JP2008195016A - Silica-coating porous metal keeping hydrophilic property for long term and its production method - Google Patents

Silica-coating porous metal keeping hydrophilic property for long term and its production method Download PDF

Info

Publication number
JP2008195016A
JP2008195016A JP2007034902A JP2007034902A JP2008195016A JP 2008195016 A JP2008195016 A JP 2008195016A JP 2007034902 A JP2007034902 A JP 2007034902A JP 2007034902 A JP2007034902 A JP 2007034902A JP 2008195016 A JP2008195016 A JP 2008195016A
Authority
JP
Japan
Prior art keywords
silica
coated porous
hydrophilicity
porous metal
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007034902A
Other languages
Japanese (ja)
Other versions
JP4811793B2 (en
Inventor
Kenji Orito
賢治 織戸
Toshiharu Hayashi
年治 林
Masahiro Wada
正弘 和田
Eiko Kanda
栄子 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007034902A priority Critical patent/JP4811793B2/en
Publication of JP2008195016A publication Critical patent/JP2008195016A/en
Application granted granted Critical
Publication of JP4811793B2 publication Critical patent/JP4811793B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a silica-coating porous metal keeping hydrophilic property for a long term and to provide a method for producing the same. <P>SOLUTION: A skeleton surface of a porous metal is coated with a silica-coating layer containing C of 2.5-15 mass% and silica in the rest. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、長期間親水性が維持されるシリカコーティング多孔質金属およびその製造方法に関するものであり、このシリカコーティング多孔質金属は燃料電池のガス拡散層などに適用することができる。   The present invention relates to a silica-coated porous metal that maintains hydrophilicity for a long period of time and a method for producing the same. The silica-coated porous metal can be applied to a gas diffusion layer of a fuel cell.

燃料電池のガス拡散層には多孔質金属の骨格表面にシリカをコーティングした親水性に優れたシリカコーティング多孔質金属が使用されている。この親水性に優れたシリカコーティング多孔質金属は、多孔質金属の骨格表面に適宜の方法でシリカをコーティングしたものであり、特にシラン、ジシラン、ヘキサメチルジシロキサン、テトラメチルジシロキサン、メチルトリメトキシシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、テトラメトキシシラン、オクタメチルシクロテトラシロキサン、テトラエトキシシラン等のSi系化合物を原料とし、プラズマCVD法によってコーティングすることが好ましいとされている(特許文献1参照)。   For the gas diffusion layer of a fuel cell, a silica-coated porous metal having excellent hydrophilicity in which silica is coated on the surface of a porous metal skeleton is used. This silica-coated porous metal having excellent hydrophilicity is obtained by coating the surface of a porous metal with silica by an appropriate method, and in particular, silane, disilane, hexamethyldisiloxane, tetramethyldisiloxane, methyltrimethoxy. It is preferable to use a Si-based compound such as silane, methyl silane, dimethyl silane, trimethyl silane, diethyl silane, propyl silane, phenyl silane, tetramethoxy silane, octamethyl cyclotetrasiloxane, tetraethoxy silane, etc. as a raw material and coat it by plasma CVD. (See Patent Document 1).

前記表面に開口し内部の空孔に連続している連続空孔を有する多孔質金属は、発泡金属が一層好ましく、この発泡金属は、原料粉末、水溶性樹脂結合剤、可塑剤、気泡剤および水を配合し混練して発泡スラリーを作製し、この発泡スラリーをキャリヤーシート上にドクターブレードなどにより薄板状に成形し、恒温・恒湿度槽において前記発泡スラリーに含まれる揮発性有機溶剤の蒸気圧および界面活性剤の起泡性を利用して発泡させ、さらに乾燥槽において乾燥させて発泡グリーン板を製造し、この発泡グリーン板を脱脂装置および焼成炉を通すことにより脱脂、焼成することにより製造されることも知られている。(特許文献2参照)。
特開2006−100155号公報 特開2004−43976号公報
The porous metal having continuous pores open to the surface and continuing to the internal pores is more preferably a foam metal, which is a raw material powder, a water-soluble resin binder, a plasticizer, a foam agent, and Water is mixed and kneaded to prepare a foamed slurry. This foamed slurry is formed into a thin plate shape on a carrier sheet by a doctor blade or the like, and the vapor pressure of the volatile organic solvent contained in the foamed slurry in a constant temperature / humidity bath. The foamed green board is produced by foaming using the foaming property of the surfactant and further dried in a drying tank, and the foamed green board is produced by degreasing and firing by passing through a degreasing apparatus and a firing furnace. It is also known that (See Patent Document 2).
JP 2006-100155 A JP 2004-43976 A

前記従来の多孔質金属の骨格表面にシリカをコーティングしたシリカコーティング多孔質金属は、長期間経過すると親水性が徐々に失われていく。特に、従来のシリカコーティング多孔質金属は燃料電池環境下におかれると親水性が短期間に失われるために、従来のシリカコーティング多孔質金属をガス拡散層として使用した燃料電池は、その特性が短期間で低下することは避けられなかった。したがって、長期間経過してもまた長期間燃料電池環境下に置かれても親水性が失われることの少ないシリカコーティング多孔質金属が求められている。 The conventional silica-coated porous metal in which silica is coated on the skeleton surface of the conventional porous metal gradually loses its hydrophilicity after a long period of time. In particular, since the conventional silica-coated porous metal loses its hydrophilicity in a short time when placed in the fuel cell environment, the characteristics of the fuel cell using the conventional silica-coated porous metal as a gas diffusion layer are It was inevitable that it decreased in a short period of time. Accordingly, there is a need for a silica-coated porous metal that is less likely to lose hydrophilicity even if it has passed for a long time or has been placed in a fuel cell environment for a long time.

そこで、本発明者は、一層長期間親水性が維持できるシリカコーティング多孔質金属を得るべく研究を行なった結果、
(イ)多孔質金属の骨格表面にシランカップリング剤を塗布したのち、このシランカップリング剤塗布層を280〜500℃で焼成すると、多孔質金属の骨格表面にC:2.5〜15質量%を含有し、残部がシリカからなる成分組成を有するシリカコーティング層が被覆されている多孔質金属が得られ、このCを含有したシリカコーティング層が骨格表面に形成されたシリカコーティング多孔質金属は、従来の骨格表面にシリカ層が形成されたシリカコーティング多孔質金属に比べて、親水性を一層長期間維持することができる、
(ロ)前記多孔質金属は、ステンレス鋼、ニッケル基合金、Cu、Ni、Ti、Agの内のいずれかであることが好ましい、
(ハ)前記(イ)または(ロ)記載のシリカコーティング多孔質金属は親水性を一層長期間維持できることから、これを燃料電池のガス拡散層として使用すると、燃料電池の高性能を一層長期間維持することができる、などの研究結果が得られたのである。
Therefore, the present inventor conducted research to obtain a silica-coated porous metal that can maintain hydrophilicity for a longer period of time.
(A) After applying a silane coupling agent on the porous metal skeleton surface, this silane coupling agent coating layer is baked at 280 to 500 ° C., and C: 2.5 to 15 mass on the porous metal skeleton surface. Is obtained, and a silica-coated porous metal having a C-containing silica coating layer formed on the skeleton surface is obtained. Compared to the conventional silica-coated porous metal having a silica layer formed on the skeleton surface, the hydrophilicity can be maintained for a longer period of time.
(B) The porous metal is preferably one of stainless steel, nickel-base alloy, Cu, Ni, Ti, and Ag.
(C) Since the silica-coated porous metal described in (a) or (b) can maintain hydrophilicity for a longer period of time, when it is used as a gas diffusion layer of a fuel cell, the high performance of the fuel cell is increased for a longer period of time. Research results such as being able to be maintained were obtained.

この発明は、かかる研究結果に基づいてなされたものであって、
(1)多孔質金属の骨格表面がC:2.5〜15質量%を含有し、残部がシリカからなる成分組成を有するシリカコーティング層により被覆されている長期間親水性が維持されるシリカコーティング多孔質金属、
(2)前記多孔質金属は、ステンレス鋼、ニッケル基合金、Cu、Ni、Ti、Agの内のいずれかからなる発泡金属である前記(1)記載の長期間親水性が維持されるシリカコーティング多孔質金属、
(3)前記(1)または(2)記載の長期間親水性が維持されるシリカコーティング多孔質金属からなる燃料電池のガス拡散層、に特徴を有するものである。
(4)多孔質金属の骨格表面にシランカップリング剤を塗布したのち、酸化性雰囲気中、温度:280〜500℃で焼成する長期間親水性が維持されるシリカコーティング多孔質金属の製造方法、
(5)前記多孔質金属は、ステンレス鋼、ニッケル基合金、Cu、Ni、Ti、Agの内のいずれかからなる発泡金属である前記(4)記載の長期間親水性が維持されるシリカコーティング多孔質金属の製造方法、に特徴を有するものである。
The present invention has been made based on the results of such research,
(1) A silica coating in which the surface of the porous metal skeleton contains C: 2.5 to 15% by mass, and the hydrophilicity is maintained for a long period of time, which is covered with a silica coating layer having a component composition consisting of silica. Porous metal,
(2) The silica coating as described in (1) above, wherein the porous metal is a foam metal made of any of stainless steel, nickel-base alloy, Cu, Ni, Ti, and Ag. Porous metal,
(3) The gas diffusion layer of a fuel cell made of a silica-coated porous metal that maintains hydrophilicity for a long period of time as described in (1) or (2) above.
(4) A method for producing a silica-coated porous metal in which hydrophilicity is maintained for a long time by applying a silane coupling agent to the skeleton surface of the porous metal and then firing at a temperature of 280 to 500 ° C. in an oxidizing atmosphere.
(5) The silica coating that maintains the long-term hydrophilicity according to (4), wherein the porous metal is a foam metal made of any one of stainless steel, nickel-base alloy, Cu, Ni, Ti, and Ag. It has the characteristics in the manufacturing method of a porous metal.

この発明の長期間親水性が維持されるシリカコーティング多孔質金属におけるシリカコーティング層は、C含有量が2.5質量%未満では、長期間親水性を維持することができないので好ましくなく、一方、C含有量が15質量%を越えると、コーティング層の親水性が得られなくなるので好ましくない。したがって、この発明のシリカコーティング多孔質金属におけるシリカコーティング層に含まれるC含有量を2.5〜15質量%に定めた。
また、この発明の長期間親水性が維持されるシリカコーティング多孔質金属におけるシリカコーティング層は、Cを含むシランカップリング剤を酸化性雰囲気中(例えば、大気中)、温度:280〜500℃で焼成することにより作製することができる。前記焼成温度を前述のごとく限定した理由は、シランカップリング剤の焼成温度が280℃未満ではシランカップリング剤の分解が十分でないために、十分な親水性が得られないので好ましくなく、一方、500℃を越えるとコーティング層に含まれるC量が低くなるので長期間親水性を維持することができなくなるので好ましくないからである。
The silica coating layer in the silica-coated porous metal that maintains hydrophilicity for a long period of time according to the present invention is not preferable because the C content is less than 2.5% by mass because the hydrophilicity cannot be maintained for a long period of time. If the C content exceeds 15% by mass, the hydrophilicity of the coating layer cannot be obtained, which is not preferable. Therefore, the C content contained in the silica coating layer in the silica-coated porous metal of the present invention is set to 2.5 to 15% by mass.
Moreover, the silica coating layer in the silica coating porous metal in which the hydrophilic property of the present invention is maintained for a long period of time is a silane coupling agent containing C in an oxidizing atmosphere (for example, in the air) at a temperature of 280 to 500 ° C. It can be produced by firing. The reason for limiting the firing temperature as described above is not preferable because the silane coupling agent is not sufficiently decomposed when the firing temperature of the silane coupling agent is less than 280 ° C., and sufficient hydrophilicity cannot be obtained. If the temperature exceeds 500 ° C., the amount of C contained in the coating layer becomes low, so that hydrophilicity cannot be maintained for a long time, which is not preferable.

この発明の長期間親水性が維持される多孔質金属を製造する際に使用するシランカップリング剤とは、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、3−メルカプトプロピルトリメトキシシラン等のCを含有するSi系化合物である。 The silane coupling agent used in the production of the porous metal that maintains hydrophilicity for a long period of time according to the present invention includes vinyltrimethoxysilane, vinyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacrylic acid. It is a Si-based compound containing C such as loxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, and 3-mercaptopropyltrimethoxysilane.

この発明のシリカコーティング多孔質金属は、従来の親水性に優れたシリカコーティング多孔質金属と比べて長期間親水性が維持されるので、親水性に優れた多孔質金属を使用する各種産業、例えば、燃料電池産業などの発展に大いに貢献し得るものである。   Since the silica-coated porous metal of the present invention maintains its hydrophilic property for a long period of time compared to the conventional silica-coated porous metal having excellent hydrophilicity, various industries using the porous metal having excellent hydrophilicity, for example, It can greatly contribute to the development of the fuel cell industry.

実施例1
原料粉末として平均粒径:10μmのチタン粉末、水溶性樹脂結合剤としてメチルセルロース:10%を含む水溶液、可塑剤としてエチレングリコール、気泡剤としてアルキルベンゼンスルホン酸ナトリウム、発泡剤としてネオペンタンを用意し、これらを原料粉末:20質量%、水溶性樹脂結合剤:10質量%、可塑剤:1質量%、気泡剤:0.6質量%、残部:水となるように配合し、15分間混練し、発泡スラリーを作製した。得られた発泡スラリーをブレードギャップ:0.5mmでドクターブレード法によりPETフィルム上に塗布し、恒温高湿度槽に供給し、そこで温度:35℃、湿度:90%、25分間保持することにより発泡させ、引き続いて温度:80℃、20分間保持の条件で温風乾燥を行い、スポンジ状グリーン成形体を作製した。この成形体をPETフィルムから剥し、アルミナ板上に載せ、Ar雰囲気中、温度:550℃、180分間保持の条件で脱脂し、引き続いて真空焼結炉で、雰囲気:5×10−3Pa、温度:1200℃、1時間保持の条件で焼結することにより気孔率:90%を有し、厚さ:1.0mmを有し表面に開口し内部の空孔に連続している連続空孔を有する多孔質発泡チタン板を作製した。得られた多孔質発泡チタン板を縦:30mm、横:30mmの寸法になるように切断して多孔質発泡チタン試験片を作製し、この試験片をシランカップリング剤(3−メルカプトプロピルトリメトキシシラン)を表1に示される倍率のエタノールで希釈した溶液に浸漬し、大気乾燥機にて50℃、10分間保持の条件で乾燥した。その後、これを大気中、温度:350℃、10分間保持の焼成を行い、骨格表面に厚さ:50nmを有するシリカコーティング層を形成した本発明シリカコーティング多孔質チタン1〜6および比較シリカコーティング多孔質チタン1〜4を作製した。この本発明シリカコーティング多孔質チタン1〜6および比較シリカコーティング多孔質チタン1〜4の骨格表面に形成されたシリカコーティング層の成分組成を測定し、その結果を表1に示した。
Example 1
Prepare titanium powder with an average particle size of 10 μm as a raw material powder, an aqueous solution containing 10% of methylcellulose as a water-soluble resin binder, ethylene glycol as a plasticizer, sodium alkylbenzenesulfonate as a foaming agent, and neopentane as a foaming agent. Raw material powder: 20% by mass, water-soluble resin binder: 10% by mass, plasticizer: 1% by mass, foaming agent: 0.6% by mass, balance: water, kneaded for 15 minutes, foam slurry Was made. The obtained foamed slurry was applied onto a PET film by a doctor blade method with a blade gap of 0.5 mm, and supplied to a constant temperature and high humidity tank where the temperature was 35 ° C., the humidity was 90%, and the foam was kept for 25 minutes. Subsequently, warm air drying was performed under the conditions of temperature: 80 ° C. and holding for 20 minutes to produce a sponge-like green molded body. The molded body was peeled off from the PET film, placed on an alumina plate, degreased in an Ar atmosphere at a temperature of 550 ° C. for 180 minutes, and subsequently in a vacuum sintering furnace, atmosphere: 5 × 10 −3 Pa, Temperature: 1200 ° C. Sintering under the condition of holding for 1 hour, porosity: 90%, thickness: 1.0 mm, open to the surface, continuous pores continuous to the internal pores A porous foamed titanium plate having the following characteristics was prepared. The obtained porous foamed titanium plate was cut to have a length of 30 mm and a width of 30 mm to prepare a porous titanium foam test piece, and this test piece was treated with a silane coupling agent (3-mercaptopropyltrimethoxy). Silane) was immersed in a solution diluted with ethanol at a magnification shown in Table 1, and dried in an air dryer at 50 ° C. for 10 minutes. Thereafter, this was baked in the atmosphere at a temperature of 350 ° C. for 10 minutes to form a silica coating layer having a thickness of 50 nm on the skeleton surface. Quality titanium 1-4 was produced. The component composition of the silica coating layer formed on the skeleton surfaces of the silica-coated porous titanium 1 to 6 of the present invention and the comparative silica-coated porous titanium 1 to 4 was measured, and the results are shown in Table 1.

従来例1
実施例1で作製した多孔質発泡チタン試験片の骨格表面にプラズマCVDにより厚さ:50nmを有するシリカコーティング層を形成した従来シリカコーティング多孔質チタンを作製し、この従来シリカコーティング多孔質チタンの骨格表面に形成されたシリカコーティング層の成分組成を測定し、その結果を表1に示した。
Conventional Example 1
A conventional silica-coated porous titanium in which a silica coating layer having a thickness of 50 nm is formed on the skeleton surface of the porous foamed titanium test piece prepared in Example 1 by plasma CVD, and the skeleton of this conventional silica-coated porous titanium is prepared. The component composition of the silica coating layer formed on the surface was measured, and the results are shown in Table 1.

このようにして作製した本発明シリカコーティング多孔質チタン1〜6、比較シリカコーティング多孔質チタン1〜4および従来シリカコーティング多孔質チタンを一日中大気中に放置したのち、これら多孔質チタンの上にスポイトにて蒸留水0.005mlを滴下し、蒸留水が吸い込まれるか液滴のまま残るかによって親水性があるかないかを判断し、このスポイトにて蒸留水0.005mlを滴下する操作を毎日繰り返し行ない、親水性がなくなるまで続け、親水性が保持される日数を表1に示した。
また、燃料電池環境通電後の親水性確認試験として、前記本発明シリカコーティング多孔質チタン1〜6、比較シリカコーティング多孔質チタン1〜4および従来シリカコーティング多孔質チタンを温度:50℃、pH=2に保持された硫酸溶液中に浸漬し、電位:800mV(対水素基準)を印加しながら24時間保持した後に試料を取り出し、蒸留水で十分に洗浄して大気中で乾燥し、この試料を用い、スポイトにて蒸留水0.005mlを滴下し、蒸留水が吸い込まれるか液滴のまま残るかによって親水性があるかないかを判断し、このスポイトにて蒸留水0.005mlを滴下する操作を毎日繰り返し行ない、親水性がなくなるまで続け、親水性が保持される日数を表1に示した。
The silica-coated porous titanium 1 to 6 of the present invention, the comparative silica-coated porous titanium 1 to 4 and the conventional silica-coated porous titanium thus produced were left in the atmosphere all day, and then a dropper was placed on these porous titanium. Add 0.005 ml of distilled water at, and determine whether there is hydrophilicity depending on whether distilled water is sucked in or remains as a droplet, and repeat the operation of dripping 0.005 ml of distilled water with this dropper every day. The measurement was continued until the hydrophilicity was lost, and the number of days for which the hydrophilicity was maintained is shown in Table 1.
In addition, as a hydrophilicity confirmation test after energization of the fuel cell environment, the silica-coated porous titanium 1 to 6 of the present invention, the comparative silica-coated porous titanium 1 to 4 and the conventional silica-coated porous titanium were subjected to temperature: 50 ° C., pH = 2 and immersed for 24 hours while applying a potential of 800 mV (vs. hydrogen), the sample was taken out, washed thoroughly with distilled water and dried in the atmosphere. Use a dropper to drop 0.005 ml of distilled water, determine whether it is hydrophilic or not depending on whether distilled water is sucked in or remains as a drop, and drop 0.005 ml of distilled water with this dropper. Were repeated every day until the hydrophilicity disappeared, and the number of days for which the hydrophilicity was maintained is shown in Table 1.

Figure 2008195016
Figure 2008195016

表1に示される結果から、本発明シリカコーティング多孔質チタン1〜6は従来シリカコーティング多孔質チタンに比べて長期間親水性を維持できることが分かる。しかし、この発明の条件から外れた比較シリカコーティング多孔質チタン1〜4は親水性持続日数が減少することが分かる。   From the results shown in Table 1, it can be seen that the silica-coated porous titanium 1 to 6 of the present invention can maintain hydrophilicity for a long period of time as compared with the conventional silica-coated porous titanium. However, it can be seen that the comparative silica-coated porous titanium 1-4 that deviates from the conditions of the present invention has a reduced hydrophilic duration.

実施例2
原料粉末として平均粒径:10μmのSUS316ステンレス鋼粉末を用いる以外は実施例1と同様にして気孔率:90%を有し、厚さ:1.0mmを有し表面に開口し内部の空孔に連続している連続空孔を有する多孔質発泡SUS316ステンレス鋼板を作製した。得られた多孔質発泡SUS316ステンレス鋼板を縦:30mm、横:30mmの寸法になるように切断して多孔質発泡SUS316ステンレス鋼試験片を作製し、この試験片をシランカップリング剤(3−メルカプトプロピルトリメトキシシラン)を表2に示される倍率のエタノールで希釈した溶液に浸漬し、大気乾燥機にて50℃、10分間保持の条件で乾燥した。その後、これを大気中、温度:350℃、10分間保持の焼成を行い、骨格表面に厚さ:50nmを有するシリカコーティング層を形成した本発明シリカコーティング多孔質SUS316ステンレス鋼1〜6および比較シリカコーティング多孔質SUS316ステンレス鋼1〜4を作製した。この本発明シリカコーティング多孔質SUS316ステンレス鋼1〜6および比較シリカコーティング多孔質SUS316ステンレス鋼1〜4の骨格表面に形成されたシリカコーティング層の成分組成を測定し、その結果を表2に示した。
Example 2
Except for using SUS316 stainless steel powder having an average particle diameter of 10 μm as a raw material powder, it had a porosity of 90%, a thickness of 1.0 mm, and was open on the surface and had internal pores in the same manner as in Example 1. A porous foamed SUS316 stainless steel plate having continuous pores that were continuous with each other was prepared. The obtained porous foamed SUS316 stainless steel plate was cut to have dimensions of length: 30 mm and width: 30 mm to prepare a porous foamed SUS316 stainless steel test piece. This test piece was treated with a silane coupling agent (3-mercapto (Propyltrimethoxysilane) was immersed in a solution diluted with ethanol at a magnification shown in Table 2, and dried in an air drier at 50 ° C. for 10 minutes. Thereafter, this was baked in the atmosphere at a temperature of 350 ° C. for 10 minutes, and the silica-coated porous SUS316 stainless steel 1 to 6 of the present invention in which a silica coating layer having a thickness of 50 nm was formed on the skeleton surface and comparative silica Coated porous SUS316 stainless steels 1-4 were prepared. The component composition of the silica coating layer formed on the skeleton surfaces of the silica-coated porous SUS316 stainless steel 1 to 6 and the comparative silica-coated porous SUS316 stainless steel 1 to 4 was measured, and the results are shown in Table 2. .

従来例2
実施例2で作製した多孔質発泡SUS316ステンレス鋼試験片の骨格表面にプラズマCVDにより厚さ:50nmを有するシリカからなるコーティング層を形成した従来シリカコーティング多孔質SUS316ステンレス鋼を作製し、この従来シリカコーティング多孔質SUS316ステンレス鋼の骨格表面に形成されたコーティング層の成分組成を測定し、その結果を表2に示した。
Conventional example 2
A conventional silica-coated porous SUS316 stainless steel in which a coating layer made of silica having a thickness of 50 nm was formed on the skeleton surface of the porous foamed SUS316 stainless steel test piece prepared in Example 2 by plasma CVD was produced. The component composition of the coating layer formed on the skeleton surface of the coated porous SUS316 stainless steel was measured, and the results are shown in Table 2.

このようにして作製した本発明シリカコーティング多孔質SUS316ステンレス鋼1〜6、比較シリカコーティング多孔質SUS316ステンレス鋼1〜4および従来シリカコーティング多孔質SUS316ステンレス鋼を一日中大気中に放置したのち、これら多孔質SUS316ステンレス鋼の上にスポイトにて蒸留水0.005mlを滴下し、蒸留水が吸い込まれるか液滴のまま残るかによって親水性があるかないかを判断し、このスポイトにて蒸留水0.005mlを滴下する操作を毎日繰り返し行ない、親水性がなくなるまで続け、親水性が保持される日数を表2に示した。
また、燃料電池環境通電後の親水性確認試験として、前記本発明シリカコーティング多孔質SUS316ステンレス鋼1〜6、比較シリカコーティング多孔質SUS316ステンレス鋼1〜4および従来シリカコーティング多孔質SUS316ステンレス鋼を温度:50℃、pH=2に保持された硫酸溶液中に浸漬し、電位:800mV(対水素基準)を引火しながら24時間保持した後に試料を取り出し、蒸留水で十分に洗浄して大気中で乾燥し、この試料を用い、スポイトにて蒸留水0.005mlを滴下し、蒸留水が吸い込まれるか液滴のまま残るかによって親水性があるかないかを判断し、このスポイトにて蒸留水0.005mlを滴下する操作を毎日繰り返し行ない、親水性がなくなるまで続け、親水性が保持される日数を表2に示した。
The silica-coated porous SUS316 stainless steels 1 to 6 of the present invention thus prepared, the comparative silica-coated porous SUS316 stainless steels 1 to 4 and the conventional silica-coated porous SUS316 stainless steel 1 0.005 ml of distilled water is dropped on a SUS316 stainless steel with a dropper, and it is determined whether or not there is hydrophilicity depending on whether distilled water is sucked in or remains as a droplet. The operation of dropping 005 ml was repeated every day until the hydrophilicity disappeared, and the number of days that the hydrophilicity was maintained is shown in Table 2.
In addition, as a hydrophilicity confirmation test after energization of the fuel cell environment, the temperature of the silica-coated porous SUS316 stainless steel 1 to 6, the comparative silica-coated porous SUS316 stainless steel 1 to 4, and the conventional silica-coated porous SUS316 stainless steel are measured. : Soaked in a sulfuric acid solution maintained at 50 ° C. and pH = 2, held for 24 hours while igniting a potential: 800 mV (vs. hydrogen), then taken out sample, washed thoroughly with distilled water and in the atmosphere Dry, use this sample, drop 0.005 ml of distilled water with a dropper, determine whether there is hydrophilicity depending on whether the distilled water is sucked in or remains as a drop, and use this dropper to add distilled water. Repeat the operation of dripping 0.005 ml every day and continue until the hydrophilicity is lost. It was.

Figure 2008195016
Figure 2008195016

表2に示される結果から、本発明従来シリカコーティング多孔質SUS316ステンレス鋼1〜6は従来シリカコーティング多孔質SUS316ステンレス鋼に比べて長期間親水性を維持できることが分かる。しかし、この発明の条件から外れた比較シリカコーティング多孔質SUS316ステンレス鋼1〜4は親水性持続日数が減少することが分かる。   From the results shown in Table 2, it can be seen that the conventional silica-coated porous SUS316 stainless steels 1 to 6 of the present invention can maintain hydrophilicity for a long time as compared with the conventional silica-coated porous SUS316 stainless steel. However, it can be seen that comparative silica-coated porous SUS316 stainless steels 1-4 that deviate from the conditions of this invention have a reduced hydrophilic duration.

実施例3
原料粉末として平均粒径:10μmのニッケル粉末を用いる以外は実施例1と同様にして気孔率:90%を有し、厚さ:1.0mmを有し表面に開口し内部の空孔に連続している連続空孔を有する多孔質発泡ニッケル板を作製した。得られた多孔質発泡ニッケル板を縦:30mm、横:30mmの寸法になるように切断して多孔質発泡ニッケル試験片を作製し、この試験片をシランカップリング剤(3−メルカプトプロピルトリメトキシシラン)を表3に示される倍率のエタノールで希釈した溶液に浸漬し、大気乾燥機にて80℃、20分間保持の条件で乾燥した。その後、これを大気中、温度:350℃、10分間保持の焼成を行い、骨格表面に厚さ:50nmを有するコーティング層を形成した本発明シリカコーティング多孔質ニッケル1〜6および比較シリカコーティング多孔質ニッケル1〜4を作製した。この本発明シリカコーティング多孔質ニッケル1〜6および比較シリカコーティング多孔質ニッケル1〜4の骨格表面に形成されたコーティング層に成分組成を測定し、その結果を表3に示した。
Example 3
Except for using nickel powder with an average particle diameter of 10 μm as a raw material powder, it has a porosity of 90%, has a thickness of 1.0 mm, and opens on the surface and continues to the internal pores in the same manner as in Example 1. A porous foam nickel plate having continuous pores was prepared. The obtained porous foamed nickel plate was cut to have dimensions of 30 mm in length and 30 mm in width to prepare a porous foam nickel test piece, and this test piece was treated with a silane coupling agent (3-mercaptopropyltrimethoxy). Silane) was immersed in a solution diluted with ethanol at a magnification shown in Table 3, and dried in an air drier at 80 ° C. for 20 minutes. Thereafter, this was calcined in the atmosphere at a temperature of 350 ° C. for 10 minutes, and the silica-coated porous nickel 1 to 6 of the present invention in which a coating layer having a thickness of 50 nm was formed on the skeleton surface and the comparative silica-coated porous Nickel 1-4 was produced. The component composition of the coating layers formed on the skeleton surfaces of the silica-coated porous nickel 1 to 6 of the present invention and the comparative silica-coated porous nickel 1 to 4 was measured. The results are shown in Table 3.

従来例3
実施例2で作製した多孔質発泡ニッケル試験片の骨格表面にプラズマCVDにより厚さ:50nmを有するシリカからなるコーティング層を形成した従来シリカコーティング多孔質ニッケルを作製し、この従来シリカコーティング多孔質ニッケルの骨格表面に形成されたコーティング層の成分組成を測定し、その結果を表3に示した。
Conventional example 3
Conventional silica-coated porous nickel in which a coating layer made of silica having a thickness of 50 nm is formed on the skeleton surface of the porous foamed nickel test piece prepared in Example 2 by plasma CVD, and this conventional silica-coated porous nickel is prepared. The component composition of the coating layer formed on the surface of the skeleton was measured, and the results are shown in Table 3.

このようにして作製した本発明シリカコーティング多孔質ニッケル1〜6、比較シリカコーティング多孔質ニッケル1〜4および従来シリカコーティング多孔質ニッケルを一日中大気中に放置したのち、これら多孔質ニッケルの上にスポイトにて蒸留水0.005mlを滴下し、蒸留水が吸い込まれるか液滴のまま残るかによって親水性があるかないかを判断し、このスポイトにて蒸留水0.005mlを滴下する操作を毎日繰り返し行ない、親水性がなくなるまで続け、親水性が保持される日数を表3に示した。
また、燃料電池環境通電後の親水性確認試験として、前記本発明シリカコーティング多孔質ニッケル1〜6、比較シリカコーティング多孔質ニッケル1〜4および従来シリカコーティング多孔質ニッケルを温度:50℃、pH=2に保持された硫酸溶液中に浸漬し、電位:800mV(対水素基準)を引火しながら24時間保持した後に試料を取り出し、蒸留水で十分に洗浄して大気中で乾燥し、この試料を用い、スポイトにて蒸留水0.005mlを滴下し、蒸留水が吸い込まれるか液滴のまま残るかによって親水性があるかないかを判断し、このスポイトにて蒸留水0.005mlを滴下する操作を毎日繰り返し行ない、親水性がなくなるまで続け、親水性が保持される日数を表3に示した。
The silica-coated porous nickel 1 to 6 of the present invention, the comparative silica-coated porous nickel 1 to 4 and the conventional silica-coated porous nickel thus prepared were left in the atmosphere all day, and then a dropper was placed on these porous nickel. Add 0.005 ml of distilled water at, and determine whether there is hydrophilicity depending on whether distilled water is sucked in or remains as a droplet, and repeat the operation of dripping 0.005 ml of distilled water with this dropper every day. The measurement was continued until the hydrophilicity was lost, and the number of days for which the hydrophilicity was maintained is shown in Table 3.
In addition, as a hydrophilicity confirmation test after energization of the fuel cell environment, the silica-coated porous nickel 1 to 6 of the present invention, the comparative silica-coated porous nickel 1 to 4 and the conventional silica-coated porous nickel were heated: 50 ° C., pH = 2 and immersed for 24 hours while igniting a potential of 800 mV (vs. hydrogen), the sample was taken out, washed thoroughly with distilled water and dried in the atmosphere. Use a dropper to drop 0.005 ml of distilled water, determine whether it is hydrophilic or not depending on whether distilled water is sucked in or remains as a drop, and drop 0.005 ml of distilled water with this dropper. Were repeated every day until the hydrophilicity disappeared, and the number of days that the hydrophilicity was maintained is shown in Table 3.

Figure 2008195016
Figure 2008195016

表3に示される結果から、本発明従来シリカコーティング多孔質ニッケル1〜6は従来シリカコーティング多孔質ニッケルに比べて長期間親水性を維持できることが分かる。しかし、この発明の条件から外れた比較シリカコーティング多孔質ニッケル1〜4は親水性持続日数が減少することが分かる。   From the results shown in Table 3, it can be seen that the conventional silica-coated porous nickel 1-6 of the present invention can maintain hydrophilicity for a long period of time as compared with the conventional silica-coated porous nickel. However, it can be seen that the comparative silica-coated porous nickels 1 to 4 that deviate from the conditions of the present invention have a reduced hydrophilic duration.

実施例4
原料粉末として平均粒径:10μmの銅粉末、水溶性樹脂結合剤としてメチルセルロース:10%を含む水溶液、可塑剤としてエチレングリコール、気泡剤としてアルキルベンゼンスルホン酸ナトリウム、発泡剤としてネオペンタンを用意し、これらを原料粉末:20質量%、水溶性樹脂結合剤:10質量%、可塑剤:1質量%、気泡剤:0.6質量%、残部:水となるように配合し、15分間混練し、発泡スラリーを作製した。得られた発泡スラリーをブレードギャップ:0.5mmでドクターブレード法によりPETフィルム上に塗布し、恒温高湿度槽に供給し、そこで温度:35℃、湿度:90%、25分間保持することにより発泡させ、引き続いて温度:80℃、20分間保持の条件で温風乾燥を行い、スポンジ状グリーン成形体を作製した。この成形体をPETフィルムから剥し、アルミナ板上に載せ、Ar雰囲気中、温度:550℃、180分間保持の条件で脱脂し、引き続いて真空焼結炉で、雰囲気:5×10−3Pa、温度:850℃、1時間保持の条件で焼結することにより気孔率:90%を有し、厚さ:1.0mmを有し表面に開口し内部の空孔に連続している連続空孔を有する多孔質発泡銅板を作製した。得られた多孔質発泡銅板を縦:30mm、横:30mmの寸法になるように切断して多孔質発泡銅試験片を作製し、この試験片をシランカップリング剤(3−メルカプトプロピルトリメトキシシラン)を表4に示される倍率のエタノールで希釈した溶液に浸漬し、大気乾燥機にて80℃、10分間保持の条件で乾燥した。その後、これを大気中、温度:350℃、10分間保持の焼成を行い、骨格表面に厚さ:50nmを有するコーティング層を形成した本発明シリカコーティング多孔質銅1〜6および比較シリカコーティング多孔質銅1〜4を作製した。この本発明シリカコーティング多孔質銅1〜6および比較シリカコーティング多孔質銅1〜4の骨格表面に形成されたコーティング層に成分組成を測定し、その結果を表4に示した。
Example 4
Prepare copper powder with an average particle size of 10 μm as a raw material powder, an aqueous solution containing 10% of methylcellulose as a water-soluble resin binder, ethylene glycol as a plasticizer, sodium alkylbenzenesulfonate as a foaming agent, and neopentane as a foaming agent. Raw material powder: 20% by mass, water-soluble resin binder: 10% by mass, plasticizer: 1% by mass, foaming agent: 0.6% by mass, balance: water, kneaded for 15 minutes, foam slurry Was made. The obtained foamed slurry was applied onto a PET film by a doctor blade method with a blade gap of 0.5 mm, and supplied to a constant temperature and high humidity tank where the temperature was 35 ° C., the humidity was 90%, and the foam was kept for 25 minutes. Subsequently, warm air drying was performed under the conditions of temperature: 80 ° C. and holding for 20 minutes to produce a sponge-like green molded body. The molded body was peeled off from the PET film, placed on an alumina plate, degreased in an Ar atmosphere at a temperature of 550 ° C. for 180 minutes, and subsequently in a vacuum sintering furnace, atmosphere: 5 × 10 −3 Pa, Temperature: 850 ° C. Sintered under the condition of holding for 1 hour, porosity: 90%, thickness: 1.0 mm, continuous pores that open to the surface and continue to the internal pores A porous foamed copper plate having the following characteristics was prepared. The obtained porous foamed copper plate was cut to have a length of 30 mm and a width of 30 mm to prepare a porous foamed copper test piece, and this test piece was treated with a silane coupling agent (3-mercaptopropyltrimethoxysilane). ) Was dipped in a solution diluted with ethanol at the magnification shown in Table 4, and dried in an air dryer at 80 ° C. for 10 minutes. Thereafter, the silica-coated porous copper 1 to 6 of the present invention in which the coating layer having a thickness of 50 nm is formed on the skeleton surface and the silica-coated porous copper of the present invention and the comparative silica-coated porous are baked in the atmosphere at a temperature of 350 ° C. for 10 minutes. Copper 1-4 were produced. The component composition was measured on the coating layers formed on the skeleton surfaces of the silica-coated porous copper 1 to 6 of the present invention and the comparative silica-coated porous copper 1 to 4, and the results are shown in Table 4.

従来例4
実施例4で作製した多孔質発泡銅試験片の骨格表面にプラズマCVDにより厚さ:50nmを有するシリカからなるコーティング層を形成した従来シリカコーティング多孔質銅を作製し、この従来シリカコーティング多孔質銅の骨格表面に形成されたコーティング層の成分組成を測定し、その結果を表4に示した。
Conventional example 4
Conventional silica-coated porous copper in which a coating layer made of silica having a thickness of 50 nm is formed on the skeleton surface of the porous foamed copper test piece prepared in Example 4 by plasma CVD, and this conventional silica-coated porous copper is prepared. The component composition of the coating layer formed on the surface of the skeleton was measured, and the results are shown in Table 4.

このようにして作製した本発明シリカコーティング多孔質銅1〜6、比較シリカコーティング多孔質銅1〜4および従来シリカコーティング多孔質銅を一日中大気中に放置したのち、これら多孔質銅の上にスポイトにて蒸留水0.005mlを滴下し、蒸留水が吸い込まれるか液滴のまま残るかによって親水性があるかないかを判断し、このスポイトにて蒸留水0.005mlを滴下する操作を毎日繰り返し行ない、親水性がなくなるまで続け、親水性が保持される日数を表4に示した。
また、燃料電池環境通電後の親水性確認試験として、前記本発明シリカコーティング多孔質銅1〜6、比較シリカコーティング多孔質銅1〜4および従来シリカコーティング多孔質銅を温度:50℃、pH=2に保持された硫酸溶液中に浸漬し、電位:800mV(対水素基準)を引火しながら100時間保持した後に試料を取り出し、蒸留水で十分に洗浄して大気中で乾燥し、この試料を用い、スポイトにて蒸留水0.005mlを滴下し、蒸留水が吸い込まれるか液滴のまま残るかによって親水性があるかないかを判断し、このスポイトにて蒸留水0.005mlを滴下する操作を毎日繰り返し行ない、親水性がなくなるまで続け、親水性が保持される日数を表4に示した。
The silica-coated porous copper 1 to 6 of the present invention, the comparative silica-coated porous copper 1 to 4 and the conventional silica-coated porous copper thus prepared were left in the atmosphere all day, and then a dropper was placed on the porous copper. Add 0.005 ml of distilled water at, and determine whether there is hydrophilicity depending on whether distilled water is sucked in or remains as a droplet, and repeat the operation of dripping 0.005 ml of distilled water with this dropper every day. The measurement was continued until the hydrophilicity was lost, and the number of days for which the hydrophilicity was maintained is shown in Table 4.
Further, as a hydrophilicity confirmation test after energization of the fuel cell environment, the silica-coated porous copper 1 to 6 of the present invention, the comparative silica-coated porous copper 1 to 4 and the conventional silica-coated porous copper were heated to 50 ° C., pH = The sample was taken out after being immersed in a sulfuric acid solution held in No. 2 and held for 100 hours while igniting a potential of 800 mV (vs. hydrogen), washed thoroughly with distilled water and dried in the atmosphere. Use a dropper to drop 0.005 ml of distilled water, determine whether it is hydrophilic or not depending on whether distilled water is sucked in or remains as a drop, and drop 0.005 ml of distilled water with this dropper. Was repeated every day until the hydrophilicity disappeared, and the number of days that the hydrophilicity was maintained is shown in Table 4.

Figure 2008195016
Figure 2008195016

表4に示される結果から、本発明従来シリカコーティング多孔質銅1〜6は従来シリカコーティング多孔質銅に比べて長期間親水性を維持できることが分かる。しかし、この発明の条件から外れた比較シリカコーティング多孔質銅1〜4は親水性持続日数が減少することが分かる。   From the results shown in Table 4, it can be seen that the conventional silica-coated porous copper 1 to 6 of the present invention can maintain hydrophilicity for a long time as compared with the conventional silica-coated porous copper. However, it can be seen that the comparative silica-coated porous copper 1 to 4 deviating from the conditions of the present invention have a reduced hydrophilic duration.

実施例5
原料粉末として平均粒径:10μmの銀粉末を用い、焼結温度を850℃とする以外は実施例4と同様にして気孔率:90%を有し、厚さ:1.0mmを有し表面に開口し内部の空孔に連続している連続空孔を有する多孔質発泡銀板を作製した。得られた多孔質発泡銀板を縦:30mm、横:30mmの寸法になるように切断して多孔質発泡銀試験片を作製し、この試験片をシランカップリング剤(3−メルカプトプロピルトリメトキシシラン)を表5に示される倍率のエタノールで希釈した溶液に浸漬し、大気乾燥機にて50℃、10分間保持の条件で乾燥した。その後、これを大気中、温度:350℃、10分間保持の焼成を行い、骨格表面に厚さ:50nmを有するコーティング層を形成した本発明シリカコーティング多孔質銀1〜6および比較シリカコーティング多孔質銀1〜4を作製した。この本発明シリカコーティング多孔質銀1〜6および比較シリカコーティング多孔質銀1〜4の骨格表面に形成されたコーティング層に成分組成を測定し、その結果を表4に示した。
Example 5
A silver powder having an average particle diameter of 10 μm is used as a raw material powder, a porosity is 90%, a thickness is 1.0 mm, and the surface is the same as in Example 4 except that the sintering temperature is 850 ° C. A porous foamed silver plate having continuous pores that are open to and continuous with the internal pores was prepared. The obtained porous foamed silver plate was cut to have a length of 30 mm and a width of 30 mm to prepare a porous foamed silver test piece, and this test piece was treated with a silane coupling agent (3-mercaptopropyltrimethoxy). Silane) was dipped in a solution diluted with ethanol at the magnification shown in Table 5, and dried in an air drier at 50 ° C. for 10 minutes. Thereafter, this was baked in the atmosphere at a temperature of 350 ° C. for 10 minutes to form a coating layer having a thickness of 50 nm on the skeleton surface. Silver 1-4 was produced. The component composition was measured on the coating layers formed on the skeleton surfaces of the silica-coated porous silver 1 to 6 of the present invention and the comparative silica-coated porous silver 1 to 4, and the results are shown in Table 4.

従来例5
実施例5で作製した多孔質発泡銀試験片の骨格表面にプラズマCVDにより厚さ:50nmを有するシリカからなるコーティング層を形成した従来シリカコーティング多孔質銀を作製し、この従来シリカコーティング多孔質銀の骨格表面に形成されたコーティング層の成分組成を測定し、その結果を表5に示した。
Conventional Example 5
Conventional silica-coated porous silver in which a coating layer made of silica having a thickness of 50 nm was formed on the skeleton surface of the porous foamed silver test piece prepared in Example 5 by plasma CVD, and this conventional silica-coated porous silver was prepared. The component composition of the coating layer formed on the surface of the skeleton was measured, and the results are shown in Table 5.

このようにして作製した本発明シリカコーティング多孔質銀1〜6、比較シリカコーティング多孔質銀1〜4および従来シリカコーティング多孔質銀を一日中大気中に放置したのち、これら多孔質銀の上にスポイトにて蒸留水0.005mlを滴下し、蒸留水が吸い込まれるか液滴のまま残るかによって親水性があるかないかを判断し、このスポイトにて蒸留水0.005mlを滴下する操作を毎日繰り返し行ない、親水性がなくなるまで続け、親水性が保持される日数を表5に示した。
また、燃料電池環境通電後の親水性確認試験として、前記本発明シリカコーティング多孔質銀1〜6、比較シリカコーティング多孔質銀1〜4および従来シリカコーティング多孔質銀を温度:50℃、pH=2に保持された硫酸溶液中に浸漬し、電位:800mV(対水素基準)を引火しながら100時間保持した後に試料を取り出し、蒸留水で十分に洗浄して大気中で乾燥し、この試料を用い、スポイトにて蒸留水0.005mlを滴下し、蒸留水が吸い込まれるか液滴のまま残るかによって親水性があるかないかを判断し、このスポイトにて蒸留水0.005mlを滴下する操作を毎日繰り返し行ない、親水性がなくなるまで続け、親水性が保持される日数を表5に示した。
The silica-coated porous silver 1 to 6 of the present invention, the comparative silica-coated porous silver 1 to 4 and the conventional silica-coated porous silver thus produced were left in the atmosphere all day, and then a dropper was placed on the porous silver. Add 0.005 ml of distilled water at, and determine whether there is hydrophilicity depending on whether distilled water is sucked in or remains as a droplet, and repeat the operation of dripping 0.005 ml of distilled water with this dropper every day. The measurement was continued until the hydrophilicity was lost, and the number of days for which the hydrophilicity was maintained is shown in Table 5.
Further, as a hydrophilicity confirmation test after energization of the fuel cell environment, the silica-coated porous silver of the present invention 1-6, comparative silica-coated porous silver 1-4, and conventional silica-coated porous silver were subjected to temperature: 50 ° C., pH = The sample was taken out after being immersed in a sulfuric acid solution held in No. 2 and held for 100 hours while igniting a potential of 800 mV (vs. hydrogen), washed thoroughly with distilled water and dried in the atmosphere. Use a dropper to drop 0.005 ml of distilled water, determine whether it is hydrophilic or not depending on whether distilled water is sucked in or remains as a drop, and drop 0.005 ml of distilled water with this dropper. Was repeated every day until the hydrophilicity disappeared, and the number of days that the hydrophilicity was maintained is shown in Table 5.

Figure 2008195016
Figure 2008195016

表5に示される結果から、本発明従来シリカコーティング多孔質銀1〜6は従来シリカコーティング多孔質銀に比べて長期間親水性を維持できることが分かる。しかし、この発明の条件から外れた比較シリカコーティング多孔質銀1〜4は親水性持続日数が減少することが分かる。   From the results shown in Table 5, it can be seen that the conventional silica-coated porous silver 1 to 6 of the present invention can maintain hydrophilicity for a long time as compared with the conventional silica-coated porous silver. However, it can be seen that the comparative silica-coated porous silver 1-4, which deviates from the conditions of this invention, has a reduced hydrophilic duration.

実施例6
原料粉末として平均粒径:10μmのNW6022ニッケル基合金粉末を用いる以外は実施例1と同様にして気孔率:90%を有し、厚さ:1.0mmを有し表面に開口し内部の空孔に連続している連続空孔を有する多孔質発泡SUS316ステンレス鋼板を作製した。得られた多孔質発泡NW6022ニッケル基合金板を縦:30mm、横:30mmの寸法になるように切断して多孔質発泡NW6022ニッケル基合金試験片を作製し、この試験片をシランカップリング剤(3−メルカプトプロピルトリメトキシシラン)を表2に示される倍率のエタノールで希釈した溶液に浸漬し、大気乾燥機にて50℃、10分間保持の条件で乾燥した。その後、これを大気中、温度:350℃、10分間保持の焼成を行い、骨格表面に厚さ:50nmを有するシリカコーティング層を形成した本発明シリカコーティング多孔質NW6022ニッケル基合金1〜6および比較シリカコーティング多孔質NW6022ニッケル基合金1〜4を作製した。この本発明シリカコーティング多孔質NW6022ニッケル基合金1〜6および比較シリカコーティング多孔質NW6022ニッケル基合金1〜4の骨格表面に形成されたシリカコーティング層の成分組成を測定し、その結果を表6に示した。
Example 6
Except for using NW6022 nickel-base alloy powder having an average particle diameter of 10 μm as a raw material powder, it has a porosity of 90%, a thickness of 1.0 mm, and has an opening on the surface and has a void inside. A porous foamed SUS316 stainless steel plate having continuous pores continuous with the pores was produced. The obtained porous foamed NW6022 nickel-base alloy plate was cut to have dimensions of length: 30 mm and width: 30 mm to prepare a porous foamed NW6022 nickel-base alloy test piece, and this test piece was treated with a silane coupling agent ( 3-mercaptopropyltrimethoxysilane) was immersed in a solution diluted with ethanol at a magnification shown in Table 2, and dried in an air drier at 50 ° C. for 10 minutes. Thereafter, this was baked in the atmosphere at a temperature of 350 ° C. for 10 minutes, and the silica-coated porous NW6022 nickel-base alloys 1 to 6 of the present invention in which a silica coating layer having a thickness of 50 nm was formed on the skeleton surface and comparison Silica-coated porous NW6022 nickel-base alloys 1 to 4 were produced. The component composition of the silica coating layer formed on the skeleton surfaces of the silica-coated porous NW6022 nickel-base alloys 1 to 6 and the comparative silica-coated porous NW6022 nickel-base alloys 1 to 4 was measured. Indicated.

従来例6
実施例6で作製した多孔質発泡NW6022ニッケル基合金試験片の骨格表面にプラズマCVDにより厚さ:50nmを有するシリカからなるコーティング層を形成した従来シリカコーティング多孔質NW6022ニッケル基合金を作製し、この従来シリカコーティング多孔質NW6022ニッケル基合金の骨格表面に形成されたコーティング層の成分組成を測定し、その結果を表6に示した。
Conventional Example 6
A conventional silica-coated porous NW6022 nickel-base alloy in which a coating layer made of silica having a thickness of 50 nm was formed on the skeleton surface of the porous foamed NW6022 nickel-base alloy specimen prepared in Example 6 by plasma CVD was prepared. The component composition of the coating layer formed on the skeleton surface of the conventional silica-coated porous NW6022 nickel-base alloy was measured, and the results are shown in Table 6.

このようにして作製した本発明シリカコーティング多孔質NW6022ニッケル基合金1〜6、比較シリカコーティング多孔質NW6022ニッケル基合金1〜4および従来シリカコーティング多孔質NW6022ニッケル基合金を一日中大気中に放置したのち、これら多孔質NW6022ニッケル基合金の上にスポイトにて蒸留水0.005mlを滴下し、蒸留水が吸い込まれるか液滴のまま残るかによって親水性があるかないかを判断し、このスポイトにて蒸留水0.005mlを滴下する操作を毎日繰り返し行ない、親水性がなくなるまで続け、親水性が保持される日数を表6に示した。
また、燃料電池環境通電後の親水性確認試験として、前記本発明シリカコーティング多孔質NW6022ニッケル基合金1〜6、比較シリカコーティング多孔質NW6022ニッケル基合金1〜4および従来シリカコーティング多孔質NW6022ニッケル基合金を温度:50℃、pH=2に保持された硫酸溶液中に浸漬し、電位:800mV(対水素基準)を引火しながら24時間保持した後に試料を取り出し、蒸留水で十分に洗浄して大気中で乾燥し、この試料を用い、スポイトにて蒸留水0.005mlを滴下し、蒸留水が吸い込まれるか液滴のまま残るかによって親水性があるかないかを判断し、このスポイトにて蒸留水0.005mlを滴下する操作を毎日繰り返し行ない、親水性がなくなるまで続け、親水性が保持される日数を表6に示した。
After the silica-coated porous NW6022 nickel-base alloys 1 to 6 of the present invention thus prepared, the comparative silica-coated porous NW6022 nickel-base alloys 1 to 4 and the conventional silica-coated porous NW6022 nickel-base alloys were left in the atmosphere all day long Then, 0.005 ml of distilled water is dropped on the porous NW6022 nickel-base alloy with a dropper, and it is determined whether there is hydrophilicity depending on whether distilled water is sucked in or remains as a drop. The operation of dropping 0.005 ml of distilled water was repeated every day and continued until hydrophilicity was lost. Table 6 shows the number of days that hydrophilicity is maintained.
Further, as a hydrophilicity confirmation test after energization of the fuel cell environment, the silica-coated porous NW6022 nickel-base alloys 1 to 6, the comparative silica-coated porous NW6022 nickel-base alloys 1 to 4 and the conventional silica-coated porous NW6022 nickel-base The alloy is immersed in a sulfuric acid solution maintained at a temperature of 50 ° C. and pH = 2, and held for 24 hours while igniting a potential of 800 mV (vs. hydrogen), and then the sample is taken out and thoroughly washed with distilled water. Dry in the atmosphere, use this sample, add 0.005 ml of distilled water dropwise with a dropper, determine whether there is hydrophilicity depending on whether distilled water is sucked in or remains as a drop, and with this dropper Repeat the operation of adding 0.005 ml of distilled water every day and continue until the hydrophilicity is lost. It is shown in 6.

Figure 2008195016
Figure 2008195016

表6に示される結果から、本発明従来シリカコーティング多孔質NW6022ニッケル基合金1〜6は従来シリカコーティング多孔質NW6022ニッケル基合金に比べて長期間親水性を維持できることが分かる。しかし、この発明の条件から外れた比較シリカコーティング多孔質NW6022ニッケル基合金1〜4は親水性持続日数が減少することが分かる。   From the results shown in Table 6, it can be seen that the conventional silica-coated porous NW6022 nickel-base alloys 1 to 6 of the present invention can maintain hydrophilicity for a long time as compared with the conventional silica-coated porous NW6022 nickel-base alloy. However, it can be seen that the comparative silica-coated porous NW6022 nickel-base alloys 1 to 4 that deviate from the conditions of the present invention have a reduced hydrophilic duration.

Claims (5)

多孔質金属の骨格表面がC:2.5〜15質量%を含有し、残部がシリカからなる成分組成を有するシリカコーティング層により被覆されていることを特徴とする長期間親水性が維持されるシリカコーティング多孔質金属。 The skeleton surface of the porous metal contains C: 2.5 to 15% by mass, and the hydrophilicity is maintained for a long period of time characterized by being covered with a silica coating layer having a component composition composed of silica. Silica coated porous metal. 前記多孔質金属は、ステンレス鋼、ニッケル基合金、Cu、Ni、Ti、Agの内のいずれかからなる発泡金属であることを特徴とする請求項1記載の長期間親水性が維持されるシリカコーティング多孔質金属。 2. The silica capable of maintaining long-term hydrophilicity according to claim 1, wherein the porous metal is a foam metal made of stainless steel, nickel-base alloy, Cu, Ni, Ti, or Ag. Coating porous metal. 請求項1または2記載の長期間親水性が維持されるシリカコーティング多孔質金属からなる燃料電池のガス拡散層。 A gas diffusion layer of a fuel cell comprising a silica-coated porous metal that maintains hydrophilicity for a long period of time according to claim 1 or 2. 多孔質金属の骨格表面にシランカップリング剤を塗布したのち、酸化性雰囲気中、温度:280〜500℃で焼成することを特徴とする長期間親水性が維持されるシリカコーティング多孔質金属の製造方法。 Production of a silica-coated porous metal that maintains hydrophilicity for a long period of time, characterized in that a silane coupling agent is applied to the surface of the skeleton of the porous metal and then fired in an oxidizing atmosphere at a temperature of 280 to 500 ° C. Method. 前記多孔質金属は、ステンレス鋼、ニッケル基合金、Cu、Ni、Ti、Agの内のいずれかからなる発泡金属であることを特徴とする請求項4記載の長期間親水性が維持されるシリカコーティング多孔質金属の製造方法。 5. The silica capable of maintaining long-term hydrophilicity according to claim 4, wherein the porous metal is a foam metal made of stainless steel, nickel-base alloy, Cu, Ni, Ti, or Ag. A method for producing a coated porous metal.
JP2007034902A 2007-02-15 2007-02-15 Silica-coated porous metal whose hydrophilicity is maintained for a long time and method for producing the same Expired - Fee Related JP4811793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007034902A JP4811793B2 (en) 2007-02-15 2007-02-15 Silica-coated porous metal whose hydrophilicity is maintained for a long time and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007034902A JP4811793B2 (en) 2007-02-15 2007-02-15 Silica-coated porous metal whose hydrophilicity is maintained for a long time and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008195016A true JP2008195016A (en) 2008-08-28
JP4811793B2 JP4811793B2 (en) 2011-11-09

Family

ID=39754403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007034902A Expired - Fee Related JP4811793B2 (en) 2007-02-15 2007-02-15 Silica-coated porous metal whose hydrophilicity is maintained for a long time and method for producing the same

Country Status (1)

Country Link
JP (1) JP4811793B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100158A (en) * 2005-10-04 2007-04-19 Hitachi Metals Ltd Surface treatment method of metallic porous body
JP2011031541A (en) * 2009-08-04 2011-02-17 Mitsubishi Materials Corp Hydrophilic silica coating foaming metal body
JP2011099146A (en) * 2009-11-06 2011-05-19 Mitsubishi Materials Corp Sintered metal sheet material for electrochemical member
JP2011111644A (en) * 2009-11-26 2011-06-09 Mitsubishi Materials Corp Hydrophilic metal foam body
JP2011111643A (en) * 2009-11-26 2011-06-09 Mitsubishi Materials Corp Hydrophilic metal foam body
CN104354337A (en) * 2014-10-22 2015-02-18 上海交通大学 Gradient-density through hole metal foam and simple preparation method thereof
US20200107601A1 (en) * 2018-09-17 2020-04-09 Omius Inc. Dermal heatsink exhibiting hydrophilic and contaminant resistant properties and method for fabricating a dermal heatsink
JPWO2020217668A1 (en) * 2019-04-25 2020-10-29

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09263716A (en) * 1996-03-29 1997-10-07 Mitsubishi Materials Corp Overcoat composition for transparent electrically conductive film excellent in electical conductivity
JPH1121826A (en) * 1997-06-30 1999-01-26 Sekisui Jushi Co Ltd Self-cleaning sight line taxi-sign
JP2000103645A (en) * 1998-07-28 2000-04-11 Central Glass Co Ltd Substrate provided with hydrophilic oxide coating film and production of the substrate
JP2000226234A (en) * 1998-12-03 2000-08-15 Toto Ltd Hydrophilic member
JP2000239607A (en) * 1999-02-17 2000-09-05 Mitsubishi Materials Corp Coating fluid for forming hydrophilic coating film
JP2004098351A (en) * 2002-09-05 2004-04-02 Dainippon Printing Co Ltd Pattern formed body
JP2005011690A (en) * 2003-06-19 2005-01-13 Mitsubishi Materials Corp Gas diffusion layer member for solid polymer fuel cell and manufacturing method of the same
JP2006100155A (en) * 2004-09-30 2006-04-13 Toyota Motor Corp Fuel cell

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09263716A (en) * 1996-03-29 1997-10-07 Mitsubishi Materials Corp Overcoat composition for transparent electrically conductive film excellent in electical conductivity
JPH1121826A (en) * 1997-06-30 1999-01-26 Sekisui Jushi Co Ltd Self-cleaning sight line taxi-sign
JP2000103645A (en) * 1998-07-28 2000-04-11 Central Glass Co Ltd Substrate provided with hydrophilic oxide coating film and production of the substrate
JP2000226234A (en) * 1998-12-03 2000-08-15 Toto Ltd Hydrophilic member
JP2000239607A (en) * 1999-02-17 2000-09-05 Mitsubishi Materials Corp Coating fluid for forming hydrophilic coating film
JP2004098351A (en) * 2002-09-05 2004-04-02 Dainippon Printing Co Ltd Pattern formed body
JP2005011690A (en) * 2003-06-19 2005-01-13 Mitsubishi Materials Corp Gas diffusion layer member for solid polymer fuel cell and manufacturing method of the same
JP2006100155A (en) * 2004-09-30 2006-04-13 Toyota Motor Corp Fuel cell

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100158A (en) * 2005-10-04 2007-04-19 Hitachi Metals Ltd Surface treatment method of metallic porous body
JP2011031541A (en) * 2009-08-04 2011-02-17 Mitsubishi Materials Corp Hydrophilic silica coating foaming metal body
JP2011099146A (en) * 2009-11-06 2011-05-19 Mitsubishi Materials Corp Sintered metal sheet material for electrochemical member
JP2011111644A (en) * 2009-11-26 2011-06-09 Mitsubishi Materials Corp Hydrophilic metal foam body
JP2011111643A (en) * 2009-11-26 2011-06-09 Mitsubishi Materials Corp Hydrophilic metal foam body
CN104354337A (en) * 2014-10-22 2015-02-18 上海交通大学 Gradient-density through hole metal foam and simple preparation method thereof
US20200107601A1 (en) * 2018-09-17 2020-04-09 Omius Inc. Dermal heatsink exhibiting hydrophilic and contaminant resistant properties and method for fabricating a dermal heatsink
US10820652B2 (en) * 2018-09-17 2020-11-03 Omius Inc. Dermal heatsink exhibiting hydrophilic and contaminant resistant properties and method for fabricating a dermal heatsink
JPWO2020217668A1 (en) * 2019-04-25 2020-10-29
WO2020217668A1 (en) * 2019-04-25 2020-10-29 富山住友電工株式会社 Metal porous body, electrode for electrolysis, hydrogen production device, fuel cell, and method for producing metal porous body

Also Published As

Publication number Publication date
JP4811793B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
JP4811793B2 (en) Silica-coated porous metal whose hydrophilicity is maintained for a long time and method for producing the same
US7951246B2 (en) Method for manufacturing open porous metallic foam body
JP5378659B2 (en) Precious metal loading method
US8758675B2 (en) Method for fabricating an open-porous metal foam body, metal foam body fabricated this way as well as its applications
KR101212786B1 (en) Open-porous metal foam body and a method of fabricating the same
JP3958217B2 (en) Cathode side hardware for carbonate fuel cell with sol-gel coating
JP4729755B2 (en) Composite membrane, method for producing the same, and hydrogen separation membrane
JP4753180B2 (en) Hydrogen separation material and method for producing the same
US9771644B2 (en) Method and apparatus for producing diffusion aluminide coatings
US20090196782A1 (en) Porous liquid absorbing-and-holding member, process for production thereof, and alcohol absorbing-and-holding member
US20080118355A1 (en) Turbine Vane for Turbo-Machines and Method for Fabricating
CN112707737B (en) Porous ceramic and preparation method and application thereof
WO2015028738A1 (en) Material for priming a metal substrate of a ceramic catalyst material
JP2008106355A (en) Hydrophilic porous metal member and manufacturing method therefor
JP4721113B2 (en) Method for producing sponge-like titanium sintered body with excellent corrosion resistance
JP2001329380A (en) Method for manufacturing porous plate material
JP2011111643A (en) Hydrophilic metal foam body
JP2009202464A (en) Method for manufacturing ceramic honeycomb structure, and coating material used for it
JP2001329380A5 (en)
JP5273588B2 (en) Au colloid coating material
JP2008284450A (en) Steam generator in which steam generation performance is not deteriorated for long period of time
US11685699B2 (en) Coating methods and materials to reduce aging of SiC hot surface ignitors
JP5376149B2 (en) Hydrophobic silica coated metal foam
JP2010163636A (en) Porous titanium sheet small in contact resistance and method for producing the porous titanium sheet
JP2008108715A (en) Hydrophilic porous metal member and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110801

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4811793

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110814

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees