JP2008194379A - Nanoparticle device - Google Patents

Nanoparticle device Download PDF

Info

Publication number
JP2008194379A
JP2008194379A JP2007035115A JP2007035115A JP2008194379A JP 2008194379 A JP2008194379 A JP 2008194379A JP 2007035115 A JP2007035115 A JP 2007035115A JP 2007035115 A JP2007035115 A JP 2007035115A JP 2008194379 A JP2008194379 A JP 2008194379A
Authority
JP
Japan
Prior art keywords
nanoparticles
sheet
nanofiber sheet
nanofiber
nanoparticle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007035115A
Other languages
Japanese (ja)
Other versions
JP4936320B2 (en
Inventor
Hennmei Ni
恨美 倪
Yoshiyuki Uchida
義之 内田
Wataru Kamimura
渉 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2007035115A priority Critical patent/JP4936320B2/en
Publication of JP2008194379A publication Critical patent/JP2008194379A/en
Application granted granted Critical
Publication of JP4936320B2 publication Critical patent/JP4936320B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Medicinal Preparation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device retaining the dispersion state of nanoparticles even in air, in a device allowing a user to inhale the nanoparticles consisting of a medical agent by respiration. <P>SOLUTION: This nanoparticle device allowing the user to inhale the nanoparticles consisting of the medical agent by respiration is formed by covering the both faces of a nanofiber sheet, which is so fixed as to enable the falling of the nanoparticles by permeating exhalation individually, with matrix sheets. The nanofiber sheet is preferably a multilayer nanofiber sheet formed by superposing a plurality of sheets, the nanofiber sheet is disposed on the both sides of the matrix sheet and the both front/back faces are covered with the matrix sheets. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、薬剤よりなるナノ粒子を呼吸により吸引させるためのデバイスに関する。   The present invention relates to a device for aspirating nanoparticles comprising a drug by respiration.

吸入製剤は呼吸器疾患治療に用いられている製剤であるが、近年、全身性の疾患、例えば糖尿病治療にインスリン粒子を吸入で投与する方法が開発されてきた。
今後、その他の全身性疾患に対しても様々な種類の薬剤が吸入剤として開発されていくものと考えられる。
実際の市場で用いられている吸入剤の粒子径は2〜5μmであり、主として気管支から細気管支に沈着する様に設計されている。
それよりさらに小さい500nm〜2μmの径の粒子では肺胞に主として沈着し、肺胞マクロファージに貪食されると考えられている。
さらに小さい粒子(500nm以下)では直接血管内に入り込むと考えられており、このようなナノ粒子を用いた吸入剤は糖尿病、高血圧などあらゆる疾患の治療に用いることが可能である。
しかし、これほどの微細な粒子になると気体中では極めて容易に凝集し、溶媒に分散させない限り、微細な粒子のままで体内に供給することは不可能とされてきた。
つまり、ナノ粒子を呼気により吸引させることは理想ではあるが、実現は不可能とされてきた。
Inhalation preparations are preparations used for the treatment of respiratory diseases, but in recent years, methods for administering insulin particles by inhalation have been developed for the treatment of systemic diseases such as diabetes.
In the future, various types of drugs are expected to be developed as inhalants for other systemic diseases.
The particle size of the inhalant used in the actual market is 2 to 5 μm, and it is designed to be deposited mainly from bronchi to bronchiole.
Smaller particles with a diameter of 500 nm to 2 μm are mainly deposited in the alveoli and are thought to be phagocytosed by alveolar macrophages.
Smaller particles (500 nm or less) are considered to directly enter blood vessels, and inhalants using such nanoparticles can be used for the treatment of all diseases such as diabetes and hypertension.
However, when such fine particles are formed, they are very easily aggregated in a gas, and it has been impossible to supply fine particles in the body unless they are dispersed in a solvent.
In other words, it is ideal to suck nanoparticles by exhalation, but it has been impossible to realize.

本発明は、このような実情に鑑み、ナノ・マイクロ粒子を空気中でも分散状態を維持できるようにしたデバイスを提供することを目的とする。     In view of such circumstances, an object of the present invention is to provide a device in which nano / micro particles can be maintained in a dispersed state even in air.

発明1のナノ粒子用デバイスは、ナノ粒子が個々に透過する呼気にて脱落可能に固定されたナノ繊維シートの両面をマトリックスシートにて覆ってあることを特徴とする。   The nanoparticle device of the invention 1 is characterized in that both sides of a nanofiber sheet fixed so as to be removable by exhaled breath through which the nanoparticles are individually permeated are covered with a matrix sheet.

発明2のナノ粒子用デバイスは、発明1のナノ粒子用デバイスにおいて、前記ナノ繊維シートを複数枚重ねた多層ナノ繊維シートであることを特徴とする。   The nanoparticle device of the invention 2 is the nanoparticle device of the invention 1, wherein the nanoparticle device is a multilayer nanofiber sheet in which a plurality of the nanofiber sheets are stacked.

発明3のナノ粒子用デバイスは、発明1のナノ粒子用デバイスにおいて、マトリックスシート両面に前記ナノ繊維シートを配置し、その表裏両面をマトリックスシートで覆ったことを特徴とする。   The nanoparticle device of the invention 3 is characterized in that, in the nanoparticle device of the invention 1, the nanofiber sheet is arranged on both surfaces of the matrix sheet, and both the front and back surfaces are covered with the matrix sheet.

発明4のナノ粒子用デバイスは、発明1から3のいずれかのナノ粒子用デバイスにおいて、マトリックスシートがガーゼであることを特徴とする。   The nanoparticle device of the invention 4 is the nanoparticle device of any of the inventions 1 to 3, wherein the matrix sheet is gauze.

発明5のナノ粒子用デバイスは、発明1から4のいずれかのナノ粒子用デバイスにおいて、全体の形状がマスク様に形成されてなることを特徴とする。   The nanoparticle device of the invention 5 is characterized in that, in the nanoparticle device of any one of the inventions 1 to 4, the entire shape is formed like a mask.

発明6のナノ粒子用デバイスは、発明1から5のいずれかのナノ粒子用デバイスにおいて、外表面全体を密封性フィルムによりカバーしてあることを特徴とする。   The nanoparticle device of the invention 6 is characterized in that in the nanoparticle device of any of the inventions 1 to 5, the entire outer surface is covered with a sealing film.

発明1により、ナノ粒子は凝集することなく吸入されることになった。
その理由を厳密には把握できないが、ナノ繊維シートにナノ粒子が固定されているので、この段階では粒子の凝集は生じない。また、その脱落は、呼気によるので、脱落と同時に同一方向に飛散することになり、この飛散により、ナノ粒子の凝集が妨げられるものと思われる。
また、両面を覆うマトリックスシートは、ナノ繊維シートを透過する呼気の流れを平行流に近いものにするので、ナノ粒子の平行移動を確保しやすくなり、これによっても凝集を妨げているものと思われる。
According to Invention 1, the nanoparticles were inhaled without agglomeration.
Although the reason cannot be grasped | ascertained strictly, since the nanoparticle is being fixed to the nanofiber sheet, aggregation of particle | grains does not arise at this stage. Moreover, since the dropout is due to exhalation, it will be scattered in the same direction at the same time as the dropout, and it is thought that aggregation of the nanoparticles is prevented by this scattering.
In addition, the matrix sheet that covers both sides makes the flow of exhalation permeating the nanofiber sheet close to parallel flow, making it easier to ensure parallel movement of the nanoparticles, and this also seems to prevent aggregation. It is.

発明2により、ナノ繊維シートそれぞれに固定されるナノ粒子の密度を少なくして固定時の凝集を起こらなくした場合でも、必要な密度のナノ粒子を吸引させることが可能になった。   According to the invention 2, even when the density of the nanoparticles fixed to each nanofiber sheet is reduced to prevent aggregation at the time of fixing, it is possible to suck the nanoparticles having a necessary density.

発明3により、発明2のように複数のナノ繊維シートを用いる場合に、ナノ繊維シート間に間隔を保持できるので、ナノ繊維シート間でのナノ粒子の凝集が生じにくい。   According to the invention 3, when a plurality of nanofiber sheets are used as in the invention 2, the gaps between the nanofiber sheets can be maintained, so that the aggregation of the nanoparticles between the nanofiber sheets hardly occurs.

発明4により、得やすいガーゼをマトリックスシートに使用したので、その生産性を向上することができた。   According to the invention 4, since easy-to-obtain gauze was used for the matrix sheet, the productivity could be improved.

発明5により、マスク様にしたので、時間を掛けた吸引を容易にすることができた。   According to the fifth aspect of the present invention, since the mask is formed, it is possible to facilitate the suction over time.

発明6により、未使用時に外気の流れなどで、ナノ粒子が飛散する恐れをなくすことができた。   According to the invention 6, it is possible to eliminate the risk of nanoparticles scattering due to the flow of outside air when not in use.

ナノ・マイクロ粒子化した薬剤をナノ・マイクロ繊維上に付着させ、吸入デバイスとする。
ナノ粒子薬物が吸着しているナノ繊維シートの両面をガーゼ等のマトリックスシートで挟み、更に外側を保護フィルムで被覆した構造を持つ(図1)。
ナノ繊維シートはナノ粒子の担体であるとともに、ナノ粒子を外部に不用意に付着させないフィルターとしても機能する。
また、マトリックスシートで挟むことでデバイスの機械的強度が向上し取り扱いが容易になる。
密封性フィルムからなる保護フィルムは未使用時のナノ粒子の脱着や外部への飛散を防止し、ナノ粒子の劣化(酸化や吸湿)を抑制する。
本デバイスでは、ナノ繊維上に付着している薬物ナノ粒子が気流により脱着することを確認した。
ナノ粒子の担体であるナノ繊維には金属、無機、有機高分子などの使用が可能である。
具体例として、化学繊維(マグネシウム合金などの生体吸収性の金属、その他ステンレスやチタンなどの金属繊維、ガラスや炭素などの無機繊維、ポリビニルピロリドンやポリ乳酸などの生体吸収性高分子、その他ポリエステルやポリアミドなどの人工高分子)、天然繊維(綿や絹などの動物・植物繊維やウォラストナイトなどの鉱物繊維)、再生繊維(セルロースやデキストランなどの多糖類やコラーゲンやセリシンそしてアルブミンなどポリペプチドを用いた再生繊維およびこれらの誘導体、複合体が挙げられる。
繊維の直径は数十nm〜数十μmの範囲である。
繊維を構成する材質によって異なるが、繊維直径が小さい場合、酸化劣化や機械的強度などが問題となる。
直径が大きい場合、粒子を吸着させるに十分な表面積が確保できない。
また、繊維直径が大きい場合、ナノ・マイクロ粒子の吸着量が低下する傾向を確認した。
薬剤の粒子径は数十nm〜数μmの範囲である。
適用する薬物によってサイズが規定される。
例えば、呼吸器疾患治療であれば1〜数μmの粒子サイズを用い、全身投与とする場合、数十〜数百nmの粒子サイズを用いる。
A drug made into nano / micro particles is deposited on the nano / micro fiber to form an inhalation device.
The nanofiber sheet on which the nanoparticle drug is adsorbed is sandwiched between matrix sheets such as gauze and the outside is covered with a protective film (FIG. 1).
The nanofiber sheet is a carrier for nanoparticles and also functions as a filter that prevents the nanoparticles from being inadvertently attached to the outside.
Moreover, the mechanical strength of the device is improved and the handling becomes easy by sandwiching between the matrix sheets.
A protective film made of a sealing film prevents desorption and scattering of nanoparticles when not in use, and suppresses deterioration (oxidation and moisture absorption) of the nanoparticles.
In this device, it was confirmed that the drug nanoparticles adhering to the nanofibers were desorbed by airflow.
A metal, an inorganic, an organic polymer, or the like can be used for the nanofiber as a nanoparticle carrier.
Specific examples include chemical fibers (bioabsorbable metals such as magnesium alloys, other metal fibers such as stainless steel and titanium, inorganic fibers such as glass and carbon, bioabsorbable polymers such as polyvinylpyrrolidone and polylactic acid, other polyesters, Artificial polymers such as polyamide), natural fibers (animal and plant fibers such as cotton and silk, mineral fibers such as wollastonite), regenerated fibers (polysaccharides such as cellulose and dextran, and polypeptides such as collagen, sericin and albumin) The regenerated fiber used and derivatives and composites thereof are used.
The diameter of the fiber is in the range of several tens of nanometers to several tens of micrometers.
Although depending on the material constituting the fiber, when the fiber diameter is small, oxidation degradation, mechanical strength, and the like become problems.
When the diameter is large, a surface area sufficient to adsorb particles cannot be secured.
Moreover, when the fiber diameter was large, the tendency for the adsorption amount of a nanomicroparticle to fall was confirmed.
The particle diameter of the drug is in the range of several tens of nm to several μm.
The size is defined by the drug applied.
For example, a particle size of 1 to several μm is used for respiratory disease treatment, and a particle size of tens to hundreds of nm is used for systemic administration.

1.エレクトロスピニングで繊維の原料である高分子溶液をノズルから噴射させナノ繊維シートを作成する。
2.ナノ繊維シート上にスプレードライ法を用いて薬剤ナノ粒子を付着させる。
作成方法1.アルミホイルを綿マットで被覆し、その上へエレクトロスピンニング装置で10wt% PVP (poly(vinyl pyrrolidone)エタノール溶液を噴射し、ナノ繊維シートを作製した。
(エレクトロスピニング条件:温度;室温、直流電圧;15kV、ノズルとコレクターの距離;20cm)直径600nm程度のナノ繊維が絡み合った構造を有する不織布が得られることを確認した。
2.上記で調製したナノ繊維シートをスプレードライ装置のフィルタ上に設置し、1wt%クレアチン水溶液を噴霧し、乾燥した。
(スプレードライ条件:ノズル出口温度;180℃、 Aspirator速度;35%;Pump速度;5%)PVPナノ繊維上にCreatineの球状粒子(粒子径300nm−2μm)が分散していることを確認した。(図3)
3.作成したCreatine担持ナノ繊維シートに対してヒトの吸気と同程度の気流速度(5 L/min)で窒素ガスを流し、ナノ繊維上のCreatineナノ粒子が選択的に脱離し、ナノ繊維のみが残ることを確認した。(図4)

4、前記ナノ繊維シートとガーゼではさむ方法とその状態を固定する方法
(1)ナノ繊維シートを単独で作成し、その後ナノ繊維シートの片面をガーゼで被覆した後、ナノ・マイクロ粒子を吸着・分散させた後に他面をガーゼで被覆する方法、
(2)ガーゼの片面にナノ繊維を形成し、ナノ・マイクロ粒子を吸着・分散させ、その後ナノ繊維の他面をガーゼで被覆する方法が考えられます。
ナノ繊維シートとガーゼとの間隙から粒子を不用意に飛散させないために、シートと二枚のガーゼは四辺とも圧着させてもよい。

5、密封性フィルムの具体例
密封性フィルムはポリプロピレンやポリスチレンなどの人工高分子、セルロースやデキストランなどの天然高分子、およびこれらの誘導体や複合体を用いる。
粒子の光劣化を抑制するために、遮光性フィルムなどを用いてもよい。
粒子の酸化を抑制するために、酸素吸収剤などをフィルムに施してもよい。
粒子の吸湿を抑制するために、脱水剤などをフィルムに施してもよい。
フィルムの高分子材料そのものの粘着性によってガーゼと接着させるか、またはフィルムに塗布剤を施して粘着させる。
ナノ繊維シートとガーゼとの間隙から粒子を不用意に飛散させないために、シートと二枚のガーゼおよび密封性フィルムは四辺とも圧着させてもよい。
1. A nanofiber sheet is prepared by spraying a polymer solution, which is a raw material of the fiber, from a nozzle by electrospinning.
2. The drug nanoparticles are deposited on the nanofiber sheet using a spray drying method.
Creation method 1. An aluminum foil was covered with a cotton mat, and a 10 wt% PVP (poly (vinyl pyrrolidone) ethanol solution) was sprayed thereon with an electrospinning apparatus to prepare a nanofiber sheet.
(Electrospinning conditions: temperature; room temperature, DC voltage; 15 kV, distance between nozzle and collector; 20 cm) It was confirmed that a nonwoven fabric having a structure in which nanofibers having a diameter of about 600 nm were intertwined was obtained.
2. The nanofiber sheet prepared above was placed on a filter of a spray drying apparatus, sprayed with a 1 wt% creatine aqueous solution, and dried.
(Spray drying conditions: nozzle outlet temperature; 180 ° C., Asspirator speed; 35%; Pump speed; 5%) It was confirmed that the spherical particles of Creatine (particle size: 300 nm-2 μm) were dispersed on the PVP nanofibers. (Figure 3)
3. Nitrogen gas is allowed to flow at the same air velocity (5 L / min) as that of human inspiration to the created Createine-supported nanofiber sheet, and the Creatine nanoparticles on the nanofiber are selectively desorbed, leaving only the nanofiber. It was confirmed. (Fig. 4)

4. Method of sandwiching the nanofiber sheet and gauze and fixing the state (1) Create a nanofiber sheet alone, then coat one side of the nanofiber sheet with gauze, and then adsorb nano / microparticles. A method of coating the other surface with gauze after dispersing,
(2) One possible method is to form nanofibers on one side of the gauze, adsorb and disperse the nano / micro particles, and then coat the other side of the nanofibers with gauze.
In order to prevent particles from being inadvertently scattered from the gap between the nanofiber sheet and the gauze, the sheet and the two sheets of gauze may be bonded together on all four sides.

5. Specific Examples of Sealing Film As the sealing film, artificial polymers such as polypropylene and polystyrene, natural polymers such as cellulose and dextran, and derivatives and composites thereof are used.
In order to suppress photodegradation of particles, a light-shielding film or the like may be used.
In order to suppress the oxidation of the particles, an oxygen absorbent or the like may be applied to the film.
In order to suppress the moisture absorption of the particles, a dehydrating agent or the like may be applied to the film.
The film is adhered to the gauze by the adhesiveness of the polymer material itself, or the film is coated with a coating agent to adhere.
In order to prevent particles from being inadvertently scattered from the gap between the nanofiber sheet and the gauze, the sheet, the two sheets of gauze, and the sealing film may be bonded to all four sides.

図5は、2枚のナノ繊維シートを重ねて配置した例を示す。
綿マット(ガーゼ)表面上にエレクトロスピニング装置によってPVPナノ繊維シートを作成し、スプレードライ装置にて薬剤粒子を生成と同時にシートに吸着させ、さらにエレクトロスピニング装置にて、ナノ繊維シートを作成する。具体的な作成例を以下に示す。
作成方法.アルミホイルを綿マットで被覆し、その上へエレクトロスピンニング装置で10wt% PVP (poly(vinyl pyrrolidone)エタノール溶液を噴射し、ナノ繊維シートを作製した。
(エレクトロスピニング条件:温度;室温、直流電圧;15kV、ノズルとコレクターの距離;20cm)直径600nm程度のナノ繊維が絡み合った構造を有する不織布が得られることを確認した。
2.上記で調製したナノ繊維シートをスプレードライ装置のフィルタ上に設置し、1wt%クレアチン水溶液を噴霧し、乾燥した。
(スプレードライ条件:ノズル出口温度;180℃、 Aspirator速度;35%;Pump速度;5%)PVPナノ繊維上にCreatineの球状粒子(粒子径300nm−2μm)が分散していることを確認した。
3.上記で調整したナノ繊維シート再びアルミホイルに被覆し、その上へエレクトロスピンニング装置で10wt% PVPエタノール溶液を噴射し、ナノ繊維シートで被覆した。
FIG. 5 shows an example in which two nanofiber sheets are arranged in a stacked manner.
A PVP nanofiber sheet is prepared on the cotton mat (gauze) surface by an electrospinning device, drug particles are adsorbed on the sheet simultaneously with the generation by a spray drying device, and the nanofiber sheet is prepared by an electrospinning device. A specific example is shown below.
How to make. An aluminum foil was covered with a cotton mat, and a 10 wt% PVP (poly (vinyl pyrrolidone) ethanol solution) was sprayed thereon with an electrospinning apparatus to prepare a nanofiber sheet.
(Electrospinning conditions: temperature; room temperature, DC voltage; 15 kV, distance between nozzle and collector; 20 cm) It was confirmed that a nonwoven fabric having a structure in which nanofibers having a diameter of about 600 nm were intertwined was obtained.
2. The nanofiber sheet prepared above was placed on a filter of a spray drying apparatus, sprayed with a 1 wt% creatine aqueous solution, and dried.
(Spray drying conditions: nozzle outlet temperature; 180 ° C., Asspirator speed; 35%; Pump speed; 5%) It was confirmed that the spherical particles of Creatine (particle size: 300 nm-2 μm) were dispersed on the PVP nanofibers.
3. The nanofiber sheet prepared above was again coated on aluminum foil, and a 10 wt% PVP ethanol solution was sprayed thereon with an electrospinning apparatus, and the nanofiber sheet was coated thereon.

図6は、2枚のナノ繊維シートをガーゼを介して重ねた例を示す。
実施例3によって調製した2枚のナノ繊維シートを重ねた構造体に綿マット(ガーゼ)を被覆した。
この場合、綿マット(ガーゼ)とナノ繊維シートは物理的な絡み合い効果によってその配置状態が固定化されている。
FIG. 6 shows an example in which two nanofiber sheets are stacked via gauze.
A cotton mat (gauze) was coated on a structure in which two nanofiber sheets prepared according to Example 3 were stacked.
In this case, the arrangement state of the cotton mat (gauze) and the nanofiber sheet is fixed by a physical entanglement effect.

図7は、角形に整形したデバイスの一例を示し、マスクのように長期間の吸気ではなく、瞬間的な吸気による吸引にて、十分な量の薬剤を投与できる場合に有効である。
瞬間的な呼気による吸引にて十分量の薬剤粒子を投与する場合、粒子が付着したナノ繊維シートが大面積である必要がある。
適用できる薬剤粒子の量は、呼気の流路の長さ(ナノ繊維シートの厚さ)に依存する。
ナノ繊維シートを吸入方向に対して垂直に配置した場合、呼気の流路が十分確保できない(流路長=ナノ繊維シートの厚さ)。ナノ繊維シートを吸入方向に対して平行に配置した場合、呼気の流路に存在する粒子はナノ繊維シートの長さに依存して増大する。
FIG. 7 shows an example of a device shaped into a square shape, which is effective when a sufficient amount of medicine can be administered by inhalation by instantaneous inspiration instead of long-term inspiration as in a mask.
When a sufficient amount of drug particles is administered by aspiration by instantaneous expiration, the nanofiber sheet to which the particles are attached needs to have a large area.
The amount of drug particles that can be applied depends on the length of the exhalation flow path (the thickness of the nanofiber sheet).
When the nanofiber sheet is arranged perpendicularly to the inhalation direction, a sufficient flow path for exhalation cannot be secured (flow path length = thickness of the nanofiber sheet). When the nanofiber sheet is arranged in parallel to the inhalation direction, the particles present in the exhalation flow path increase depending on the length of the nanofiber sheet.

ナノ粒子は分散溶媒中において安定に存在しうる。分散溶媒がない状態では、ナノ粒子は凝集し大きな集合体になり、個々のナノ粒子としての特性はなくなる。本提案は無溶媒条件下において、ナノ粒子を保持する新たな方法となり、医薬分野、とりわけ吸入デバイスの分野において新しい技術となりうる。
本発明により、ナノ粒子化した薬剤を吸引させることができることにより、経口剤或いは注射剤を吸入剤に変更することが可能となる。
それによる効果として、点滴することなく薬剤投与を受けることは医療経済上医療費の削減の手段となりうる。
また、使用が簡便で、軽量であり、廃棄も容易であるため、途上国や被災地をはじめ多くの地域に速やかに普及し、早期に効果が発揮されうる。
The nanoparticles can exist stably in the dispersion solvent. In the absence of a dispersion solvent, the nanoparticles aggregate to form large aggregates, and the properties of individual nanoparticles are lost. This proposal will be a new method for retaining nanoparticles under solvent-free conditions and may be a new technology in the pharmaceutical field, especially in the field of inhalation devices.
According to the present invention, since the nanoparticulate drug can be aspirated, the oral preparation or the injection can be changed to an inhalant.
As an effect, receiving a drug without infusion can be a means of reducing medical costs in terms of medical economy.
In addition, since it is easy to use, lightweight, and easy to dispose, it can be quickly spread to many regions including developing countries and disaster-stricken areas, and the effect can be demonstrated at an early stage.

実施例1のマスク状吸入デバイスの構造を示す一部拡大斜視図The partially expanded perspective view which shows the structure of the mask-shaped inhalation device of Example 1. 実施例1のマスクの全体を示す正面図The front view which shows the whole mask of Example 1 実施例1のPVP ナノ繊維上に付着したCreatine粒子を示す顕微鏡写真Photomicrograph showing Creatine particles deposited on the PVP nanofibers of Example 1. 図3の状態のナノ繊維シートを流速5 L/minの窒素ガス気流に曝した後の繊維シートを示す顕微鏡写真。The microscope picture which shows the fiber sheet after exposing the nanofiber sheet of the state of FIG. 3 to the nitrogen gas airflow with a flow rate of 5 L / min. 実施例2の要部を示す一部拡大斜視図The partially expanded perspective view which shows the principal part of Example 2. 実施例3の要部を示す一部拡大斜視図The partial expansion perspective view which shows the principal part of Example 3 実施例4のデバイスを示す斜視図The perspective view which shows the device of Example 4.

Claims (6)

薬剤よりなるナノ粒子を呼吸により吸引させるためのデバイスであって、前記ナノ粒子が個々に透過する呼気にて脱落可能に固定されたナノ繊維シートの両面をマトリックスシートにて覆ってあることを特徴とするナノ粒子用デバイス。 A device for sucking nanoparticles made of a drug by respiration, wherein both sides of the nanofiber sheet fixed so as to be removable by exhaled breath through which the nanoparticles are individually permeated are covered with a matrix sheet Nanoparticle device. 請求項1に記載のナノ粒子用デバイスにおいて、前記ナノ繊維シートを複数枚重ねた多層ナノ繊維シートであることを特徴とするナノ粒子用デバイス。 The device for nanoparticles according to claim 1, wherein the device is a multilayer nanofiber sheet in which a plurality of the nanofiber sheets are stacked. 請求項1に記載のナノ粒子用デバイスにおいて、マトリックスシート両面に前記ナノ繊維シートを配置し、その表裏両面をマトリックスシートで覆ったことを特徴とするナノ粒子用デバイス。 2. The nanoparticle device according to claim 1, wherein the nanofiber sheet is disposed on both sides of the matrix sheet, and both the front and back surfaces are covered with the matrix sheet. 請求項1から3のいずれかに記載のナノ粒子用デバイスにおいて、マトリックスシートがガーゼであることを特徴とするナノ粒子用デバイス。 4. The nanoparticle device according to claim 1, wherein the matrix sheet is gauze. 請求項1から4のいずれかに記載のナノ粒子用デバイスにおいて、全体の形状がマスク様に形成されてなることを特徴とするナノ粒子用デバイス。 The device for nanoparticles according to any one of claims 1 to 4, wherein the entire shape is formed like a mask. 請求項1から5のいずれかに記載のナノ粒子用デバイスにおいて、外表面全体を密封性フィルムによりカバーしてあることを特徴とするナノ粒子用デバイス。 6. The nanoparticle device according to claim 1, wherein the entire outer surface is covered with a sealing film.
JP2007035115A 2007-02-15 2007-02-15 Nanoparticle device Active JP4936320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007035115A JP4936320B2 (en) 2007-02-15 2007-02-15 Nanoparticle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007035115A JP4936320B2 (en) 2007-02-15 2007-02-15 Nanoparticle device

Publications (2)

Publication Number Publication Date
JP2008194379A true JP2008194379A (en) 2008-08-28
JP4936320B2 JP4936320B2 (en) 2012-05-23

Family

ID=39753861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007035115A Active JP4936320B2 (en) 2007-02-15 2007-02-15 Nanoparticle device

Country Status (1)

Country Link
JP (1) JP4936320B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2149856A2 (en) 2008-07-29 2010-02-03 Hitachi CO., LTD. Image information processing method and apparatus
US11909658B2 (en) 2019-08-19 2024-02-20 Nippon Telegraph And Telephone Corporation Signal transfer system, path control device, and signal transfer method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5540873A (en) * 1978-09-19 1980-03-22 Toyo Pulp Co Ltd Production of alkali pulp
JPS6392644A (en) * 1986-10-07 1988-04-23 Daicel Chem Ind Ltd Polycarbonate resin
JP2004097216A (en) * 2002-08-23 2004-04-02 M Raito:Kk Method for production of spore composition, mask for pollen, air freshener and suppressant for hay fever using the composition
WO2007011030A1 (en) * 2005-07-21 2007-01-25 National Institute For Materials Science Device for inhalation of medicine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5540873A (en) * 1978-09-19 1980-03-22 Toyo Pulp Co Ltd Production of alkali pulp
JPS6392644A (en) * 1986-10-07 1988-04-23 Daicel Chem Ind Ltd Polycarbonate resin
JP2004097216A (en) * 2002-08-23 2004-04-02 M Raito:Kk Method for production of spore composition, mask for pollen, air freshener and suppressant for hay fever using the composition
WO2007011030A1 (en) * 2005-07-21 2007-01-25 National Institute For Materials Science Device for inhalation of medicine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2149856A2 (en) 2008-07-29 2010-02-03 Hitachi CO., LTD. Image information processing method and apparatus
US11909658B2 (en) 2019-08-19 2024-02-20 Nippon Telegraph And Telephone Corporation Signal transfer system, path control device, and signal transfer method

Also Published As

Publication number Publication date
JP4936320B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
US8962063B2 (en) Methods and systems for dosing and coating inhalation powders onto carrier particles
Forest et al. Nano-delivery to the lung-by inhalation or other routes and why nano when micro is largely sufficient?
RU2007119721A (en) PARTICLES FOR TREATMENT OF PULMONARY INFECTION
JP2008518007A5 (en)
Javadzadeh et al. Therapeutic nanostructures for pulmonary drug delivery
JP2018503755A (en) Protective mask having coatings interwoven with different electrospun fibers, formulation forming the same, and method of manufacturing the same
JP2021102620A (en) Dry powder formulations and methods of use
US8479728B2 (en) Effective delivery of nanoparticles and micrometer-sized pharmaceutical aerosols to the lung through enhanced condensational growth
TW200950836A (en) Inhaler
Edwards Delivery of biological agents by aerosols
Wang et al. Isoxyl aerosols for tuberculosis treatment: preparation and characterization of particles
JP4936320B2 (en) Nanoparticle device
JP2005124777A (en) Infection prevention mask
JP5339328B2 (en) Drug inhalation device
Khadeja et al. Sonochemical functionalization of cotton and non‐woven fabrics with bio‐inspired self‐assembled nanostructures
EP2964298B1 (en) Element for inhaling medicinal substances
JP2013539784A (en) Methods for the treatment of cystic fibrosis with inhaled denufosol
Sosnowski Inhalation as a means of systemic drug delivery
CN105013054B (en) A kind of more capsule dry-powder inhaling devices
El-Maradny et al. A Review on Aerosol Drug Delivery: Fundamentals, Classifications, Particle Size Analysis and the Engagement of Nanoparticulate Systems
US20220389648A1 (en) Antimicrobial copper oxide nanoparticle coated masks and methods for producing the same
WO2022245254A1 (en) Filter element, medical mask and respirator
Das et al. Introduction to Lung Physiology from a Drug Delivery Perspective
US20230310775A1 (en) Patient interface for delivery of gas
Singh et al. Drug Delivery Systems Based on Various Natural Polymers for Lung Diseases

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4936320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250