JP2008192593A - Lithium polymer battery - Google Patents

Lithium polymer battery Download PDF

Info

Publication number
JP2008192593A
JP2008192593A JP2007195663A JP2007195663A JP2008192593A JP 2008192593 A JP2008192593 A JP 2008192593A JP 2007195663 A JP2007195663 A JP 2007195663A JP 2007195663 A JP2007195663 A JP 2007195663A JP 2008192593 A JP2008192593 A JP 2008192593A
Authority
JP
Japan
Prior art keywords
chemical formula
organic compound
compound represented
lithium polymer
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007195663A
Other languages
Japanese (ja)
Inventor
Yasutaka Kono
安孝 河野
Koji Utsuki
功二 宇津木
Shinako Kaneko
志奈子 金子
Koji Kobayashi
広司 小林
Junichi Ishida
純一 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2007195663A priority Critical patent/JP2008192593A/en
Publication of JP2008192593A publication Critical patent/JP2008192593A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium polymer battery with a rate property, cycle property, and bulging prevention of a cell, or the like improved. <P>SOLUTION: The lithium polymer battery in which a gel electrolyte includes a solvent, a cross-linking polymer, and an organic compound as shown in the expression. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、リチウムポリマー電池に関し、特にゲル電解質に電池特性を向上させる有機化合物を含有させたリチウムポリマー電池に関する。   The present invention relates to a lithium polymer battery, and more particularly to a lithium polymer battery in which a gel electrolyte contains an organic compound that improves battery characteristics.

リチウムポリマー電池は、薄型化が可能であること、形状選択の自由度の高さ、電解液を用いないことに依る安全性の高さなどから、モバイル機器用の電源などとして注目されている。最近では、用いられるモバイル機器の機能の増加に伴い高エネルギー化と、それに伴う電池特性の改善が技術開発の目標となっている。   Lithium polymer batteries are attracting attention as power sources for mobile devices because they can be thinned, have a high degree of freedom in shape selection, and have a high level of safety by not using an electrolyte. Recently, with the increase in the functions of mobile devices used, higher energy and improved battery characteristics have become the goals of technological development.

こうした中で重要な技術課題として、1)安全性の向上、2)充放電サイクル特性の改善、3)高エネルギー密度化改善などが挙げられる。1)安全性の向上において、可燃性の有機電解液をゲルポリマーにトラップすることで漏液を防止することが提案されている。例えば、特許文献1では、2種類の低分子量アクリレートモノマーから構成されるゲル電解質が提案され、特許文献2では、繰り返し単位数が2〜4のポリプロピレングリコールアクリレートで構成されるゲル電解質が提案されている。また、特許文献3は、分子量5,000〜500,000のアクリル樹脂と架橋用モノマー(架橋用モノマーは1から30質量%の範囲内)から構成されるゲル電解質が提案され、特許文献4には分子量10,000〜25,000のオリゴマーなどが記載されている。次に、2)充放電サイクル特性については、用いるポリマー材料等を種々工夫することにより改善はなされてきた。特許文献5では、物理架橋型ポリマーと化学架橋型ゲル電解質を混合することによる改善が提案されている。特許文献6では、用いるセパレーター表面を改質することによりプレゲル溶液の含浸性についての改善が提案されている。また、非特許文献1においては、ゲル電解質を用いた二次電池について、電極材料(たとえば負極材料に高価であるがセル膨れ抑制効果のある人造黒鉛(塊状黒鉛)を使用)、セルの形状などの検討が行われ、セルの膨れ抑制や充放電サイクル特性の改善について記されている。3)高エネルギー密度化については、特許文献7において、物理ゲルを用いたリチウムポリマー電池において、ゲル電解質−活物質複合電極の多孔度を適切に規定することで容量密度が向上することが提案されている。このように、ゲル電解質を用いたリチウムポリマー電池においては、ゲル電解質の材質だけでなく、電極材料、セル形状、セル作製条件、電解液材料などの選択が極めて重要である。   Among these, important technical issues include 1) improvement of safety, 2) improvement of charge / discharge cycle characteristics, and 3) improvement of high energy density. 1) In order to improve safety, it has been proposed to prevent leakage by trapping a flammable organic electrolyte in a gel polymer. For example, Patent Document 1 proposes a gel electrolyte composed of two kinds of low molecular weight acrylate monomers, and Patent Document 2 proposes a gel electrolyte composed of polypropylene glycol acrylate having 2 to 4 repeating units. Yes. Patent Document 3 proposes a gel electrolyte composed of an acrylic resin having a molecular weight of 5,000 to 500,000 and a crosslinking monomer (crosslinking monomer is in the range of 1 to 30% by mass). Describes an oligomer having a molecular weight of 10,000 to 25,000. Next, 2) the charge / discharge cycle characteristics have been improved by variously devising polymer materials to be used. In patent document 5, the improvement by mixing a physical crosslinkable polymer and a chemical crosslinkable gel electrolyte is proposed. In patent document 6, the improvement about the impregnation property of a pregel solution is proposed by modifying the separator surface to be used. In Non-Patent Document 1, for secondary batteries using a gel electrolyte, electrode materials (for example, artificial graphite (bulk graphite) which is expensive but has an effect of suppressing cell swelling) are used for the negative electrode material, cell shape, and the like. Is described, and suppression of cell swelling and improvement of charge / discharge cycle characteristics are described. 3) Regarding the increase in energy density, Patent Document 7 proposes that in lithium polymer batteries using physical gel, the capacity density is improved by appropriately defining the porosity of the gel electrolyte-active material composite electrode. ing. Thus, in a lithium polymer battery using a gel electrolyte, selection of not only the material of the gel electrolyte but also the electrode material, the cell shape, the cell preparation conditions, the electrolyte solution material, and the like is extremely important.

特開2000−306604号公報JP 2000-306604 A 特開2001−338690号公報JP 2001-338690 A 特開2001−243835号公報JP 2001-243835 A 特開2003−197262号公報JP 2003-197262 A 特開2002−100406号公報JP 2002-100406 A 特開2003−257490号公報JP 2003-257490 A 特開平11−307100号公報JP-A-11-307100 金村聖志監修、ポリマーバッテリーの最新技術II、p.242−247、シーエムシー出版(2003)Supervised by Satoshi Kanamura, latest polymer battery technology II, p. 242-247, CM Publishing (2003)

しかしながら、上記従来技術を用いたリチウムポリマー電池は電解液を用いた二次電池よりもイオン伝導率が劣るため電池としてのレート特性及び充放電サイクル特性が劣るという欠点があった。また、特に高温での充放電サイクル特性や充電状態での保存特性(以下保存寿命という)が充分でなく原因は電池の抵抗上昇によるものであることが判明した。そのため、ポリマー材料に合わせた正極、負極、電解液、電解液添加剤、セパレーター及びこれらを用いた電池の設計や作製を行う必要がある。   However, the lithium polymer battery using the above-described prior art has a defect that the ionic conductivity is inferior to that of the secondary battery using the electrolytic solution, so that the battery rate characteristics and charge / discharge cycle characteristics are inferior. It was also found that the charge / discharge cycle characteristics at high temperature and the storage characteristics in the charged state (hereinafter referred to as storage life) were not sufficient, and the cause was due to the increase in battery resistance. Therefore, it is necessary to design and manufacture a positive electrode, a negative electrode, an electrolytic solution, an electrolytic solution additive, a separator, and a battery using these according to the polymer material.

本発明は上記問題点に鑑みなされたものである。本発明の課題は、ゲル電解質をリチウムポリマー電池に適用する際に、そのイオン伝導率が液よりも低いことから問題となるレート特性、充放電サイクル特性向上、セルの膨れ防止、また高温での抵抗上昇による充放電サイクル特性、保存寿命低下等に対して、簡便な方法でリチウムポリマー電池の特性を向上させ、さらにリチウムポリマー電池のエネルギー密度を向上させることにある。   The present invention has been made in view of the above problems. The problem of the present invention is that, when the gel electrolyte is applied to a lithium polymer battery, its ionic conductivity is lower than that of the liquid, so that the problematic rate characteristics, charge / discharge cycle characteristics improvement, cell swelling prevention, and high temperature The purpose is to improve the characteristics of the lithium polymer battery by a simple method against charge / discharge cycle characteristics and a decrease in storage life due to an increase in resistance, and to further improve the energy density of the lithium polymer battery.

前記課題を解決するため、本発明のリチウムポリマー電池は、少なくとも正極、負極、セパレーター、ゲル電解質により構成されるリチウムポリマー電池であって、前記ゲル電解質が溶媒と架橋型高分子と化1で示される有機化合物とを含有する。   In order to solve the above problems, a lithium polymer battery of the present invention is a lithium polymer battery composed of at least a positive electrode, a negative electrode, a separator, and a gel electrolyte, and the gel electrolyte is represented by a solvent, a cross-linkable polymer, and Containing organic compounds.

Figure 2008192593
Figure 2008192593

但し、化1において、Zはハロゲン原子、置換もしくは無置換の炭素数1〜10のアルキル基、ポリフルオロアルキル基、または置換もしくは無置換の炭素数4〜20の環状炭化水素、またはXR5(ここでXは酸素原子、硫黄原子またはNR6を表し、R6は水素原子または置換もしくは無置換の炭素数1〜10のアルキル基を表し、R5は置換もしくは無置換の炭素数4〜20の環状炭化水素を表す。)を表す。nは0〜4の整数を表す。A1及びA2はそれぞれ独立に酸素原子、硫黄原子または、A1がNR7でA2がNR8(ここでR7とR8はそれぞれ独立に水素原子、ハロゲン原子、置換もしくは無置換の炭素数1〜10のアルキル基、炭素数1〜10のポリフルオロアルキル基または置換もしくは無置換の炭素数4〜20の環状炭化水素を表す。また、R7とR8はお互いに結合して環構造を形成しても良い。)を表す。Lは、メチレン基又は単結合を表す。Mは、ホウ素又はリンを表す。B1及びB2はそれぞれ独立にカルボニル基、置換もしくは無置換のアルキレン基又はポリフルオロアルキレン基を表す。mは、1〜3の整数を表す(ただし、Mがホウ素のとき2m+n=4、Mがリンのとき2m+n=6である。) However, in Chemical formula 1, Z is a halogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a polyfluoroalkyl group, a substituted or unsubstituted cyclic hydrocarbon having 4 to 20 carbon atoms, or XR 5 ( Here, X represents an oxygen atom, a sulfur atom or NR 6 , R 6 represents a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, and R 5 represents a substituted or unsubstituted carbon atom having 4 to 20 carbon atoms. Represents a cyclic hydrocarbon. n represents an integer of 0 to 4. A 1 and A 2 are each independently an oxygen atom, a sulfur atom, or A 1 is NR 7 and A 2 is NR 8 (where R 7 and R 8 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted atom) Represents an alkyl group having 1 to 10 carbon atoms, a polyfluoroalkyl group having 1 to 10 carbon atoms, or a substituted or unsubstituted cyclic hydrocarbon having 4 to 20 carbon atoms, and R 7 and R 8 are bonded to each other. A ring structure may be formed). L represents a methylene group or a single bond. M represents boron or phosphorus. B 1 and B 2 each independently represent a carbonyl group, a substituted or unsubstituted alkylene group or a polyfluoroalkylene group. m represents an integer of 1 to 3 (provided that 2m + n = 4 when M is boron and 2m + n = 6 when M is phosphorus).

また、本発明のリチウムポリマー電池は、前記正極が活物質としてマンガン酸リチウムを主成分とする場合、前記正極の充填密度が2.5g/cm3以上、3.0g/cm3以下であることが好ましく、前記正極が活物質としてコバルト酸リチウムを主成分とする場合、前記正極の充填密度が3.3g/cm3以上、3.8g/cm3以下であることが好ましい。 In the lithium polymer battery of the present invention, when the positive electrode is composed mainly of lithium manganate as an active material, the positive electrode has a packing density of 2.5 g / cm 3 or more and 3.0 g / cm 3 or less. preferably, when the positive electrode is mainly composed of lithium cobaltate as an active material, the filling density of the positive electrode 3.3 g / cm 3 or more, preferably 3.8 g / cm 3 or less.

また、本発明のリチウムポリマー電池は、前記負極の表面のSIMS測定において、ホウ素、及び酸素が深さ方向に0.1から1.0μmに存在することを示すピークを有することが好ましい。   Moreover, it is preferable that the lithium polymer battery of this invention has a peak which shows that boron and oxygen exist in 0.1 to 1.0 micrometer in the depth direction in the SIMS measurement of the surface of the said negative electrode.

また、本発明のリチウムポリマー電池は、前記SIMS測定におけるホウ素、酸素のピークが前記化1で示される有機化合物の分解物を含むことが好ましい。   Moreover, it is preferable that the lithium polymer battery of this invention contains the decomposition product of the organic compound by which the peak of the boron in the said SIMS measurement and oxygen is shown by the said Chemical formula 1.

また、本発明のリチウムポリマー電池は、化1で示される有機化合物の最低空軌道エネルギー(LUMO)が、−1.5eV以上0eV以下であることが好ましい。   In the lithium polymer battery of the present invention, the organic compound represented by Chemical Formula 1 preferably has a minimum unoccupied orbital energy (LUMO) of −1.5 eV or more and 0 eV or less.

また、本発明のリチウムポリマー電池は、前記ゲル電解質が溶媒と架橋型高分子と0.1〜3.0質量%のビニレンカーボネートまたはその誘導体と0.05〜5.0質量%の化2または化3で示される有機化合物等の化1で示される有機化合物を含有するとよい。   Further, in the lithium polymer battery of the present invention, the gel electrolyte is a solvent, a crosslinked polymer, 0.1 to 3.0% by mass of vinylene carbonate or a derivative thereof, and 0.05 to 5.0% by mass of Chemical 2 or An organic compound represented by Chemical Formula 1 such as an organic compound represented by Chemical Formula 3 may be contained.

Figure 2008192593
Figure 2008192593

Figure 2008192593
Figure 2008192593

また、本発明のリチウムポリマー電池は、正極が活物質としてマンガン酸リチウム又はコバルト酸リチウムを含有し、架橋型高分子が、アクリル系高分子から構成され、溶媒が少なくとも鎖状カーボネート及び環状カーボネートを含有し、負極が活物質として黒鉛を含有し、ラミネート材により外装されていることが好ましい。   In the lithium polymer battery of the present invention, the positive electrode contains lithium manganate or lithium cobaltate as an active material, the cross-linked polymer is composed of an acrylic polymer, and the solvent is at least a chain carbonate and a cyclic carbonate. It is preferable that the negative electrode contains graphite as an active material and is covered with a laminate material.

ゲル電解質を含むリチウムポリマー電池では、そのゲル電解質の前駆体であるプレゲル溶液に、種々の官能基数を有するアクリル系高分子、及びレート特性、充放電サイクル特性を向上させるため化1で示される有機化合物、好ましくは化2または化3で示される有機化合物を含有させることにより、初期充電時のガス発生を抑制でき、かつゲル電解質と正極、負極、及びセパレーターとの間の相乗効果により、リチウムの正極、負極との受け渡しがスムーズになり、電解液同等のレート特性、充放電サイクル特性を提供することができる。   In a lithium polymer battery containing a gel electrolyte, the pregel solution that is a precursor of the gel electrolyte has an acrylic polymer having various functional groups, and an organic compound represented by Chemical Formula 1 in order to improve rate characteristics and charge / discharge cycle characteristics. By containing a compound, preferably an organic compound represented by Chemical Formula 2 or Chemical Formula 3, gas generation during initial charging can be suppressed, and the synergistic effect between the gel electrolyte, the positive electrode, the negative electrode, and the separator allows Delivery between the positive electrode and the negative electrode becomes smooth, and rate characteristics and charge / discharge cycle characteristics equivalent to the electrolyte can be provided.

ここでいう相乗効果とは以下のことを指す。すなわち、初期の充電により化1で示される化合物が反応し負極表面に一般的にSEI(Solid Electrolyte Interface)膜と呼ばれる皮膜が形成される。皮膜が形成されることにより、負極活物質と電子との受け渡しがスムーズになる。また、種々の官能基数を有するアクリル系高分子(具体的には鎖の短いもの、長いもの、重合基数が多いが鎖の短いもの)を混ぜることにより、セパレーターと各電極との密着性が向上する。具体的にはセパレーターの細孔には鎖の短いものが存在することにより含浸性が向上し、また重合基数が多いものが存在するとゲル化能力が向上し、かつセパレーターの細孔にある高分子と反応することにより部材の密着性が向上する。以上の要素が相乗し特性が向上することになる。   The synergistic effect here refers to the following. That is, the compound represented by Chemical Formula 1 reacts with the initial charge, and a film generally called a SEI (Solid Electrolyte Interface) film is formed on the negative electrode surface. By forming the film, the transfer between the negative electrode active material and the electrons becomes smooth. Also, the adhesion between the separator and each electrode is improved by mixing acrylic polymers with various functional groups (specifically, those with short chains, those with long chains, those with many polymer groups but short chains). To do. Specifically, impregnation is improved by the presence of short chains in the pores of the separator, and gelation ability is improved when there are those having a large number of polymer groups, and the polymer in the pores of the separator. The adhesion of the member is improved by reacting with. The above elements are synergistic and the characteristics are improved.

本発明によればリチウムポリマー電池において、そのゲル電解質が溶媒と架橋型高分子と化1で示される有機化合物とを含むことより、塊状黒鉛だけでなく従来ゲル電解質を用いた電池には不適とされていた鱗片状黒鉛を負極材料に用いたリチウムポリマー電池においても、初期充電時に活性な部位を上記化1で示される有機化合物が覆うため、ガス発生を抑制し、それに伴うセル膨れを軽減できる。また、ゲル電解質と正極、負極、及びセパレーターとの間の相乗効果のため、リチウムの正極、負極との受け渡しがスムーズになり、電解液を用いた場合と同等のレート特性、充放電サイクル特性を提供することができる。さらに、正極にマンガン酸リチウムを含有する場合、正極の充填密度が2.5g/cm3以上3.0g/cm3以下、また、コバルト酸リチウムを含有する場合、正極の充填密度が3.3g/cm3以上3.8g/cm3以下であればレート特性等の向上が図れる。 According to the present invention, in the lithium polymer battery, the gel electrolyte contains a solvent, a cross-linkable polymer, and an organic compound represented by Chemical Formula 1, so that it is not suitable for a battery using not only bulk graphite but also a conventional gel electrolyte. Even in the lithium polymer battery using the flaky graphite used as the negative electrode material, the organic compound represented by the chemical formula 1 covers the active site at the time of initial charging, so that gas generation can be suppressed and the cell swelling associated therewith can be reduced. . In addition, because of the synergistic effect between the gel electrolyte, the positive electrode, the negative electrode, and the separator, the transfer between the lithium positive electrode and the negative electrode is smooth, and the rate characteristics and charge / discharge cycle characteristics equivalent to those when using an electrolyte solution are achieved. Can be provided. Further, when the positive electrode contains lithium manganate, the positive electrode has a packing density of 2.5 g / cm 3 or more and 3.0 g / cm 3 or less, and when it contains lithium cobaltate, the positive electrode has a packing density of 3.3 g. If it is / cm 3 or more and 3.8 g / cm 3 or less, the rate characteristics and the like can be improved.

本発明のリチウムポリマー電池で使用される正極は、アルミニウム箔等の金属からなる集電体に正極活物質層を塗布、乾燥したものを圧縮し成型したものであり、負極は、銅箔等の金属からなる集電体に負極活物質を塗布、乾燥したものを圧縮し成型したものである。正極活物質にマンガン酸リチウムを含有する場合、正極の充填密度が2.5g/cm3以上3.0g/cm3以下が好ましく、コバルト酸リチウムを含有する場合、3.3g/cm3以上3.8g/cm3以下が好ましく、マンガン酸リチウムを含有する場合は2.8〜2.9g/cm3、コバルト酸リチウムを含有する場合には3.6〜3.7g/cm3が更に好ましい。上限より大きい場合は、レート特性等が悪化する。また下限より小さい場合、活物質同士の接触が不十分となりレート特性等が低下し、またエネルギー密度を上げることが難しい。セパレーターは、不織布、ポリオレフィン微多孔膜などリチウムポリマー電池で一般的に使用されるものであれば特に限定はされない。正極と負極をセパレーターを介して積み重ねて積層体を製作し、あるいは正極と負極をセパレーターを介して扁平に巻回した後成型した巻回体を製作し、積層体あるいは巻回体をラミネート材等の外装材に入れた後、ゲル電解質を注入し処理することによりリチウムポリマー電池を作製する。上記リチウムポリマー電池においては、初期充電により負極活物質とポリマー電解質界面に皮膜が形成され、その様子は特に負極のSIMS分析によりホウ素、及び酸素が深さ方向で0.1から1.0μmにわたりピーク(SIMS分析による検出値をピークと称する)を有することが好ましい。初期充電を行っていない電池においてはホウ素、及び酸素は最表面にのみわずかなピークを有し、負極材料であるカーボンでそのピークを規格化するとほとんど強度を有しない。このことから化1で示される添加剤は分解していないことがわかる。一方、初期充電を行ったものにおいては、電極の深さ方向0.1〜0.5μmとブロードなピークが観測される。このことから、化1で示される有機化合物は分解し皮膜を形成していることが示唆される。また多量の化1で示される有機化合物を添加したものでは上記結果よりもより深い、つまり厚い皮膜を形成することを示唆する結果となり負極界面の抵抗が上昇するため電池特性が劣ることとなる。なお、SIMS分析(2次イオン質量分析)については、Physical Electronics社製「ADEPT1010」を用い、1次イオン種をO2 +、1次イオン加速エネルギーを3keVとした。測定サンプルの前処理としてリチウムポリマー電池を0.2C(ある容量の電池を一定の電流にて放電させ、ちょうど1時間で放電が終わったとき、その電流を1Cという)で3.0Vまで放電し、アルゴンガス雰囲気のグローブボックス内で電池を解体し、負極を切り出し大気に曝すことなく測定することができる。 The positive electrode used in the lithium polymer battery of the present invention is obtained by applying a positive electrode active material layer to a current collector made of a metal such as an aluminum foil, and compressing and molding the dried material. The negative electrode is made of a copper foil or the like. A negative electrode active material is applied to a current collector made of a metal, dried, and compressed and molded. When the positive electrode active material contains lithium manganate, the packing density of the positive electrode is preferably 2.5 g / cm 3 or more and 3.0 g / cm 3 or less, and when lithium cobalt oxide is contained, 3.3 g / cm 3 or more 3 .8g / cm 3 or less, and when containing lithium manganate 2.8~2.9g / cm 3, more preferably 3.6~3.7g / cm 3 in the case of containing lithium cobaltate . When the value is larger than the upper limit, the rate characteristics and the like are deteriorated. On the other hand, if it is smaller than the lower limit, the contact between the active materials becomes insufficient, the rate characteristics and the like are lowered, and it is difficult to increase the energy density. A separator will not be specifically limited if it is generally used with lithium polymer batteries, such as a nonwoven fabric and a polyolefin microporous film. A positive electrode and a negative electrode are stacked via a separator to produce a laminate, or a positive electrode and a negative electrode are wound flatly via a separator to form a wound body, and the laminate or the wound body is a laminate material, etc. A lithium polymer battery is prepared by injecting and treating the gel electrolyte after being put in the outer packaging material. In the above lithium polymer battery, a film is formed at the interface between the negative electrode active material and the polymer electrolyte by the initial charging, and this state is especially peaked by boron and oxygen in the depth direction from 0.1 to 1.0 μm by SIMS analysis of the negative electrode. (The detection value by SIMS analysis is preferably called a peak). In a battery that is not initially charged, boron and oxygen have a slight peak only on the outermost surface, and have little strength when the peak is normalized with carbon, which is a negative electrode material. This shows that the additive represented by Chemical Formula 1 is not decomposed. On the other hand, when the initial charge is performed, a broad peak of 0.1 to 0.5 μm in the electrode depth direction is observed. This suggests that the organic compound represented by Chemical Formula 1 is decomposed to form a film. Further, when a large amount of the organic compound represented by Chemical Formula 1 is added, it is suggested that a deeper film, that is, a thick film is formed than the above result, and the resistance at the negative electrode interface is increased, so that the battery characteristics are inferior. For SIMS analysis (secondary ion mass spectrometry), “ADEPT1010” manufactured by Physical Electronics was used, the primary ion species was O 2 + , and the primary ion acceleration energy was 3 keV. As a pretreatment of the measurement sample, the lithium polymer battery was discharged to 3.0 V at 0.2 C (a battery having a certain capacity was discharged at a constant current, and when the discharge was completed in just one hour, the current was 1 C). The battery can be disassembled in a glove box in an argon gas atmosphere, and the negative electrode can be cut out and measured without exposure to the atmosphere.

ゲル電解質に含まれるゲル化成分として、たとえば熱重合可能な重合基を一分子あたり2個以上有するモノマー、またはオリゴマー、共重合オリゴマーなどが挙げられる。このゲル化成分としては、アクリル系高分子を形成する、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、プロピレンジアクリレート、ジプロピレンジアクリレート、トリプロピレンジアクリレート、1,3−ブタンジオールジアクリレート、1,4−ブタンジオールジアクリレート、1,6−ヘキサンジオールジアクリレートなどの2官能アクリレート、また、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレートなどの3官能アクリレート、また、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールテトラアクリレートなどの4官能アクリレート、および、上記メタクリレートモノマーなどが挙げられる。これらの他に、ウレタンアクリレート、ウレタンメタクリレートなどのモノマー、これらの共重合体オリゴマーやアクリロニトリルとの共重合体オリゴマーが挙げられるが、これらに限定されるものではない。   As the gelling component contained in the gel electrolyte, for example, a monomer having two or more polymerizable groups capable of thermal polymerization per molecule, an oligomer, a copolymerized oligomer, or the like can be given. As this gelling component, ethylene glycol diacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, propylene diacrylate, dipropylene diacrylate, tripropylene diacrylate, which forms an acrylic polymer, Bifunctional acrylates such as 1,3-butanediol diacrylate, 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, and trifunctional acrylates such as trimethylolpropane triacrylate and pentaerythritol triacrylate, In addition, tetrafunctional acrylates such as ditrimethylolpropane tetraacrylate and pentaerythritol tetraacrylate, and the above-mentioned methacrylate. Tomonoma and the like. In addition to these, monomers such as urethane acrylate and urethane methacrylate, copolymer oligomers thereof, and copolymer oligomers with acrylonitrile are exemplified, but not limited thereto.

また、ポリフッ化ビニリデンやポリエチレンオキサイド、ポリアクリロニトリルなどの、可塑剤に溶解させ、ゲル化させることのできるポリマーも使用できる。   In addition, polymers that can be dissolved in a plasticizer and gelled, such as polyvinylidene fluoride, polyethylene oxide, and polyacrylonitrile can also be used.

ゲル成分としては、上述のモノマー、オリゴマー、またはポリマーに限定されるものではなく、ゲル化可能なものであれば、使用できる。また、ゲル化には一種類のモノマー、オリゴマーまたはポリマーに限定されるものではなく、必要に応じて2〜数種のゲル化成分を混合しても使用できる。   The gel component is not limited to the above-described monomer, oligomer, or polymer, and any gel component that can be gelled can be used. Further, the gelation is not limited to one kind of monomer, oligomer or polymer, and it can be used by mixing 2 to several kinds of gel components as required.

ゲル電解質に含まれる溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類、γ−ブチロラクトン等のγ−ラクトン類、1,2−エトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類、テトラヒドロフラン、2−メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、1,3−ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3−ジメチル−2−イミダゾリジノン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3−プロパンスルトン、アニソール、N−メチルピロリドン、フッ素化カルボン酸エステルなどの非プロトン性有機溶媒を一種又は二種以上を混合して使用できるが、これらに限定されるものではない。   As a solvent contained in the gel electrolyte, cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), Chain carbonates such as ethyl methyl carbonate (EMC) and dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate, γ-lactones such as γ-butyrolactone, Chain ethers such as 2-ethoxyethane (DEE) and ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, acetami Dimethylformamide, dioxolane, acetonitrile, propylnitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivatives, sulfolane, methylsulfolane, 1,3-dimethyl-2-imidazolidinone, 3-methyl A mixture of one or more aprotic organic solvents such as 2-oxazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ethyl ether, 1,3-propane sultone, anisole, N-methylpyrrolidone, fluorinated carboxylate, etc. However, the present invention is not limited to these.

ゲル電解質に含ませる化1で示される有機化合物は、化2、化3で示される有機化合物の他、化合物番号1〜7として表1に示される有機化合物があげられるが、本発明はこれらに限定されるものではない。   Examples of the organic compound represented by Chemical Formula 1 to be included in the gel electrolyte include the organic compounds represented by Chemical Formula 2 and Chemical Formula 3, as well as the organic compounds shown in Table 1 as Compound Nos. 1 to 7, but the present invention includes these compounds. It is not limited.

Figure 2008192593
Figure 2008192593

負極活物質として、特に、リン片状黒鉛を用いる場合、人造黒鉛とは異なり活性な部位を有しており、充放電を行うたびにガス発生をまねき、セル膨れ、容量低下を引き起こすことから、電解液のみから構成される電池ではこの対策として、一般的にVC、1,3−プロパンスルトン(以下PS)などを用いている。例えばPSの最低空軌道エネルギー(LUMO)は0.07eVであり、PSが溶媒分子であるEC(LUMO:1.18eV)やDEC(LUMO:1.26eV)よりも先に分解し皮膜を形成することが考えられる。その結果溶媒分子の分解が抑制され、ガス発生による電池の膨れの抑制やレート特性改善が期待できる。本発明の系のようにポリマーゲル中に分散させた場合には、ゲルが高抵抗であるため上記VC、PSは負極電極上で分解皮膜が形成されにくい(最低空軌道エネルギー(LUMO):PS(0.07eV)、VC:0.09eV)。そのため、PSやVCよりもよりLUMOの小さい分子の添加剤が望ましく、−1.5eV以上0eV以下のものが最適である。化1で示される有機化合物はリチウムイオン二次電池の電極上での分解皮膜を形成すると考えられている。例えば化2で示される有機化合物の最低空軌道エネルギー(LUMO)は−1.21eVであり、化2で示される有機化合物が溶媒分子であるEC(LUMO:1.18eV)やDEC(LUMO:1.26eV)よりも先に分解し皮膜を形成することが考えられる。その結果、溶媒分子の分解が抑制され、ガス発生による電池の膨れの抑制やレート特性改善が期待できる。また、化3で示される有機化合物の最低空軌道エネルギー(LUMO)は−0.24eVである。また、例えば正極にマンガン酸リチウムを含む場合には化2または化3等の化1で示される有機化合物の添加によってゲル中に溶出したMnが負極表面に吸着することを防止し、結果として抵抗上昇によるレート特性の低下の抑制や充放電サイクル特性向上に有効であると考えられる。   As the negative electrode active material, particularly when flake graphite is used, it has an active site unlike artificial graphite, and it causes gas generation every time charging / discharging occurs, causing cell expansion and capacity reduction. In a battery composed only of an electrolytic solution, VC, 1,3-propane sultone (hereinafter referred to as PS) or the like is generally used as a countermeasure. For example, PS has a minimum orbital energy (LUMO) of 0.07 eV, and decomposes to form a film before EC (LUMO: 1.18 eV) or DEC (LUMO: 1.26 eV), where PS is a solvent molecule. It is possible. As a result, decomposition of solvent molecules is suppressed, and suppression of battery swelling due to gas generation and improvement of rate characteristics can be expected. When dispersed in a polymer gel as in the system of the present invention, since the gel has a high resistance, the above-mentioned VC and PS are unlikely to form a decomposition film on the negative electrode (minimum empty orbit energy (LUMO): PS). (0.07 eV), VC: 0.09 eV). Therefore, a molecular additive having a LUMO smaller than that of PS or VC is desirable, and those having −1.5 eV or more and 0 eV or less are optimal. The organic compound represented by Chemical Formula 1 is considered to form a decomposition film on the electrode of the lithium ion secondary battery. For example, the minimum empty orbit energy (LUMO) of the organic compound represented by Chemical formula 2 is −1.21 eV, and EC (LUMO: 1.18 eV) or DEC (LUMO: 1) in which the organic compound represented by Chemical formula 2 is a solvent molecule. .26 eV) to decompose and form a film. As a result, the decomposition of the solvent molecules is suppressed, and the suppression of battery swelling due to gas generation and the improvement of the rate characteristics can be expected. Further, the minimum empty orbit energy (LUMO) of the organic compound represented by Chemical formula 3 is −0.24 eV. For example, when the positive electrode contains lithium manganate, the addition of an organic compound represented by chemical formula 1 such as chemical formula 2 or chemical formula 3 prevents Mn eluted in the gel from adsorbing on the negative electrode surface, resulting in resistance. It is thought that it is effective for suppressing the deterioration of the rate characteristics due to the rise and improving the charge / discharge cycle characteristics.

本発明においては、ゲル電解質に更にビニレンカーボネートまたはその誘導体を適宜含有させることにより化2または化3等の化1で示される有機化合物により形成された皮膜の安定化に有効である。ビニレンカーボネートは特に、正極にコバルト酸リチウムを用いた場合に効果が大きく、含有するビニレンカーボネートの濃度は、0.1質量%以上3.0質量%以下が好ましく、特に好ましくは0.1質量%以上1.0質量%以下である。   In the present invention, vinylene carbonate or a derivative thereof is further appropriately contained in the gel electrolyte, which is effective for stabilizing a film formed of the organic compound represented by Chemical Formula 1 such as Chemical Formula 2 or Chemical Formula 3. Vinylene carbonate is particularly effective when lithium cobaltate is used for the positive electrode, and the concentration of vinylene carbonate contained is preferably 0.1% by mass or more and 3.0% by mass or less, particularly preferably 0.1% by mass. The content is 1.0% by mass or less.

本発明においては、ゲル電解質に更に環状スルホン酸エステル、環状ジスルホン酸エステル又は鎖状ジスルホン酸エステルを適宜含有させることによっても化2または化3で示される有機化合物により形成された皮膜の安定化に有効である。特に、正極にコバルト酸リチウムを用いた場合に効果が大きく、含有するスルホン酸エステルの濃度は、0.1質量%以上3.0質量%以下が好ましく、特に好ましくは0.1質量%以上1.0質量%以下である。   In the present invention, the gel electrolyte can further contain a cyclic sulfonate ester, a cyclic disulfonate ester or a chain disulfonate ester to stabilize the film formed by the organic compound represented by Chemical Formula 2 or Chemical Formula 3. It is valid. In particular, the effect is large when lithium cobaltate is used for the positive electrode, and the concentration of the sulfonic acid ester contained is preferably 0.1% by mass or more and 3.0% by mass or less, and particularly preferably 0.1% by mass or more and 1% by mass. 0.0 mass% or less.

これらのゲル電解質中に含まれる化2または化3等の化1で示される有機化合物の濃度は、特に限定されるものではないが、正極活物質としてマンガン酸リチウムを含む正極を使用した二次電池の場合には、0.05質量%以上5.0質量%以下が好ましく、更に好ましくは0.5質量%以上1.0質量%以下が特に好ましい。0.05質量%未満では電極表面に十分な皮膜が形成されず、充放電サイクル特性やレート特性の改善効果が小さい。5.0質量%を越えると、抵抗が高くなってレート特性が悪くなる。   The concentration of the organic compound represented by Chemical Formula 1 such as Chemical Formula 2 or Chemical Formula 3 contained in these gel electrolytes is not particularly limited, but a secondary using a positive electrode containing lithium manganate as the positive electrode active material. In the case of a battery, 0.05 mass% or more and 5.0 mass% or less are preferable, More preferably, 0.5 mass% or more and 1.0 mass% or less are especially preferable. If it is less than 0.05 mass%, a sufficient film is not formed on the electrode surface, and the effect of improving charge / discharge cycle characteristics and rate characteristics is small. If it exceeds 5.0% by mass, the resistance increases and the rate characteristics deteriorate.

正極活物質としてコバルト酸リチウムを用いる場合には、ゲル電解質中に含まれる化2で示される有機化合物の濃度は、特に限定されるものではないが、0.05質量%以上5.0質量%以下が好ましい。0.05質量%未満では電極表面に十分な皮膜が形成されず、充放電サイクル特性やレート特性の改善効果が小さい。5.0質量%を越えると、抵抗が高くなってレート特性が悪くなる。   When lithium cobaltate is used as the positive electrode active material, the concentration of the organic compound represented by Chemical Formula 2 contained in the gel electrolyte is not particularly limited, but is 0.05% by mass or more and 5.0% by mass. The following is preferred. If it is less than 0.05 mass%, a sufficient film is not formed on the electrode surface, and the effect of improving charge / discharge cycle characteristics and rate characteristics is small. If it exceeds 5.0% by mass, the resistance increases and the rate characteristics deteriorate.

ゲル電解質に含まれる支持塩としては、特に限定されないがLiPF6、LiBF4、LiAsPF6、LiCF3SO3、LiN(CF3SO22など一般的にリチウムポリマー電池に用いられる電解質が使用できる。 The supporting salt contained in the gel electrolyte is not particularly limited, but electrolytes generally used for lithium polymer batteries such as LiPF 6 , LiBF 4 , LiAsPF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 can be used. .

本発明において、必要に応じて、熱重合開始剤としてベンゾイン類、パーオキサイド類などが使用できるが、これらに限定されるものではない。   In the present invention, benzoins, peroxides and the like can be used as thermal polymerization initiators as necessary, but are not limited thereto.

また、正極活物質として、例えば、LiCoO2、LiNi1-xCox2、LiMn24、LiNixMn2-x4(0≦X≦1)複合酸化化物正極材料が使用できるが、これらに限定されるものではない。 Further, as the positive electrode active material, for example, LiCoO 2 , LiNi 1-x Co x O 2 , LiMn 2 O 4 , LiNi x Mn 2−x O 4 (0 ≦ X ≦ 1) composite oxide positive electrode material can be used. However, it is not limited to these.

負極活物質として、例えば、黒鉛、非晶質炭素、シリコン、シリコン酸化物、金属リチウム及びその合金などが挙げられるが、これらに限定されるものではない。   Examples of the negative electrode active material include, but are not limited to, graphite, amorphous carbon, silicon, silicon oxide, metallic lithium, and alloys thereof.

セパレーターとして、ポリプロピレン、ポリエチレン等のポリオレフィン、フッ素樹脂等の多孔性フィルムなどが使用できるが、これに限定されるものではない。   As the separator, polyolefin such as polypropylene and polyethylene, porous film such as fluororesin, and the like can be used, but the separator is not limited thereto.

実施例により本発明を図面を参照して詳細に説明する。   The present invention will be described in detail by way of examples with reference to the drawings.

図1は本発明のリチウムポリマー電池の正極の構成を説明する図であり、図2は本発明のリチウムポリマー電池の負極の構成を説明する図であり、図3は本発明のリチウムポリマー電池の巻回後の電池要素の構成を説明する図であり、図4は本発明のリチウムポリマー電池の外装工程を説明する図である。   FIG. 1 is a diagram illustrating the configuration of the positive electrode of the lithium polymer battery of the present invention, FIG. 2 is a diagram illustrating the configuration of the negative electrode of the lithium polymer battery of the present invention, and FIG. 3 is a diagram of the lithium polymer battery of the present invention. It is a figure explaining the structure of the battery element after winding, and FIG. 4 is a figure explaining the exterior process of the lithium polymer battery of this invention.

(実施例1)
先ず、図1により正極の作製について説明する。LiMn24を85質量%、導電補助材としてアセチレンブラックを7質量%、バインダーとしてポリフッ化ビニリデン8質量%とを混合したものに、N−メチルピロリドンを加えてさらに混合して正極スラリーを作製した。これをドクターブレード法により集電体となる厚さ20μmのAl箔2の両面にロールプレス処理後の厚さが160μm、充填密度が2.8g/cm3になるように塗布し、正極活物質塗布部3を形成した。なお、両端部にはいずれの面にも正極活物質が塗布されていない正極活物質非塗布部4を設け、一方の正極活物質非塗布部4に正極導電タブ6を設け正極1とした。
(Example 1)
First, the production of the positive electrode will be described with reference to FIG. A mixture of 85% by mass of LiMn 2 O 4 , 7% by mass of acetylene black as a conductive auxiliary and 8% by mass of polyvinylidene fluoride as a binder is added to N-methylpyrrolidone and further mixed to prepare a positive electrode slurry. did. This was applied to both surfaces of a 20 μm-thick Al foil 2 as a current collector by a doctor blade method so that the thickness after roll press treatment was 160 μm and the packing density was 2.8 g / cm 3. The application part 3 was formed. In addition, the positive electrode active material non-application part 4 in which the positive electrode active material was not apply | coated to either surface was provided in both ends, and the positive electrode conductive tab 6 was provided in one positive electrode active material non-application part 4, and it was set as the positive electrode 1.

次に、図2により負極の作製について説明する。鱗片状黒鉛90質量%、バインダーとしてポリフッ化ビニリデン10質量%とを混合し、N−メチルピロリドンを加えてさらに混合して負極スラリーを作製した。これを集電体となる厚さ10μmのCu箔8両面にロールプレス処理後の厚さが120μmになるように塗布し、負極活物質塗布部9を形成した。なお、両端部の一方の端面には片面のみ負極活物質が塗布されていない負極活物質片面塗布部10と負極活物質が塗布されていない負極活物質非塗布部11を設け、負極導電タブ12を取り付け負極7とした。   Next, the production of the negative electrode will be described with reference to FIG. Nine methyl pyrrolidone was added and mixed with 90% by mass of flaky graphite and 10% by mass of polyvinylidene fluoride as a binder to prepare a negative electrode slurry. This was applied to both surfaces of a 10 μm-thick Cu foil 8 serving as a current collector so that the thickness after the roll press treatment was 120 μm, thereby forming a negative electrode active material coating portion 9. In addition, the negative electrode active material single-side application part 10 in which the negative electrode active material is not applied only on one side and the negative electrode active material non-application part 11 in which the negative electrode active material is not applied are provided on one end face of both ends, and the negative electrode conductive tab 12 is provided. Was attached to the negative electrode 7.

図3により電池要素の作製について説明する。膜厚12μm、気孔率35%のポリエチレン製の微多孔膜からなるセパレーター13を二枚溶着して切断した部分を巻回装置の巻き芯に固定し巻きとり、正極1、及び負極7の先端を導入する。正極1および負極7は両面に電極活物質層が形成されている側を先端側として、負極は二枚のセパレーターの間に、正極電極はセパレーターの上面にそれぞれ配置して巻き芯を回転させ巻回し、電池要素(以下ジェリーロール(J/R)と表記)を形成した。   The production of the battery element will be described with reference to FIG. Two separators 13 made of polyethylene having a film thickness of 12 μm and a porosity of 35% are welded and cut, and the cut portions are fixed to the core of the winding device and wound, and the tips of the positive electrode 1 and the negative electrode 7 are attached. Introduce. The positive electrode 1 and the negative electrode 7 are arranged such that the side where the electrode active material layer is formed on both sides is the front end side, the negative electrode is placed between the two separators, and the positive electrode is placed on the upper surface of the separator. Turned to form a battery element (hereinafter referred to as jelly roll (J / R)).

このJ/Rを図4に示すようにエンボス加工したラミネート外装体に収容し、ラミネート外装体の辺を折り返し、プレゲル溶液注液用の部分を残して熱融着を行った。   This J / R was housed in an embossed laminate outer package as shown in FIG. 4, the sides of the laminate outer body were folded back, and heat fusion was performed leaving a portion for injecting the pregel solution.

プレゲル溶液は、エチレンカーボネート(EC)30質量%とジエチルカーボネート(DEC)58質量%に、リチウム塩としてLiPF612質量%からなる電解液に対して、化2で示される有機化合物を1質量%、ゲル化剤としてトリエチレングリコールジアクリレートとトリメチロールプロパントリアクリレートをそれぞれ3.8質量%、1質量%を加え、よく混合した後に、重合開始剤として、t−ブチルパーオキシピバレートを0.5質量%混合することで作製した。 The pregel solution is composed of 30% by mass of ethylene carbonate (EC) and 58% by mass of diethyl carbonate (DEC), and 1% by mass of the organic compound represented by Chemical Formula 2 with respect to an electrolyte solution comprising 12% by mass of LiPF 6 as a lithium salt. Then, 3.8% by mass and 1% by mass of triethylene glycol diacrylate and trimethylolpropane triacrylate were added as gelling agents and mixed well, and then t-butyl peroxypivalate was added as a polymerization initiator in an amount of 0.0. It was prepared by mixing 5% by mass.

次に、プレゲル溶液を注液部分から注液し真空含浸を行い、リチウムポリマー電池を得た。   Next, the pregel solution was injected from the injection portion and vacuum impregnation was performed to obtain a lithium polymer battery.

(初期充放電容量測定条件)
得られたリチウムポリマー電池を、電池電圧4.2Vまで充電し(充電条件:電流:0.2C、時間6.5H(時間)、温度20℃)、0.2Cで電池電圧3.0Vまで放電しそのときの放電容量を初期容量とした。
(Initial charge / discharge capacity measurement conditions)
The obtained lithium polymer battery was charged to a battery voltage of 4.2 V (charging conditions: current: 0.2 C, time 6.5 H (hour), temperature 20 ° C.), and discharged to a battery voltage of 3.0 V at 0.2 C. The discharge capacity at that time was taken as the initial capacity.

(負極表面分析)
放電済みのリチウムポリマー電池をアルゴン雰囲気下で解体し、負極を切り出して大気に触れさせずにSIMS分析を行った。この分析により得られた値は、上述のように、初期充電を行っていない電池においてはホウ素、及び酸素は最表面にのみわずかなピークを有し、負極材料であるカーボンでそのピークを規格化するとほとんど強度を有しない。このことから化1で示される添加剤は分解していないことがわかる。一方初期充電を行ったものにおいては、電極の深さ方向の0.1〜0.5μmにブロードなピークが観測される。このことから、化1で示される有機化合物は分解し皮膜を形成していることが示唆される。また多量の化1で示される有機化合物を添加したものでは上記結果よりもより深い、つまり厚い皮膜を形成することを示唆し、その結果、負極界面の抵抗が上昇するため電池特性が劣ることとなる。また、充放電サイクル試験前後のそれぞれの強度を比較することにより安定な水準であれば強度は同じ値となり、劣化しているものであればSEIが過剰に形成する場合その強度比は大きな値を示し、崩壊する場合はその強度は小さくなる。表2にSIMS分析結果によるホウ素および酸素のピークの深さ方向の値を示した。
(Negative electrode surface analysis)
The discharged lithium polymer battery was disassembled under an argon atmosphere, and the negative electrode was cut out and subjected to SIMS analysis without exposure to the air. The values obtained by this analysis are as described above. In the battery not initially charged, boron and oxygen have a slight peak only on the outermost surface, and the peak is normalized with carbon, which is the negative electrode material. Then, it has almost no strength. This shows that the additive represented by Chemical Formula 1 is not decomposed. On the other hand, in the case of the initial charge, a broad peak is observed at 0.1 to 0.5 μm in the depth direction of the electrode. This suggests that the organic compound represented by Chemical Formula 1 is decomposed to form a film. In addition, when a large amount of the organic compound represented by Chemical Formula 1 is added, it is suggested that a deeper film than the above result, that is, a thick film is formed, and as a result, the resistance of the negative electrode interface increases and the battery characteristics are inferior. Become. Also, by comparing the strengths before and after the charge / discharge cycle test, the strength is the same if the level is stable, and if the SEI is excessively formed if it is deteriorated, the strength ratio is a large value. If shown, the strength decreases when it collapses. Table 2 shows values of boron and oxygen peaks in the depth direction according to SIMS analysis results.

(レート特性)
得られたリチウムポリマー電池のレート特性は、電池電圧4.2Vまで充電された電池を0.2Cで電池電圧3.0Vまで放電し得られた放電容量を1とし、放電レート(1.0C)で放電し得られた放電容量との比で表2に示した。
(Rate characteristics)
The rate characteristics of the obtained lithium polymer battery are as follows: a battery charged to a battery voltage of 4.2 V is discharged at 0.2 C to a battery voltage of 3.0 V, the discharge capacity is 1, and the discharge rate (1.0 C) It was shown in Table 2 by the ratio with the discharge capacity obtained by discharging.

(充放電サイクル試験における体積変化率、容量維持率)
得られたリチウムポリマー電池の充放電サイクル試験後のセル体積変化率は、初期充電後のセル体積を1.0とし、充放電サイクル試験後のセル体積との比で表2に示した。なお、充放電サイクル試験の条件は、充電:上限電圧4.2V、電流:1C、時間2.5H、放電:下限電圧3.0V、電流:1Cいずれも20℃で100サイクル実施した。容量維持率は1サイクル目の放電容量(1C)に対する100サイクル目の放電容量(1C)の割合で表2に示した。また、サイクル前に対するサイクル後のSIMS分析結果によるホウ素および酸素のピークの強度比を表2に示した。
(Volume change rate and capacity maintenance rate in charge / discharge cycle test)
The cell volume change rate after the charge / discharge cycle test of the obtained lithium polymer battery is shown in Table 2 as a ratio with the cell volume after the charge / discharge cycle test, with the cell volume after the initial charge being 1.0. The conditions of the charge / discharge cycle test were as follows: charge: upper limit voltage 4.2V, current: 1C, time 2.5H, discharge: lower limit voltage 3.0V, current: 1C. The capacity retention rate is shown in Table 2 as a ratio of the discharge capacity (1C) at the 100th cycle to the discharge capacity (1C) at the first cycle. Table 2 shows the intensity ratio of the boron and oxygen peaks according to the SIMS analysis results after the cycle before the cycle.

(保存寿命測定、容量回復率)
得られたリチウムポリマー電池の保存試験は、まず室温にて0.2Cにて充電及び放電を一回ずつ行った。このときの放電容量を100した。さらに0.2Cにて4.2Vまで充電し、この状態にて1kHzの抵抗を測定した後、45℃恒温槽にて3ヶ月放置した。放置後に室温において再度0.2Cにて3.0Vを下限値とし放電、続いて上限を4.2Vとし充電し1kHzの抵抗を測定した後保存前後におけるセル抵抗の増加率を求めた。またさらに放電を行いこの充電後の放電容量を保存後の回復容量とした。45℃保存試験によるセル体積増加率、セル抵抗増加率、容量回復率の結果を表3に示した。
(Storage life measurement, capacity recovery rate)
In the storage test of the obtained lithium polymer battery, first, charging and discharging were performed once at 0.2 C at room temperature. The discharge capacity at this time was 100. Furthermore, it charged to 4.2V at 0.2C, and after measuring the resistance of 1kHz in this state, it was left to stand in a 45 degreeC thermostat for 3 months. After standing, the battery was discharged again at 0.2C at room temperature with 3.0V as the lower limit, followed by charging with the upper limit set to 4.2V, and after measuring the resistance at 1 kHz, the rate of increase in cell resistance before and after storage was determined. Further, the battery was further discharged, and the discharge capacity after this charge was taken as the recovery capacity after storage. Table 3 shows the results of the cell volume increase rate, cell resistance increase rate, and capacity recovery rate in the 45 ° C. storage test.

Figure 2008192593
Figure 2008192593

Figure 2008192593
Figure 2008192593

(実施例2)
化2で示される有機化合物の濃度が0.5質量%になるようにゲル電解質を調整する以外、実施例1と同様にセルを作製し、評価を行った。
(Example 2)
A cell was prepared and evaluated in the same manner as in Example 1 except that the gel electrolyte was adjusted so that the concentration of the organic compound represented by Chemical Formula 2 was 0.5% by mass.

(実施例3)
化2で示される有機化合物の濃度が0.1質量%になるようにゲル電解質を調整する以外、実施例1と同様にセルを作製し、評価を行った。
(Example 3)
A cell was prepared and evaluated in the same manner as in Example 1 except that the gel electrolyte was adjusted so that the concentration of the organic compound represented by Chemical Formula 2 was 0.1% by mass.

(実施例4)
化2で示される有機化合物の濃度が2.0質量%になるようにゲル電解質を調整する以外、実施例1と同様にセルを作製し、評価を行った。
Example 4
A cell was prepared and evaluated in the same manner as in Example 1 except that the gel electrolyte was adjusted so that the concentration of the organic compound represented by Chemical Formula 2 was 2.0% by mass.

(実施例5)
化2で示される有機化合物の濃度が3.0質量%になるようにゲル電解質を調整する以外、実施例1と同様にセルを作製し、評価を行った。
(Example 5)
A cell was prepared and evaluated in the same manner as in Example 1 except that the gel electrolyte was adjusted so that the concentration of the organic compound represented by Chemical Formula 2 was 3.0% by mass.

(実施例6)
化2で示される有機化合物の濃度が5.0質量%になるようにゲル電解質を調整する以外、実施例1と同様にセルを作製し、評価を行った。
(Example 6)
A cell was prepared and evaluated in the same manner as in Example 1 except that the gel electrolyte was adjusted so that the concentration of the organic compound represented by Chemical Formula 2 was 5.0% by mass.

(実施例7)
化2で示される有機化合物の濃度が0.05質量%になるようにゲル電解質を調整する以外、実施例1と同様にセルを作製し、評価を行った。
(Example 7)
A cell was prepared and evaluated in the same manner as in Example 1 except that the gel electrolyte was adjusted so that the concentration of the organic compound represented by Chemical Formula 2 was 0.05% by mass.

(実施例8)
使用する負極材料が塊状黒鉛であること以外、実施例1と同様にセルを作製し、評価を行った。
(Example 8)
A cell was prepared and evaluated in the same manner as in Example 1 except that the negative electrode material used was massive graphite.

(実施例9)
使用する負極材料が塊状黒鉛であること以外、実施例5と同様にセルを作製し、評価を行った。
Example 9
A cell was prepared and evaluated in the same manner as in Example 5 except that the negative electrode material used was massive graphite.

(実施例10)
負極材料に塊状黒鉛を用いる以外、実施例6と同様にセルを作製し、評価を行った。
(Example 10)
A cell was prepared and evaluated in the same manner as in Example 6 except that massive graphite was used as the negative electrode material.

(比較例1)
プレゲル溶液中の化2で示される有機化合物の濃度が0質量%である以外は実施例1と同様にしてリチウムポリマー電池を作製した。
(Comparative Example 1)
A lithium polymer battery was produced in the same manner as in Example 1 except that the concentration of the organic compound represented by Chemical Formula 2 in the pregel solution was 0% by mass.

(比較例2)
化2で示される有機化合物の濃度が8.0質量%になるようにゲル電解質を調整する以外、実施例1と同様にセルを作製し、評価を行った。
(Comparative Example 2)
A cell was prepared and evaluated in the same manner as in Example 1 except that the gel electrolyte was adjusted so that the concentration of the organic compound represented by Chemical Formula 2 was 8.0% by mass.

(比較例3)
化2で示される有機化合物の代わりに、VCを用いる以外、実施例1と同様にセルを作製し、評価を行った。
(Comparative Example 3)
A cell was prepared and evaluated in the same manner as in Example 1 except that VC was used instead of the organic compound represented by Chemical Formula 2.

(比較例4)
化2で示される有機化合物の代わりに、PSを用いる以外、実施例1と同様にセルを作製し、評価を行った。
(Comparative Example 4)
A cell was prepared and evaluated in the same manner as in Example 1 except that PS was used instead of the organic compound represented by Chemical Formula 2.

(比較例5)
負極材料に塊状黒鉛を用いる以外、比較例1と同様にセルを作製し、評価を行った。
(Comparative Example 5)
A cell was prepared and evaluated in the same manner as in Comparative Example 1 except that massive graphite was used as the negative electrode material.

(比較例6)
負極材料に塊状黒鉛を用いる以外、比較例3と同様にセルを作製し、評価を行った。
(Comparative Example 6)
A cell was prepared and evaluated in the same manner as in Comparative Example 3 except that massive graphite was used as the negative electrode material.

(比較例7)
負極材料に塊状黒鉛を用いる以外、比較例4と同様にセルを作製し、評価を行った。
(Comparative Example 7)
A cell was prepared and evaluated in the same manner as in Comparative Example 4 except that massive graphite was used as the negative electrode material.

本発明のリチウムポリマー電池において、表2、3の実施例1〜7に示すように、化2で示される有機化合物の濃度が0.05以上5.0質量%以下の場合、レート特性等において化2で示される有機化合物をそれ以外の濃度を添加した比較例1〜2よりも明らかに特性が良好であることがわかった。また、実施例1、比較例3、比較例4に示すように、化2で示される有機化合物を用いた場合、同濃度のVC、PSを用いた系よりもレート特性等において明らかに特性が良好であることがわかった。また、実施例1〜7に示すように、化2で示される有機化合物を使用した場合、比較例3,4と比較して高温での保存特性が向上することがわかった。これは、評価前後においてSIMS測定により得られたホウ素、酸素ピーク強度が変化していないことから、化2で形成されたSEIが高温でも安定であるため抵抗上昇を抑制するためである。   In the lithium polymer battery of the present invention, as shown in Examples 1 to 7 in Tables 2 and 3, when the concentration of the organic compound represented by Chemical Formula 2 is 0.05 to 5.0 mass%, It was found that the characteristics were clearly better than those of Comparative Examples 1 and 2 in which other concentrations of the organic compound represented by Chemical Formula 2 were added. In addition, as shown in Example 1, Comparative Example 3, and Comparative Example 4, when the organic compound represented by Chemical Formula 2 is used, the characteristics clearly are higher in rate characteristics than the system using VC and PS of the same concentration. It was found to be good. Moreover, as shown in Examples 1-7, when the organic compound shown by Chemical formula 2 was used, it turned out that the storage characteristic at high temperature improves compared with the comparative examples 3 and 4. FIG. This is because the boron and oxygen peak intensities obtained by SIMS measurement before and after the evaluation do not change, and therefore, the SEI formed in Chemical Formula 2 is stable even at high temperatures, thereby suppressing an increase in resistance.

また、特性が良好といわれる塊状黒鉛を用いた場合(実施例8〜10、比較例5〜7)、鱗片状黒鉛を用いた場合といずれにおいても同じ傾向が見られ、化2は従来ゲル電解質を用いた電池には不適とされていた鱗片状黒鉛でも良好な特性を示すことが明らかになった。   Moreover, the same tendency is seen in the case of using massive graphite (Examples 8 to 10 and Comparative Examples 5 to 7), which is said to have good characteristics, and in the case of using scale-like graphite. It became clear that even flake graphite, which was considered unsuitable for batteries using, exhibited good characteristics.

(実施例11)
化2で示される有機化合物の代わりに化3で示される有機化合物を用いる以外、実施例1と同様にセルを作製し、評価を行った。
(Example 11)
A cell was prepared and evaluated in the same manner as in Example 1 except that the organic compound represented by Chemical Formula 3 was used instead of the organic compound represented by Chemical Formula 2.

(実施例12)
化2で示される有機化合物の代わりに化3で示される有機化合物を用いる以外、実施例2と同様にセルを作製し、評価を行った。
(Example 12)
A cell was prepared and evaluated in the same manner as in Example 2 except that the organic compound represented by Chemical Formula 3 was used instead of the organic compound represented by Chemical Formula 2.

(実施例13)
化2で示される有機化合物の代わりに化3で示される有機化合物を用いる以外、実施例3と同様にセルを作製し、評価を行った。
(Example 13)
A cell was prepared and evaluated in the same manner as in Example 3 except that the organic compound represented by Chemical Formula 3 was used instead of the organic compound represented by Chemical Formula 2.

(実施例14)
化2で示される有機化合物の代わりに化3で示される有機化合物を用いる以外、実施例4と同様にセルを作製し、評価を行った。
(Example 14)
A cell was prepared and evaluated in the same manner as in Example 4 except that the organic compound represented by Chemical Formula 3 was used instead of the organic compound represented by Chemical Formula 2.

(実施例15)
化2で示される有機化合物の代わりに化3で示される有機化合物を用いる以外、実施例5と同様にセルを作製し、評価を行った。
(Example 15)
A cell was prepared and evaluated in the same manner as in Example 5 except that the organic compound represented by Chemical Formula 3 was used instead of the organic compound represented by Chemical Formula 2.

(実施例16)
化2で示される有機化合物の代わりに化3で示される有機化合物を用いる以外、実施例6と同様にセルを作製し、評価を行った。
(Example 16)
A cell was prepared and evaluated in the same manner as in Example 6 except that the organic compound represented by Chemical Formula 3 was used instead of the organic compound represented by Chemical Formula 2.

(実施例17)
化2で示される有機化合物の代わりに化3で示される有機化合物を用いる以外、実施例7と同様にセルを作製し、評価を行った。
(Example 17)
A cell was prepared and evaluated in the same manner as in Example 7 except that the organic compound represented by Chemical Formula 3 was used instead of the organic compound represented by Chemical Formula 2.

(実施例18)
化2で示される有機化合物の代わりに化3で示される有機化合物を用いる以外、実施例8と同様にセルを作製し、評価を行った。
(Example 18)
A cell was prepared and evaluated in the same manner as in Example 8 except that the organic compound represented by Chemical Formula 3 was used instead of the organic compound represented by Chemical Formula 2.

(実施例19)
化2で示される有機化合物の代わりに化3で示される有機化合物を用いる以外、実施例9と同様にセルを作製し、評価を行った。
(Example 19)
A cell was prepared and evaluated in the same manner as in Example 9 except that the organic compound represented by Chemical Formula 3 was used instead of the organic compound represented by Chemical Formula 2.

(実施例20)
化2で示される有機化合物の代わりに化3で示される有機化合物を用いる以外、実施例10と同様にセルを作製し、評価を行った。
(Example 20)
A cell was prepared and evaluated in the same manner as in Example 10 except that the organic compound represented by Chemical Formula 3 was used instead of the organic compound represented by Chemical Formula 2.

(比較例8)
化2で示される有機化合物の代わりに化3で示される有機化合物を用いる以外、比較例2と同様にセルを作製し、評価を行った。
(Comparative Example 8)
A cell was prepared and evaluated in the same manner as in Comparative Example 2 except that the organic compound represented by Chemical Formula 3 was used instead of the organic compound represented by Chemical Formula 2.

実施例11〜20および比較例1,8についてのレート特性、サイクル試験における容量維持率、セル体積変化率について表4に、また45℃保存試験評価結果を表5に示した。   Table 4 shows the rate characteristics, capacity retention rate in the cycle test, and cell volume change rate for Examples 11 to 20 and Comparative Examples 1 and 8, and Table 5 shows the results of the 45 ° C. storage test evaluation.

Figure 2008192593
Figure 2008192593

Figure 2008192593
Figure 2008192593

本発明のリチウムポリマー電池において、表4、5の実施例11〜17に示すように、化3で示される有機化合物の濃度が0.05以上5.0質量%以下の場合、レート特性等においてそれ以外の濃度の化3で示される有機化合物を添加した比較例1、比較例8よりも明らかに特性が良好であることがわかった。また、上記の化2で示される有機化合物と同様に、実施例11、比較例3、比較例4に示すように、化3で示される有機化合物を用いた場合、同濃度のVC、PSを用いた系よりもレート特性等において明らかに特性が良好であることがわかった。また、実施例11〜17に示すように、化3で示される有機化合物を使用した場合、比較例1、比較例3、4と比較して高温での保存寿命特性が向上することがわかった。これは、評価前後においてSIMS測定により得られたホウ素、酸素ピーク強度が変化していないことから、化3で示される有機化合物で形成されたSEIが高温でも安定であるため抵抗上昇を抑制するためである。また、特性が良好といわれる塊状黒鉛を用いた場合(実施例18〜20)、鱗片状黒鉛を用いた場合といずれにおいても同じ傾向が見られ、化3で示される有機化合物は従来ゲル電解質を用いた電池には不適とされていた鱗片状黒鉛でも良好な特性を示すことが明らかになった。   In the lithium polymer battery of the present invention, as shown in Examples 11 to 17 in Tables 4 and 5, when the concentration of the organic compound represented by Chemical Formula 3 is 0.05 to 5.0 mass%, It was found that the characteristics were clearly better than those of Comparative Examples 1 and 8 in which the organic compound represented by Chemical Formula 3 at other concentrations was added. Similarly to the organic compound represented by Chemical Formula 2 above, as shown in Example 11, Comparative Example 3 and Comparative Example 4, when the organic compound represented by Chemical Formula 3 was used, the same concentration of VC and PS were obtained. It was found that the rate characteristics were clearly better than the system used. Moreover, as shown in Examples 11-17, when the organic compound shown by Chemical formula 3 was used, it turned out that the shelf life characteristic in high temperature improves compared with the comparative example 1 and the comparative examples 3 and 4. . This is because, since the boron and oxygen peak intensities obtained by SIMS measurement before and after the evaluation did not change, the SEI formed by the organic compound represented by Chemical Formula 3 is stable even at high temperatures, so that an increase in resistance is suppressed. It is. Moreover, the same tendency is seen in the case where massive graphite, which is said to have good characteristics (Examples 18 to 20), and in the case where flaky graphite is used, the organic compound represented by Chemical Formula 3 is a conventional gel electrolyte. It became clear that even flake graphite, which was considered unsuitable for the battery used, showed good characteristics.

(実施例21)
正極にコバルト酸リチウムを用いた本実施例における正極は次のように作製した。LiCoO2を87質量%、導電補助材としてアセチレンブラックを5質量%、バインダーとしてポリフッ化ビニリデン8質量%を混合したものに、N−メチルピロリドンを加えてさらに混合して正極スラリーを作製した。それ以外は実施例1と同様に正極、負極を作製しセルを作製した。なお、正極の充填密度が3.6g/cm3となるよう作製した。また、プレゲル溶液は、VC:0.5質量%、化2で示される有機化合物の質量を1.0質量%とした以外は実施例1と同様にセルを作製し、評価を行った。
(Example 21)
The positive electrode in this example using lithium cobaltate as the positive electrode was produced as follows. N-methylpyrrolidone was added to and mixed with 87% by mass of LiCoO 2 , 5% by mass of acetylene black as a conductive auxiliary material, and 8% by mass of polyvinylidene fluoride as a binder to prepare a positive electrode slurry. Other than that, a positive electrode and a negative electrode were produced in the same manner as in Example 1 to produce a cell. In addition, it produced so that the packing density of a positive electrode might be 3.6 g / cm < 3 >. Moreover, the pregel solution produced and evaluated the cell similarly to Example 1 except having set the mass of the organic compound shown by VC: 0.5 mass% and chemical formula 2 to 1.0 mass%.

(実施例22)
化2で示される有機化合物が0.5質量%になるようにゲル電解質を調整する以外、実施例21と同様にセルを作製し、評価を行った。
(Example 22)
A cell was prepared and evaluated in the same manner as in Example 21 except that the gel electrolyte was adjusted so that the organic compound represented by Chemical Formula 2 was 0.5% by mass.

(実施例23)
化2で示される有機化合物が0.1質量%になるようにゲル電解質を調整する以外、実施例21と同様にセルを作製し、評価を行った。
(Example 23)
A cell was prepared and evaluated in the same manner as in Example 21 except that the gel electrolyte was adjusted so that the organic compound represented by Chemical Formula 2 was 0.1% by mass.

(実施例24)
化2で示される有機化合物が2.0質量%になるようにゲル電解質を調整する以外、実施例21と同様にセルを作製し、評価を行った。
(Example 24)
A cell was prepared and evaluated in the same manner as in Example 21 except that the gel electrolyte was adjusted so that the organic compound represented by Chemical Formula 2 was 2.0% by mass.

(実施例25)
化2で示される有機化合物が3.0質量%になるようにゲル電解質を調整する以外、実施例21と同様にセルを作製し、評価を行った。
(Example 25)
A cell was prepared and evaluated in the same manner as in Example 21 except that the gel electrolyte was adjusted so that the organic compound represented by Chemical Formula 2 was 3.0% by mass.

(実施例26)
化2で示される有機化合物が5.0質量%になるようにゲル電解質を調整する以外、実施例21と同様にセルを作製し、評価を行った。
(Example 26)
A cell was prepared and evaluated in the same manner as in Example 21 except that the gel electrolyte was adjusted so that the organic compound represented by Chemical Formula 2 was 5.0% by mass.

(実施例27)
化2で示される有機化合物が0.05質量%になるようにゲル電解質を調整する以外、実施例21と同様にセルを作製し、評価を行った。
(Example 27)
A cell was prepared and evaluated in the same manner as in Example 21 except that the gel electrolyte was adjusted so that the organic compound represented by Chemical Formula 2 was 0.05% by mass.

(実施例28)
VCが0.5質量%、化2で示される有機化合物が0.1質量%になるようにゲル電解質を調整する以外、実施例21と同様にセルを作製し、評価を行った。
(Example 28)
A cell was prepared and evaluated in the same manner as in Example 21 except that the gel electrolyte was adjusted so that the VC was 0.5% by mass and the organic compound represented by Chemical Formula 2 was 0.1% by mass.

(実施例29)
VCが3.0質量%、化2で示される有機化合物が0.1質量%になるようにゲル電解質を調整する以外、実施例21と同様にセルを作製し、評価を行った。
(Example 29)
A cell was prepared and evaluated in the same manner as in Example 21 except that the gel electrolyte was adjusted so that the VC was 3.0% by mass and the organic compound represented by Chemical Formula 2 was 0.1% by mass.

(実施例30)
負極材料を塊状黒鉛とする以外、実施例21と同様にセルを作製し、評価を行った。
(Example 30)
A cell was prepared and evaluated in the same manner as in Example 21 except that the negative electrode material was massive graphite.

(実施例31)
負極材料を塊状黒鉛とする以外、実施例25と同様にセルを作製し、評価を行った。
(Example 31)
A cell was prepared and evaluated in the same manner as in Example 25 except that the negative electrode material was massive graphite.

(比較例9)
化2で示される有機化合物が0質量%になるようにゲル電解質を調整する以外、実施例21と同様にセルを作製し、評価を行った。
(Comparative Example 9)
A cell was prepared and evaluated in the same manner as in Example 21 except that the gel electrolyte was adjusted so that the organic compound represented by Chemical Formula 2 was 0% by mass.

(比較例10)
化2で示される有機化合物が6.0質量%になるようにゲル電解質を調整する以外、実施例21と同様にセルを作製し、評価を行った。
(Comparative Example 10)
A cell was prepared and evaluated in the same manner as in Example 21 except that the gel electrolyte was adjusted so that the organic compound represented by Chemical Formula 2 was 6.0% by mass.

(比較例11)
化2で示される有機化合物が8.0質量%になるようにゲル電解質を調整する以外、実施例21と同様にセルを作製し、評価を行った。
(Comparative Example 11)
A cell was prepared and evaluated in the same manner as in Example 21 except that the gel electrolyte was adjusted so that the organic compound represented by Chemical Formula 2 was 8.0% by mass.

(比較例12)
VCが3.0質量%、化2で示される有機化合物が0質量%になるようにゲル電解質を調整する以外、実施例21と同様にセルを作製し、評価を行った。
(Comparative Example 12)
A cell was prepared and evaluated in the same manner as in Example 21 except that the gel electrolyte was adjusted so that the VC was 3.0% by mass and the organic compound represented by Chemical Formula 2 was 0% by mass.

(比較例13)
負極材料を塊状黒鉛とする以外、比較例10と同様にセルを作製し、評価を行った。
(Comparative Example 13)
A cell was prepared and evaluated in the same manner as in Comparative Example 10 except that the negative electrode material was massive graphite.

(比較例14)
負極材料を塊状黒鉛とする以外、比較例11と同様にセルを作製し、評価を行った。
(Comparative Example 14)
A cell was prepared and evaluated in the same manner as in Comparative Example 11 except that the negative electrode material was massive graphite.

(比較例15)
負極材料を塊状黒鉛とする以外、比較例12と同様にセルを作製し、評価を行った。
(Comparative Example 15)
A cell was prepared and evaluated in the same manner as in Comparative Example 12 except that the negative electrode material was massive graphite.

実施例21〜31および比較例9〜15についてのレート特性、サイクル試験における容量維持率、セル体積変化率について表6に、また45℃保存試験評価結果を表7に示した。   Table 6 shows the rate characteristics, capacity retention rate in the cycle test, and cell volume change rate for Examples 21 to 31 and Comparative Examples 9 to 15, and Table 7 shows the results of the 45 ° C. storage test evaluation.

Figure 2008192593
Figure 2008192593

Figure 2008192593
Figure 2008192593

本発明のリチウムポリマー電池において、表6、表7の実施例21〜27に示すように、化2で示される有機化合物の濃度が0.05以上5.0質量%以下の場合、レート特性等において化2で示される有機化合物がそれ以外の濃度を添加した比較例9〜11よりも明らかに特性が良好であることがわかった。   In the lithium polymer battery of the present invention, as shown in Examples 21 to 27 of Tables 6 and 7, when the concentration of the organic compound represented by Chemical Formula 2 is 0.05 or more and 5.0% by mass or less, rate characteristics, etc. It was found that the characteristics of the organic compound represented by Chemical Formula 2 were clearly better than those of Comparative Examples 9 to 11 to which other concentrations were added.

実施例28、実施例29より、化2で示される有機化合物にVCを添加することにより添加剤量が少なくとも化2で示される有機化合物を単独で用いるのと同程度以上の特性を示すことが明らかになった。   From Example 28 and Example 29, by adding VC to the organic compound represented by Chemical Formula 2, the amount of additive is at least as high as that of using the organic compound represented by Chemical Formula 2 alone. It was revealed.

また、特性が良好といわれる塊状黒鉛を用いた場合(実施例30,31、比較例13〜15)、鱗片状黒鉛を用いた場合といずれにおいても同じ傾向が見られ、化2で示される有機化合物は正極にMnを用いた場合同様、従来ゲル電解質を用いた電池には不適とされていた鱗片状黒鉛でも良好な特性を示すことが明らかになった。  Moreover, the same tendency is seen in any of the cases where massive graphite, which is said to have good characteristics (Examples 30 and 31, Comparative Examples 13 to 15), and when scale-like graphite is used, is represented by the chemical formula 2 As in the case where Mn is used for the positive electrode, it has been clarified that the compound exhibits good characteristics even in flake graphite, which has been conventionally unsuitable for a battery using a gel electrolyte.

(実施例32)
化2で示される有機化合物の代わりに化3で示される有機化合物を用いる以外、実施例21と同様にセルを作製し、評価を行った。
(Example 32)
A cell was prepared and evaluated in the same manner as in Example 21 except that the organic compound represented by Chemical formula 3 was used instead of the organic compound represented by Chemical formula 2.

(実施例33)
化2で示される有機化合物の代わりに化3で示される有機化合物を用いる以外、実施例22と同様にセルを作製し、評価を行った。
(Example 33)
A cell was prepared and evaluated in the same manner as in Example 22 except that the organic compound represented by Chemical formula 3 was used instead of the organic compound represented by Chemical formula 2.

(実施例34)
化2で示される有機化合物の代わりに化3で示される有機化合物を用いる以外、実施例23と同様にセルを作製し、評価を行った。
(Example 34)
A cell was prepared and evaluated in the same manner as in Example 23 except that the organic compound represented by Chemical Formula 3 was used instead of the organic compound represented by Chemical Formula 2.

(実施例35)
化2で示される有機化合物の代わりに化3で示される有機化合物を用いる以外、実施例24と同様にセルを作製し、評価を行った。
(Example 35)
A cell was prepared and evaluated in the same manner as in Example 24 except that the organic compound represented by Chemical formula 3 was used instead of the organic compound represented by Chemical formula 2.

(実施例36)
化2で示される有機化合物の代わりに化3で示される有機化合物を用いる以外、実施例25と同様にセルを作製し、評価を行った。
(Example 36)
A cell was prepared and evaluated in the same manner as in Example 25 except that the organic compound represented by the chemical formula 3 was used instead of the organic compound represented by the chemical formula 2.

(実施例37)
化2で示される有機化合物の代わりに化3で示される有機化合物を用いる以外、実施例26と同様にセルを作製し、評価を行った。
(Example 37)
A cell was prepared and evaluated in the same manner as in Example 26 except that the organic compound represented by Chemical formula 3 was used instead of the organic compound represented by Chemical formula 2.

(実施例38)
化2で示される有機化合物の代わりに化3で示される有機化合物を用いる以外、実施例27と同様にセルを作製し、評価を行った。
(Example 38)
A cell was prepared and evaluated in the same manner as in Example 27 except that the organic compound represented by Chemical Formula 3 was used instead of the organic compound represented by Chemical Formula 2.

(実施例39)
化2で示される有機化合物の代わりに化3で示される有機化合物を用いる以外、実施例28と同様にセルを作製し、評価を行った。
(Example 39)
A cell was prepared and evaluated in the same manner as in Example 28 except that the organic compound represented by Chemical Formula 3 was used instead of the organic compound represented by Chemical Formula 2.

(実施例40)
化2で示される有機化合物の代わりに化3で示される有機化合物を用いる以外、実施例29と同様にセルを作製し、評価を行った。
(Example 40)
A cell was prepared and evaluated in the same manner as in Example 29 except that the organic compound represented by Chemical Formula 3 was used instead of the organic compound represented by Chemical Formula 2.

(実施例41)
化2で示される有機化合物の代わりに化3で示される有機化合物を用いる以外、実施例30と同様にセルを作製し、評価を行った。
(Example 41)
A cell was prepared and evaluated in the same manner as in Example 30 except that the organic compound represented by Chemical Formula 3 was used instead of the organic compound represented by Chemical Formula 2.

(実施例42)
化2で示される有機化合物の代わりに化3で示される有機化合物を用いる以外、実施例31と同様にセルを作製し、評価を行った。
(Example 42)
A cell was prepared and evaluated in the same manner as in Example 31 except that the organic compound represented by Chemical Formula 3 was used instead of the organic compound represented by Chemical Formula 2.

(比較例16)
化2で示される有機化合物が0質量%になるようにゲル電解質を調整する以外、実施例32と同様にセルを作製し、評価を行った。
(Comparative Example 16)
A cell was prepared and evaluated in the same manner as in Example 32 except that the gel electrolyte was adjusted so that the organic compound represented by Chemical Formula 2 was 0% by mass.

(比較例17)
化2で示される有機化合物の代わりに化3で示される有機化合物を用いる以外、比較例10と同様にセルを作製し、評価を行った。
(Comparative Example 17)
A cell was prepared and evaluated in the same manner as in Comparative Example 10 except that the organic compound represented by Chemical Formula 3 was used instead of the organic compound represented by Chemical Formula 2.

(比較例18)
化2で示される有機化合物の代わりに化3で示される有機化合物を用いる以外、比較例11と同様にセルを作製し、評価を行った。
(Comparative Example 18)
A cell was prepared and evaluated in the same manner as in Comparative Example 11 except that the organic compound represented by Chemical Formula 3 was used instead of the organic compound represented by Chemical Formula 2.

(比較例19)
負極材料に塊状黒鉛を用いる以外、比較例17と同様にセルを作製し、評価を行った。
(Comparative Example 19)
A cell was prepared and evaluated in the same manner as in Comparative Example 17 except that massive graphite was used as the negative electrode material.

(比較例20)
負極材料に塊状黒鉛を用いる以外、比較例18と同様にセルを作製し、評価を行った。
(Comparative Example 20)
A cell was prepared and evaluated in the same manner as in Comparative Example 18 except that massive graphite was used as the negative electrode material.

実施例32〜42および比較例16〜20についてのレート特性、サイクル試験における容量維持率、セル体積変化率について表8に、また45℃保存試験評価結果を表9に示した。   Table 8 shows the rate characteristics, capacity retention rate in the cycle test, and cell volume change rate for Examples 32-42 and Comparative Examples 16-20, and Table 9 shows the results of the 45 ° C. storage test evaluation.

Figure 2008192593
Figure 2008192593

Figure 2008192593
Figure 2008192593

本発明のリチウムポリマー電池において、表8、9の実施例32〜38に示すように化3で示される有機化合物の濃度が0.05以上5.0質量%以下の場合、レート特性等において化3で示される有機化合物がそれ以外濃度を添加した比較例16〜18よりも明らかに特性が良好であることがわかった。   In the lithium polymer battery of the present invention, when the concentration of the organic compound represented by Chemical Formula 3 is 0.05 or more and 5.0% by mass or less as shown in Examples 32-38 of Tables 8 and 9, the rate characteristics and the like are changed. It was found that the characteristics of the organic compound represented by 3 were clearly better than those of Comparative Examples 16 to 18 to which other concentrations were added.

また、特性が良好といわれる塊状黒鉛を用いた場合(実施例41、42、比較例19、20)、鱗片状黒鉛を用いた場合といずれにおいても同じ傾向が見られ、化3で示される有機化合物は正極にMnを用いた場合同様、従来ゲル電解質を用いた電池には不適とされていた鱗片状黒鉛でも良好な特性を示すことが明らかになった。   In addition, the same tendency is observed in the case where massive graphite, which is said to have good characteristics (Examples 41 and 42, Comparative Examples 19 and 20), and in the case where flaky graphite is used, and the organic compound represented by Chemical Formula 3 is used. As in the case where Mn is used for the positive electrode, it has been clarified that the compound exhibits good characteristics even in flake graphite, which has been conventionally unsuitable for a battery using a gel electrolyte.

(実施例43)
正極の充填密度を2.7g/cm3にする以外は実施例1と同様にセルを作製し、評価を行った。
(Example 43)
A cell was prepared and evaluated in the same manner as in Example 1 except that the packing density of the positive electrode was changed to 2.7 g / cm 3 .

(実施例44)
正極の充填密度を2.6g/cm3にする以外は実施例1と同様にセルを作製し、評価を行った。
(Example 44)
A cell was prepared and evaluated in the same manner as in Example 1 except that the packing density of the positive electrode was 2.6 g / cm 3 .

(実施例45)
正極の充填密度を2.5g/cm3にする以外は実施例1と同様にセルを作製し、評価を行った。
(Example 45)
A cell was prepared and evaluated in the same manner as in Example 1 except that the packing density of the positive electrode was 2.5 g / cm 3 .

(実施例46)
正極の充填密度を2.9g/cm3にする以外は実施例1と同様にセルを作製し、評価を行った。
(Example 46)
A cell was prepared and evaluated in the same manner as in Example 1 except that the packing density of the positive electrode was changed to 2.9 g / cm 3 .

(実施例47)
正極の充填密度を3.0g/cm3にする以外は実施例1と同様にセルを作製し、評価を行った。
(Example 47)
A cell was prepared and evaluated in the same manner as in Example 1 except that the packing density of the positive electrode was 3.0 g / cm 3 .

(比較例21)
正極の充填密度を2.4g/cm3にする以外は実施例1と同様にしてリチウムポリマー電池を作製し、評価を行った。
(Comparative Example 21)
A lithium polymer battery was prepared and evaluated in the same manner as in Example 1 except that the packing density of the positive electrode was 2.4 g / cm 3 .

(比較例22)
正極の充填密度を3.1g/cm3にする以外は実施例1と同様にしてリチウムポリマー電池を作製し、評価を行った。
(Comparative Example 22)
A lithium polymer battery was prepared and evaluated in the same manner as in Example 1 except that the packing density of the positive electrode was 3.1 g / cm 3 .

実施例1、43〜47および比較例21、22についてのレート特性、サイクル試験における容量維持率について表10に示した。   Table 10 shows the rate characteristics for Examples 1 and 43 to 47 and Comparative Examples 21 and 22 and the capacity retention ratio in the cycle test.

Figure 2008192593
Figure 2008192593

本発明のリチウムポリマー電池において、表10の実施例1、43〜47に示すように、正極の活物質にマンガン酸リチウムを用いたものでは、正極の充填密度が2.5g/cm3以上3.0g/cm3以下の場合、レート特性等においてそれ以下およびそれ以上の電極密度とした比較例21、および比較例22よりも明らかに特性が良好であることがわかった。 In the lithium polymer battery of the present invention, as shown in Examples 1 and 43 to 47 in Table 10, when lithium manganate was used as the positive electrode active material, the positive electrode filling density was 2.5 g / cm 3 or more 3 In the case of 0.0 g / cm 3 or less, it was found that the characteristics were clearly better than those of Comparative Example 21 and Comparative Example 22 in which the electrode density was lower or higher in rate characteristics and the like.

(実施例48)
正極の充填密度を3.5g/cm3にする以外は実施例21と同様にセルを作製し、評価を行った。
(Example 48)
A cell was prepared and evaluated in the same manner as in Example 21 except that the packing density of the positive electrode was 3.5 g / cm 3 .

(実施例49)
正極の充填密度を3.4g/cm3にする以外は実施例21と同様にセルを作製し、評価を行った。
(Example 49)
A cell was prepared and evaluated in the same manner as in Example 21 except that the packing density of the positive electrode was changed to 3.4 g / cm 3 .

(実施例50)
正極の充填密度を3.3g/cm3にする以外は実施例21と同様にセルを作製し、評価を行った。
(Example 50)
A cell was prepared and evaluated in the same manner as in Example 21 except that the packing density of the positive electrode was changed to 3.3 g / cm 3 .

(実施例51)
正極の充填密度を3.7g/cm3にする以外は実施例21と同様にセルを作製し、評価を行った。
(Example 51)
A cell was prepared and evaluated in the same manner as in Example 21 except that the packing density of the positive electrode was 3.7 g / cm 3 .

(実施例52)
正極の充填密度を3.8g/cm3にする以外は実施例21と同様にセルを作製し、評価を行った。
(Example 52)
A cell was prepared and evaluated in the same manner as in Example 21 except that the packing density of the positive electrode was 3.8 g / cm 3 .

(比較例23)
正極の充填密度を3.2g/cm3にする以外は実施例1と同様にセルを作製し、評価を行った。
(Comparative Example 23)
A cell was prepared and evaluated in the same manner as in Example 1 except that the packing density of the positive electrode was 3.2 g / cm 3 .

(比較例24)
正極の充填密度を3.9g/cm3にする以外は実施例1と同様にセルを作製し、評価を行った。
(Comparative Example 24)
A cell was prepared and evaluated in the same manner as in Example 1 except that the packing density of the positive electrode was changed to 3.9 g / cm 3 .

実施例21、48〜52および比較例23、24についてのレート特性、サイクル試験における容量維持率について表11に示した。   Table 11 shows the rate characteristics of Examples 21 and 48 to 52 and Comparative Examples 23 and 24 and the capacity retention ratio in the cycle test.

Figure 2008192593
Figure 2008192593

本発明のリチウムポリマー電池において、表11の実施例21、48〜52に示すように、正極の活物質にコバルト酸リチウムを用いたものでは、正極の充填密度が3.3g/cm3以上3.8g/cm3以下の場合、レート特性等においてその範囲を超える正極の充填密度とした比較例23、および比較例24よりも明らかに特性が良好であることがわかった。 In the lithium polymer battery of the present invention, as shown in Examples 21 and 48 to 52 of Table 11, when lithium cobaltate was used as the positive electrode active material, the packing density of the positive electrode was 3.3 g / cm 3 or more 3 In the case of 0.8 g / cm 3 or less, it was found that the characteristics were clearly better than those of Comparative Example 23 and Comparative Example 24 in which the positive electrode packing density exceeded the range in rate characteristics and the like.

本発明のリチウムポリマー電池の正極の構成を説明する図。The figure explaining the structure of the positive electrode of the lithium polymer battery of this invention. 本発明のリチウムポリマー電池の負極の構成を説明する図。The figure explaining the structure of the negative electrode of the lithium polymer battery of this invention. 本発明のリチウムポリマー電池の巻回後の電池要素の構成を説明する断面図。Sectional drawing explaining the structure of the battery element after winding of the lithium polymer battery of this invention. 本発明のリチウムポリマー電池の外装工程を説明する図。The figure explaining the exterior | packing process of the lithium polymer battery of this invention.

符号の説明Explanation of symbols

1 正極
2 Al箔
3 正極活物質塗布部
4 正極活物質非塗布部
5 正極活物質片面塗布部
6 正極導電タブ
7 負極
8 Cu箔
9 負極活物質塗布部
10 負極活物質片面塗布部
11 負極活物質非塗布部
12 負極導電タブ
13 セパレーター
14 セル
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Al foil 3 Positive electrode active material application part 4 Positive electrode active material non-application part 5 Positive electrode active material single side application part 6 Positive electrode conductive tab
7 Negative electrode 8 Cu foil 9 Negative electrode active material application part 10 Negative electrode active material one-side application part 11 Negative electrode active material non-application part 12 Negative electrode conductive tab 13 Separator 14 Cell

Claims (14)

少なくとも正極、負極、セパレーター、ゲル電解質により構成されるリチウムポリマー電池であって、前記ゲル電解質が溶媒と架橋型高分子と化1で示される有機化合物とを含有するリチウムポリマー電池 [但し、化1において、Zはハロゲン原子、置換もしくは無置換の炭素数1〜10のアルキル基、ポリフルオロアルキル基、または置換もしくは無置換の炭素数4〜20の環状炭化水素、またはXR5(ここでXは酸素原子、硫黄原子またはNR6を表し、R6は水素原子または置換もしくは無置換の炭素数1〜10のアルキル基を表し、R5は置換もしくは無置換の炭素数4〜20の環状炭化水素を表す。)を表す。nは0〜4の整数を表す。A1及びA2はそれぞれ独立に酸素原子、硫黄原子または、A1がNR7でA2がNR8(ここでR7とR8はそれぞれ独立に水素原子、ハロゲン原子、置換もしくは無置換の炭素数1〜10のアルキル基、炭素数1〜10のポリフルオロアルキル基または置換もしくは無置換の炭素数4〜20の環状炭化水素を表す。また、R7とR8はお互いに結合して環構造を形成しても良い。)を表す。Lは、メチレン基又は単結合を表す。Mは、ホウ素又はリンを表す。B1及びB2はそれぞれ独立にカルボニル基、置換もしくは無置換のアルキレン基又はポリフルオロアルキレン基を表す。mは、1〜3の整数を表す(ただし、Mがホウ素のとき2m+n=4、Mがリンのとき2m+n=6である。)] 。
Figure 2008192593
A lithium polymer battery comprising at least a positive electrode, a negative electrode, a separator, and a gel electrolyte, wherein the gel electrolyte contains a solvent, a crosslinked polymer, and an organic compound represented by chemical formula 1 Z is a halogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a polyfluoroalkyl group, or a substituted or unsubstituted cyclic hydrocarbon having 4 to 20 carbon atoms, or XR 5 (where X is Represents an oxygen atom, a sulfur atom or NR 6 , R 6 represents a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, and R 5 represents a substituted or unsubstituted cyclic hydrocarbon having 4 to 20 carbon atoms. Represents). n represents an integer of 0 to 4. A 1 and A 2 are each independently an oxygen atom, a sulfur atom, or A 1 is NR 7 and A 2 is NR 8 (where R 7 and R 8 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted atom) Represents an alkyl group having 1 to 10 carbon atoms, a polyfluoroalkyl group having 1 to 10 carbon atoms, or a substituted or unsubstituted cyclic hydrocarbon having 4 to 20 carbon atoms, and R 7 and R 8 are bonded to each other. A ring structure may be formed). L represents a methylene group or a single bond. M represents boron or phosphorus. B 1 and B 2 each independently represent a carbonyl group, a substituted or unsubstituted alkylene group or a polyfluoroalkylene group. m represents an integer of 1 to 3 (provided that 2m + n = 4 when M is boron and 2m + n = 6 when M is phosphorus)].
Figure 2008192593
前記正極が活物質としてマンガン酸リチウムを主成分とし、前記正極の充填密度が2.5g/cm3以上、3.0g/cm3以下であることを特徴とする請求項1に記載のリチウムポリマー電池。 2. The lithium polymer according to claim 1, wherein the positive electrode has lithium manganate as a main component as an active material, and a filling density of the positive electrode is 2.5 g / cm 3 or more and 3.0 g / cm 3 or less. battery. 前記正極が活物質としてコバルト酸リチウムを主成分とし、前記正極の充填密度が3.3g/cm3以上、3.8g/cm3以下であることを特徴とする請求項1に記載のリチウムポリマー電池。 The positive electrode is mainly composed of lithium cobaltate as an active material, the filling density of the positive electrode 3.3 g / cm 3 or more, the lithium polymer according to claim 1, characterized in that 3.8 g / cm 3 or less battery. 前記負極の表面のSIMS測定において、ホウ素、及び酸素が深さ方向に0.1から1.0μmに存在することを示すピークを有する請求項1〜3のいずれか1項に記載のリチウムポリマー電池。   The lithium polymer battery according to any one of claims 1 to 3, which has a peak indicating that boron and oxygen are present in a depth direction of 0.1 to 1.0 µm in SIMS measurement of the surface of the negative electrode. . 前記SIMS測定におけるホウ素、及び酸素のピークが前記化1で示される有機化合物の分解物を含む請求項4に記載のリチウムポリマー電池。   The lithium polymer battery according to claim 4, wherein a peak of boron and oxygen in the SIMS measurement includes a decomposition product of an organic compound represented by the chemical formula (1). 前記化1で示される有機化合物の最低空軌道エネルギー(LUMO)が、−1.5(eV)以上0(eV)以下である請求項1〜5のいずれか1項に記載のリチウムポリマー電池。   The lithium polymer battery according to any one of claims 1 to 5, wherein the minimum orbital energy (LUMO) of the organic compound represented by the chemical formula 1 is -1.5 (eV) or more and 0 (eV) or less. 前記ゲル電解質が溶媒と架橋型高分子と0.1〜3.0質量%のビニレンカーボネートまたはその誘導体と0.05〜5.0質量%の化1で示される有機化合物を含有する請求項1〜6のいずれか1項に記載のリチウムポリマー電池。   The gel electrolyte contains a solvent, a crosslinked polymer, 0.1 to 3.0% by mass of vinylene carbonate or a derivative thereof, and 0.05 to 5.0% by mass of an organic compound represented by Chemical formula 1. The lithium polymer battery according to any one of -6. 前記化1で示される有機化合物が化2、または化3で示される有機化合物である請求項1〜7のいずれか1項に記載のリチウムポリマー電池。
Figure 2008192593
Figure 2008192593
The lithium polymer battery according to any one of claims 1 to 7, wherein the organic compound represented by Chemical Formula 1 is an organic compound represented by Chemical Formula 2 or Chemical Formula 3.
Figure 2008192593
Figure 2008192593
前記正極がコバルト酸リチウムを含有し、前記ゲル電解質がビニレンカーボネートまたはその誘導体を含有する溶媒と架橋型高分子と0.05〜5.0質量%の化1で示される有機化合物を含有する請求項1〜8のいずれか1項に記載リチウムポリマー電池。   The positive electrode contains lithium cobaltate, and the gel electrolyte contains a solvent containing vinylene carbonate or a derivative thereof, a cross-linked polymer, and an organic compound represented by 0.05 to 5.0% by mass of Chemical Formula 1. Item 9. The lithium polymer battery according to any one of Items 1 to 8. 前記正極がマンガン酸リチウムを含有し、前記ゲル電解質がビニレンカーボネートまたはその誘導体を含有する溶媒と架橋型高分子と0.05〜5.0質量%の化1で示される有機化合物を含有する請求項1〜8のいずれか1項に記載リチウムポリマー電池。   The positive electrode contains lithium manganate, and the gel electrolyte contains a solvent containing vinylene carbonate or a derivative thereof, a crosslinked polymer, and an organic compound represented by 0.05 to 5.0% by mass of Chemical Formula 1. Item 9. The lithium polymer battery according to any one of Items 1 to 8. 前記架橋型高分子が、アクリル系高分子から構成される請求項1〜10のいずれか1項に記載のリチウムポリマー電池。   The lithium polymer battery according to claim 1, wherein the cross-linked polymer is composed of an acrylic polymer. 前記溶媒が少なくとも鎖状カーボネート及び環状カーボネートを含有する請求項1〜11のいずれか1項に記載のリチウムポリマー電池。   The lithium polymer battery according to claim 1, wherein the solvent contains at least a chain carbonate and a cyclic carbonate. 前記負極が活物質として黒鉛を含有する請求項1〜12のいずれか1項に記載のリチウムポリマー電池。   The lithium polymer battery according to any one of claims 1 to 12, wherein the negative electrode contains graphite as an active material. ラミネート材により外装されている請求項1〜13のいずれか1項に記載のリチウムポリマー電池。   The lithium polymer battery according to claim 1, wherein the lithium polymer battery is packaged with a laminate material.
JP2007195663A 2006-08-04 2007-07-27 Lithium polymer battery Pending JP2008192593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007195663A JP2008192593A (en) 2006-08-04 2007-07-27 Lithium polymer battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006213420 2006-08-04
JP2007003215 2007-01-11
JP2007195663A JP2008192593A (en) 2006-08-04 2007-07-27 Lithium polymer battery

Publications (1)

Publication Number Publication Date
JP2008192593A true JP2008192593A (en) 2008-08-21

Family

ID=39752477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007195663A Pending JP2008192593A (en) 2006-08-04 2007-07-27 Lithium polymer battery

Country Status (1)

Country Link
JP (1) JP2008192593A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014067635A (en) * 2012-09-26 2014-04-17 Denso Corp Nonaqueous electrolyte secondary battery
JP2014093145A (en) * 2012-11-01 2014-05-19 Toyota Motor Corp Nonaqueous electrolytic secondary battery and negative electrode thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133263A (en) * 1998-10-23 2000-05-12 Hitachi Ltd Lithium secondary battery
JP2004111349A (en) * 2002-07-23 2004-04-08 Central Glass Co Ltd Method for avoiding solvent decomposition in electrochemical device, and the electrochemical device using the same
JP2005005115A (en) * 2003-06-11 2005-01-06 Sony Corp Electrolyte and battery using it
WO2005008829A1 (en) * 2003-07-17 2005-01-27 Ube Industries, Ltd. Nonaqueous electrolytic solution for lithium secondary battery and lithium secondary battery using same
JP2005285491A (en) * 2004-03-29 2005-10-13 Central Glass Co Ltd Nonaqueous electrolyte solution and lithium secondary battery using it
JP2006120569A (en) * 2004-10-25 2006-05-11 Asahi Kasei Chemicals Corp Gelatinous lithium ion conductor and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133263A (en) * 1998-10-23 2000-05-12 Hitachi Ltd Lithium secondary battery
JP2004111349A (en) * 2002-07-23 2004-04-08 Central Glass Co Ltd Method for avoiding solvent decomposition in electrochemical device, and the electrochemical device using the same
JP2005005115A (en) * 2003-06-11 2005-01-06 Sony Corp Electrolyte and battery using it
WO2005008829A1 (en) * 2003-07-17 2005-01-27 Ube Industries, Ltd. Nonaqueous electrolytic solution for lithium secondary battery and lithium secondary battery using same
JP2005285491A (en) * 2004-03-29 2005-10-13 Central Glass Co Ltd Nonaqueous electrolyte solution and lithium secondary battery using it
JP2006120569A (en) * 2004-10-25 2006-05-11 Asahi Kasei Chemicals Corp Gelatinous lithium ion conductor and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014067635A (en) * 2012-09-26 2014-04-17 Denso Corp Nonaqueous electrolyte secondary battery
JP2014093145A (en) * 2012-11-01 2014-05-19 Toyota Motor Corp Nonaqueous electrolytic secondary battery and negative electrode thereof

Similar Documents

Publication Publication Date Title
KR101999615B1 (en) non-aqueous liquid electrolyte and lithium secondary battery comprising the same
EP2889946B1 (en) Gel polymer electrolyte and electrochemical device comprising the same
JP6203834B2 (en) Secondary battery cathode and secondary battery including the same
EP2876723B1 (en) Lithium secondary battery
KR101802342B1 (en) Organic electrolytic solution and lithium battery employing the same
KR102000101B1 (en) Gel polymer electrolyte composition, gel polymer electrolyte and electrochemical device comprising the same
JP2007273445A (en) Polymer gel electrolyte and polymer secondary battery using the same
CN111937190B (en) Method for manufacturing electrode comprising polymer solid electrolyte and electrode obtained by the method
EP1229603A1 (en) Lithium cell
CN110462909B (en) Lithium ion secondary battery
KR20080101702A (en) Secondary battery and manufacturing method of the same
JP2002025615A (en) Lithium secondary battery
JP5618385B2 (en) Method for producing lithium polymer battery
KR102517991B1 (en) A method for manufacturing an electrode comprising polymer-based solid electrolyte and an electrode manufactured thereby
JP5187720B2 (en) Lithium ion polymer battery
JP2016048624A (en) Lithium secondary battery
JP2008112722A (en) Lithium polymer battery
CN108780926A (en) The method for preparing secondary cell
JP6116029B2 (en) Gel electrolyte and polymer secondary battery using the same
KR102311802B1 (en) A method for manufacturing an electrode comprising polymer-based solid electrolyte for all solid-state battery and an electrode manufactured thereby
JP2012248544A (en) Lithium polymer battery
JP5105807B2 (en) Lithium polymer battery
KR20080029897A (en) Polymer electrolyte secondary battery
JP4707312B2 (en) Non-aqueous solvent type secondary battery
KR102270154B1 (en) Cathode active material layer and lithium ion secondary battery including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100203

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131126