JP2008196371A - Exhaust gas control device of internal combustion engine - Google Patents

Exhaust gas control device of internal combustion engine Download PDF

Info

Publication number
JP2008196371A
JP2008196371A JP2007031930A JP2007031930A JP2008196371A JP 2008196371 A JP2008196371 A JP 2008196371A JP 2007031930 A JP2007031930 A JP 2007031930A JP 2007031930 A JP2007031930 A JP 2007031930A JP 2008196371 A JP2008196371 A JP 2008196371A
Authority
JP
Japan
Prior art keywords
addition
fuel
exhaust
exhaust gas
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007031930A
Other languages
Japanese (ja)
Inventor
Yasuaki Nakano
泰彰 仲野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007031930A priority Critical patent/JP2008196371A/en
Publication of JP2008196371A publication Critical patent/JP2008196371A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress fluctuation of combustion due to addition of fuel in an exhaust gas control device equipped with an exhaust gas recirculating device for recirculating exhaust gas from downstream of a fuel adding valve provided in an exhaust passage. <P>SOLUTION: An exhaust emission control device such as a DPF or a NOx occlusion reduction catalyst is provided in the exhaust passage of the internal combustion engine. The fuel adding valve is provided on the upstream side of the exhaust emission control device. Further, a low pressure loop EGR device for recirculating exhaust gas from the upstream side of the exhaust emission control device to the intake side, and a high pressure loop EGR device for recirculating exhaust gas from the downstream side of the exhaust emission control device to the intake side are provided. When addition of fuel is performed by the fuel adding valve while the low pressure loop EGR device is operated, the added fuel is returned to the intake side by the low pressure loop EGR device which may cause fluctuation of combustion. Consequently, the adding amount of fuel and an adding cycle are controlled according to the operating state of the EGR devices. Preferably, when the low pressure loop EGR device is operated, the adding amount is reduced and the addition cycle is shortened compared to when only the high pressure loop EGR device is operated. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、排気ガスを排気通路から吸気通路へ還流する排気還流通路を備える内燃機関の制御に関する。   The present invention relates to control of an internal combustion engine including an exhaust gas recirculation passage that recirculates exhaust gas from an exhaust passage to an intake passage.

従来から、排気通路に燃料を添加する燃料添加弁を設け、触媒やフィルタなどの排気浄化装置の再生のために燃料添加を行う内燃機関の排気浄化システムが知られている。具体的には、排気浄化装置として窒素酸化物(NOx)の吸蔵還元型触媒が設けられている場合、燃料添加弁から燃料を添加することにより、排気をリッチ状態としてNOxを還元するNOx還元処理が行われる。また、NOx吸蔵還元型触媒に吸蔵された硫黄酸化物(SOx)を離脱させる処理(S被毒再生)においても、燃料添加弁から燃料添加を行う。一方、排気浄化装置として粒子状物質を処理するフィルタ(DPF)が設けられている場合、燃料添加によりフィルタに堆積した粒子状物質を焼失させるPM再生処理が実行される。   2. Description of the Related Art Conventionally, there is known an exhaust purification system for an internal combustion engine that is provided with a fuel addition valve for adding fuel to an exhaust passage and adds fuel for regeneration of an exhaust purification device such as a catalyst or a filter. Specifically, in the case where a nitrogen oxide (NOx) storage reduction catalyst is provided as an exhaust purification device, NOx reduction treatment for reducing NOx in a rich state by adding fuel from a fuel addition valve. Is done. In addition, fuel is added from the fuel addition valve also in the process of removing sulfur oxide (SOx) stored in the NOx storage reduction catalyst (S poisoning regeneration). On the other hand, when a filter (DPF) for processing particulate matter is provided as an exhaust purification device, PM regeneration processing is performed to burn off particulate matter deposited on the filter by adding fuel.

上記のような排気浄化システムでは、燃料添加弁から燃料添加を行わない時間が長くなると、燃料添加弁の先端が炭化されて詰まりが発生する恐れがある。そこで、触媒などの再生のために燃料添加が所定時間以上行われない場合には、燃料添加弁の詰まりを防止する目的で、強制的な燃料添加が実施される(これを「詰まり防止添加」とも呼ぶ。)。このような手法の一例が特許文献1に記載されている。   In the exhaust purification system as described above, if the time during which no fuel is added from the fuel addition valve becomes long, the tip of the fuel addition valve may be carbonized and clogged. Therefore, when fuel addition is not performed for a predetermined time or more for regeneration of the catalyst or the like, forced fuel addition is performed for the purpose of preventing clogging of the fuel addition valve (this is referred to as “clogging prevention addition”). Also called.) An example of such a technique is described in Patent Document 1.

一方、内燃機関から排気通路に排出される排気ガスの一部を吸気側に還流させることにより燃焼温度を低下させ、NOxの生成を抑制する排気還流(EGR)装置が知られている。特許文献2には、排気通路の触媒より上流側の位置から排気ガスを吸気側に還流させるEGR装置に加えて、触媒より下流側の位置から排気ガスを吸気側に還流させるEGR装置を備える排気浄化システムが記載されている。   On the other hand, an exhaust gas recirculation (EGR) device is known in which a part of exhaust gas discharged from an internal combustion engine to the exhaust passage is recirculated to the intake side to lower the combustion temperature and suppress the generation of NOx. In Patent Document 2, in addition to an EGR device that recirculates exhaust gas from a position upstream of the catalyst in the exhaust passage to the intake side, an exhaust gas that includes an EGR device that recirculates exhaust gas from a position downstream of the catalyst to the intake side. A purification system is described.

特開2005−106047号公報JP 2005-106047 A 特開2005−264821号公報JP 2005-264821 A

特許文献2のように、燃料添加弁より下流側から排気ガスを吸気側に還流させるEGR装置を備える排気浄化システムの場合、詰まり防止添加により排気通路に添加された燃料の一部がEGR経路を通って吸気型に回り込むため、混合気の空燃比に影響を与えるなどして内燃機関の燃焼が不安定になることがある。その結果、トルク変動が生じ、ドライバビリティーが悪化するなどの不具合が生じうる。   As in Patent Document 2, in the case of an exhaust purification system including an EGR device that recirculates exhaust gas from the downstream side to the intake side from the fuel addition valve, part of the fuel added to the exhaust passage due to clogging prevention addition passes through the EGR path. Since the air passes through to the intake type, the combustion of the internal combustion engine may become unstable, for example, by affecting the air-fuel ratio of the air-fuel mixture. As a result, torque fluctuations may occur and problems such as drivability may deteriorate.

本発明は、以上の点に鑑みてなされたものであり、排気通路に設けられた燃料添加弁より下流から排気を還流させる排気還流装置を備える排気浄化装置において、燃料添加による燃焼の変動を抑制することを目的とする。   The present invention has been made in view of the above points, and suppresses fluctuations in combustion due to fuel addition in an exhaust gas purification device including an exhaust gas recirculation device that recirculates exhaust gas downstream from a fuel addition valve provided in an exhaust passage. The purpose is to do.

本発明の1つの観点では、内燃機関の排気制御装置は、前記内燃機関の排気通路に設けられた排気浄化装置と、前記排気通路における前記排気浄化装置の上流側位置に設けられた燃料添加手段と、前記排気通路における前記排気浄化装置の上流側位置から前記内燃機関の吸気側へ排気を還流させる第1の排気還流装置と、前記排気通路における前記排気浄化装置の下流側位置から前記内燃機関の吸気側へ排気を還流させる第2の排気還流装置と、前記燃料添加手段を使用して排気中に燃料を添加する添加制御手段と、を備え、前記添加制御手段は、前記排気還流装置の動作状態に応じて、燃料の添加量及び添加周期を制御する。   In one aspect of the present invention, an exhaust control device for an internal combustion engine includes an exhaust purification device provided in an exhaust passage of the internal combustion engine, and fuel addition means provided in an upstream position of the exhaust purification device in the exhaust passage. A first exhaust gas recirculation device that recirculates exhaust gas from an upstream position of the exhaust gas purification device in the exhaust passage to an intake air side of the internal combustion engine, and an internal combustion engine from a downstream position of the exhaust gas purification device in the exhaust passage. A second exhaust gas recirculation device that recirculates exhaust gas to the intake side of the exhaust gas, and an addition control device that adds fuel to the exhaust gas using the fuel addition device, the addition control device comprising: The amount and period of fuel addition are controlled according to the operating state.

上記の内燃機関の排気制御装置には、例えばDPF、NOx吸蔵還元触媒などの排気浄化装置が設けられている。排気浄化装置の上流側には、燃料添加弁などの燃料添加手段が設けられる。燃料添加手段は、DPFに対するPM再生、NOx吸蔵還元触媒に対するNOx還元及びS被毒回復などのために、排気通路に燃料を添加することができる。また、排気浄化装置の上流側から吸気側へ排気を還流させる第1の排気還流装置と、排気浄化装置の下流側から吸気側へ排気を還流させる第2の排気還流装置とが設けられる。   The exhaust control device for the internal combustion engine is provided with an exhaust purification device such as a DPF and a NOx storage reduction catalyst. Fuel addition means such as a fuel addition valve is provided upstream of the exhaust purification device. The fuel addition means can add fuel to the exhaust passage for PM regeneration with respect to the DPF, NOx reduction with respect to the NOx storage reduction catalyst, recovery of S poisoning, and the like. In addition, a first exhaust gas recirculation device that recirculates exhaust gas from the upstream side of the exhaust gas purification device to the intake side and a second exhaust gas recirculation device that recirculates exhaust gas from the downstream side of the exhaust gas purification device to the intake side are provided.

第2の排気還流装置を動作させている間、燃料添加手段により燃料添加を行うと、添加した燃料が第2の排気還流装置により吸気側へ戻され、燃焼の変動を生じさせることがある。特に、一回の燃料添加による燃料添加量が多いほど、一度に吸気側へ戻される燃料量も大きくなり、燃焼の変動度合いが大きくなる。そこで、排気還流装置の動作状態に応じて、燃料の添加量及び添加周期を制御する。   If fuel addition is performed by the fuel addition means while the second exhaust gas recirculation device is operating, the added fuel may be returned to the intake side by the second exhaust gas recirculation device, causing fluctuations in combustion. In particular, as the amount of fuel added by a single fuel addition increases, the amount of fuel that is returned to the intake side at a time also increases, and the degree of fluctuation in combustion increases. Therefore, the amount and period of fuel addition are controlled in accordance with the operating state of the exhaust gas recirculation device.

上記の内燃機関の排気制御装置の一態様では、前記制御手段は、前記第2の排気還流装置を動作させるときには、前記第1の排気還流装置のみを動作させるときと比較して、前記添加量を少なくするとともに前記添加周期を短くする。   In one aspect of the exhaust gas control apparatus for an internal combustion engine, the control means operates when the second exhaust gas recirculation device is operated, compared to when only the first exhaust gas recirculation device is operated. And the addition period is shortened.

この態様では、第2の排気還流装置が動作するときは、動作しないときと比較して、一回の燃料添加量を少なくするとともに、その分添加周期を短くする。これにより、一度に吸気側へ回り込む燃料量も少なくなり、燃焼の変動度合いを小さくすることができる。   In this aspect, when the second exhaust gas recirculation device operates, the amount of fuel added at one time is reduced and the addition cycle is shortened by that amount compared to when the second exhaust gas recirculation device does not operate. As a result, the amount of fuel that travels to the intake side at a time is reduced, and the degree of combustion fluctuation can be reduced.

上記の内燃機関の排気制御装置の他の一態様では、前記制御手段は、前記第1及び第2の排気還流装置の両方を動作させるときには、前記添加量及び前記添加周期が、前記第1の排気還流装置のみを動作させるときと前記第2の排気還流装置のみを動作させるときの間の値とする。第1及び第2の排気還流装置の両方が動作する場合には、添加量及び添加周期を、第1の排気還流装置のみが動作するときと、第2の排気還流装置のみが動作するときの間の値に設定することにより、燃焼変動を抑えることができる。   In another aspect of the exhaust gas control apparatus for an internal combustion engine, when the control means operates both the first and second exhaust gas recirculation apparatuses, the addition amount and the addition cycle are determined by the first control unit. It is a value between when only the exhaust gas recirculation device is operated and when only the second exhaust gas recirculation device is operated. When both the first and second exhaust gas recirculation devices operate, the addition amount and the addition cycle are the same as those when only the first exhaust gas recirculation device operates and when only the second exhaust gas recirculation device operates. By setting the value between, combustion fluctuation can be suppressed.

好適な例では、前記制御手段は、前記燃料添加手段の詰まり防止のために燃料を添加する。特に好適な例では、前記排気浄化装置の再生のために排気に燃料を添加する再生制御を実行する手段を備え、前記添加制御手段は、前記再生制御が実行されていないときに、前記燃料添加手段の詰まり防止のために燃料を添加する。これにより、排気浄化装置の再生のために燃料添加がなされていないときに、内燃機関の燃焼変動を抑制しつつ、効果的に燃料添加手段の詰まりを防止することができる。   In a preferred example, the control means adds fuel to prevent clogging of the fuel addition means. In a particularly preferred example, a means for executing regeneration control for adding fuel to exhaust gas for regeneration of the exhaust gas purification device is provided, and the addition control means is configured to add the fuel when the regeneration control is not executed. Add fuel to prevent clogging. Thereby, when fuel addition is not performed for regeneration of the exhaust purification device, it is possible to effectively prevent clogging of the fuel addition means while suppressing combustion fluctuation of the internal combustion engine.

以下、図面を参照して本発明を実施するための最良の形態について説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

[装置構成]
図1は、本発明の実施形態に係る内燃機関の排気制御装置の概略構成を示すブロック図である。なお、図1において、実線の矢印は吸気及び排気の流れを示し、破線の矢印は制御信号を示す。
[Device configuration]
FIG. 1 is a block diagram showing a schematic configuration of an exhaust control device for an internal combustion engine according to an embodiment of the present invention. In FIG. 1, solid arrows indicate the flow of intake and exhaust, and broken arrows indicate control signals.

図1において、内燃機関の排気制御装置100は、第1〜第4(#1〜#4)気筒を有する直列4気筒の内燃機関(以下、「エンジン」という。)10を備える。エンジン10の各気筒は、吸気マニホールド11及び排気マニホールド12に接続されている。エンジン10は、各気筒に設けられた燃料噴射弁15と、各燃料噴射弁15に対して高圧の燃料を供給するコモンレール14とを備え、コモンレールには不図示の燃料ポンプにより燃料が高圧状態で供給される。燃料噴射弁15からの燃料噴射量及び噴射タイミングは、ECU7から供給される制御信号S4により制御される。   In FIG. 1, an exhaust control device 100 for an internal combustion engine includes an in-line four-cylinder internal combustion engine (hereinafter referred to as “engine”) 10 having first to fourth (# 1 to # 4) cylinders. Each cylinder of the engine 10 is connected to an intake manifold 11 and an exhaust manifold 12. The engine 10 includes a fuel injection valve 15 provided in each cylinder, and a common rail 14 that supplies high-pressure fuel to each fuel injection valve 15. The common rail is in a high-pressure state by a fuel pump (not shown). Supplied. The fuel injection amount and injection timing from the fuel injection valve 15 are controlled by a control signal S4 supplied from the ECU 7.

吸気マニホールド11に接続された吸気通路20には、エンジン10への流入空気量を計測するエアフローメータ21と、スロットル22弁と、ターボチャージャ23のコンプレッサ23aと、吸気を冷却するインタークーラ24とが設けられている。エアフローメータ21からの検出信号S1はECU7へ供給される。また、スロットル弁22の開度は、ECU7から供給される制御信号S2により制御される。   In the intake passage 20 connected to the intake manifold 11, there are an air flow meter 21 that measures the amount of air flowing into the engine 10, a throttle 22 valve, a compressor 23 a of the turbocharger 23, and an intercooler 24 that cools the intake air. Is provided. The detection signal S1 from the air flow meter 21 is supplied to the ECU 7. The opening degree of the throttle valve 22 is controlled by a control signal S2 supplied from the ECU 7.

排気マニホールド12に接続された排気通路25には、ターボチャージャ23のタービン23bが設けられている。排気通路25のタービン23bの上流位置と、吸気通路20のインタークーラ24より下流位置とは、EGR通路31により接続されている。EGR通路31には、EGR量を制御するためのEGR弁33が設けられている。EGR弁33の開度は、ECU7から供給される制御信号S3により制御される。なお、このようにEGRガスの取り出し口がターボチャージャのタービンの上流側にあるEGR装置を「高圧ループ(HPL)EGR装置」と呼ぶ。   A turbine 23 b of a turbocharger 23 is provided in the exhaust passage 25 connected to the exhaust manifold 12. The upstream position of the turbine 23 b in the exhaust passage 25 and the downstream position from the intercooler 24 in the intake passage 20 are connected by an EGR passage 31. The EGR passage 31 is provided with an EGR valve 33 for controlling the EGR amount. The opening degree of the EGR valve 33 is controlled by a control signal S3 supplied from the ECU 7. The EGR device in which the outlet for EGR gas is located upstream of the turbine of the turbocharger is referred to as a “high pressure loop (HPL) EGR device”.

排気通路25のタービン23bより下流位置にはDPF(Diesel Particulate Filter)36が設けられている。DPF36は、排気中に含まれる粒子状物質などを吸着する。排気通路25のDPF36より下流位置には排気絞り弁41が設けられている。排気絞り弁25の開度は、ECU7から供給される制御信号S7により制御される。   A DPF (Diesel Particulate Filter) 36 is provided at a position downstream of the turbine 23 b in the exhaust passage 25. The DPF 36 adsorbs particulate matter contained in the exhaust gas. An exhaust throttle valve 41 is provided at a position downstream of the DPF 36 in the exhaust passage 25. The opening degree of the exhaust throttle valve 25 is controlled by a control signal S7 supplied from the ECU 7.

また、排気通路25のタービン23bより下流側の位置と、吸気通路20のコンプレッサ23aより上流側の位置とを接続するEGR通路35が設けられている。より具体的には、EGR通路35は、排気通路35に設けられたDPF36より下流側の位置から排気ガス(EGRガス)を取り出すように構成されている。EGR通路35にはEGRガス量を制御するためのEGR弁37と、EGRクーラ39とが設けられており、EGR弁37の開度はECU7からの制御信号S6により制御される。なお、このようにEGRガスの取り出し口がターボチャージャのタービンの下流側にあるEGR装置を「低圧ループ(LPL)EGR装置」と呼ぶ。   Further, an EGR passage 35 that connects a position of the exhaust passage 25 downstream of the turbine 23b and a position of the intake passage 20 upstream of the compressor 23a is provided. More specifically, the EGR passage 35 is configured to extract exhaust gas (EGR gas) from a position downstream of the DPF 36 provided in the exhaust passage 35. The EGR passage 35 is provided with an EGR valve 37 for controlling the amount of EGR gas and an EGR cooler 39, and the opening degree of the EGR valve 37 is controlled by a control signal S6 from the ECU 7. An EGR device having an EGR gas outlet on the downstream side of the turbine of the turbocharger is referred to as a “low pressure loop (LPL) EGR device”.

排気マニホールド12には、気筒毎に設けられた燃料噴射弁15とは別に、未燃燃料を噴射する燃料添加弁17が設けられている。燃料添加弁17からの燃料添加量はECU7から供給される制御信号S5により制御される。燃料添加弁17は、主として排気通路に設けられるDPF36のPM再生処理のために排気中に燃料を添加する。   In addition to the fuel injection valve 15 provided for each cylinder, the exhaust manifold 12 is provided with a fuel addition valve 17 for injecting unburned fuel. The amount of fuel added from the fuel addition valve 17 is controlled by a control signal S5 supplied from the ECU 7. The fuel addition valve 17 adds fuel into the exhaust mainly for PM regeneration processing of the DPF 36 provided in the exhaust passage.

ECU7は、図示しないCPU、ROM、RAMなどを有し、上記のように内燃機関の制御装置100の各要素を統括的に制御する。   The ECU 7 includes a CPU, a ROM, a RAM, and the like (not shown), and comprehensively controls each element of the control device 100 for the internal combustion engine as described above.

上記の構成において、DPF36は本発明における排気浄化装置に相当し、EGR通路31などにより構成される高圧ループEGR装置は第1の排気還流装置に相当し、EGR通路35などにより構成される低圧ループEGR装置は第2の排気還流装置に相当する。また、燃料添加弁17は燃料添加手段に相当し、ECU7は添加制御手段に相当する。   In the above configuration, the DPF 36 corresponds to the exhaust purification device in the present invention, and the high-pressure loop EGR device configured by the EGR passage 31 and the like corresponds to the first exhaust gas recirculation device, and the low-pressure loop configured by the EGR passage 35 and the like. The EGR device corresponds to a second exhaust gas recirculation device. The fuel addition valve 17 corresponds to fuel addition means, and the ECU 7 corresponds to addition control means.

図2は、EGR装置の動作領域を示すマップの例であり、具体的にはエンジンの回転数及び負荷と、高圧ループEGR装置及び低圧ループEGR装置の動作領域との関係を示している。   FIG. 2 is an example of a map showing the operation region of the EGR device, and specifically shows the relationship between the engine speed and load and the operation regions of the high-pressure loop EGR device and the low-pressure loop EGR device.

図示のように、エンジン回転数が低く、エンジン負荷が小さい領域では、ECU7は高圧ループEGR装置のみを動作させる。一方、エンジンの回転数が高く、要求負荷も高い領域では、ECU7は低圧ループEGR装置のみを動作させる。エンジンの回転数及び要求負荷が、高圧ループEGR装置の動作領域と低圧ループEGR装置の動作領域の間にある場合には、ECU7は高圧ループEGR装置と低圧ループEGR装置の両方を動作させる。高圧ループEGR装置と低圧ループEGR装置の両方を同時に動作させる領域を、「MPL(Mixed Pressure Loop)領域」と呼ぶ。なお、具体的には、ECU7は、図示しないクランク角センサなどによりエンジンの回転数を取得するとともに、アクセル開度センサの出力や燃料噴射量などに基づいてエンジン負荷を算出する。そして、EGR弁33及び37に制御信号S3及びS6を供給して、高圧ループEGR装置及び低圧ループEGR装置の動作を制御する。   As shown in the figure, the ECU 7 operates only the high-pressure loop EGR device in a region where the engine speed is low and the engine load is small. On the other hand, in the region where the engine speed is high and the required load is high, the ECU 7 operates only the low-pressure loop EGR device. When the engine speed and the required load are between the operating region of the high-pressure loop EGR device and the operating region of the low-pressure loop EGR device, the ECU 7 operates both the high-pressure loop EGR device and the low-pressure loop EGR device. A region where both the high-pressure loop EGR device and the low-pressure loop EGR device are operated simultaneously is referred to as an “MPL (Mixed Pressure Loop) region”. Specifically, the ECU 7 acquires the engine speed by a crank angle sensor (not shown) or the like, and calculates the engine load based on the output of the accelerator opening sensor, the fuel injection amount, and the like. Then, control signals S3 and S6 are supplied to the EGR valves 33 and 37 to control the operations of the high pressure loop EGR device and the low pressure loop EGR device.

[詰まり防止添加制御]
次に、本発明による詰まり防止添加制御について説明する。
[Clogging prevention addition control]
Next, clogging prevention addition control according to the present invention will be described.

詰まり防止添加は、PM再生などの触媒再生のための燃料添加が実行されておらず、かつ、燃料添加弁17から所定時間以上燃料添加が実施されていないときに、所定時間毎に行われる。しかし、低圧ループEGR装置が動作している間に、燃料添加弁17により詰まり防止添加を行うと、添加した未燃燃料がEGR通路35を経由して吸気通路20に戻されるため、燃焼が不安定になることがある。通常、詰まり防止添加としては、一定周期で一定量の燃料を添加するため、添加した燃料が周期的に吸気側へ送られ、周期的に空燃比がリッチになるなどして燃焼状態が変動する。特に一回の燃料添加量が大きいほど空燃費の一時的な変動が大きくなり、周期的に燃焼状態が大きく変動することとなる。従って、燃焼の変動を抑制するためには、詰まり防止添加における一回の燃料添加量(以下、単に「添加量」と呼ぶ。)を少なくするとともに、その分添加周期を短くすることが有効である。   The clogging prevention addition is performed every predetermined time when fuel addition for catalyst regeneration such as PM regeneration is not performed and fuel addition is not performed from the fuel addition valve 17 for a predetermined time or more. However, if clogging prevention addition is performed by the fuel addition valve 17 while the low-pressure loop EGR device is operating, the added unburned fuel is returned to the intake passage 20 via the EGR passage 35, so that combustion is not performed. May become stable. Normally, as a clogging prevention addition, a constant amount of fuel is added at a constant cycle, so the added fuel is periodically sent to the intake side, and the combustion state fluctuates, for example, the air-fuel ratio becomes rich periodically. . In particular, as the amount of fuel added at one time increases, the temporary fluctuation of the air-fuel ratio increases, and the combustion state greatly fluctuates periodically. Therefore, in order to suppress fluctuations in combustion, it is effective to reduce the fuel addition amount (hereinafter simply referred to as “addition amount”) in the clogging prevention addition and to shorten the addition cycle accordingly. is there.

このような観点から、本発明では、EGR装置の動作状態に応じて、より詳細には低圧ループEGR装置の動作状態に応じて、詰まり防止添加における添加量及び添加周期を調整する。   From this point of view, according to the present invention, the addition amount and the addition cycle in the clogging prevention addition are adjusted according to the operating state of the EGR device, more specifically, according to the operating state of the low-pressure loop EGR device.

図2にその一例を示す。図示のように、高圧ループEGR装置のみが動作している領域(以下、「HPL領域」と呼ぶ。)、MPL領域、低圧ループEGR装置のみが動作している領域(以下、「LPL領域」と呼ぶ。)の順に、燃料の添加量が少なく、添加周期が短くなるようにする。   An example is shown in FIG. As shown in the figure, a region where only the high-pressure loop EGR device is operating (hereinafter referred to as “HPL region”), a region where only the MPL region and the low-pressure loop EGR device are operating (hereinafter referred to as “LPL region”). In this order, the amount of fuel added is small and the addition cycle is shortened.

より具体的には、HPL領域における詰まり防止添加の添加量を基準添加量、添加周期を基準添加周期とした場合、LPL領域における詰まり防止添加の添加量を基準添加量よりも小さくし、かつ、添加周期を基準添加周期よりも短くする。また、MPL領域においては、添加量を基準添加量よりも少ないがLPL領域における添加量よりも多い量に設定するとともに、添加周期を基準添加周期よりも短いがLPL領域における添加周期よりも長くする。   More specifically, when the addition amount of anti-clogging addition in the HPL region is the reference addition amount and the addition cycle is the reference addition cycle, the addition amount of anti-clogging addition in the LPL region is smaller than the reference addition amount, and The addition cycle is made shorter than the reference addition cycle. In the MPL region, the addition amount is set to be smaller than the reference addition amount but larger than the addition amount in the LPL region, and the addition cycle is shorter than the reference addition cycle but longer than the addition cycle in the LPL region. .

EGR装置の動作状態に応じた詰まり防止添加の添加量及び添加周期の制御例を図3に示す。図3において、横軸は時間を示し、各波形の幅WH、WM、WLが燃料の添加量QH、QM、QLに対応する。HPL領域では、添加量は基準添加量QHに設定され、添加周期は基準添加周期THに設定される。これに対し、LPL領域では、添加量は基準添加量QHよりも少ない添加量QLに設定され、添加周期は基準添加周期THよりも短い添加周期TLに設定される。さらに、MPL領域では、添加量は基準添加量QHよりも小さいが、LPL領域での添加量QLより大きい添加量QMに設定される。また、添加周期は基準添加周期THよりは短いが、LPL領域での添加周期TLよりは長い添加周期TMに設定される。   FIG. 3 shows a control example of the addition amount and the addition period of the clogging prevention addition according to the operation state of the EGR device. In FIG. 3, the horizontal axis indicates time, and the widths WH, WM, and WL of the respective waveforms correspond to the fuel addition amounts QH, QM, and QL. In the HPL region, the addition amount is set to the reference addition amount QH, and the addition period is set to the reference addition period TH. In contrast, in the LPL region, the addition amount is set to an addition amount QL smaller than the reference addition amount QH, and the addition cycle is set to an addition cycle TL shorter than the reference addition cycle TH. Further, in the MPL region, the addition amount is smaller than the reference addition amount QH, but is set to an addition amount QM larger than the addition amount QL in the LPL region. The addition period is set to an addition period TM shorter than the reference addition period TH but longer than the addition period TL in the LPL region.

このように、本発明では、低圧ループEGR装置が動作しているときには、添加量を減少させるとともに、添加周期を短くするので、詰まり防止添加により添加した未燃燃料が吸気側へ回り込んで燃焼変動を生じするという不具合を抑制することができる。   Thus, in the present invention, when the low-pressure loop EGR device is operating, the addition amount is reduced and the addition cycle is shortened, so that the unburned fuel added by the clogging prevention addition flows to the intake side and burns. The problem of causing fluctuations can be suppressed.

なお、より詳細には、低圧ループEGR装置の動作割合に応じて添加量及び添加周期を制御することが好ましい。即ち、ECU7は、HPL領域における添加量及び添加周期を基準添加量及び基準添加周期とした上で、MPL領域及びLPL領域における低圧ループEGR装置の動作程度に応じて、基準添加量及び基準添加周期を補正すればよい。低圧ループEGR装置の動作程度としては、例えば低圧ループEGR装置のEGR率、又は、高圧ループEGR装置のEGR率と低圧ループEGR装置のEGR率との比、などを利用することができる。ここで、EGR率とは、エンジンの吸入空気量に対するEGRガス量の割合をいう。   In more detail, it is preferable to control the addition amount and the addition cycle in accordance with the operation ratio of the low-pressure loop EGR device. That is, the ECU 7 sets the addition amount and the addition cycle in the HPL region as the reference addition amount and the reference addition cycle, and then determines the reference addition amount and the reference addition cycle according to the operation level of the low-pressure loop EGR device in the MPL region and the LPL region. May be corrected. As the degree of operation of the low-pressure loop EGR device, for example, the EGR rate of the low-pressure loop EGR device or the ratio of the EGR rate of the high-pressure loop EGR device to the EGR rate of the low-pressure loop EGR device can be used. Here, the EGR rate refers to the ratio of the EGR gas amount to the intake air amount of the engine.

なお、図1に示す本実施形態の構成では排気通路25を排気マニホールド12における#1気筒近傍に設けるとともに、燃料添加弁17を排気マニホールド12における#4気筒近傍、即ち、排気通路25より最も遠い位置に設けている。よって、HPL領域においては、基本的に、詰まり防止のために添加した燃料が高圧ループEGR装置により吸気側へ回り込むことが無いように構成されている。   1, the exhaust passage 25 is provided in the vicinity of the # 1 cylinder in the exhaust manifold 12, and the fuel addition valve 17 is located in the vicinity of the # 4 cylinder in the exhaust manifold 12, that is, farthest from the exhaust passage 25. Provided in position. Therefore, the HPL region is basically configured so that the fuel added to prevent clogging does not flow into the intake side by the high-pressure loop EGR device.

図4は、本実施形態による詰まり防止添加制御のフローチャートである。この処理は、主としてECU7により実行される。   FIG. 4 is a flowchart of clogging prevention addition control according to this embodiment. This process is mainly executed by the ECU 7.

まず、ECU7は、再生制御が必要か否かを判定する(ステップS101)。ここで、本実施形態では、排気通路25に設けられたDPF36のPM再生が再生制御に相当する。ECU7は、DPF36内の粒子状物質の堆積量などを検出又は推定し、PM再生が必要であると判定した場合(ステップS101;Yes)、燃料添加弁17により所定量の燃料を添加して、再生制御としてのPM再生を実施する(ステップS102)。   First, the ECU 7 determines whether or not regeneration control is necessary (step S101). Here, in the present embodiment, PM regeneration of the DPF 36 provided in the exhaust passage 25 corresponds to regeneration control. When the ECU 7 detects or estimates the amount of particulate matter accumulated in the DPF 36 and determines that PM regeneration is necessary (step S101; Yes), the fuel addition valve 17 adds a predetermined amount of fuel, PM regeneration is performed as regeneration control (step S102).

一方、再生制御が必要でないと判断した場合(ステップS101;No)、ECU7は燃料添加弁17による前回の燃料添加から所定時間が経過したか否かを判定する(ステップS103)。「所定時間」とは、燃料を噴射しない場合に燃料添加弁17に詰まりが発生しうる時間であり、燃料噴射弁17の特性などに基づいて予め決定されている。なお、「前回の燃料添加」には、触媒再生のための燃料添加と、詰まり防止のための燃料添加のいずれも含まれる。   On the other hand, when it is determined that regeneration control is not necessary (step S101; No), the ECU 7 determines whether or not a predetermined time has elapsed since the previous fuel addition by the fuel addition valve 17 (step S103). The “predetermined time” is a time during which the fuel addition valve 17 can be clogged when fuel is not injected, and is determined in advance based on the characteristics of the fuel injection valve 17 and the like. The “previous fuel addition” includes both fuel addition for catalyst regeneration and fuel addition for preventing clogging.

前回の燃料添加から所定時間が経過していない場合(ステップS103;No)、燃料添加弁17が詰まる恐れが低いため、処理は終了する。一方、前回の燃料添加から所定時間が経過している場合(ステップS103;Yes)、ECU7は詰まり防止添加を実施する。具体的には、ECU7は、燃料噴射量(エンジン負荷)、エンジン回転数、排気温度などに基づいて、予め用意されたマップなどを利用して、燃料の基準添加量及び基準添加周期を決定する(ステップS104)。次に、ECU7は、エンジン負荷及びエンジン回転数などに基づき、図2に例示するマップを参照するなどして、EGR装置の動作状態、即ちEGR領域を決定する(ステップS105)。   If the predetermined time has not elapsed since the previous fuel addition (step S103; No), the process ends because there is a low possibility that the fuel addition valve 17 is clogged. On the other hand, when the predetermined time has elapsed since the previous fuel addition (step S103; Yes), the ECU 7 performs the clogging prevention addition. Specifically, the ECU 7 determines the reference addition amount and the reference addition period of the fuel using a map prepared in advance based on the fuel injection amount (engine load), the engine speed, the exhaust temperature, and the like. (Step S104). Next, the ECU 7 determines an operating state of the EGR device, that is, an EGR region by referring to the map illustrated in FIG. 2 based on the engine load, the engine speed, and the like (step S105).

EGR領域がLPL領域である場合(ステップS106;Yes)、ECU7は、予め用意されているマップなどに基づいてLPL領域での添加量と添加周期の補正係数を取得し、それらに基づいて基準添加量及び基準添加周期を補正する(ステップS107)。この場合、補正により得られたLPL領域用の添加量QLは基準添加量QHより小さく、LPL領域用の添加周期TLは基準添加周期THよりも短くなる。   When the EGR area is the LPL area (step S106; Yes), the ECU 7 acquires the addition amount in the LPL area and the correction coefficient for the addition period based on a map prepared in advance, and the reference addition is performed based on the addition coefficient. The amount and the reference addition period are corrected (step S107). In this case, the addition amount QL for the LPL region obtained by the correction is smaller than the reference addition amount QH, and the addition cycle TL for the LPL region is shorter than the reference addition cycle TH.

一方、EGR領域がMPL領域である場合(ステップS108;Yes)、ECU7は、予め用意されているマップなどに基づいてMPL領域での添加量と添加周期の補正係数を取得し、それらに基づいて基準添加量QH及び基準添加周期THを補正する(ステップS109)。この場合、補正により得られたMPL領域用の添加量QMは、基準添加量QHより小さいがLPL領域用の添加量QLよりは大きくなる。また、LPL領域用の添加周期TLは、基準添加周期THよりは短いが、LPL領域用の添加周期TLよりは長くなる。   On the other hand, when the EGR area is the MPL area (step S108; Yes), the ECU 7 acquires the addition amount and the addition period correction coefficient in the MPL area based on a map prepared in advance, and based on them. The reference addition amount QH and the reference addition cycle TH are corrected (step S109). In this case, the addition amount QM for the MPL region obtained by the correction is smaller than the reference addition amount QH but larger than the addition amount QL for the LPL region. Further, the addition period TL for the LPL region is shorter than the reference addition cycle TH, but is longer than the addition cycle TL for the LPL region.

なお、EGR領域がHPL領域である場合、基準添加量QH及び基準添加周期THがそのまま使用される。こうして、EGR領域に基づいて添加量及び添加周期が決定すると、ECU7は燃料添加弁17へ制御信号S5を送り、燃料添加を実行する(ステップS110)。   When the EGR region is an HPL region, the reference addition amount QH and the reference addition period TH are used as they are. Thus, when the addition amount and the addition cycle are determined based on the EGR region, the ECU 7 sends a control signal S5 to the fuel addition valve 17 to execute fuel addition (step S110).

以上のように、本実施形態では、低圧ループEGR装置が動作する場合には、動作しない場合と比較して、詰まり防止添加の一回の添加量が減少し、かつ、添加周期が短くなるので、添加した燃料が吸気側へ戻されることにより内燃機関の燃焼状態が変動する度合いを低減することができる。   As described above, in the present embodiment, when the low-pressure loop EGR device is operated, the amount of one-time addition of clogging prevention is reduced and the addition cycle is shortened compared to the case where the low-pressure loop EGR device is not operated. The degree of fluctuation of the combustion state of the internal combustion engine can be reduced by returning the added fuel to the intake side.

[変形例]
上記の実施形態では、排気通路に排気浄化装置としてDPFが設けられ、燃料添加を行うことにより、再生制御としてDPFのPM再生が実施されている。その代わりに、排気通路にNOx吸蔵還元触媒を設けた場合には、再生制御としてNOx還元やS被毒再生のための燃料添加が行われる。このような構成でも、再生制御が行われていない間の詰まり防止添加に本発明を適用することができる。
[Modification]
In the above embodiment, the DPF is provided as an exhaust purification device in the exhaust passage, and PM regeneration of the DPF is performed as regeneration control by adding fuel. Instead, when a NOx storage reduction catalyst is provided in the exhaust passage, fuel addition for NOx reduction or S poison regeneration is performed as regeneration control. Even with such a configuration, the present invention can be applied to clogging prevention addition while regeneration control is not performed.

実施形態に係る内燃機関の排気制御装置の概略ブロック図である。1 is a schematic block diagram of an exhaust control device for an internal combustion engine according to an embodiment. EGR領域のマップを示す。The map of an EGR area | region is shown. EGR領域に応じて燃料の添加量及び添加周期を制御する例を示す。An example of controlling the amount and period of fuel addition according to the EGR region will be shown. 詰まり防止添加制御のフローチャートである。It is a flowchart of clogging prevention addition control.

符号の説明Explanation of symbols

7 ECU
10 エンジン
15 燃料噴射弁
17 燃料添加弁
20 吸気通路
23 ターボチャージャ
25 排気通路
31、35 EGR通路
36 DPF
33、37 EGR弁
7 ECU
10 Engine 15 Fuel injection valve 17 Fuel addition valve 20 Intake passage 23 Turbocharger 25 Exhaust passage 31, 35 EGR passage 36 DPF
33, 37 EGR valve

Claims (5)

内燃機関の排気制御装置であって、
前記内燃機関の排気通路に設けられた排気浄化装置と、
前記排気通路における前記排気浄化装置の上流側位置に設けられた燃料添加手段と、
前記排気通路における前記排気浄化装置の上流側位置から前記内燃機関の吸気側へ排気を還流させる第1の排気還流装置と、
前記排気通路における前記排気浄化装置の下流側位置から前記内燃機関の吸気側へ排気を還流させる第2の排気還流装置と、
前記燃料添加手段を使用して排気中に燃料を添加する添加制御手段と、を備え、
前記添加制御手段は、前記排気還流装置の動作状態に応じて、燃料の添加量及び添加周期を制御することを特徴とする内燃機関の排気制御装置。
An exhaust control device for an internal combustion engine,
An exhaust purification device provided in an exhaust passage of the internal combustion engine;
Fuel addition means provided at an upstream position of the exhaust purification device in the exhaust passage;
A first exhaust gas recirculation device for recirculating exhaust gas from an upstream position of the exhaust gas purification device in the exhaust passage to the intake side of the internal combustion engine;
A second exhaust gas recirculation device that recirculates exhaust gas from the downstream side position of the exhaust gas purification device in the exhaust passage to the intake side of the internal combustion engine;
Addition control means for adding fuel into the exhaust using the fuel addition means,
The exhaust control device for an internal combustion engine, wherein the addition control means controls an addition amount and an addition cycle of fuel according to an operating state of the exhaust gas recirculation device.
前記制御手段は、前記第2の排気還流装置を動作させるときには、前記第1の排気還流装置のみを動作させるときと比較して、前記添加量を少なくするとともに前記添加周期を短くすることを特徴とする請求項1に記載の内燃機関の排気制御装置。   When the second exhaust gas recirculation device is operated, the control means reduces the addition amount and shortens the addition period as compared with the case where only the first exhaust gas recirculation device is operated. The exhaust control device for an internal combustion engine according to claim 1. 前記制御手段は、前記第1及び第2の排気還流装置の両方を動作させるときには、前記添加量及び前記添加周期が、前記第1の排気還流装置のみを動作させるときと前記第2の排気還流装置のみを動作させるときの間の値とすることを特徴とする請求項2に記載の内燃機関の排気制御装置。   When the control means operates both the first and second exhaust gas recirculation devices, the addition amount and the addition period are determined when only the first exhaust gas recirculation device is operated and when the second exhaust gas recirculation device is operated. 3. An exhaust control device for an internal combustion engine according to claim 2, wherein the value is a value during operation of only the device. 前記制御手段は、前記燃料添加手段の詰まり防止のために燃料を添加することを特徴とする請求項1乃至3のいずれか一項に記載の内燃機関の排気制御装置。   The exhaust control device for an internal combustion engine according to any one of claims 1 to 3, wherein the control means adds fuel to prevent clogging of the fuel addition means. 前記排気浄化装置の再生のために排気中に燃料を添加する再生制御を実行する手段を備え、
前記添加制御手段は、前記再生制御が実行されていないときに、前記燃料添加手段の詰まり防止のために燃料を添加することを特徴とする請求項1乃至3のいずれか一項に記載の内燃機関の排気制御装置。
Means for performing regeneration control for adding fuel to the exhaust for regeneration of the exhaust purification device;
The internal combustion engine according to any one of claims 1 to 3, wherein the addition control means adds fuel to prevent clogging of the fuel addition means when the regeneration control is not executed. Engine exhaust control device.
JP2007031930A 2007-02-13 2007-02-13 Exhaust gas control device of internal combustion engine Pending JP2008196371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007031930A JP2008196371A (en) 2007-02-13 2007-02-13 Exhaust gas control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007031930A JP2008196371A (en) 2007-02-13 2007-02-13 Exhaust gas control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2008196371A true JP2008196371A (en) 2008-08-28

Family

ID=39755550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007031930A Pending JP2008196371A (en) 2007-02-13 2007-02-13 Exhaust gas control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2008196371A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010065592A (en) * 2008-09-10 2010-03-25 Isuzu Motors Ltd Engine system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010065592A (en) * 2008-09-10 2010-03-25 Isuzu Motors Ltd Engine system

Similar Documents

Publication Publication Date Title
US8171723B2 (en) Abnormality detection system and abnormality detection method for internal combustion engine
US6957642B2 (en) Exhaust gas recirculation control system
US20080314036A1 (en) Exhaust gas cleaning apparatus for lean burn internal combustion engine
JP4438662B2 (en) Exhaust gas purification device for internal combustion engine
US7247190B2 (en) Engine exhaust gas cleaning apparatus
CN107429595B (en) Exhaust gas purification system and control method of exhaust gas purification system
JP4853297B2 (en) Exhaust system for internal combustion engine
JP4941079B2 (en) Exhaust gas recirculation control device for internal combustion engine
JP4826503B2 (en) Exhaust control device for internal combustion engine
JP5365261B2 (en) Method and system for controlling exhaust gas recirculation in an internal combustion engine
JP2008144726A (en) Exhaust emission control device for internal combustion engine
JP4321623B2 (en) Control device for internal combustion engine
JP4775282B2 (en) Exhaust control device for internal combustion engine
JP5472082B2 (en) Combustion mode control system for compression ignition internal combustion engine
JP2009036175A (en) Fuel supply control device of internal combustion engine
JP5263532B2 (en) Combustion control device and combustion control method for diesel engine
JP2008196371A (en) Exhaust gas control device of internal combustion engine
JP2006266221A (en) Rising temperature controller of aftertreatment device
JP2004245046A (en) Exhaust emission control device of internal combustion engine
JP4899955B2 (en) Control device for internal combustion engine
JP2006266220A (en) Rising temperature controller of aftertreatment device
JP4816594B2 (en) Injection quantity correction device for internal combustion engine
JP4063743B2 (en) Fuel injection timing control device for internal combustion engine
JP2008175194A (en) Control device for internal combustion engine
JP2007255308A (en) Exhaust emission control device of internal combustion engine