流量センサと、当該流量センサおよび圧力センサの出力を取り込み、時系列に一次側と二次側の圧力データ及び流量データを収集するデジタルデータ収集装置と、予め前記逆流防止弁が正圧時に通水を開始する最低作動弁差圧を記憶すると共に、前記デジタルデータ収集装置で収集した圧力データに基づいて一次側圧力と二次側圧力の差である弁差圧を算出すると共に、流量デ−タに基づいて正流、逆流および停水を判別し、正流時または停水時において、前記弁差圧が前記最低作動弁差圧よりも小さい場合は警告を発する判別装置とからバネ式逆流防止弁の異常検知システムを構成することができる。このシステムによれば、実際に逆流などの異常現象が生じる前から、逆流防止弁の異物の噛み込みや給水圧低下などの異常を検知することができる。   In order to achieve the above-described object, in the present invention, a pair of spring-type backflow prevention valves urged in the direction opposite to the water flow direction by the spring pressure are provided on the primary side and the secondary side. A pressure sensor is provided, and at least one flow rate sensor is provided in the vicinity of the backflow prevention valve on the flow path so that the differential pressure between the primary side pressure and the secondary side pressure of the backflow prevention valve can be monitored by the pair of pressure sensors. Means that can distinguish forward flow, reverse flow, and water stoppage by the flow rate sensor were used. That is, a spring-type backflow prevention valve urged by the spring pressure in the direction opposite to the water flow direction, and a pair of pressure sensors installed on the primary side and the secondary side close to the backflow prevention valve And at least one or more flow sensors installed in the vicinity of the check valve on the flow path, and the outputs of the flow sensors and pressure sensors, and collect pressure data and flow data on the primary side and the secondary side in time series. The digital data collection device stores in advance the minimum operating valve differential pressure at which water flow starts when the backflow prevention valve is positive pressure, and the primary side pressure and the secondary side based on the pressure data collected by the digital data collection device The valve differential pressure, which is the pressure difference, is calculated, and the normal flow, the reverse flow, and the water stop are determined based on the flow rate data. Warning if less than pressure It is possible to configure the abnormality detection system of spring-loaded check valve from the emitting determination device. According to this system, it is possible to detect an abnormality such as a foreign matter biting in the check valve and a decrease in the feed water pressure before an abnormal phenomenon such as a reverse flow actually occurs.

さらに逆流が判別され、尚かつ、弁差圧が0未満であった場合は、重度の警告を発するという手段を選択的に採用する。この場合は、逆流防止弁に異常があり、現に逆流が発生して緊急に対策を講じる必要があるからである。   Further, when a reverse flow is determined and the valve differential pressure is less than 0, a means of issuing a severe warning is selectively adopted. In this case, there is an abnormality in the backflow prevention valve, and a backflow actually occurs and it is necessary to take urgent measures.

さらに、弁差圧が最低作動弁差圧以上であっても、逆流を判別した場合は、警報を発する。センサの異常が疑われるからである。   Furthermore, even if the valve differential pressure is equal to or higher than the minimum operating valve differential pressure, an alarm is issued when a reverse flow is determined. This is because sensor abnormality is suspected.

さらに、正流時においで、弁差圧が最低作動弁差圧以上であっても、通水量が規定値未満の場合は、警報を発する。通水不良またはセンサの異常の疑いがあるからである。   Furthermore, even if the valve differential pressure is equal to or higher than the minimum operating valve differential pressure during positive flow, an alarm is issued if the water flow rate is less than the specified value. This is because there is a suspicion of poor water flow or abnormal sensor.

以上の手段により、本発明では、簡単なシステムによって構成でき、しかも、流量と弁差圧から総合的に異常の有無を判別するので、異物の噛み込みのように微量な逆流時も、実際の弁差圧と最低作動弁差圧との比較によって逆流防止弁の異常を的確に把握することができる。また、収集した一次側と二次側の圧力データおよび流量データに基づく弁差圧−流量特性を解析することで、逆流防止弁の異物の噛み込みのみならず、経年的な劣化によるバネ圧の低下や給水圧の低下、通水不良、センサの不具合など、多岐にわたる異常を判別し、検知することも可能である。   By the above means, the present invention can be configured by a simple system, and furthermore, the presence / absence of an abnormality is comprehensively determined from the flow rate and the valve differential pressure. By comparing the valve differential pressure with the minimum operating valve differential pressure, it is possible to accurately grasp the abnormality of the check valve. In addition, by analyzing the valve differential pressure-flow rate characteristics based on the collected primary and secondary pressure data and flow rate data, not only the foreign matter of the check valve is caught, but also the spring pressure due to deterioration over time. It is also possible to discriminate and detect a wide variety of abnormalities such as a drop, a drop in water supply pressure, poor water flow, and sensor failure.

以下、本発明の好ましい実施の形態を添付した図面に従って説明する。図1は、本発明システムの回路図を示したものであり、図中、1は供試器具としてのバネ式逆流防止弁、2・2は逆流防止弁1の前後(一次側と二次側)に設けた圧力センサ、3・3は逆流防止弁1に近接してその前後に設けた流量センサ、4は各センサ2・3の出力を取り込んでデータ化するデジタルデータ収集装置としてのデータロガ装置、5はデータロガ装置4でデータ化された流量・圧力データから一次側圧と二次側圧の差(弁差圧)や流量差等を算出し、そのメモリ上に予め記憶さているデータテーブルを参照しながら、算出データテーブル値を比較して異常の有無を判定するパソコンなどの判定装置である。また、6は逆流防止弁1に正圧・逆圧を加える加圧タンク、7は逆流防止弁の一次側に負圧を加える負圧発生装置である。そして、このシステムを用い、三つの供試器具について正圧時・逆圧時・負圧時における異常検知の実験を行った。尚、デジタルデータ収集装置には、データロガ装置以外にもアナログ/デジタル変換装置を組み込んだパソコンにより直接データを取り込むなどの方法をとることも可能である。また、前記流量センサは、流路上の逆流防止弁1の近傍に少なくとも一つ設置すれば足りるが、本願の各実施例では、一次側及び二次側の流量をより正確に検知する観点から、一次側及び二次側の二カ所に設置している。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 shows a circuit diagram of the system of the present invention. In the figure, 1 is a spring-type backflow prevention valve as a test equipment, 2 and 2 are front and back of the backflow prevention valve 1 (primary side and secondary side) ), 3 and 3 are flow sensors installed in front of and behind the backflow prevention valve 1, and 4 is a data logger device as a digital data collection device that takes the output of each sensor 2 and 3 and converts it into data 5 calculates the difference between the primary side pressure and the secondary side pressure (valve differential pressure), the flow rate difference, etc. from the flow rate / pressure data converted into data by the data logger device 4 and refers to the data table stored in advance in the memory. However, it is a determination device such as a personal computer that compares the calculated data table values to determine the presence or absence of an abnormality. Reference numeral 6 denotes a pressurizing tank that applies positive pressure and reverse pressure to the check valve 1. Reference numeral 7 denotes a negative pressure generator that applies negative pressure to the primary side of the check valve. Then, using this system, an experiment for detecting abnormalities at the time of positive pressure, reverse pressure, and negative pressure was performed on the three test devices. In addition to the data logger device, the digital data collecting device can take a method such as directly capturing data with a personal computer incorporating an analog / digital conversion device. In addition, it is sufficient that at least one flow sensor is installed in the vicinity of the backflow prevention valve 1 on the flow path, but in each embodiment of the present application, from the viewpoint of more accurately detecting the flow rate on the primary side and the secondary side, It is installed at two locations on the primary and secondary sides.

なお、本発明では、逆流防止装置の中でも最も広く流通しているバネ式逆流防止弁を検知対象器具として選定し、後述する実施例では口径が20mmでありバネ定数が76g/cmとバネ圧が低い市販のバネ式逆流防止弁(供試器具1)と、減圧式逆流防止器の二次側弁を除去した上で、一次側弁のみを口径20mmの二重式逆止弁の胴体に内蔵した改造品であって、バネ定数が1667g/cmであるバネ圧が大の逆流防止弁(供試器具2)と、上記改造品と同様の改造を施し、バネ定数が533g/cmであるバネ圧が中の逆流防止弁(供試器具3)の三種を用意した。また、これらの三種の供試器具1〜3について、弁正常状態と針金を噛み込ませて異常を再現した弁異常状態とで、正圧時・逆圧時・負圧時にどのような差が生じるか、実験を行った。   In the present invention, the spring-type backflow prevention valve that is most widely distributed among the backflow prevention devices is selected as a detection target instrument, and in the embodiment described later, the aperture is 20 mm, the spring constant is 76 g / cm, and the spring pressure is After removing the low-pressure spring-type backflow check valve (test equipment 1) and the secondary side valve of the pressure reduction type backflow preventer, only the primary side valve is built into the body of the double check valve with a diameter of 20 mm. This is a modified product with a spring constant of 1667 g / cm and a large spring pressure check valve (Equipment 2). Three types of backflow prevention valves (test equipment 3) with a medium pressure were prepared. In addition, for these three types of EUTs 1-3, there is a difference between the normal valve state and the abnormal valve state where the abnormality is reproduced by biting the wire, during positive pressure, reverse pressure, and negative pressure. Experiments were conducted.

ここでは、図2に示す構成を用い、以下に示す手順により正圧下での実験を行った。なお、バルブV1は操作対象バルブとして下記手順の通り操作する一方、バルブV2は常時全閉、バルブV3は常時全開としておく。
逆流防止弁1を取り付けバルブV1を全閉する。
加圧タンク6を用いて一次側圧力を設定する。
バルブV1を全閉のまま、各部のエア抜きを行い、管内を充水する。
(4)圧力および流量データの収録を開始する。
(5)バルブV1の開度を1/5刻み程度で断続的に全開まで徐々に開操作する(このとき各開度で流量が安定したことを確認する。)
(6)バルブV1を全閉する。
(7)データの収録を終了する。
(8)加圧タンク6による一次側圧を0.1〜0.8MPaの範囲で設定変更し、上の(1)〜(7)の手順を繰り返す。
Here, using the configuration shown in FIG. 2, an experiment under positive pressure was performed according to the following procedure. The valve V1 is operated as the operation target valve according to the following procedure, while the valve V2 is always fully closed and the valve V3 is always fully open.
The check valve 1 is attached and the valve V1 is fully closed.
The primary pressure is set using the pressurized tank 6.
With the valve V1 fully closed, each part is vented to fill the pipe with water.
(4) Start recording pressure and flow data.
(5) Gradually open the valve V1 in increments of about 1/5 until it is fully opened (check that the flow rate is stable at each opening).
(6) Fully close valve V1.
(7) End data recording.
(8) The primary side pressure by the pressurized tank 6 is changed in the range of 0.1 to 0.8 MPa, and the above procedures (1) to (7) are repeated.

実施例1の一例として、一次側圧力を0.8MPaとした場合の供試器具3について、正常状態の結果を図3に、また異常状態〈針金噛み込み〉の結果を図4に示す。先ず、図3に示される通り、正常時では実験当初の停水時に既に弁差圧0.015MPa(一次側圧力−二次側圧力)が生じている。即ち、この弁差圧0.015MPaは最低作動弁差圧である。そして、通水開始と同時に圧力はと一次側・二次側ともに低下するが、弁差圧は、0.020MPa程度まで上昇した。その後は通水量の増加に伴い、圧力は一次側・二次側とも更に低下するものの弁差圧は、ほぼ一定であった。再び停水すると一次側・二次側圧力、弁差圧とも通水前の状態に回復した。これに対して、径1.0mmの針金を噛み込ませたときは、実験当初の停水時に弁差圧は発生せず、0MPaであった。しかし、通水開始の推移は正常時と同じであった。そして、再び停水すると通水前の状態に回復し、弁差圧も0MPaとなった。なお、流量については一連の実験操作を通じて、一次側・二次側ともに同様に推移し、両者間に差はなかった。そして、正常時における停水中の弁差圧は、他の供試器具1・2でこそ異なっていたが、上述した傾向は供試器具3と同様であった。   As an example of Example 1, FIG. 3 shows the result of the normal state and FIG. 4 shows the result of the abnormal state <wire engagement> for the test instrument 3 when the primary pressure is 0.8 MPa. First, as shown in FIG. 3, at the time of normal operation, a valve differential pressure of 0.015 MPa (primary side pressure-secondary side pressure) has already occurred during the initial water stoppage. That is, this valve differential pressure of 0.015 MPa is the minimum operating valve differential pressure. And simultaneously with the start of water flow, both the primary side and the secondary side decreased in pressure, but the valve differential pressure increased to about 0.020 MPa. After that, with the increase in water flow rate, the pressure difference further decreased, although the pressure further decreased on both the primary and secondary sides. When the water was stopped again, the primary / secondary pressure and valve differential pressure recovered to the state before water flow. On the other hand, when a wire having a diameter of 1.0 mm was bitten, no valve differential pressure was generated when the water was stopped at the beginning of the experiment, and the pressure was 0 MPa. However, the transition of the start of water flow was the same as normal. And when it stopped again, it returned to the state before water flow, and the valve differential pressure also became 0 MPa. The flow rate changed in the same way on the primary and secondary sides through a series of experimental operations, and there was no difference between the two. Further, the valve differential pressure during the normal stoppage was different between the other test instruments 1 and 2, but the above-described tendency was the same as that of the test instrument 3.

さらに、図5〜図7に、実施例1おける供試器具1〜3それぞれの弁差圧−流量特性を示す。これらから明らかなことは、(1)供試器具ごとに同一の状態を保持している限り、正圧の大きさにかかわらず弁差圧−流量特性は、ほぼ一定となる。(2)正常時に正圧を加え通水を開始させるには、供試器具ごとにほぼ固有の最低作動弁差圧が必要となるが、異常時ではこれ以下であっても通水を開始する、(3)同構造を有する供試器具では、最低作動弁差圧はバネ定数に比例していることである。   Further, FIGS. 5 to 7 show valve differential pressure-flow rate characteristics of the test devices 1 to 3 in Example 1. FIG. From these, it is clear that (1) the valve differential pressure-flow rate characteristic is substantially constant regardless of the magnitude of the positive pressure, as long as the same state is maintained for each test device. (2) In order to start the water flow by applying a positive pressure at normal time, a specific minimum operating valve differential pressure is required for each test device. (3) In the EUT having the same structure, the minimum operating valve differential pressure is proportional to the spring constant.

次に、図8に示す構成を用い、以下の手順により、正常状態にある供試器具について逆圧下での実験を行った。なお、バルブV1・V4は下記手順の通り操作する一方、バルブV2は常時全開、バルブV3は常時全閉とした。
(1)逆流防止弁1を取り付け、バルブV1を全開、バルブV4を全閉とする。
(2)加圧タンク6を用いて二次側圧力0.6MPaに設定する。
(3)バルブV1全開、バルブV4全閉のまま各部エア抜きを行い、逆流防止弁1の二次側まで管内を充水する。
(4)圧力および流量データの収録を開始する。
(5)バルブV4を徐々に断続的に全開まで開操作する(このとき各開度で流量が発生していないことを確認する)。
(6)バルブV1を徐々に断続的に全閉する(このとき各開度で流量が発生していないことを確認する)。
(7)データの収録を終了する。
Next, using the configuration shown in FIG. 8, the test equipment in a normal state was subjected to an experiment under back pressure by the following procedure. The valves V1 and V4 are operated as follows, while the valve V2 is always fully open and the valve V3 is always fully closed.
(1) Attach the check valve 1 and fully open the valve V1 and fully close the valve V4.
(2) The secondary side pressure is set to 0.6 MPa using the pressurized tank 6.
(3) Each part is ventilated with the valve V1 fully opened and the valve V4 fully closed, and the pipe is filled up to the secondary side of the check valve 1.
(4) Start recording pressure and flow data.
(5) The valve V4 is gradually and intermittently opened until it is fully opened (at this time, it is confirmed that no flow rate is generated at each opening).
(6) The valve V1 is gradually and fully closed gradually (at this time, confirm that no flow rate is generated at each opening).
(7) End data recording.

さらに、図9に示す構成を用い、径1.0mmの針金を噛み込ませた異常状態にある供試器具について、実施例2と同様、逆圧下での実験を行った。その手順は以下の通りであり、バルブV1は常時全開、バルブV2・3は下記手順により操作して、実験を行った。
逆流防止弁1を取り付け、バルブV2を全閉、バルブV3を全開としておく。
(2)加圧タンク6を用いて二次側圧力を設定する。
(3)バルブV2を全閉、バルブV3を全開のまま、各部エア抜きを行い管内を充水する。
バルブV3を全閉した後、圧力および流量データの収録を開始する。
(5)逆流量が急減少するまでバルブV2を徐々に段階的に開操作する(このとき各開度で流量が安定することを確認する)。
(6)バルブV2を徐々に段階的に全閉する(このとき各開度で流量が安定することを確認する)。
(7)データの収録を終了する。
(8)二次側圧力を0.1〜0.6MPaの範囲で順次変更し、上記(1)〜(7)の手順を繰り返す。
Furthermore, using the configuration shown in FIG. 9, an experiment under a reverse pressure was performed on the EUT under an abnormal condition in which a wire having a diameter of 1.0 mm was bitten in the same manner as in Example 2. The procedure was as follows. The valve V1 was always fully opened and the valves V2 and 3 were operated according to the following procedure.
The check valve 1 is attached, the valve V2 is fully closed, and the valve V3 is fully open.
(2) The secondary pressure is set using the pressurized tank 6.
(3) With the valve V2 fully closed and the valve V3 fully open, each part is vented to fill the inside of the pipe.
After the valve V3 is fully closed, recording of pressure and flow rate data is started.
(5) The valve V2 is opened gradually and gradually until the reverse flow rate suddenly decreases (at this time, it is confirmed that the flow rate is stable at each opening).
(6) The valve V2 is fully closed gradually in stages (At this time, it is confirmed that the flow rate is stable at each opening degree).
(7) End data recording.
(8) The secondary pressure is sequentially changed within a range of 0.1 to 0.6 MPa, and the above procedures (1) to (7) are repeated.

実施例2・3の一例として、図10に正常状態にある供試器具3の0.6MPa逆圧下、図11に異常状態とした供試器具2の0.15MPa逆圧下の実験結果を示す。先ず図10に示される通り、正常時では実験当初に既に一次側配管を大気開放の上、逆圧0.6MPaを加えていることから負の弁差圧−0.6MPa程度が生じていたが、弁体が正常に機能しているため、逆流は発生しなかった。その後、二次側圧力を徐々に低下させたが、一次側圧力は当初の0MPaを保持したままなので、これに伴い弁差圧0MPaに近づいていったが、この過程でも逆流は発生しなかった。一方、径1.0mmの針金噛み込み時では、図11に示される通り、実験当初は製品前後が同圧であるため弁差圧は発生せず0MPaであったが、一次側圧力を低下させると直ちに負の弁差圧が発生し、針金噛み込みによって弁体と弁座との間に隙間が存在することから逆流が発生した。さらに一次側圧力を徐々に低下させると弁差圧が負方向に増大し、これに伴い逆流量も増大したが、弁差圧−0.05MPa、流量−6L/min程度まで達すると瞬時に弁差圧−0.15MPa、流量−1.5L/min程度まで急変動する現象(降伏)が発生した。降伏後は、一次側の減圧状態を徐々に解消しながら弁差圧を0MPaに近づくにつれて逆流量も一時的な微小な増加はあるものの、次第に減少しながら停水した。なお、流量については一連の実験操作を通じ、一次側、二次側とも同様に推移し、両者間に差はなかった。また、降伏発生時における弁差圧および流量は供試器具ごとにその値が異なっているものの、上述した傾向は他の供試器具でも同様であった。 As an example of Examples 2 and 3, FIG. 10 shows the experimental results of a test instrument 3 in a normal state under a 0.6 MPa back pressure, and FIG. 11 shows the test results of a test instrument 2 in an abnormal state under a 0.15 MPa back pressure. First, as shown in FIG. 10, at the beginning of the experiment, the primary side pipe was already opened to the atmosphere and a reverse pressure of 0.6 MPa was applied at the beginning of the experiment. Because the valve body was functioning normally, no back flow occurred. After that, the secondary pressure was gradually reduced, but the primary pressure remained at the original 0 MPa, so that the valve differential pressure approached 0 MPa, but no back flow occurred in this process. . On the other hand, when a wire having a diameter of 1.0 mm is bitten, as shown in FIG. 11, since the pressure before and after the product is the same pressure, no valve differential pressure is generated and 0 MPa, but the primary pressure is reduced. Immediately after that, a negative valve differential pressure was generated, and a back flow occurred because a gap was present between the valve element and the valve seat due to the wire biting. Further, when the primary pressure is gradually decreased, the valve differential pressure increases in the negative direction, and the reverse flow rate increases accordingly. However, when the valve differential pressure reaches -0.05 MPa and the flow rate reaches approximately -6 L / min, the valve instantaneously increases. A phenomenon (yield) that suddenly fluctuated to a differential pressure of −0.15 MPa and a flow rate of about −1.5 L / min occurred. After the yielding, the water flow was stopped while gradually decreasing although the reverse flow rate temporarily increased slightly as the valve differential pressure approached 0 MPa while gradually eliminating the reduced pressure state on the primary side. Note that the flow rate changed in the same way on the primary and secondary sides through a series of experimental operations, and there was no difference between the two. Moreover, although the value of the valve differential pressure and the flow rate at the time of yield occurrence differed for each test equipment, the above-described tendency was the same for other test equipment.

さらに、図12〜14に、実施例3において、供試器具1〜3それぞれの降伏後の弁差圧−流量特性を示す。これらから明らかなことは、(1)針金を噛み込ませた状態で逆流防止弁に逆圧を加え、弁差圧を負方向に増大させると、当初はそれに応じて逆流量が増大するものの、ある一定の弁差圧を越えると瞬時に逆流量が急減少する降伏点が存在すること、(2)降伏点以上の逆流量は発生しないこと、(3)供試器具ごとに同一の状態を保持している限り、一定の降伏点が存在し、逆圧の大きさにかかわらず弁差圧−流量特性もほぼ一定となることである。   Furthermore, in Example 3, the valve differential pressure-flow rate characteristic after yield of each of the test devices 1 to 3 is shown in FIGS. From these, it is clear that (1) when reverse pressure is applied to the check valve and the valve differential pressure is increased in the negative direction while the wire is bitten, initially, the reverse flow rate increases accordingly. There is a yield point where the reverse flow rate suddenly decreases when a certain valve differential pressure is exceeded, (2) there is no reverse flow rate above the yield point, and (3) the same condition for each EUT. As long as it is maintained, there is a certain yield point, and the valve differential pressure-flow rate characteristic is almost constant regardless of the magnitude of the back pressure.

続いて、図15に示す構成を用い、以下の手順により、負圧下での実験を行った。なお、バルブV1は常時全開、バルブV2・V3は操作対象バルブとして下記手順に従って操作した。
(1)逆流防止弁を取り付け、バルブV2を全閉、バルブV3を全開とする。
(2)二次側配管の先端を水槽内に水没させる。
(3)バルブV2全閉、バルブV3全開のまま各部エア抜きを行い、管内を充水する。
(4)負圧発生装置を起動させ一次側圧力を−85kPaに保持する。
(5)バルブV3全閉した後、圧力および流量データ収録を開始する。
(6)正常時は全開、異常(針金噛み込み)時は逆流量が減少するまでバルブV2を徐々に段階的に開操作する(このとき、各段階で、正常時では逆流が発生しないこと、異常時では流量が安定することをそれぞれ確認する)。
(7)バルブV2を徐々に段階的に全閉する(このとき、各開度で、正常時では流量が発生しないこと、異常時では流量が安定することをそれぞれ確認する)。
(8)データの収録を終了する。
(9)加圧タンク6を用いて、二次側圧力を0.1MPaに設定し、上記(1)〜(8)の手順を繰り返す。
Subsequently, an experiment under a negative pressure was performed by the following procedure using the configuration shown in FIG. The valve V1 was always fully opened, and the valves V2 and V3 were operated according to the following procedure as the operation target valves.
(1) Attach a check valve, fully close valve V2, and fully open valve V3.
(2) The tip of the secondary side pipe is submerged in the water tank.
(3) Each part is ventilated while the valve V2 is fully closed and the valve V3 is fully opened, and the pipe is filled with water.
(4) Start the negative pressure generator and maintain the primary pressure at -85 kPa.
(5) After the valve V3 is fully closed, pressure and flow data recording is started.
(6) When normal, fully open, and when abnormal (wire engagement), gradually open the valve V2 until the reverse flow rate decreases (at this time, there should be no reverse flow at normal stage, Confirm that the flow rate is stable at the time of abnormality).
(7) The valve V2 is fully closed gradually in stages (At this time, it is confirmed at each opening degree that no flow rate is generated at normal time and that the flow rate is stable at abnormal time).
(8) End data recording.
(9) Using the pressurized tank 6, the secondary pressure is set to 0.1 MPa, and the above procedures (1) to (8) are repeated.

実験例4の一例として、図16に正常状態にある供試器具1、図17に異常状態とした供試器具2それぞれについて、二次側を0.1MPaとした負圧下での実験結果を示す。先ず、図16に示される通り、正常時では実験当初は供試器具前後が同圧であるため弁差圧は発生しておらず、一次側を負圧状態とすると直ちに負の弁差圧−0.19MPa程度が発生したが、弁体が正常に機能しているため、逆流は発生しなかった。これに対して、径1.0mmの針金を噛み込ませた異常状態では、実験当初は供試器具の前後が同圧であるため弁差圧は発生せず0MPaであったが、一次側を負圧状態とすると直ちに負の弁差圧が発生し、針金の噛み込みによって弁体と弁座との間に隙間が存在することから、逆流が発生し、さらに負圧を加えると弁差圧が負方向に増大し、これに伴い逆流量も増大したが、弁差圧―0.015MPa、流量−2.5L/min程度まで達すると、瞬時に弁差圧−0.055MPa、流量−2.0L/min程度まで急変動する降伏現象が発生した。降伏後は、一次側の負圧状態を徐々に解消しながら弁差圧を0MPaに近づけるにつれて逆流量も次第に減少しながら停水した。なお、流量については一連の実験操作を通じ、一次側、二次側とも同様に推移し、両者間に差はなかった。また、降伏発生時における弁差圧および流量は供試器具ごとにその値が異なっているものの、上述した傾向はその他の供試器具でも同様であった。ただし、供試器具1の二次側を大気圧とした実験では、降伏現象を確認できなかった。これは負圧による吸引力だけでは弁体と弁座を密着させるために必要な負方向への弁差圧を発生させられなかったことから、降伏しなかったものと考えられる。   As an example of Experimental Example 4, FIG. 16 shows the experimental results under a negative pressure with the secondary side set to 0.1 MPa for the EUT 1 in a normal state and the EUT 2 in an abnormal state in FIG. . First, as shown in FIG. 16, under normal conditions, there is no valve differential pressure at the beginning of the experiment because the pressure is the same before and after the test equipment. If the primary side is in a negative pressure state, the negative valve differential pressure − Although about 0.19 MPa was generated, no back flow occurred because the valve body was functioning normally. On the other hand, in the abnormal state in which a wire having a diameter of 1.0 mm was bitten, the pressure difference was not generated at the beginning of the experiment because the pressure before and after the test equipment was the same pressure, but 0 MPa. As soon as the negative pressure is reached, a negative valve differential pressure is generated, and there is a gap between the valve body and the valve seat due to the biting of the wire. Increased in the negative direction, and the reverse flow increased accordingly. However, when the valve differential pressure reached -0.015 MPa and the flow rate reached approximately -2.5 L / min, the valve differential pressure -0.055 MPa and flow rate -2 were instantaneously reached. A yield phenomenon that suddenly fluctuated to about 0.0 L / min occurred. After yielding, the water flow was stopped while the reverse flow rate gradually decreased as the valve differential pressure approached 0 MPa while gradually eliminating the negative pressure state on the primary side. Note that the flow rate changed in the same way on the primary and secondary sides through a series of experimental operations, and there was no difference between the two. Moreover, although the value of the valve differential pressure and flow rate at the time of yield occurrence differed for each test equipment, the above-mentioned tendency was the same for other test equipment. However, the yield phenomenon could not be confirmed in the experiment in which the secondary side of the EUT 1 was atmospheric pressure. This is considered to be because the negative pressure differential pressure required to bring the valve body and the valve seat into close contact with each other was not generated by the negative pressure alone.

さらに、実施例4において、図18には供試器具1の降伏後の弁差圧−流量特性を、また図19に供試器具2の同特性を示す。これらから明らかなことは、(1)針金を噛み込ませた異常状態においては、逆圧を加えたときと同様の状況が再現されることになり、逆流発生を経て降伏すること、(2)降伏点以上の逆流量は発生しないこと、(3)供試器具ごとに同一の状態を保持している限り、逆圧を加えたときと同様の降伏点が存在し、負圧の大きさにかかわらず弁差圧−流量特性もほぼ一定となることである。   Furthermore, in Example 4, FIG. 18 shows the valve differential pressure-flow rate characteristics after yielding of the test apparatus 1, and FIG. 19 shows the same characteristics of the test apparatus 2. From these, it is clear that (1) In an abnormal state in which the wire is bitten, the same situation as when reverse pressure is applied is reproduced, yielding through the occurrence of backflow, (2) (3) As long as the same state is maintained for each test equipment, there is a yield point similar to when reverse pressure is applied, and the magnitude of negative pressure Regardless, the valve differential pressure-flow rate characteristic is almost constant.

最後に、実施例3と同一の構成および手順に従い、針金の径を替えて、逆圧下での実験を行った。その一例として、供試器具3の二次側を0.6MPaとした逆圧下において、図20には径1.2mmの針金を、図21には径1.6mmの針金を噛み込ませた状態の実験結果を示す。先ず、径1.2mmの針金を噛み込ませたとき、実験当初は供試器具3の前後が同圧であるため弁差圧は発生せず、0MPaであったが、一次側圧力を低下させると直ちに負の弁差圧が発生し、針金噛み込みによって弁体と弁座との間に隙間が存在することから逆流も発生した。さらに一次側圧力を低下させると弁差圧が負方向に増大し、これに伴って逆流量も増大したが、弁差圧−0.05MPa、流量−14.0L/min程度まで達すると、瞬時に弁差圧−0.6MPa、流量−0.5L/min程度まで急変動する降伏現象が発生した。降伏後は、一次側の減圧状態を徐々に解消しながら弁差圧を0MPaに近づけるにつれて、一時的な微増はあるものの、逆流量も次第に減少しながら停水した。これに対して、径1.6mmの針金を噛み込ませたときは、一次側の減圧操作により直ちに負の弁差圧が発生し、逆流が発生するまでは上述した径1.2mmの針金の場合と同じであるが、さらに一次側圧力を低下させても、逆流量が増大するのみで降伏現象を発生するには至らなかった。これは径の太い針金が弁体と弁座との間の隙間を広めた結果、弁体と弁座を密着させるために必要な負方向への弁差圧を発生させられなかったことから、降伏が発生しなかったものと考えられる。なお、上述した傾向は、他の供試器具でも同様に発生し、各供試器具とも針金が太くなるほど降伏発生時の弁差圧および流量とも負方向に増大する傾向にあった。ただし、同径の針金であっても、降伏発生時の弁差圧および流量は、供試器具ごとにその値が異なっており、降伏現象を発生させられなくなる針金径の限界値も供試器具ごとに異なっていた。換言すると、逆圧下で供試器具に針金を噛み込ませた場合には、針金の径が小さいほど同等の弁差圧で発生する逆流量、降伏点における弁差圧および逆流量とも小さくなる傾向であることが明らかとなった。   Finally, according to the same configuration and procedure as in Example 3, the diameter of the wire was changed and an experiment under back pressure was performed. As an example, under a reverse pressure with the secondary side of the test apparatus 3 being 0.6 MPa, a wire having a diameter of 1.2 mm is inserted in FIG. 20 and a wire having a diameter of 1.6 mm is inserted in FIG. The experimental results are shown. First, when a wire with a diameter of 1.2 mm was bitten, at the beginning of the experiment, the pressure across the EUT 3 was the same pressure, so no valve differential pressure was generated and 0 MPa, but the primary pressure was reduced. Immediately after that, a negative valve differential pressure was generated, and a backflow also occurred due to the presence of a gap between the valve body and the valve seat due to the engagement of the wire. When the primary pressure was further reduced, the valve differential pressure increased in the negative direction, and the reverse flow increased accordingly. However, when the valve differential pressure reached -0.05 MPa and the flow rate reached approximately -14.0 L / min, A yield phenomenon that suddenly fluctuated to a valve differential pressure of -0.6 MPa and a flow rate of -0.5 L / min occurred. After the yielding, the water flow was stopped while the reverse flow rate gradually decreased as the valve differential pressure was brought close to 0 MPa while gradually eliminating the reduced pressure state on the primary side, although there was a slight slight increase. On the other hand, when a wire having a diameter of 1.6 mm is bitten, a negative valve differential pressure is immediately generated by the pressure reducing operation on the primary side, and the above-described 1.2 mm diameter wire is kept until a backflow occurs. Although it was the same as the case, even if the primary side pressure was further decreased, the reverse flow only increased and the yield phenomenon was not generated. As a result of the wide diameter wire widening the gap between the valve body and the valve seat, it was not possible to generate the valve differential pressure in the negative direction necessary to adhere the valve body and the valve seat, It is probable that no surrender occurred. In addition, the above-mentioned tendency generate | occur | produced similarly with other test instruments, and there existed a tendency for the valve differential pressure and flow volume at the time of a yield generation to increase in a negative direction, so that each test instrument became thick. However, even if the wire has the same diameter, the value of the valve differential pressure and flow rate at the time of yielding differs for each test device, and the limit value of the wire diameter at which the yield phenomenon cannot be generated is also the test device. Every one was different. In other words, when the wire is bitten into the EUT under reverse pressure, the smaller the wire diameter, the smaller the reverse flow rate generated at the same valve differential pressure, the valve differential pressure at the yield point, and the reverse flow rate tend to decrease. It became clear that.

以上、三種類の供試器具(逆流防止弁)を用意し、正常時と異常時について、正圧下、逆圧下、負圧下による実験を行い、データを収集し解析したが、これを総括すると、供試器具の状態が一定である限り、供試器具前後の圧力条件にかかわらず、降伏から正圧までの範囲でほぼ一定の弁差圧−流量特性を有していることが明らかになると共に、正常時と異常時を比較すると、次の2点が相違することが明らかとなった。
(1)負方向への弁差圧が発生した場合、正常状態で逆流は発生しないが、異物(針金)の噛み込み状態(異常状態)では直ちに逆流が発生すること。
(2)正方向への弁差圧が発生した場合、正常状態では最低作動弁差圧に至るまでは通水を開始しないが、異常状態では直ちに通水を開始すること。
As mentioned above, we prepared three types of test equipment (backflow prevention valve), conducted experiments under normal pressure and under normal pressure, under negative pressure, under negative pressure, and collected and analyzed data. As long as the state of the EUT is constant, it has become clear that it has almost constant valve differential pressure-flow rate characteristics from yield to positive pressure regardless of the pressure conditions before and after the EUT. When comparing the normal time and the abnormal time, it became clear that the following two points were different.
(1) When valve differential pressure in the negative direction occurs, backflow does not occur in a normal state, but backflow immediately occurs when a foreign object (wire) is engaged (abnormal state).
(2) When valve differential pressure in the positive direction occurs, water flow is not started until the minimum operating valve differential pressure is reached in a normal state, but water flow is immediately started in an abnormal state.

より具体的に検討すれば、給水装置では末端の給水栓を開操作すれば常に給水できることから、給水装置各部に常に正圧が加えられており、通常は十分な給水を可能にするために0.2MPa程度の正圧が確保されている。従って、通常に設置されているバネ式逆流防止弁は常に0.2MPa程度の正圧状態となっているはずである。これを前提条件として、図22に示す特性の供試器具について考察すれば、停水時であっても正圧が加わっているため、正常状態での停水時弁差圧は常に最低作動弁差圧0.015MPaを示すこととなり、通水が開始されれば、正流量が発生し、弁差圧も上昇する。従って、通常の停通水操作ではこれが繰り返されるため、弁差圧は常に0.015MPa以上を維持することとなる。   More specifically, since the water supply device can always supply water by opening the terminal faucet, positive pressure is always applied to each part of the water supply device, and normally 0 is necessary to enable sufficient water supply. A positive pressure of about 2 MPa is secured. Therefore, the spring-type backflow prevention valve that is normally installed should always be in a positive pressure state of about 0.2 MPa. Considering the EUT having the characteristics shown in FIG. 22 with this as a precondition, since the positive pressure is applied even when the water is stopped, the valve differential pressure during the normal stop is always the lowest operating valve. A differential pressure of 0.015 MPa is indicated, and when water flow is started, a positive flow rate is generated and the valve differential pressure is also increased. Therefore, since this is repeated in a normal stop water operation, the valve differential pressure is always maintained at 0.015 MPa or more.

一方、異物噛み込み状態では、弁体と弁座の間に隙間が生じていることから、停水時の弁差圧は0MPaを示すこととなり、通水を開始すれば、正流量が発生し、弁差圧も流量に応じて上昇することになる。このため、異物噛み込み状態では、弁差圧が0〜0.015MPaとなる場合も存在する。   On the other hand, in the foreign object biting state, a gap is generated between the valve body and the valve seat, so that the valve differential pressure at the time of water stoppage shows 0 MPa, and a positive flow rate is generated when water flow is started. The valve differential pressure also increases according to the flow rate. For this reason, in the foreign matter biting state, the valve differential pressure may be 0 to 0.015 MPa.

これら以外の状況として、負の弁差圧が発生したとすれば、それは逆流防止弁の異常ではなく、給水圧に異常が生じたこととなる。なお、異物噛み込み状態で負の弁差圧が発生した場合には、直ちに逆流も発生する。これらのことから、バネ式逆流防止弁で起こりうる状況を次に示す。
(1)給水圧・逆流防止弁とも正常状態にあるとき、最低作動弁差圧未満の弁差圧は発生しない。
(2)給水圧が正常で、異物の噛み込みがあるとき、停水〜微小通水量発生時に0〜最低作動弁差圧の弁差圧が発生する。
(3)正常時での最低作動弁差圧未満の正の弁差圧の発生は、給水圧低下が原因である。
(4)負の弁差圧の発生は、給水装置における逆圧または負圧の発生が原因であり、異物噛み込み状態では逆流も伴う。この結果に基づいて、弁差圧および流量を用いた警報設定を行うと、図23に示した表の通りとなる。
As a situation other than these, if a negative valve differential pressure is generated, this is not an abnormality of the check valve but an abnormality in the feed water pressure. In addition, when a negative valve differential pressure is generated while a foreign object is caught, a back flow also immediately occurs. Based on these facts, the following situations may occur with the spring-type check valve.
(1) When both the feedwater pressure and the backflow prevention valve are in a normal state, no valve differential pressure less than the minimum operating valve differential pressure is generated.
(2) When the water supply pressure is normal and foreign matter is caught, a valve differential pressure of 0 to the minimum operating valve differential pressure is generated when the water stoppage or the minute water flow amount is generated.
(3) The occurrence of a positive valve differential pressure that is less than the minimum operating valve differential pressure under normal conditions is caused by a decrease in the feed water pressure.
(4) Generation of the negative valve differential pressure is caused by the generation of a reverse pressure or a negative pressure in the water supply device. If the alarm setting using the valve differential pressure and the flow rate is performed based on this result, the table shown in FIG. 23 is obtained.

なお、警報設定に当たっては、常時計測の必要はないが、逆流防止弁ごとに最低作動弁差圧を設定の上、弁差圧については負の値・0MPa・最低作動弁差圧の判別、流量については、逆流・停水・正流の判別が必要である。各判別値については、計測誤差を加味した幅を設けているが、各センサの分解能は高精度であることが好ましい。警報序列に関しては、逆流発生が明らかな場合を重警報、逆流発生の危険性がある場合およびセンサ異常時を軽警報とした。さらに、本発明によれば、逆流が発生する前に、未然に異物噛み込みによる不具合を検知することが可能である。また、バネ定数が小さくなった場合には、最低作動弁差圧も小さくなるため、経年劣化によるバネ圧低下の検知にも有効である。   It is not necessary to always measure when setting the alarm, but after setting the minimum operating valve differential pressure for each check valve, the valve differential pressure is determined as negative value, 0 MPa, minimum operating valve differential pressure, flow rate For, it is necessary to distinguish between reverse flow, water stoppage, and normal flow. Each discriminant value has a width that takes into account the measurement error, but the resolution of each sensor is preferably highly accurate. As for the alarm sequence, a heavy warning is given when the occurrence of backflow is obvious, a light warning is given when there is a risk of backflow occurrence and when the sensor is abnormal. Furthermore, according to the present invention, it is possible to detect a problem caused by the biting of a foreign substance before the backflow occurs. Further, when the spring constant decreases, the minimum operating valve differential pressure also decreases, which is effective for detecting a decrease in spring pressure due to aging.

本発明システムの回路図Circuit diagram of the system of the present invention 正圧下実験の回路図(実施例1)Circuit diagram of experiment under positive pressure (Example 1) 実施例1の実験結果(正常状態)Experimental results of Example 1 (normal state) 実施例1の実験結果(異常状態)Experimental results of Example 1 (abnormal state) 実施例1の弁差圧−流量特性(供試器具1)Valve differential pressure-flow rate characteristics of Example 1 (Test equipment 1) 実施例1の弁差圧−流量特性(供試器具2)Valve differential pressure-flow rate characteristics of Example 1 (Test equipment 2) 実施例1の弁差圧−流量特性(供試器具3)Valve differential pressure-flow rate characteristics of Example 1 (Test equipment 3) 正常状態にある逆圧下実験の回路図(実施例2)Circuit diagram of back pressure experiment in normal state (Example 2) 異常状態にある逆圧下実験の回路図(実施例3)Circuit diagram of back pressure experiment in abnormal state (Example 3) 実施例2の実験結果(供試器具3の0.6MPa逆圧下)Experimental results of Example 2 (under 0.6 MPa back pressure of the test equipment 3) 実施例3の実験結果(供試器具2の0.15MPa逆圧下)Experimental result of Example 3 (under test instrument 2 under 0.15 MPa back pressure) 実施例3の弁差圧−流量特性(供試器具1)Valve differential pressure-flow rate characteristics of Example 3 (test equipment 1) 実施例3の弁差圧−流量特性(供試器具2)Valve differential pressure-flow rate characteristics of Example 3 (test equipment 2) 実施例3の弁差圧−流量特性(供試器具3)Valve differential pressure-flow rate characteristics of Example 3 (Test equipment 3) 負圧下実験の回路図(実施例4)Circuit diagram of negative pressure experiment (Example 4) 実施例4の実験結果(正常状態の供試器具1)Experimental result of Example 4 (test equipment 1 in a normal state) 実施例4の実験結果(正常状態の供試器具2)Experimental results of Example 4 (test equipment 2 in a normal state) 実施例4の弁差圧−流量特性(供試器具1)Valve differential pressure-flow rate characteristics of Example 4 (test equipment 1) 実施例4の弁差圧−流量特性(供試器具2)Valve differential pressure-flow rate characteristics of Example 4 (test equipment 2) 実施例5の実験結果(1.2mm径の針金噛み込み)Experimental result of Example 5 (1.2 mm diameter wire biting) 実施例5の実験結果(1.6mm径の針金噛み込み)Experimental result of Example 5 (1.6 mm diameter wire biting) 別例の供試器具の弁差圧−流量特性Valve differential pressure-flow rate characteristics of another test equipment 警報設定の一例Example of alarm setting

符号の説明Explanation of symbols

1 バネ式逆流防止弁
2 圧力センサ
3 流量センサ
4 データロガ装置
5 判別装置
6 加圧タンク
7 負圧発生装置
V1〜V3 バルブ
DESCRIPTION OF SYMBOLS 1 Spring type backflow prevention valve 2 Pressure sensor 3 Flow rate sensor 4 Data logger device 5 Discriminating device 6 Pressurization tank 7 Negative pressure generator V1-V3 valve

Claims (5)

バネ圧によって弁体を通水方向とは逆向きに付勢したバネ式の逆流防止弁と近接して、その一次側および二次側に一対の圧力センサを設け、流路上の前記逆流防止弁近傍に少なくとも一以上の流量センサを設け、当該一対の圧力センサにより逆流防止弁の一次側圧力と二次側圧力の弁差圧を監視可能とし、当該流量センサにより正流、逆流及び停水を判別可能としたことを特徴とするバネ式逆流防止弁の異常検知システム。   Proximity to a spring-type backflow prevention valve energized in the direction opposite to the water flow direction by the spring pressure, a pair of pressure sensors are provided on the primary side and the secondary side, and the backflow prevention valve on the flow path At least one or more flow sensors are provided in the vicinity, and the differential pressure between the primary side pressure and the secondary side pressure of the backflow prevention valve can be monitored by the pair of pressure sensors, and normal flow, backflow and water stoppage can be monitored by the flow rate sensor. An abnormality detection system for a spring-type backflow prevention valve characterized by being distinguishable. バネ圧によって弁体を通水方向とは逆向きに付勢したバネ式の逆流防止弁と、当該逆流防止弁と近接して、その一次側と二次側に設置した一対の圧力センサと、流路上の前記逆流防止弁近傍に設置した少なくとも一以上の流量センサと、当該流量センサおよび圧力センサの出力を取り込み、時系列に一次側と二次側の圧力データ及び流量データを収集するデジタルデータ収集装置と、予め前記逆流防止弁が正圧時に通水を開始する最低作動弁差圧を記憶すると共に、前記デジタルデータ収集装置で収集した圧力データに基づいて一次側圧力と二次側圧力の差である弁差圧を算出すると共に、流量デ−タに基づいて正流、逆流および停水を判別し、正流時または停水時において、前記弁差圧が前記最低作動弁差圧よりも小さい場合は警告を発する判別装置とからなることを特徴としたバネ式逆流防止弁の異常検知システム。   A spring-type backflow prevention valve biased in the direction opposite to the water flow direction by the spring pressure, a pair of pressure sensors installed on the primary side and the secondary side in the vicinity of the backflow prevention valve, At least one or more flow sensors installed in the vicinity of the backflow prevention valve on the flow path, and digital data that takes in the outputs of the flow sensors and pressure sensors and collects primary and secondary pressure data and flow data in time series The collecting device and the minimum operating valve differential pressure that starts the water flow when the backflow prevention valve is positive pressure are stored in advance, and the primary side pressure and the secondary side pressure are based on the pressure data collected by the digital data collecting device. The valve differential pressure, which is the difference, is calculated, and the normal flow, the reverse flow, and the water stop are discriminated based on the flow rate data. At the time of the normal flow or the water stop, the valve differential pressure is greater than the minimum operating valve differential pressure. If it is too small, warn Abnormality detection system of spring-loaded check valve which is characterized by comprising a discrimination device. さらに、逆流が判別され、尚かつ、負方向の弁差圧が算出された場合は、重度の警告を発する請求項2記載のバネ式逆流防止弁の異常検知システム。   3. The abnormality detection system for a spring-type backflow prevention valve according to claim 2, wherein a serious warning is issued when the backflow is determined and the valve differential pressure in the negative direction is calculated. さらに、弁差圧が最低作動弁定差圧以上であっても、逆流を判別した場合は警報を発する請求項2または3記載のバネ式逆流防止弁の異常検知システム。   4. The abnormality detection system for a spring-type backflow prevention valve according to claim 2 or 3, wherein a warning is issued when a backflow is determined even if the valve differential pressure is equal to or greater than a minimum operating valve constant differential pressure. さらに、正流時において、弁差圧が最低作動弁差圧以上であっても、通水量が規定値未満の場合は、警報を発する請求項2、3または4記載のバネ式逆流防止弁の異常検知システム。 Furthermore, even if the valve differential pressure is greater than or equal to the minimum operating valve differential pressure at the time of normal flow, if the water flow rate is less than the specified value, an alarm is issued. Anomaly detection system.
JP2006287500A 2006-10-23 2006-10-23 Failure detection system of spring check valve Pending JP2008196850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006287500A JP2008196850A (en) 2006-10-23 2006-10-23 Failure detection system of spring check valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006287500A JP2008196850A (en) 2006-10-23 2006-10-23 Failure detection system of spring check valve

Publications (1)

Publication Number Publication Date
JP2008196850A true JP2008196850A (en) 2008-08-28

Family

ID=39755951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006287500A Pending JP2008196850A (en) 2006-10-23 2006-10-23 Failure detection system of spring check valve

Country Status (1)

Country Link
JP (1) JP2008196850A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102879186A (en) * 2011-07-16 2013-01-16 施杰 TST2811 valve signal control analyzer
CN104236870A (en) * 2013-06-06 2014-12-24 纬创资通股份有限公司 Vacuum solenoid detector and method of detecting same
CN108918103A (en) * 2018-04-18 2018-11-30 合肥通用机械研究院有限公司 A kind of waterpower control Dynamic Characteristics of Non-Return Valve test macro and test method
CN109029943A (en) * 2018-06-21 2018-12-18 中广核研究院有限公司 Two loop non-return valve action test sets
CN117268743A (en) * 2023-11-22 2023-12-22 山东力威液压技术有限公司 Fault diagnosis method for proportional flow valve

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102879186A (en) * 2011-07-16 2013-01-16 施杰 TST2811 valve signal control analyzer
CN104236870A (en) * 2013-06-06 2014-12-24 纬创资通股份有限公司 Vacuum solenoid detector and method of detecting same
CN108918103A (en) * 2018-04-18 2018-11-30 合肥通用机械研究院有限公司 A kind of waterpower control Dynamic Characteristics of Non-Return Valve test macro and test method
CN109029943A (en) * 2018-06-21 2018-12-18 中广核研究院有限公司 Two loop non-return valve action test sets
CN117268743A (en) * 2023-11-22 2023-12-22 山东力威液压技术有限公司 Fault diagnosis method for proportional flow valve
CN117268743B (en) * 2023-11-22 2024-02-09 山东力威液压技术有限公司 Fault diagnosis method for proportional flow valve

Similar Documents

Publication Publication Date Title
JP2008196850A (en) Failure detection system of spring check valve
AU2009301140B2 (en) Inert gas fire extinguisher for reducing the risk and for extinguishing fires in a protected space
US7231827B2 (en) Pressure transducer
CN102667422B (en) From monitoring stream measuring device and the method for its operation
AU2010264270A1 (en) Method and apparatus for monitoring fluids
KR102208146B1 (en) Gas leak monitoring system
WO2015181609A1 (en) Means and methods for detecting leakage in ball valves
US20130341055A1 (en) Electrically operated gas vent for fire protection sprinkler systems
US20150107364A1 (en) Pressure Transmitter
CN201060203Y (en) Suction type combustible gas monitoring alarming device
CN103493033B (en) High-integrity protective system and test thereof and method of operating
JP2013170992A (en) Water quality management method and water quality management system
KR20160120556A (en) Pressure sensor failure diagnosis method of a fuel cell system
US9684293B2 (en) Refrigerant relief valve monitoring system and method
JP4968571B2 (en) Differential pressure measuring device with pressure guiding tube clogging diagnosis mechanism
US20180172577A1 (en) Method of measuring metal loss from equipment in process systems
US20200209097A1 (en) Method and Apparatus for Detecting Slow Leaks
CN110411677A (en) A kind of valve leaks and cavitation monitoring device and monitoring method based on underwater sound signal
CN105197205A (en) Diving equipment, ground monitoring platform and diving breathing monitoring system
CN104330311A (en) Device and method for detecting pressure pipeline
JP4394520B2 (en) Method and apparatus for detecting leakage of fluid flowing through a pipeline
CN115434979A (en) Fault detection device for hydraulic system
KR100478854B1 (en) Apparatus to test pressure for a tube
JP2002333381A (en) Detection method for leak of hydrogen gas
EP3447467B1 (en) Leakage prevention systems and methods