JP2008194549A - Catalyst for producing hydrogen for fuel cell and dss operation-correspondence fuel cell - Google Patents

Catalyst for producing hydrogen for fuel cell and dss operation-correspondence fuel cell Download PDF

Info

Publication number
JP2008194549A
JP2008194549A JP2007029062A JP2007029062A JP2008194549A JP 2008194549 A JP2008194549 A JP 2008194549A JP 2007029062 A JP2007029062 A JP 2007029062A JP 2007029062 A JP2007029062 A JP 2007029062A JP 2008194549 A JP2008194549 A JP 2008194549A
Authority
JP
Japan
Prior art keywords
catalyst
fuel cell
hydrogen production
composition
dss operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007029062A
Other languages
Japanese (ja)
Other versions
JP4848294B2 (en
Inventor
Kazunari Doumen
一成 堂免
Kentaro Teramura
謙太郎 寺村
Yoshihiro Kobori
良浩 小堀
Yasutsugu Hashimoto
康嗣 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Eneos Corp
Original Assignee
University of Tokyo NUC
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC, Nippon Oil Corp filed Critical University of Tokyo NUC
Priority to JP2007029062A priority Critical patent/JP4848294B2/en
Publication of JP2008194549A publication Critical patent/JP2008194549A/en
Application granted granted Critical
Publication of JP4848294B2 publication Critical patent/JP4848294B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for producing hydrogen for a fuel cell, which can be used stably even in a DSS (daily start-up and shut-down) operation of repeating the ON/OFF of the supply of fuel and to provide the DSS operation-correspondence fuel cell provided with the catalyst for producing hydrogen for the fuel cell. <P>SOLUTION: The catalyst for producing hydrogen for the fuel cell has the general formula expressed by an ABO<SB>3</SB>type (where B is a composition of Ni<SB>x</SB>Mn<SB>(1-x)</SB>; and x is 0.7±0.10). The catalyst for producing hydrogen for the DSS operation-correspondence fuel cell where the ON/OFF of the supply of fuel is repeated has the general formula expressed by an ABO<SB>3</SB>type (wherein B is a composition of Ni<SB>x</SB>M<SB>(1-x)</SB>). The composition of Ni<SB>x</SB>M<SB>(1-x)</SB>is characterized in that metal Ni is deposited on an oxycarbonic acid compound in the DSS operation. M of Ni<SB>x</SB>M<SB>(1-x)</SB>is preferably Mn and x is preferably 0.7±0.10. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、燃料供給のON/OFFを繰り返すDSS運転によっても良好に使用可能な燃料電池用水素製造触媒、及びその触媒を備えたDSS運転対応型燃料電池に関する。   The present invention relates to a hydrogen production catalyst for a fuel cell that can be satisfactorily used even by DSS operation in which fuel supply is repeatedly turned on and off, and a DSS operation-compatible fuel cell including the catalyst.

水素と酸素を燃料とする固体高分子型燃料電池(PEFC)は、低公害で熱効率が高いため、自動車用電源や分散電源等の幅広い分野での動力源として、また、家電製品等の民生用の動力源としての適用が期待されている。この燃料電池に燃料である水素を供給するには幾つかの方法があるが、メタン、プロパン、天然ガス、灯油等の炭化水素を触媒(本願では「水素製造触媒」という。)の存在下で水蒸気改質して水素を製造する方法が一般的に検討されている。   The polymer electrolyte fuel cell (PEFC) that uses hydrogen and oxygen as fuel is low-pollution and high in thermal efficiency, so it can be used as a power source in a wide range of fields such as automobile power supplies and distributed power supplies, and for consumer electronics such as home appliances. Application as a power source is expected. There are several methods for supplying hydrogen as a fuel to the fuel cell, but hydrocarbons such as methane, propane, natural gas, and kerosene are used in the presence of a catalyst (referred to herein as a “hydrogen production catalyst”). A method for producing hydrogen by steam reforming has been generally studied.

こうした水蒸気改質法は、例えばメタンを原料とした場合には、そのメタンを水素製造触媒の存在下で、CH4+H2O→CO+3H2 の反応により水素を含む改質ガスを得るが、その改質ガスは多量の一酸化炭素を含み、この一酸化炭素は燃料電池の働きを阻害する被毒物質として作用する。そこで、その後に、例えばCu−Zn等のCO変成触媒の存在下で、CO+H2O→CO2+H2 の反応により一酸化炭素を二酸化炭素に変換し、さらにその後に、例えばPtやRu等のCO除去触媒を有するCO除去触媒の存在下で、CO+1/2O2→CO の反応により一酸化炭素をさらに除去する方法が検討されている(例えば、特許文献1,2を参照)。 In the steam reforming method, for example, when methane is used as a raw material, a reformed gas containing hydrogen is obtained by a reaction of CH 4 + H 2 O → CO + 3H 2 in the presence of a hydrogen production catalyst. The reformed gas contains a large amount of carbon monoxide, and this carbon monoxide acts as a poisoning substance that inhibits the operation of the fuel cell. Therefore, after that, in the presence of a CO shift catalyst such as Cu—Zn, for example, carbon monoxide is converted into carbon dioxide by a reaction of CO + H 2 O → CO 2 + H 2 , and then, for example, Pt, Ru, etc. A method of further removing carbon monoxide by the reaction of CO + 1 / 2O 2 → CO 2 in the presence of a CO removal catalyst having a CO removal catalyst has been studied (see, for example, Patent Documents 1 and 2).

ところで、従来、工業的に利用されている水素の90%は主にNi/Al触媒を用いた水蒸気改質法により連続的に製造されているが、こうしたNi/Al触媒は貴金属を含まないため安価であり、実用上極めて有利な触媒である。一方、水素を燃料とする固体高分子型燃料電池(PEFC)は民生用の燃料電池としての実用化が期待されており、そのため、daily start-up and shut-down運転(本願では「DSS運転」という。)が伴うことから、水蒸気改質法による水素製造も燃料電池のDSS運転に対応した安定製造が要求されている。 Meanwhile, conventionally, although 90% of the hydrogen that is industrially used are mainly continuously produced by the steam reforming method using a Ni / Al 2 O 3 catalyst, such Ni / Al 2 O 3 catalyst Is inexpensive because it contains no precious metal and is a very advantageous catalyst for practical use. On the other hand, a polymer electrolyte fuel cell (PEFC) using hydrogen as a fuel is expected to be put to practical use as a consumer fuel cell. Therefore, a daily start-up and shut-down operation (in this application, “DSS operation”) is expected. Therefore, stable production corresponding to the DSS operation of the fuel cell is also required for the hydrogen production by the steam reforming method.

DSS運転対応型燃料電池に水素を供給するためには、水蒸気改質もDSS運転により行われることになる。そのため、水素製造触媒には、燃料であるメタン等の炭化水素原料が供給される燃料雰囲気と、炭化水素原料が供給されない水蒸気雰囲気とが任意の間隔で繰り返される。こうした場合であっても、上記の安価なNi/Al触媒を用いて水素を製造できればよいが、Ni/Alは高温で水蒸気雰囲気下に晒されると、Ni金属のシンタリングが起こり、活性が低下することがよく知られている(例えば非特許文献1を参照)。 In order to supply hydrogen to the DSS operation compatible fuel cell, steam reforming is also performed by the DSS operation. Therefore, a fuel atmosphere in which a hydrocarbon raw material such as methane as a fuel is supplied to a hydrogen production catalyst and a water vapor atmosphere in which no hydrocarbon raw material is supplied are repeated at an arbitrary interval. Even in such a case, it is sufficient that hydrogen can be produced using the above-described inexpensive Ni / Al 2 O 3 catalyst. However, Ni / Al 2 O 3 is sintered in Ni metal when exposed to a steam atmosphere at a high temperature. It is well known that the activity decreases and the activity decreases (see, for example, Non-Patent Document 1).

そこで現在、固体高分子型燃料電池用の水蒸気改質触媒には、Ruを触媒活性成分としAlを担体としたものや、RuとNiを触媒活性成分としAlを担体としたものが用いられている(例えば特許文献3を参照)。
特開2003−47855号公報 特開2004−89813号公報 特開2005−262070号公報 石油学会誌、Vol.2、109(1977)
Therefore, currently, steam reforming catalysts for polymer electrolyte fuel cells include those using Ru as a catalytic active component and Al 2 O 3 as a support, and Ru and Ni as catalytic active components and Al 2 O 3 as a support. Is used (see, for example, Patent Document 3).
Japanese Patent Laid-Open No. 2003-47855 JP 2004-89813 A JP 2005-262070 A Journal of Petroleum Society, Vol.2, 109 (1977)

しかしながら、貴金属であるRuは高価であるため、実用化のためにはNi等の比較的値段の安い卑金属を使うことができると共に、炭化水素原料が供給される燃料雰囲気と、炭化水素原料が供給されない水蒸気雰囲気とが任意の間隔で繰り返される場合であっても安定した触媒性能を発揮できる、DSS運転対応型の水素製造触媒が求められている。   However, since Ru, which is a noble metal, is expensive, it is possible to use a relatively inexpensive base metal such as Ni for practical use, as well as a fuel atmosphere to which a hydrocarbon raw material is supplied and a hydrocarbon raw material to be supplied. There is a need for a DSS operation-compatible hydrogen production catalyst that can exhibit stable catalyst performance even when a steam atmosphere that is not performed is repeated at an arbitrary interval.

本発明は、上記課題を解決するためになされたものであって、その目的は、燃料供給のON/OFFを繰り返すDSS運転によっても安定して使用することができる燃料電池用水素製造触媒を提供すること、及び、その水素製造触媒を備えたDSS運転対応型燃料電池を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a hydrogen production catalyst for a fuel cell that can be stably used even by DSS operation in which fuel supply is repeatedly turned on and off. It is another object of the present invention to provide a fuel cell for DSS operation including the hydrogen production catalyst.

上記課題を解決する本発明の第1の観点に係る燃料電池用水素製造触媒は、一般式ABO型で当該BがNiMn(1−x)の組成物からなり、前記xが0.7±0.10であることを特徴とする。 The hydrogen production catalyst for a fuel cell according to the first aspect of the present invention for solving the above-mentioned problems is a composition of the general formula ABO 3 type, wherein B is a composition of Ni x Mn (1-x) , and x is 0.8. It is characterized by 7 ± 0.10.

この発明によれば、上記組成物を燃料電池用水素製造触媒として用いたので、炭化水素原料が供給されない水蒸気雰囲気でも触媒性能を維持することができ、DSS運転対応型の燃料電池用水素製造触媒として好ましく用いることができる。さらに、この発明によれば、水素製造触媒が貴金属を主要材料として含んでいないので、触媒コストの低減を図ることができる。   According to the present invention, since the composition is used as a hydrogen production catalyst for a fuel cell, the catalyst performance can be maintained even in a steam atmosphere in which no hydrocarbon raw material is supplied. Can be preferably used. Furthermore, according to the present invention, since the hydrogen production catalyst does not contain a noble metal as a main material, the catalyst cost can be reduced.

また、本発明の第2の観点に係る燃料電池用水素製造触媒は、一般式ABO型で当該BがNi(1−x)の組成物からなり、燃料供給のON/OFFを繰り返すDSS運転対応型の燃料電池用水素製造触媒であって、前記組成物は、DSS運転時に、金属Niがオキシ炭酸化合物に担持されていることを特徴とする。この燃料電池用水素製造触媒において、前記MがMnであり、前記xが0.7±0.10であることが好ましい。 The fuel cell hydrogen production catalyst according to the second aspect of the present invention is a general formula ABO 3 type, wherein B is composed of Ni x M (1-x) , and the fuel supply is repeatedly turned ON / OFF. A hydrogen production catalyst for a fuel cell that is compatible with DSS operation, wherein the composition is characterized in that metal Ni is supported on an oxycarbonate during DSS operation. In this fuel cell hydrogen production catalyst, the M is preferably Mn and the x is preferably 0.7 ± 0.10.

この発明によれば、上記組成物をDSS運転対応型の燃料電池用水素製造触媒として用い、その組成物を構成するNiがDSS運転時に金属Niの状態でオキシ炭酸化合物に担持されているので、炭化水素原料が供給されない水蒸気雰囲気でも触媒性能を維持することができ、DSS運転対応型の燃料電池用水素製造触媒として好ましく用いることができる。さらに、この発明によれば、水素製造触媒が貴金属を主要材料として含んでいないので、触媒コストの低減を図ることができる。   According to the present invention, the composition is used as a hydrogen production catalyst for a fuel cell for DSS operation, and Ni constituting the composition is supported on the oxycarbonate compound in the state of metal Ni during the DSS operation. The catalyst performance can be maintained even in a steam atmosphere in which no hydrocarbon raw material is supplied, and it can be preferably used as a hydrogen production catalyst for a fuel cell for DSS operation. Furthermore, according to the present invention, since the hydrogen production catalyst does not contain a noble metal as a main material, the catalyst cost can be reduced.

上記第1及び第2の観点に係る本発明の燃料電池用水素製造触媒において、前記AがLaであることが好ましい。前記組成物を構成するA元素は特に限定されないが、この発明によれば、A元素をLaとすればより好ましい触媒性能を発揮できる。   In the hydrogen production catalyst for a fuel cell of the present invention according to the first and second aspects, it is preferable that the A is La. Although the A element which comprises the said composition is not specifically limited, According to this invention, if A element is set to La, more preferable catalyst performance can be exhibited.

上記第1及び第2の観点に係る本発明の燃料電池用水素製造触媒において、前記AがLaCe(1−y)であることが好ましい。前記組成物を構成するA元素は特に限定されないが、この発明によれば、A元素をLaCe(1−y)とすればより好ましい触媒性能を発揮できる。 In the fuel cell hydrogen production catalyst according to the first and second aspects of the present invention, it is preferable that the A is La y Ce (1-y) . A element forming the composition is not particularly limited, according to the present invention, the element A La y Ce (1-y) Tosureba can exhibit more preferable catalyst performance.

上記第1及び第2の観点に係る本発明の燃料電池用水素製造触媒において、前記組成物が、Pd、Pt、Rh及びRuから選ばれるいずれか1以上を含むことが好ましい。この発明によれば、上記組成物にPd、Pt、Rh及びRuから選ばれるいずれか1以上を含有させることにより、DSS運転時における触媒性能をより向上させることができる。なお、これらの元素は、微量含有させるだけでよいので、従来型の触媒に比べてコストの面でも有利である。   In the fuel cell hydrogen production catalyst of the present invention according to the first and second aspects, the composition preferably contains any one or more selected from Pd, Pt, Rh and Ru. According to this invention, the catalyst performance during the DSS operation can be further improved by adding any one or more selected from Pd, Pt, Rh and Ru to the composition. Since these elements only need to be contained in a trace amount, they are advantageous in terms of cost as compared with conventional catalysts.

上記課題を解決する本発明のDSS運転対応型燃料電池は、上記第1及び第2の観点に係る本発明の燃料電池用水素製造触媒を有する水素製造装置を構成部材として備えることを特徴とする。   The DSS operation-compatible fuel cell of the present invention that solves the above-described problems includes a hydrogen production apparatus having the hydrogen production catalyst for a fuel cell of the present invention according to the first and second aspects as a constituent member. .

この発明によれば、DSS運転対応型燃料電池の構成部材として、上記本発明の燃料電池用水素製造触媒を有する水素製造装置を用いたので、コストメリットのあるDSS運転対応型の燃料電池として好ましく適用できる。   According to the present invention, since the hydrogen production apparatus having the hydrogen production catalyst for a fuel cell of the present invention is used as a constituent member of the DSS operation compatible fuel cell, it is preferable as a DSS operation compatible fuel cell having cost merit. Applicable.

本発明の燃料電池用水素製造触媒によれば、炭化水素原料が供給されない水蒸気雰囲気でも触媒性能を維持することができるので、DSS運転対応型の低コストの燃料電池用水素製造触媒として好ましく用いることができる。また、本発明のDSS運転対応型燃料電池によれば、コストメリットのあるDSS運転対応型の燃料電池として好ましく適用できる。   According to the fuel cell hydrogen production catalyst of the present invention, the catalyst performance can be maintained even in a steam atmosphere in which no hydrocarbon raw material is supplied. Therefore, the catalyst is preferably used as a low-cost fuel cell hydrogen production catalyst for DSS operation. Can do. Further, the DSS operation compatible fuel cell of the present invention can be preferably applied as a DSS operation compatible fuel cell with cost merit.

以下、本発明の燃料電池用水素製造触媒及びDSS運転対応型燃料電池について図面を参照しつつ説明する。なお、以下の実施形態と実施例とにより本発明の範囲が限定されるものではなく、以下の構成要素には、技術常識の範囲内で当業者が容易に想定できるものや実質的の同一のもののも含まれる。   Hereinafter, the hydrogen production catalyst for fuel cells and the fuel cell for DSS operation according to the present invention will be described with reference to the drawings. It should be noted that the scope of the present invention is not limited by the following embodiments and examples, and the following constituent elements can be easily assumed by those skilled in the art within the scope of common general technical knowledge, or substantially the same. The thing is also included.

(燃料電池用水素製造触媒)
本発明の燃料電池用水素製造触媒は、燃料供給のON/OFFを繰り返すDSS運転対応型の燃料電池用水素製造触媒として用いられるものであって、一般式ABO型でそのBがNi(1−x)の組成物からなるものである。そして、この組成物は、DSS運転時に、上記Ni元素が金属Niとしてオキシ炭酸化合物に担持された状態になっている。
(Hydrogen production catalyst for fuel cells)
The fuel cell hydrogen production catalyst of the present invention is used as a fuel cell hydrogen production catalyst for DSS operation that repeats ON / OFF of fuel supply, and is a general formula ABO 3 type, where B is Ni x M It consists of the composition of (1-x) . And this composition is in the state by which the said Ni element was carry | supported by the oxycarbonic acid compound as metal Ni at the time of DSS driving | operation.

本発明では、Ni元素がDSS運転時に金属Niとしてオキシ炭酸化合物に担持されているように構成されるので、炭化水素原料が供給されない水蒸気雰囲気を伴うshut-down時においても、Ni酸化物になって触媒活性が失活することがなく、触媒性能を維持することができるという効果がある。   In the present invention, since the Ni element is configured to be supported on the oxycarbonic acid compound as metal Ni during the DSS operation, it becomes Ni oxide even at the time of shut-down accompanied by a steam atmosphere in which no hydrocarbon raw material is supplied. Thus, there is an effect that the catalyst performance is not deactivated and the catalyst performance can be maintained.

一般式ABO型はペロブスカイト型構造としてよく知られている構造であるが、本発明においては、結晶学的に必ずしもペロブスカイト構造でなくてもよく、組成比としてABO型になっていればよい。 The general formula ABO 3 type is a structure well known as a perovskite structure. However, in the present invention, the perovskite structure is not necessarily crystallographically, and the composition ratio may be ABO 3 type. .

ABO型の組成物において、本願では、Bサイトの元素がNi(1−x)であることに特徴がある。特に好ましい触媒活性を示すM元素としては、Mn(マンガン)を挙げることができる。Mnを構成元素とした場合のNiMn(1−x)において、炭化水素原料から水素への水蒸気改質反応(例えば、CH4+H2O→CO+3H2)による変換効率の観点からは、xが0.7±0.10であること、すなわち、xが0.6以上0.8以下であることが好ましい。 The ABO 3 type composition is characterized in that the element at the B site is Ni x M (1-x) in the present application. M element (manganese) can be mentioned as an M element exhibiting particularly preferable catalytic activity. In the case of Ni x Mn (1-x) where Mn is a constituent element, from the viewpoint of conversion efficiency by a steam reforming reaction (for example, CH 4 + H 2 O → CO + 3H 2 ) from a hydrocarbon raw material to hydrogen, x Is preferably 0.7 ± 0.10, that is, x is 0.6 or more and 0.8 or less.

ABO型の組成物において、Aサイトの元素としては、ランタノイド元素(La,Ce,Pr,Nd,Pm,Sm,Gd,Tb,Dy等)や、Ba、Sr、Ca等のアルカリ土類元素を挙げることができる。この中でも、Bサイトの元素をNiMn(1−x)とした場合においては、Aサイトの元素としてLaを好ましく挙げることができ、また、LaCe(1−y)を好ましく挙げることができる。これらの元素でAサイトを構成することにより、好ましい触媒性能を発揮させることができる。なお、後述の実験例においては、LaCe(1−y)においてyを0.5としたものを例示している。 In the ABO 3 type composition, the elements at the A site include lanthanoid elements (La, Ce, Pr, Nd, Pm, Sm, Gd, Tb, Dy, etc.) and alkaline earth elements such as Ba, Sr, Ca, etc. Can be mentioned. Among these, when the element at the B site is Ni x Mn (1-x) , La can be preferably exemplified as the element at the A site, and La y Ce (1-y) can be preferably exemplified. it can. By constituting the A site with these elements, preferable catalytic performance can be exhibited. In the experimental examples described later, an example in which y is 0.5 in La y Ce (1-y) is illustrated.

なお、本発明のABO型の水素製造触媒において、その組成物が、Pd、Pt、Rh及びRuから選ばれるいずれか1以上を含むことが好ましい。水素製造触媒の総重量に対する前記の元素の含有量は、DSS運転時における触媒性能をより高めることができる量を選択する。これらの元素はいずれも貴金属と呼ばれるものであり、コストの点ではやや好ましくないが、本願では含有量が上記範囲であり、主要成分として含まないので、コスト上昇を極力防ぐことができる。なお、上記元素の中でも、特にPdを含有させることが触媒活性の点でより好ましい。 In the ABO 3 type hydrogen production catalyst of the present invention, the composition preferably contains any one or more selected from Pd, Pt, Rh and Ru. The content of the element with respect to the total weight of the hydrogen production catalyst is selected so that the catalyst performance during DSS operation can be further improved. All of these elements are called noble metals and are somewhat undesirable in terms of cost. However, in the present application, the content is in the above range and is not included as a main component, so that an increase in cost can be prevented as much as possible. In addition, it is more preferable from the point of catalyst activity to contain Pd especially among the said elements.

以上説明した本発明の水素製造触媒は、DSS運転対応型の燃料電池用水素製造触媒として好ましく用いることができる。   The hydrogen production catalyst of the present invention described above can be preferably used as a hydrogen production catalyst for a fuel cell for DSS operation.

(水素製造触媒の製造方法)
上述した水素製造触媒は以下のようにして作製することができる。例えLaNi0.70.3からなる組成物を作製する場合、例えばメタノール溶媒に、ランタン塩、ニッケル塩、マンガン塩を最終的に上記組成比になるように所定量秤量して投入し、さらにクエン酸やエチレングリコール等の支持塩を所定量秤量して投入した後、所定の温度で重合させてゲル化させ、その後、所定の温度で炭化と焼成を行って前駆物質を作製し、その後さらに焼成することによって、ペロブスカイト型構造又はそれに類似する構造からなるLaNi0.70.3を作製することができる。
(Method for producing hydrogen production catalyst)
The above-described hydrogen production catalyst can be produced as follows. For example, when preparing a composition composed of LaNi 0.7 M 0.3 O 3 , for example, a lanthanum salt, a nickel salt, and a manganese salt are weighed in a predetermined amount so as to finally have the above composition ratio in a methanol solvent, and further, a quencher is added. A predetermined amount of a supporting salt such as acid or ethylene glycol is weighed and charged, and then polymerized at a predetermined temperature to be gelled, and then carbonized and fired at a predetermined temperature to produce a precursor, and then further calcined. By doing so, LaNi 0.7 M 0.3 O 3 having a perovskite structure or a similar structure can be produced.

なお、Aサイトに例えばCe(セリウム)を所定の化学量論比で含有させる場合には、La塩とCe塩を所定量秤量して加え、また、Bサイトに例えばPdを所定の化学量論比で含有させる場合には、Pd塩を所定量秤量して加えることにより調整できる。   For example, when Ce (cerium) is contained in the A site at a predetermined stoichiometric ratio, a predetermined amount of La salt and Ce salt are weighed and added, and for example, Pd is added to the B site at a predetermined stoichiometric amount. When contained in a ratio, it can be adjusted by weighing and adding a predetermined amount of Pd salt.

なお、上記の製造例はその一例であって、必ずしも上記の例に限定されない、   In addition, said manufacture example is the example, Comprising: It is not necessarily limited to said example,

(水素製造装置及び燃料電池)
上述した本発明の水素製造触媒は、水素製造装置内に設けられて、メタン、プロパン、天然ガス、灯油等の炭化水素を水蒸気改質して水素を製造する触媒として用いられる。本発明の水素製造触媒を適用できる水素製造装置の形態は特に限定されず、種々の水素製造装置に好ましく適用可能である。また、こうした水素製造装置を構成部材として備える燃料電池も特に限定されず、各種の形態からなる燃料電池を好ましく適用可能である。本発明の水素製造触媒を適用した水素製造装置や燃料電池は、DSS運転対応型の水素製造装置や燃料電池として好ましいものとなり、特にdaily start-up and shut-down運転(DSS運転)を伴う民生用の機器や装置に好ましく用いることができる。
(Hydrogen production equipment and fuel cell)
The above-described hydrogen production catalyst of the present invention is provided in a hydrogen production apparatus and used as a catalyst for producing hydrogen by steam reforming hydrocarbons such as methane, propane, natural gas, and kerosene. The form of the hydrogen production apparatus to which the hydrogen production catalyst of the present invention can be applied is not particularly limited, and can be preferably applied to various hydrogen production apparatuses. Moreover, the fuel cell provided with such a hydrogen production apparatus as a constituent member is not particularly limited, and fuel cells having various forms are preferably applicable. A hydrogen production apparatus or fuel cell to which the hydrogen production catalyst of the present invention is applied is preferable as a hydrogen production apparatus or fuel cell compatible with DSS operation, and particularly a consumer product with daily start-up and shut-down operation (DSS operation). It can preferably be used for the apparatus and apparatus for this.

実験例と比較実験例を挙げて本発明の水素製造触媒を更に具体的に説明する。以下の具体例は、本発明の水素製造触媒の一例を挙げたものであり、本発明の範囲が以下の具体例のみに限定されないことは言うまでもない。   The hydrogen production catalyst of the present invention will be described more specifically with reference to experimental examples and comparative experimental examples. The following specific examples are examples of the hydrogen production catalyst of the present invention, and it goes without saying that the scope of the present invention is not limited to the following specific examples.

(実験例1)
100mlのメタノール溶媒中に以下のモル比となるように秤量した各塩を投入して溶解し、その後、約130℃で重合させてゲル化させ、その後、約330℃・大気雰囲気で炭化させ、次いで、約500℃・大気雰囲気で5時間の焼成を行って、前駆物質を作製した。その後さらに、約1000℃・大気雰囲気で15時間焼成することによって、ペロブスカイト型構造又はそれに類似する構造からなるLaNixMn(1-X)の触媒粉末を7種作製した。
(Experimental example 1)
Each salt weighed in the following molar ratio in 100 ml of methanol solvent is added and dissolved, then polymerized and gelled at about 130 ° C., and then carbonized at about 330 ° C. in an air atmosphere, Next, firing was performed at about 500 ° C. in an air atmosphere for 5 hours to prepare a precursor. Then further by calcining for 15 hours at about 1000 ° C. · air atmosphere, and the catalyst powder of LaNi x Mn (1-X) O 3 containing the perovskite type structure or similar structure to that produced seven.

・硝酸ランタン・6水和物…1(単位:モル比。以下同じ。)
・硝酸ニッケル・6水和物…0、0.2、0.3、0.5、0.7、0.8、1.0
・硝酸マンガン・6水和物…1.0、0.8、0.7、0.5、0.3、0.2、0
・クエン酸…10
・エチレングリコール…40
なお、上記のうち、硝酸ニッケルと硝酸マンガンのモル比は、NixMn(1-X)のxと(1−x)とが合計で1.0(モル比)になるように調整した。
-Lanthanum nitrate hexahydrate ... 1 (unit: molar ratio; the same applies hereinafter)
Nickel nitrate hexahydrate: 0, 0.2, 0.3, 0.5, 0.7, 0.8, 1.0
Manganese nitrate hexahydrate: 1.0, 0.8, 0.7, 0.5, 0.3, 0.2, 0
・ Citric acid ... 10
・ Ethylene glycol ... 40
In addition, among the above, the molar ratio of nickel nitrate and manganese nitrate was adjusted so that x and (1-x) of Ni x Mn (1-X) were 1.0 (molar ratio) in total.

(実験例2)
作製手順は実験例1と同様であるが、LaNi0.7Mn0.3にPd元素を導入した組成物を作製した。具体的には、LaNi0.7Mn0.3にPd元素をモル比で0.005と0.0005導入して、LaNi0.7Mn0.3Pd0.005とLaNi0.7Mn0.3Pd0.0005となるように組成物を作製した。Pd元素としては、硝酸パラジウム水溶液を用い、ランタン塩等と共に溶解し、実験例1と同様にして、前記組成物からなる触媒粉末を作製した。
(Experimental example 2)
The production procedure was the same as in Experimental Example 1, but a composition in which Pd element was introduced into LaNi 0.7 Mn 0.3 O 3 was produced. Specifically, Pd element is introduced into LaNi 0.7 Mn 0.3 O 3 in a molar ratio of 0.005 and 0.0005, and LaNi 0.7 Mn 0.3 O 3 Pd 0.005 and LaNi 0.7 Mn 0.3 O 3 Pd 0.0005 are introduced. A composition was prepared so that As the Pd element, an aqueous palladium nitrate solution was used and dissolved together with a lanthanum salt or the like, and a catalyst powder made of the above composition was prepared in the same manner as in Experimental Example 1.

(実験例3)
作製手順は実験例1と同様であるが、LaNi0.7Mn0.3にRh元素を導入した組成物を作製した。具体的には、LaNi0.7Mn0.3にRh元素をモル比で0.005と0.0005導入して、LaNi0.7Mn0.3Rh0.005とLaNi0.7Mn0.3Rh0.0005となるように組成物を作製した。Rh元素としては、(硝酸ロジウム水溶液)を用い、ランタン塩等と共に溶解し、実験例1と同様にして、前記組成物からなる触媒粉末を作製した。
(Experimental example 3)
The production procedure was the same as in Experimental Example 1, but a composition in which Rh element was introduced into LaNi 0.7 Mn 0.3 O 3 was produced. Specifically, 0.005 and 0.0005 introduced in a molar ratio of Rh element LaNi 0.7 Mn 0.3 O 3, LaNi 0.7 Mn 0.3 O 3 Rh 0.005 and LaNi 0.7 Mn 0.3 O 3 Rh 0.0005 A composition was prepared so that As the Rh element, (rhodium nitrate aqueous solution) was used and dissolved together with a lanthanum salt and the like, and a catalyst powder made of the above composition was produced in the same manner as in Experimental Example 1.

(実験例4)
作製手順は実験例1と同様であるが、AサイトにCe元素を導入した組成物を作製した。具体的には、AサイトにCe元素をモル比で0.5導入して、La0.5Ce0.5Ni0.7Mn0.3となるように組成物を作製した。Ce元素としては、(硝酸セリウム)を用い、ランタン塩等と共に溶解し、実験例1と同様にして、前記組成物からなる触媒粉末を作製した。
(Experimental example 4)
The production procedure was the same as in Experimental Example 1, but a composition in which Ce element was introduced into the A site was produced. Specifically, 0.5 mol of Ce element was introduced into the A site at a molar ratio to prepare a composition so that La 0.5 Ce 0.5 Ni 0.7 Mn 0.3 O 3 was obtained. As the Ce element, (cerium nitrate) was used and dissolved together with a lanthanum salt and the like, and a catalyst powder made of the above composition was produced in the same manner as in Experimental Example 1.

(比較実験例1)
作製手順は実験例1と同様であるが、LaNi0.7Mn0.3を基準とし、そのBサイトのMnの代わりに、Al(硝酸塩),Co(硝酸塩),Cr(硝酸塩),Fe(硝酸塩),Ti(チタニウムテトライソプロポキシド)を導入した組成物を作製し、それ以外は実験例1と同様にして、各種の組成物からなる触媒粉末を作製した。
(Comparative Experimental Example 1)
The production procedure is the same as in Experimental Example 1, but using LaNi 0.7 Mn 0.3 O 3 as a reference, instead of Mn at the B site, Al (nitrate), Co (nitrate), Cr (nitrate), Fe (nitrate) , Ti (titanium tetraisopropoxide) was prepared, and catalyst powders composed of various compositions were prepared in the same manner as in Experimental Example 1 except that.

(比較実験例2)
作製手順は実験例1と同様であるが、Bサイトにさらに他の元素を導入した組成物を作製した。具体的には、Bサイトに「B」元素をモル比で0.1導入して、LaNi0.7Mn0.20.1となるように組成物を作製した。B元素としては、Al(硝酸塩),Co(硝酸塩),Cr(硝酸塩),Fe(硝酸塩),Ti(チタニウムテトライソプロポキシド)を用い、それぞれの塩をランタン塩等と共に溶解し、実験例1と同様にして、各種の組成物からなる触媒粉末を作製した。
(Comparative Experiment Example 2)
The production procedure was the same as in Experimental Example 1, but a composition in which another element was further introduced into the B site was produced. Specifically, 0.1 composition of “B” element was introduced into the B site at a molar ratio to prepare a composition so that LaNi 0.7 Mn 0.2 B 0.1 O 3 was obtained. As the element B, Al (nitrate), Co (nitrate), Cr (nitrate), Fe (nitrate), Ti (titanium tetraisopropoxide) are used, and each salt is dissolved together with a lanthanum salt. In the same manner, catalyst powders composed of various compositions were prepared.

(比較実験例3)
作製手順は実験例4と同様であるが、AサイトにCe元素の代わりに他の元素を導入した組成物を作製した。A元素としては、Dy(硝酸塩),Nd(硝酸塩),Pr(硝酸塩),Sm(硝酸塩),Sr(硝酸塩)を用い、それぞれの塩をランタン塩等と共に溶解し、実験例4と同様にして、各種の組成物からなる触媒粉末を作製した。
(Comparative Experiment 3)
The preparation procedure was the same as in Experimental Example 4, but a composition was prepared in which other elements were introduced into the A site instead of the Ce element. As element A, Dy (nitrate), Nd (nitrate), Pr (nitrate), Sm (nitrate), Sr (nitrate) are used, and each salt is dissolved together with a lanthanum salt or the like. Catalyst powders composed of various compositions were prepared.

(触媒活性測定)
図1は、上記実験例と上記比較実験例で得られた触媒粉末の触媒活性を測定する装置を示す模式図である。図1に示すように、触媒活性測定装置は、直径10mmの石英ガラス製の反応管内に充填した触媒粉末を石英ウールとケイ砂とで両側から挟み、その部分を所定の温度で加熱可能になるように構成した。また、触媒粉末に接触するように熱電対を配置し、加熱時の温度を測定できるよう構成した。図1に示す触媒活性測定装置の上方にガス導入口を設け、下方にガス導出口を設けた。
(Catalyst activity measurement)
FIG. 1 is a schematic diagram showing an apparatus for measuring the catalytic activity of catalyst powders obtained in the experimental example and the comparative experimental example. As shown in FIG. 1, the catalytic activity measuring apparatus sandwiches a catalyst powder filled in a quartz glass reaction tube having a diameter of 10 mm from both sides with quartz wool and silica sand, and can heat the portion at a predetermined temperature. It was configured as follows. In addition, a thermocouple was disposed so as to come into contact with the catalyst powder so that the temperature during heating could be measured. A gas inlet is provided above the catalyst activity measuring apparatus shown in FIG. 1, and a gas outlet is provided below.

触媒活性測定は、上記実験例と上記比較実験例で得られた触媒粉末を粒径0.5μm以下に粉砕したものを0.1g秤量し、石英ガラス製の反応管に充填し、20%H/Nを200ml/minで流通させながら700℃で1時間水素還元を行った。このとき、GHSV(原料ガス供給速度を見掛け触媒体積で除した値)は、200÷(1/60)÷0.1=120000ml/h/gとなる。その後、Nを160ml/minでパージした後、N、CH、HOをそれぞれ流量41.7ml/min、83.3ml/min、250ml/minで流通させ、700℃で改質反応を行った。このとき、GHSVは、375÷(1/60)÷0.1=225000ml/h/gとなる。出口ガスの定量は、Nを内部標準ガスとしたガスクロマトグラフィーによって行い、改質反応後の定常活性状態でのCH転化率を測定した。図2は、定常活性を測定する際のプロファイルである。この実験では、GHSVを225000で行っており、通常のGHSVの数千レベルのものに比べ、かなりの加速試験で行った結果で評価している。 The catalytic activity was measured by weighing 0.1 g of the powdered catalyst powder obtained in the above experimental example and the above comparative experimental example to a particle size of 0.5 μm or less, and filling it into a reaction tube made of quartz glass. Hydrogen reduction was performed at 700 ° C. for 1 hour while flowing 2 / N 2 at 200 ml / min. At this time, GHSV (a value obtained by dividing the raw material gas supply rate by the apparent catalyst volume) is 200 ÷ (1/60) ÷ 0.1 = 120,000 ml / h / g. After purging N 2 at 160 ml / min, N 2 , CH 4 , and H 2 O were passed at flow rates of 41.7 ml / min, 83.3 ml / min, and 250 ml / min, respectively, and the reforming reaction was performed at 700 ° C. Went. At this time, GHSV is 375 / (1/60) /0.1=225000 ml / h / g. The quantification of the outlet gas was performed by gas chromatography using N 2 as an internal standard gas, and the CH 4 conversion rate in the steady active state after the reforming reaction was measured. FIG. 2 is a profile for measuring steady-state activity. In this experiment, GHSV is performed at 225,000, and the evaluation is based on the result of a considerable acceleration test compared to a normal GHSV of several thousand levels.

(DSS運転試験)
前記の触媒活性測定と同様、上記実験例と上記比較実験例で得られた触媒粉末を粒径0.5μm以下に粉砕したものを前記同様の改質反応を行い、定常活性状態でのCH転化能を確認した。その後、200℃まで10K/minで降温する際に所定の温度(以下、「スチーミング温度」という。)で原燃料であるCHを供給停止することによってshut−downを行い、続いて700℃まで10K/minで昇温する際にスチーミング温度でCHを供給開始することによってstart−upを行った。その後、CH転化能が定常活性を示すまで反応を行った後に、start−upとshut−downとを繰り返すDSS運転試を行った。なお、この実験例では、スチーミング温度を600℃とした。
(DSS operation test)
Similar to the measurement of the catalytic activity, the catalyst powders obtained in the above experimental example and the comparative experimental example were pulverized to a particle size of 0.5 μm or less and subjected to the same reforming reaction to obtain CH 4 in a steady active state. The conversion ability was confirmed. Thereafter, when the temperature is lowered to 200 ° C. at 10 K / min, shut-down is performed by stopping supply of CH 4 as a raw fuel at a predetermined temperature (hereinafter referred to as “steaming temperature”), followed by 700 ° C. The start-up was performed by starting the supply of CH 4 at the steaming temperature when the temperature was raised to 10 K / min. Thereafter, after the reaction was performed until the CH 4 conversion ability showed a steady activity, a DSS operation test was repeated in which start-up and shut-down were repeated. In this experimental example, the steaming temperature was 600 ° C.

(XRD回折測定及びXAFS測定)
実験に供した触媒粉末の結晶構造は、X線回析装置(理学社製、型式:RINT−Ultima III)によって測定した。なお、各実験例と各比較実験例で作製された触媒粉末は、測定されたXRDパターンから、単一のペロブスカイト型によく似た複合酸化物であることが同定された。XAFS測定は、化合物の定性的な情報を精度よく測定できる測定手段であり、ここでは、X線吸収微細構造(X-ray absorption fine structure)測定装置(高エネルギー加速器研究機構内フォトンファクトリーBL12C)によって測定した。
(XRD diffraction measurement and XAFS measurement)
The crystal structure of the catalyst powder subjected to the experiment was measured with an X-ray diffraction apparatus (manufactured by Rigaku Corporation, model: RINT-Ultima III). In addition, it was identified from the measured XRD pattern that the catalyst powder produced in each experimental example and each comparative experimental example was a complex oxide that closely resembled a single perovskite type. XAFS measurement is a measurement means capable of measuring qualitative information of a compound with high accuracy. Here, an X-ray absorption fine structure measurement device (photon factory BL12C in the High Energy Accelerator Research Organization) is used. It was measured.

(触媒活性測定結果)
図3は、実験例1で得られたLaNixMn(1-X)の触媒粉末を改質反応させた後のCH転化率の測定結果を示すグラフである。Bサイトを構成するNiのモル比が約0.7のとき極大値を示しているのが確認され、その±10%程度が好ましい範囲であることが推察された。なお、各実験例と各比較実験例では、通常の実用態様に比べてかなり高いGHSVで行った加速試験を行っているので、測定されたCH転化率の実測値はやや低い値を示しているが、実用態様のGHSVで行った測定では十分に高いCH転化率が見込まれる。一方、比較実験例1で得られた触媒粉末についても同様に測定したが、実験例1で得られたような触媒活性は得られなかった。また、Bサイトにさらに他の元素を導入した比較実験例2で得られた触媒粉末についても同様に測定したが、実験例1で得られたような触媒活性は得られなかった。
(Catalyst activity measurement results)
FIG. 3 is a graph showing the measurement results of the CH 4 conversion after the reforming reaction of the LaNi x Mn (1-X) O 3 catalyst powder obtained in Experimental Example 1. It was confirmed that the maximum value was shown when the molar ratio of Ni constituting the B site was about 0.7, and it was estimated that about ± 10% was a preferable range. In each experimental example and each comparative experimental example, an acceleration test performed at a considerably higher GHSV than that in a normal practical mode is performed. Therefore, the measured value of the measured CH 4 conversion rate is slightly lower. However, a sufficiently high CH 4 conversion rate is expected in the measurement performed with the practical GHSV. On the other hand, the catalyst powder obtained in Comparative Experimental Example 1 was also measured in the same manner, but the catalytic activity as obtained in Experimental Example 1 was not obtained. Further, the catalyst powder obtained in Comparative Experimental Example 2 in which another element was further introduced into the B site was measured in the same manner, but the catalytic activity as obtained in Experimental Example 1 was not obtained.

実験例2〜3で得られた触媒粉末は貴金属を僅かに含有させたLaNi0.7Mn0.3の触媒粉末であるが、この触媒粉末を改質反応させた後のCH転化率の測定結果については、いずれも5〜7%の変化率が確認された。測定されたCH転化率の実測値はやや低い値を示しているが、実用態様のGHSVで行った測定では十分に高いCH転化率が見込まれる。 The catalyst powders obtained in Experimental Examples 2 to 3 are LaNi 0.7 Mn 0.3 O 3 catalyst powder slightly containing a noble metal, and the measurement results of the CH 4 conversion rate after reforming reaction of this catalyst powder. For all, a change rate of 5 to 7% was confirmed. Although the measured value of the measured CH 4 conversion rate is somewhat low, a sufficiently high CH 4 conversion rate is expected in the measurement performed with the practical GHSV.

実験例4で得られた触媒粉末はAサイトにCe元素を導入したLa0.5Ce0.5Ni0.7Mn0.3の触媒粉末であるが、この触媒粉末を改質反応させた後のCH転化率の測定結果については、約4%程度の変化率が確認された。測定されたCH転化率の実測値はやや低い値を示しているが、実用態様のGHSVで行った測定では十分に高いCH転化率が見込まれる。一方、Ce元素に変えて他の元素を導入した比較実験例3で得られた触媒粉末についても同様に測定したが、実験例4で得られたような触媒活性は得られなかった。 The catalyst powder obtained in Experimental Example 4 is a La 0.5 Ce 0.5 Ni 0.7 Mn 0.3 O 3 catalyst powder in which Ce element is introduced at the A site. The CH 4 conversion rate after the catalyst powder is subjected to a reforming reaction. As for the measurement results, a change rate of about 4% was confirmed. Although the measured value of the measured CH 4 conversion rate is somewhat low, a sufficiently high CH 4 conversion rate is expected in the measurement performed with the practical GHSV. On the other hand, the catalyst powder obtained in Comparative Experimental Example 3 in which another element was introduced instead of Ce element was measured in the same manner, but the catalytic activity as obtained in Experimental Example 4 was not obtained.

(DSS運転試験結果)
実験例1で作製したLaNi0.7Mn0.3からなる触媒粉末を用いてDSS運転試験を行った。図4は、LaNi0.7Mn0.3を水素還元する前のSEM写真とX線回折結果とXAFS測定結果とを示しており、図5は、LaNi0.7Mn0.3を水素還元した後のSEM写真とX線回折結果とXAFS測定結果とを示しており、図6は、スチーミング温度後における触媒粉末のSEM写真とX線回折結果とXAFS測定結果とを示しており、図7は、失活した後における触媒粉末のSEM写真とX線回折結果とXAFS測定結果とを示しており、図8は、再焼成して再生した後における触媒粉末のSEM写真とX線回折結果とXAFS測定結果とを示している。
(DSS operation test results)
A DSS operation test was conducted using the catalyst powder made of LaNi 0.7 Mn 0.3 O 3 prepared in Experimental Example 1. FIG. 4 shows an SEM photograph, X-ray diffraction results and XAFS measurement results before hydrogen reduction of LaNi 0.7 Mn 0.3 O 3 , and FIG. 5 shows SEM after LaNi 0.7 Mn 0.3 O 3 hydrogen reduction. Fig. 6 shows a photograph, an X-ray diffraction result and an XAFS measurement result. Fig. 6 shows an SEM photo, an X-ray diffraction result and an XAFS measurement result of the catalyst powder after the steaming temperature. FIG. 8 shows an SEM photograph, an X-ray diffraction result and an XAFS measurement result of the catalyst powder after activation, and FIG. 8 shows an SEM photograph, an X-ray diffraction result and an XAFS measurement result of the catalyst powder after recalcination and regeneration. It shows.

図4に示すように、水素還元前の触媒粉末は、XRDパターンからLaNi0.7Mn0.33の存在が同定され、さらに、XAFS測定結果からも、NiOや金属Niが存在しないことが確認された。また、図5に示すように、水素還元後の触媒粉末は、XRDパターンから酸化ランタン(La23)と金属Niの存在が同定され、さらに、XAFS測定結果からは、金属Niの存在とNiOの不存在が確認された。また、図6に示すように、スチーミング温度後においても触媒活性を有する触媒粉末は、XRDパターンからオキシ炭酸ランタン(La22CO3)と金属Niとマンガン酸ランタン(LaMnO3)との存在が同定され、さらに、XAFS測定結果からは、金属Niの存在とNiOの不存在が確認された。また、図7に示すように、失活した後の触媒粉末は、XRDパターンからニッケル酸ランタン(LaNiO3)とマンガン酸ランタン(LaMnO3)との存在が同定され、さらに、XAFS測定結果からは、金属Niの不存在とNiOの存在が確認された。また、図8に示すように、再生された触媒粉末は、図6と同様、XRDパターンからニッケル酸ランタン(LaNiO3)とマンガン酸ランタン(LaMnO3)との存在が同定され、さらに、XAFS測定結果からは、金属Niの不存在とNiOの存在が確認された。 As shown in FIG. 4, in the catalyst powder before hydrogen reduction, the presence of LaNi 0.7 Mn 0.3 O 3 was identified from the XRD pattern, and further XAFS measurement results confirmed that NiO and metallic Ni were not present. . Further, as shown in FIG. 5, in the catalyst powder after hydrogen reduction, the presence of lanthanum oxide (La 2 O 3 ) and metal Ni was identified from the XRD pattern. Further, from the XAFS measurement results, the presence of metal Ni was confirmed. The absence of NiO was confirmed. Further, as shown in FIG. 6, the catalyst powder having catalytic activity even after the steaming temperature is obtained from the XRD pattern of lanthanum oxycarbonate (La 2 O 2 CO 3 ), metal Ni, and lanthanum manganate (LaMnO 3 ). The presence was identified, and the XAFS measurement results confirmed the presence of metallic Ni and the absence of NiO. Further, as shown in FIG. 7, the catalyst powder after deactivation was identified from the XRD pattern as to the presence of lanthanum nickelate (LaNiO 3 ) and lanthanum manganate (LaMnO 3 ). The absence of metallic Ni and the presence of NiO were confirmed. In addition, as shown in FIG. 8, the regenerated catalyst powder was identified for the presence of lanthanum nickelate (LaNiO 3 ) and lanthanum manganate (LaMnO 3 ) from the XRD pattern as in FIG. The results confirmed the absence of metallic Ni and the presence of NiO.

この結果が示すように、一般式ABO型でそのBサイトがNi(1−x)の組成物からなる触媒粉末においては、DSS運転時に、金属Niがオキシ炭酸ランタン(La22CO3)に担持された状態になっていることによって、触媒活性を示していると考えられる。したがって、こうした金属Niがオキシ炭酸化合物上に担持されているように、Aサイトの元素やBサイトの元素を選択することができれば、安価で安定した触媒粉末とすることができると考えられる。なお、本願では、好ましい実験例としてLaNixMn(1-X)組成物を挙げることができ、さらにその組成物に僅かな貴金属を添加した場合も同様の効果が得られることがわかった。 As shown by this result, in the catalyst powder having the general formula ABO 3 type and the B site of Ni x M (1-x) , the metal Ni is lanthanum oxycarbonate (La 2 O 2) during the DSS operation. It is considered that the catalyst activity is shown by being in a state of being supported on CO 3 ). Therefore, it is considered that an inexpensive and stable catalyst powder can be obtained if an A-site element or a B-site element can be selected such that such metal Ni is supported on an oxycarbonic acid compound. In the present application, there may be mentioned LaNi x Mn (1-X) O 3 composition as a preferred experimental example, the same effect even when added a slight noble metal to the composition is found to result in further .

実験例と比較実験例で得られた触媒粉末の触媒活性を測定する装置を示す模式図である。It is a schematic diagram which shows the apparatus which measures the catalyst activity of the catalyst powder obtained by the experiment example and the comparative experiment example. 定常活性を測定する際のプロファイルである。It is a profile at the time of measuring steady activity. 実験例1で得られたLaNixMn(1-X)の触媒粉末を改質反応させた後のCH転化率の測定結果を示すグラフである。Is a graph showing the results of measurement of CH 4 conversion after being reforming reaction catalyst powder of LaNi x Mn (1-X) O 3 obtained in Experimental Example 1. LaNi0.7Mn0.3を水素還元する前における触媒粉末のSEM写真とX線回折結果とXAFS測定結果とを示している。LaNi and the 0.7 Mn 0.3 O 3 shows the SEM photograph and X-ray diffraction results of the catalyst powder and XAFS measurement results in prior to hydrogen reduction. LaNi0.7Mn0.3を水素還元した後における触媒粉末のSEM写真とX線回折結果とXAFS測定結果とを示している。LaNi the 0.7 Mn 0.3 O 3 shows the SEM photograph and X-ray diffraction results of the catalyst powder and XAFS measurement results in the after hydrogen reduction. スチーミング温度後における触媒粉末のSEM写真とX線回折結果とXAFS測定結果とを示している。The SEM photograph, X-ray diffraction result, and XAFS measurement result of the catalyst powder after the steaming temperature are shown. 失活した後における触媒粉末のSEM写真とX線回折結果とXAFS測定結果とを示している。The SEM photograph, X-ray diffraction result, and XAFS measurement result of the catalyst powder after deactivation are shown. 再生した後における触媒粉末のSEM写真とX線回折結果とXAFS測定結果とを示している。The SEM photograph of the catalyst powder after reproduction | regeneration, the X-ray-diffraction result, and the XAFS measurement result are shown.

Claims (6)

一般式ABO型で当該BがNiMn(1−x)の組成物からなり、前記xが0.7±0.10であることを特徴とする燃料電池用水素製造触媒。 A hydrogen production catalyst for a fuel cell, wherein the general formula is ABO 3 type, B is composed of a composition of Ni x Mn (1-x) , and x is 0.7 ± 0.10. 一般式ABO型で当該BがNi(1−x)の組成物からなり、燃料供給のON/OFFを繰り返すDSS運転対応型の燃料電池用水素製造触媒であって、
前記組成物は、DSS運転時に、金属Niがオキシ炭酸化合物に担持されていることを特徴とする燃料電池用水素製造触媒。
A fuel cell hydrogen production catalyst of general formula ABO 3 type, wherein B is composed of a composition of Ni x M (1-x) , and repeats ON / OFF of fuel supply,
The composition is a hydrogen production catalyst for a fuel cell, characterized in that metal Ni is supported on an oxycarbonate during DSS operation.
前記AがLaである、請求項1又は2に記載の燃料電池用水素製造触媒。   The hydrogen production catalyst for a fuel cell according to claim 1 or 2, wherein the A is La. 前記AがLaCe(1−y)である、請求項1又は2に記載の燃料電池用水素製造触媒。 The hydrogen production catalyst for a fuel cell according to claim 1 or 2, wherein the A is La y Ce (1-y) . 前記組成物が、Pd、Pt、Rh及びRuから選ばれるいずれか1以上を含む、請求項1〜4のいずれかに記載の燃料電池用水素製造触媒。   The hydrogen production catalyst for a fuel cell according to any one of claims 1 to 4, wherein the composition contains one or more selected from Pd, Pt, Rh, and Ru. 請求項1〜5のいずれかに記載の燃料電池用水素製造触媒を有する水素製造装置を構成部材として備える、DSS運転対応型燃料電池。   A DSS operation-compatible fuel cell, comprising as a constituent member a hydrogen production apparatus having the fuel cell hydrogen production catalyst according to any one of claims 1 to 5.
JP2007029062A 2007-02-08 2007-02-08 Hydrogen production catalyst for fuel cell and fuel cell for DSS operation Expired - Fee Related JP4848294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007029062A JP4848294B2 (en) 2007-02-08 2007-02-08 Hydrogen production catalyst for fuel cell and fuel cell for DSS operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007029062A JP4848294B2 (en) 2007-02-08 2007-02-08 Hydrogen production catalyst for fuel cell and fuel cell for DSS operation

Publications (2)

Publication Number Publication Date
JP2008194549A true JP2008194549A (en) 2008-08-28
JP4848294B2 JP4848294B2 (en) 2011-12-28

Family

ID=39753999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007029062A Expired - Fee Related JP4848294B2 (en) 2007-02-08 2007-02-08 Hydrogen production catalyst for fuel cell and fuel cell for DSS operation

Country Status (1)

Country Link
JP (1) JP4848294B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018165228A (en) * 2017-03-28 2018-10-25 京セラ株式会社 Hydrogen generating cell, concentration-type hydrogen generating cell, and hydrogen production apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4869783A (en) * 1971-12-24 1973-09-21
JPH02207843A (en) * 1989-02-09 1990-08-17 Sekiyu Sangyo Katsuseika Center Production of steam reforming catalyst and hydrogen for fuel cell
JPH08229390A (en) * 1995-02-24 1996-09-10 Tokin Corp Production of powder for lanthanum-manganese oxide catalyst
JP2002126529A (en) * 2000-10-18 2002-05-08 Japan National Oil Corp Method for preparing reforming catalyst
JP2004000900A (en) * 2002-03-25 2004-01-08 Nippon Steel Corp Catalyst for reforming hydrocarbon and method for reforming hydrocarbon
JP2005254076A (en) * 2004-03-09 2005-09-22 Kyushu Electric Power Co Inc Reforming catalyst composition
JP2005262070A (en) * 2004-03-18 2005-09-29 Hitachi Ltd Catalyst for production of hydrogen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4869783A (en) * 1971-12-24 1973-09-21
JPH02207843A (en) * 1989-02-09 1990-08-17 Sekiyu Sangyo Katsuseika Center Production of steam reforming catalyst and hydrogen for fuel cell
JPH08229390A (en) * 1995-02-24 1996-09-10 Tokin Corp Production of powder for lanthanum-manganese oxide catalyst
JP2002126529A (en) * 2000-10-18 2002-05-08 Japan National Oil Corp Method for preparing reforming catalyst
JP2004000900A (en) * 2002-03-25 2004-01-08 Nippon Steel Corp Catalyst for reforming hydrocarbon and method for reforming hydrocarbon
JP2005254076A (en) * 2004-03-09 2005-09-22 Kyushu Electric Power Co Inc Reforming catalyst composition
JP2005262070A (en) * 2004-03-18 2005-09-29 Hitachi Ltd Catalyst for production of hydrogen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018165228A (en) * 2017-03-28 2018-10-25 京セラ株式会社 Hydrogen generating cell, concentration-type hydrogen generating cell, and hydrogen production apparatus

Also Published As

Publication number Publication date
JP4848294B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
Natile et al. La0. 6Sr0. 4Co1− y Fe y O3− δ Perovskites: Influence of the Co/Fe Atomic Ratio on Properties and Catalytic Activity toward Alcohol Steam-Reforming
Neal et al. Dynamic methane partial oxidation using a Fe2O3@ La0. 8Sr0. 2FeO3-δ core–shell redox catalyst in the absence of gaseous oxygen
Qi et al. La–Ce–Ni–O monolithic perovskite catalysts potential for gasoline autothermal reforming system
Li et al. A review on complete oxidation of methane at low temperatures
JP4953546B2 (en) Methane partial oxidation method using dense oxygen permselective ceramic membrane
Oh et al. Importance of exsolution in transition-metal (Co, Rh, and Ir)-doped LaCrO3 perovskite catalysts for boosting dry reforming of CH4 using CO2 for hydrogen production
Han et al. Hydrogen production from oxidative steam reforming of ethanol over rhodium catalysts supported on Ce–La solid solution
US9434614B2 (en) Perovskite-type strontium titanate
Yin et al. A Ce–Fe oxygen carrier with a core–shell structure for chemical looping steam methane reforming
JP2013255911A (en) Catalyst for producing synthesis gas and production method of synthesis gas
JP5327323B2 (en) Hydrocarbon gas reforming catalyst, method for producing the same, and method for producing synthesis gas
CA2629078C (en) Process conditions for pt-re bimetallic water gas shift catalysts
Zhou et al. Structured Ni catalysts on porous anodic alumina membranes for methane dry reforming: NiAl 2 O 4 formation and characterization
Silvester et al. Development of NiO-based oxygen carrier materials: effect of support on redox behavior and carbon deposition in methane
Fraccari et al. Ce–Mn mixed oxides as supports of copper-and nickel-based catalysts for water–gas shift reaction
Morales et al. Hydrogen-Rich Gas Production by Steam Reforming and Oxidative Steam Reforming of Methanol over La0. 6Sr0. 4CoO3− δ: Effects of Preparation, Operation Conditions, and Redox Cycles
CN109718790A (en) Storage oxygen solid solution for acetic acid self-heating reforming hydrogen manufacturing supports cobalt-base catalyst
CN102892489B (en) Method of preparing and utilizing a catalyst system for oxidation process on a gaseous hydrocarbon system
KR102199485B1 (en) Method of preparing catalyst for single stage water gas shift reaction
JP4848294B2 (en) Hydrogen production catalyst for fuel cell and fuel cell for DSS operation
Shen et al. Enhancement of hydrogen production performance of novel perovskite LaNi0. 4Al0. 6O3‐δ supported on MOF A520‐derived λ‐Al2O3
Lortie Reverse water gas shift reaction over supported Cu-Ni nanoparticle catalysts
KR20190067146A (en) Preparation Method of Reduced Carbon Poisoning Perovskite Catalyst Impregnated with Metal Ion, and Methane Reforming Method Threrewith
Iulianelli et al. An integrated two stages inorganic membrane-based system to generate and recover decarbonized H2: An experimental study and performance indexes analysis
KR101059413B1 (en) Metal Structure, Method for Manufacturing Metal Structure, and Metal Structure Catalyst for Autothermal Reforming Catalyst Layer for Synthesis of Fischer-Tropsch Liquefaction Process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees