JP5618385B2 - Method for producing lithium polymer battery - Google Patents

Method for producing lithium polymer battery Download PDF

Info

Publication number
JP5618385B2
JP5618385B2 JP2012257491A JP2012257491A JP5618385B2 JP 5618385 B2 JP5618385 B2 JP 5618385B2 JP 2012257491 A JP2012257491 A JP 2012257491A JP 2012257491 A JP2012257491 A JP 2012257491A JP 5618385 B2 JP5618385 B2 JP 5618385B2
Authority
JP
Japan
Prior art keywords
battery
chemical formula
charging
organic compound
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012257491A
Other languages
Japanese (ja)
Other versions
JP2013048113A (en
Inventor
安孝 河野
安孝 河野
広司 小林
広司 小林
石田 純一
純一 石田
宇津木 功二
功二 宇津木
金子 志奈子
志奈子 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Envision AESC Energy Devices Ltd
Original Assignee
NEC Energy Devices Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Energy Devices Ltd filed Critical NEC Energy Devices Ltd
Priority to JP2012257491A priority Critical patent/JP5618385B2/en
Publication of JP2013048113A publication Critical patent/JP2013048113A/en
Application granted granted Critical
Publication of JP5618385B2 publication Critical patent/JP5618385B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、リチウムポリマー電池の製造方法に関し、特にゲル電解質に電池特性を向上させる有機化合物を含有させたリチウムポリマー電池の製造方法に関するものである。   The present invention relates to a method for producing a lithium polymer battery, and more particularly to a method for producing a lithium polymer battery in which an organic compound that improves battery characteristics is contained in a gel electrolyte.

リチウムポリマー電池は、薄型化が可能であること、形状選択の自由度の高さ、電解液を用いないことに依る安全性の高さなどから、モバイル機器用の電源などとして注目されている。最近では、用いられるモバイル機器の機能の増加に伴い高エネルギー化と、それに伴う電池特性の改善が技術開発の目標となっている。   Lithium polymer batteries are attracting attention as power sources for mobile devices because they can be thinned, have a high degree of freedom in shape selection, and have a high level of safety by not using an electrolyte. Recently, with the increase in the functions of mobile devices used, higher energy and improved battery characteristics have become the goals of technological development.

こうした中で重要な技術課題のひとつとしてサイクル特性の改善が挙げられる。サイクル特性については、用いるポリマー材料等を種々工夫することにより改善はなされてきた。特許文献1では、物理架橋型ポリマーと化学架橋型ゲル電解質を混合することによる改善が提案されている。特許文献2では、用いるセパレータ表面を改質することによりプレゲル溶液の含浸性についての改善が提案されている。非特許文献1においては、ゲル電解質を用いた二次電池について、電極材料(たとえば負極材料に高価であるが電池の膨れ抑制効果のある人造黒鉛(塊状黒鉛)を使用)、電池の形状などの検討が行われ、電池の膨れ抑制やサイクル特性の改善について記されている。また、電解液に加える添加剤および充電方法により電池特性の向上を図る提案もなされている。特許文献3においては、初回充電(初期充電ともいう)時に主溶媒が分解せず添加剤が分解する電圧で保持することで添加剤による被膜を効率よく作製することを提案している。   Among these, one of the important technical issues is improvement of cycle characteristics. The cycle characteristics have been improved by devising various polymer materials to be used. In patent document 1, the improvement by mixing a physical crosslinkable polymer and a chemical crosslinkable gel electrolyte is proposed. In patent document 2, the improvement about the impregnation property of a pregel solution is proposed by modifying the separator surface to be used. In Non-Patent Document 1, for secondary batteries using a gel electrolyte, electrode materials (for example, artificial graphite (bulk graphite) that is expensive for the negative electrode material but has an effect of suppressing battery swelling), battery shape, etc. Investigations have been made, and battery swelling suppression and improvement of cycle characteristics are described. In addition, proposals have been made to improve battery characteristics by using an additive added to the electrolytic solution and a charging method. Patent Document 3 proposes that a film made of an additive can be efficiently produced by maintaining a voltage at which the main solvent is not decomposed and the additive is decomposed during the initial charge (also referred to as initial charge).

特開2002−100406号公報JP 2002-100406 A 特開2003−257490号公報JP 2003-257490 A 特開2001−325988号公報JP 2001-325988 A

金村聖志監修、ポリマーバッテリーの最新技術II、p.242−247、シーエムシー出版(2003)Supervised by Satoshi Kanamura, latest polymer battery technology II, p. 242-247, CM Publishing (2003)

しかしながら、初期充電時には添加剤の分解によりガスが発生する。リチウムポリマー電池においては電解質が固体であるため電解液を用いた二次電池よりも発生ガスの影響が大きく、サイクル特性が劣るという欠点があった。また、過酸化物を用いて重合する類のリチウムポリマー電池の場合、重合時の過酸化物の分解によってもガスが発生する。そのため、ゲル電解質重合後や初期充電後のガス抜き工程の追加、もしくは開封状態での初期充電などが行われている。   However, during initial charging, gas is generated due to decomposition of the additive. In the lithium polymer battery, since the electrolyte is solid, the influence of the generated gas is larger than that of the secondary battery using the electrolytic solution, and the cycle characteristics are inferior. In the case of a lithium polymer battery that is polymerized using a peroxide, gas is also generated by the decomposition of the peroxide during the polymerization. Therefore, addition of a degassing step after gel electrolyte polymerization or initial charging, or initial charging in an opened state is performed.

本発明者等は先に一般的に使用される添加剤よりも低電圧で分解し良好な被膜を作製する添加剤を提案している。(特願2007−195663号)ゲル電解質を用いたリチウムポリマー電池においては、ゲル電解質の材質だけでなく、電極材料、電池形状、電池作製条件、電解液材料などの選択が極めて重要である。   The inventors of the present invention have previously proposed an additive that decomposes at a lower voltage than a commonly used additive to produce a good film. (Japanese Patent Application No. 2007-195663) In a lithium polymer battery using a gel electrolyte, not only the material of the gel electrolyte but also the selection of the electrode material, battery shape, battery preparation conditions, electrolyte material, and the like are extremely important.

本発明は上記問題点に鑑みてなされたものである。本発明の課題は、ゲル電解質をリチウムポリマー電池に適用する際に、ゲル電解質の重合時および初期充電時に発生するガスによる特性低下に対して、簡便な方法でリチウムポリマー電池の特性、特にサイクル特性を向上させるリチウムポリマー電池の製造方法を提供することにある。   The present invention has been made in view of the above problems. The object of the present invention is to apply characteristics of lithium polymer batteries, in particular, cycle characteristics, in a simple manner against the deterioration of characteristics caused by gas generated during gel electrolyte polymerization and initial charging when the gel electrolyte is applied to a lithium polymer battery. An object of the present invention is to provide a method for producing a lithium polymer battery that improves the battery.

前記課題を解決するため、本発明のリチウムポリマー電池の製造方法は、少なくとも正極と、負極と、溶媒と架橋型高分子と重合開始剤と前記溶媒よりも低電圧で分解される化1で示される有機化合物または環状ジスルホン酸エステルを含有するゲル電解質とを外装体に封入する工程および、前記化1で示される有機化合物または環状ジスルホン酸エステルが分解される電圧以上、満充電電圧未満まで充電する第一の充電工程および、前記第一の充電工程後に外装体を開封して発生ガスを除去する工程および、外装体を封口する工程および、満充電まで充電する第二の充電工程を有することを特徴とする。   In order to solve the above-mentioned problems, a method for producing a lithium polymer battery of the present invention is shown in Chemical Formula 1 which is decomposed at a lower voltage than at least a positive electrode, a negative electrode, a solvent, a cross-linked polymer, a polymerization initiator, and the solvent. A step of encapsulating the organic compound or the gel electrolyte containing the cyclic disulfonic acid ester in the exterior body, and charging the organic compound or the cyclic disulfonic acid ester represented by Chemical Formula 1 to a voltage higher than or equal to the decomposition voltage and lower than a full charge voltage. Having a first charging step, a step of removing the generated gas by opening the exterior body after the first charging step, a step of sealing the exterior body, and a second charging step of charging until full charge. Features.

Figure 0005618385
Figure 0005618385

但し、化1において、Zはハロゲン原子、置換もしくは無置換の炭素数1〜10のアルキル基、ポリフルオロアルキル基、または置換もしくは無置換の炭素数4〜20の環状炭化水素、またはXR5(ここでXは酸素原子、硫黄原子または、NR6を表し、R6は水素原子または置換もしくは無置換の炭素数1〜10のアルキル基を表し、R5は置換もしくは無置換の炭素数4〜20の環状炭化水素を表す)を表す。nは0〜4の整数を表す。A1およびA2はそれぞれ独立に酸素原子、硫黄原子または、A1がNR7でA2がNR8(ここでR7とR8はそれぞれ独立に水素原子、ハロゲン原子、置換もしくは無置換の炭素数1〜10のアルキル基、炭素数1〜10のポリフルオロアルキル基または置換もしくは無置換の炭素数4〜20の環状炭化水素を表す。また、R7とR8はお互いに結合して環構造を形成しても良い。)を表す。Lはメチレン基又は単結合を表す。Mは、ホウ素又はリンを表す。B1およびB2はそれぞれ独立にカルボニル基、置換もしくは無置換のアルキレン基又はポリフルオロアルキレン基を表す。mは、1〜3の整数を表す(ただし、Mがホウ素のとき2m+n=4、Mがリンのとき2m+n=6である。) However, in Chemical formula 1, Z is a halogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a polyfluoroalkyl group, a substituted or unsubstituted cyclic hydrocarbon having 4 to 20 carbon atoms, or XR 5 ( Here, X represents an oxygen atom, a sulfur atom or NR 6 , R 6 represents a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, and R 5 represents a substituted or unsubstituted carbon atom having 4 to 4 carbon atoms. Represents 20 cyclic hydrocarbons). n represents an integer of 0 to 4. A 1 and A 2 are each independently an oxygen atom, a sulfur atom, or A 1 is NR 7 and A 2 is NR 8 (where R 7 and R 8 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted atom) Represents an alkyl group having 1 to 10 carbon atoms, a polyfluoroalkyl group having 1 to 10 carbon atoms, or a substituted or unsubstituted cyclic hydrocarbon having 4 to 20 carbon atoms, and R 7 and R 8 are bonded to each other. A ring structure may be formed). L represents a methylene group or a single bond. M represents boron or phosphorus. B 1 and B 2 each independently represent a carbonyl group, a substituted or unsubstituted alkylene group or a polyfluoroalkylene group. m represents an integer of 1 to 3 (provided that 2m + n = 4 when M is boron, and 2m + n = 6 when M is phosphorus).

また、本発明のリチウムポリマー電池の製造方法は、化1で示される有機化合物の最低空軌道エネルギー(LUMO)が、−1.5(eV)以上0(eV)以下であることが好ましい。   In the method for producing a lithium polymer battery of the present invention, it is preferable that the lowest empty orbit energy (LUMO) of the organic compound represented by Chemical Formula 1 is −1.5 (eV) or more and 0 (eV) or less.

また、本発明のリチウムポリマー電池の製造方法は、環状ジスルホン酸エステルが、メチレンメタンジスルホネート、エチレンメタンジスルホネートおよびプロピレンメタンジスルホネートから選ばれる少なくとも一種であることが好ましい。   In the method for producing a lithium polymer battery of the present invention, the cyclic disulfonate is preferably at least one selected from methylene methane disulfonate, ethylene methane disulfonate, and propylene methane disulfonate.

また、本発明のリチウムポリマー電池の製造方法は、前記第一の充電工程における到達電圧は、放電下限電圧以上とすることが好ましい。   In the method for producing a lithium polymer battery according to the present invention, it is preferable that the ultimate voltage in the first charging step is equal to or higher than a discharge lower limit voltage.

また、本発明のリチウムポリマー電池の製造方法は、前記ゲル電解質が溶媒と架橋型高分子と重合開始剤と0.1〜3.0質量%のビニレンカーボネートまたはその誘導体と0.1〜3.0質量%の化2もしくは化3で示される有機化合物、または、メチレンメタンジスルホネート、エチレンメタンジスルホネート、プロピレンメタンジスルホネートから選ばれる少なくとも一種を含有するとよい。   In the method for producing a lithium polymer battery of the present invention, the gel electrolyte includes a solvent, a cross-linked polymer, a polymerization initiator, 0.1 to 3.0% by mass of vinylene carbonate or a derivative thereof, and 0.1 to 3. 0% by mass of an organic compound represented by Chemical Formula 2 or Chemical Formula 3, or at least one selected from methylene methane disulfonate, ethylene methane disulfonate, and propylene methane disulfonate may be contained.

Figure 0005618385
Figure 0005618385

Figure 0005618385
Figure 0005618385

また、本発明のリチウムポリマー電池の製造方法は、正極が活物質としてマンガン酸リチウム又はコバルト酸リチウムを含有し、架橋型高分子が、アクリル系高分子から構成され、重合開始剤が、過酸化物から構成され、溶媒が少なくとも鎖状カーボネートおよび環状カーボネートを含有し、負極が活物質として黒鉛を含有し、外装材がラミネート材からなることが好ましい。   Further, in the method for producing a lithium polymer battery of the present invention, the positive electrode contains lithium manganate or lithium cobaltate as an active material, the cross-linked polymer is composed of an acrylic polymer, and the polymerization initiator is peroxidized. Preferably, the solvent contains at least a chain carbonate and a cyclic carbonate, the negative electrode contains graphite as an active material, and the exterior material is made of a laminate material.

重合開始剤を使用する類のリチウムポリマー電池においては、初期充電時における添加剤の分解によるガス発生の他に、ポリマーの重合時に重合開始剤からもガスが発生する。電解質が固体であることより、そのガスによる微少な電極間ギャップの影響が通常の電解液を使用した電池と比較すると大きくなる。そのため、重合後の工程においてガス抜きが必要となる。通常の電解液を使用した電池においても、発生ガスの影響を取り除くため、開封状態での初期充電・初期充電後満充電状態でのセル開封などが行われている。この工程では発火の可能性が否定できず、安全面で大きな問題がある。本発明にあるように、ポリマー重合後、初期充電時に添加剤が分解する電圧を越える程度まで充電を行った後にガス抜きを行うことにより、1工程で重合時および初期充電時の添加剤分解によるガスを簡便に取り除くことが可能であり、また、充電容量が非常に少ないため、開封時に発火する危険性も非常に小さくすることが可能である。   In a lithium polymer battery using a polymerization initiator, gas is generated from the polymerization initiator during the polymerization of the polymer in addition to gas generation due to decomposition of the additive during initial charging. Since the electrolyte is solid, the influence of a minute gap between the electrodes due to the gas is larger than that of a battery using a normal electrolytic solution. Therefore, degassing is required in the process after polymerization. Even in a battery using a normal electrolytic solution, in order to remove the influence of the generated gas, initial charging in an opened state, cell opening in a fully charged state after initial charging, and the like are performed. In this process, the possibility of ignition cannot be denied, and there is a big problem in terms of safety. As described in the present invention, after polymer polymerization, charging is performed to an extent that exceeds the voltage at which the additive is decomposed during initial charging, and then degassing is performed, thereby decomposing the additive during polymerization and initial charging in one step. The gas can be easily removed, and since the charging capacity is very small, the risk of ignition when opened is very small.

本発明によれば、少なくとも正極と、負極と、溶媒と架橋型高分子と重合開始剤と溶媒よりも低電圧で分解される化1で示される有機化合物、または環状ジスルホン酸エステルを含有するゲル電解質とを外装体に封入する工程および、化1で示される有機化合物、または環状ジスルホン酸エステルが分解される電圧まで充電する第一の充電工程および、外装体を開封して発生ガスを除去する工程および、外装体を封口する工程および、満充電まで充電する第二の充電工程を有することにより、製造工程上問題のある開封状態での充電や満充電状態での外装体の開封をすることなくゲル電解質重合時の発生ガスおよび初期充電時の添加剤の分解ガスの除去を一工程で簡便に行うことが出来る。このとき、1段階目の第一の充電工程において、所定電圧で一定時間保持する必要はなく、通常の初期充電工程を所定電圧で中断して、外装体を開封して発生ガスを除去する工程を追加するのみで十分効果を発揮する。   According to the present invention, at least a positive electrode, a negative electrode, a solvent, a crosslinkable polymer, a polymerization initiator, a gel containing an organic compound represented by Chemical Formula 1 decomposed at a lower voltage than the solvent, or a cyclic disulfonic acid ester A step of encapsulating the electrolyte in the outer package, a first charging step of charging the organic compound represented by Chemical Formula 1 or a voltage at which the cyclic disulfonic acid ester is decomposed, and opening the outer package to remove the generated gas By having a process, a step of sealing the exterior body, and a second charging step of charging until full charge, charging in an unsealed state having a problem in the manufacturing process or opening the exterior body in a fully charged state In addition, the gas generated during gel electrolyte polymerization and the decomposition gas of the additive during initial charging can be easily removed in one step. At this time, in the first charging process of the first stage, it is not necessary to hold for a certain time at a predetermined voltage, and the normal initial charging process is interrupted at a predetermined voltage, and the outer casing is opened to remove the generated gas. It is effective enough just to add.

リチウムポリマー電池の正極の構成を説明する図。The figure explaining the structure of the positive electrode of a lithium polymer battery. リチウムポリマー電池の負極の構成を説明する図。The figure explaining the structure of the negative electrode of a lithium polymer battery. リチウムポリマー電池の巻回後の電池要素の構成を説明する断面図。Sectional drawing explaining the structure of the battery element after winding of a lithium polymer battery. リチウムポリマー電池の外装工程を説明する図。The figure explaining the exterior | packing process of a lithium polymer battery.

本発明のリチウムポリマー電池の製造方法で使用される正極は、アルミニウム箔等の金属からなる集電体に正極活物質層を塗布、乾燥したものを圧縮し成型したものであり、負極は、銅箔等の金属からなる集電体に負極活物質を塗布、乾燥したものを圧縮し成型したものである。セパレータは、不織布、ポリオレフィン微多孔膜などリチウムポリマー電池で一般的に使用されるものであれば特に限定はされない。正極と負極をセパレータを介して積み重ねて積層体を製作し、あるいは正極と負極をセパレータを介して扁平に巻回した後成型した巻回体を製作し、積層体あるいは巻回体をラミネート材等の外装材に入れた後、ゲル電解質を注入し処理することによりリチウムポリマー電池を作製する。   The positive electrode used in the method for producing a lithium polymer battery of the present invention is obtained by applying a positive electrode active material layer to a current collector made of a metal such as an aluminum foil, and compressing and molding the dried material. A negative electrode active material is applied to a current collector made of a metal such as a foil, and a dried product is compressed and molded. A separator will not be specifically limited if it is generally used with lithium polymer batteries, such as a nonwoven fabric and a polyolefin microporous film. A positive electrode and a negative electrode are stacked via a separator to produce a laminated body, or a positive electrode and a negative electrode are wound flatly via a separator to form a wound body, and the laminated body or the wound body is laminated material, etc. A lithium polymer battery is prepared by injecting and treating the gel electrolyte after being put in the outer packaging material.

ゲル電解質に含まれるゲル化成分として、たとえば熱重合可能な重合基を一分子あたり2個以上有するモノマー、またはオリゴマー、共重合オリゴマーなどが挙げられる。このゲル化成分としては、アクリル系高分子を形成する、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、プロピレンジアクリレート、ジプロピレンジアクリレート、トリプロピレンジアクリレート、1,3−ブタンジオールジアクリレート、1,4−ブタンジオールジアクリレート、1,6−ヘキサンジオールジアクリレートなどの2官能アクリレート、また、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレートなどの3官能アクリレート、また、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールテトラアクリレートなどの4官能アクリレート、および、上記メタクリレートモノマーなどが挙げられる。これらの他に、ウレタンアクリレート、ウレタンメタクリレートなどのモノマー、これらの共重合体オリゴマーやアクリロニトリルとの共重合体オリゴマーが挙げられるが、これらに限定されるものではない。   As the gelling component contained in the gel electrolyte, for example, a monomer having two or more polymerizable groups capable of thermal polymerization per molecule, an oligomer, a copolymer oligomer, or the like can be given. As this gelling component, ethylene glycol diacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, propylene diacrylate, dipropylene diacrylate, tripropylene diacrylate, which forms an acrylic polymer, Bifunctional acrylates such as 1,3-butanediol diacrylate, 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, and trifunctional acrylates such as trimethylolpropane triacrylate and pentaerythritol triacrylate, In addition, tetrafunctional acrylates such as ditrimethylolpropane tetraacrylate and pentaerythritol tetraacrylate, and the above-mentioned methacrylate. Tomonoma and the like. In addition to these, monomers such as urethane acrylate and urethane methacrylate, copolymer oligomers thereof, and copolymer oligomers with acrylonitrile are exemplified, but not limited thereto.

また、ポリフッ化ビニリデンやポリエチレンオキサイド、ポリアクリロニトリルなどの、可塑剤に溶解させ、ゲル化させることのできるポリマーも使用できる。   In addition, polymers that can be dissolved in a plasticizer and gelled, such as polyvinylidene fluoride, polyethylene oxide, and polyacrylonitrile can also be used.

ゲル成分としては、上述のモノマー、オリゴマー、またはポリマーに限定されるものではなく、ゲル化可能なものであれば、使用できる。また、ゲル化には一種類のモノマー、オリゴマーまたはポリマーに限定されるものではなく、必要に応じて2〜数種のゲル化成分を混合しても使用できる。   The gel component is not limited to the above-described monomer, oligomer, or polymer, and any gel component that can be gelled can be used. Further, the gelation is not limited to one kind of monomer, oligomer or polymer, and it can be used by mixing 2 to several kinds of gel components as required.

ゲル電解質に含まれる溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類、γ−ブチロラクトン等のγ−ラクトン類、1,2−エトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類、テトラヒドロフラン、2−メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、1,3−ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3−ジメチル−2−イミダゾリジノン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3−プロパンスルトン、アニソール、N−メチルピロリドン、フッ素化カルボン酸エステルなどの非プロトン性有機溶媒を一種又は二種以上を混合して使用できるが、これらに限定されるものではない。   Solvents contained in the gel electrolyte include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), Chain carbonates such as ethyl methyl carbonate (EMC) and dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate, γ-lactones such as γ-butyrolactone, Chain ethers such as 2-ethoxyethane (DEE) and ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, acetami Dimethylformamide, dioxolane, acetonitrile, propylnitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivatives, sulfolane, methylsulfolane, 1,3-dimethyl-2-imidazolidinone, 3-methyl A mixture of one or more aprotic organic solvents such as 2-oxazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ethyl ether, 1,3-propane sultone, anisole, N-methylpyrrolidone, fluorinated carboxylate, etc. However, the present invention is not limited to these.

ゲル電解質に含ませる化1で示される有機化合物は、化2、化3で示される有機化合物の他、化合物番号1〜6として表1に示される有機化合物があげられるが、本発明はこれらに限定されるものではない。


Examples of the organic compound represented by Chemical Formula 1 contained in the gel electrolyte include the organic compounds represented by Chemical Formulas 2 and 3 and the organic compounds shown in Table 1 as Compound Nos. 1 to 6, but the present invention includes these compounds. It is not limited.


Figure 0005618385
Figure 0005618385

またゲル電解質に含ませる環状ジスルホン酸エステルは、メチレンメタンジスルホネート、エチレンメタンジスルホネートおよびプロピレンメタンジスルホネートがあげられるが本発明はこれらに限定されるものではない。   Examples of the cyclic disulfonic acid ester contained in the gel electrolyte include methylene methane disulfonate, ethylene methane disulfonate, and propylene methane disulfonate, but the present invention is not limited to these.

負極活物質として、特に、鱗片状黒鉛を用いる場合、人造黒鉛とは異なり活性な部位を有しており、充放電を行うたびにガス発生をまねき、電池膨れ、容量低下を引き起こすことから、電解液のみから構成される電池ではこの対策として、一般的にビニレンカーボネート(以下VC)、1,3−プロパンスルトン(以下PS)などを用いている。例えばPSの最低空軌道エネルギー(LUMO)は0.07eVであり、PSが溶媒分子であるEC(LUMO:1.18eV)やDEC(LUMO:1.26eV)よりも先に分解し皮膜を形成することが考えられる。その結果溶媒分子の分解が抑制され、ガス発生による電池の膨れの抑制やレート特性改善が期待できる。本発明の系のようにポリマーゲル中に分散させた場合には、ゲルが高抵抗であるため上記VC、PSは負極電極上で分解皮膜が形成されにくい。(最低空軌道エネルギー(LUMO):PS(0.07(eV))、VC:0.09(eV))。そのため、PSやVCよりもよりLUMOの小さい分子の添加剤が望ましく、−1.5(eV)以上0(eV)以下のものが最適である。たとえば化1で示される有機化合物はリチウムイオン二次電池の電極上での分解皮膜を形成すると考えられている。例えば化2で示される有機化合物の最低空軌道エネルギー(LUMO)は−1.21eVであり、化2で示される有機化合物が溶媒分子であるEC(LUMO:1.18eV)やDEC(LUMO:1.26eV)よりも先に分解し皮膜を形成することが考えられる。その結果溶媒分子の分解が抑制され、ガス発生による電池の膨れの抑制やレート特性改善が期待できる。また、化3で示される有機化合物の最低空軌道エネルギー(LUMO)は−0.24eVである。また、例えば正極にマンガン酸リチウムを含む場合には化2または化3で示される有機化合物の添加によってゲル中に溶出したMnが負極表面に吸着することを防止し、結果として抵抗上昇によるレート特性の低下の抑制やサイクル特性向上に有効であると考えられる。   In particular, when using scaly graphite as the negative electrode active material, it has an active site, unlike artificial graphite, which causes gas generation each time charging / discharging occurs, causing battery swelling and capacity reduction. In a battery composed only of a liquid, vinylene carbonate (hereinafter referred to as VC), 1,3-propane sultone (hereinafter referred to as PS) or the like is generally used as a countermeasure. For example, PS has a minimum orbital energy (LUMO) of 0.07 eV, and decomposes to form a film before EC (LUMO: 1.18 eV) or DEC (LUMO: 1.26 eV), where PS is a solvent molecule. It is possible. As a result, decomposition of solvent molecules is suppressed, and suppression of battery swelling due to gas generation and improvement of rate characteristics can be expected. When dispersed in a polymer gel as in the system of the present invention, since the gel has a high resistance, the above-described VC and PS are unlikely to form a decomposition film on the negative electrode. (Minimum empty orbit energy (LUMO): PS (0.07 (eV)), VC: 0.09 (eV)). Therefore, a molecular additive having a LUMO smaller than that of PS or VC is desirable, and those having −1.5 (eV) or more and 0 (eV) or less are optimal. For example, the organic compound represented by Chemical Formula 1 is considered to form a decomposition film on the electrode of the lithium ion secondary battery. For example, the minimum empty orbit energy (LUMO) of the organic compound represented by Chemical formula 2 is −1.21 eV, and EC (LUMO: 1.18 eV) or DEC (LUMO: 1) in which the organic compound represented by Chemical formula 2 is a solvent molecule. .26 eV) to decompose and form a film. As a result, decomposition of solvent molecules is suppressed, and suppression of battery swelling due to gas generation and improvement of rate characteristics can be expected. Further, the minimum empty orbit energy (LUMO) of the organic compound represented by Chemical formula 3 is −0.24 eV. For example, when lithium manganate is included in the positive electrode, Mn eluted in the gel is prevented from adsorbing on the negative electrode surface by adding an organic compound represented by chemical formula 2 or chemical formula 3, and as a result, rate characteristics due to an increase in resistance. This is considered to be effective for suppressing the decrease in the cycle and improving the cycle characteristics.

本発明においては、ゲル電解質に更にVCまたはその誘導体を適宜含有させることにより化1で示される有機化合物、または環状ジスルホン酸エステルにより形成された皮膜の安定化させるのに有効である。VCは特に、正極にコバルト酸リチウムを用いた場合に効果が大きく、含有するVCの濃度は、0.1質量%以上3.0質量%以下が好ましく、特に好ましくは0.1質量%以上1.0質量%以下である。   In the present invention, it is effective to stabilize the film formed of the organic compound represented by Chemical Formula 1 or the cyclic disulfonic acid ester by appropriately containing VC or a derivative thereof in the gel electrolyte. VC is particularly effective when lithium cobaltate is used for the positive electrode, and the concentration of VC contained is preferably 0.1% by mass or more and 3.0% by mass or less, and particularly preferably 0.1% by mass or more and 1% by mass. 0.0 mass% or less.

これらのゲル電解質中に含まれる化1、または環状ジスルホン酸エステルで示される有機化合物の濃度は、特に限定されるものではないが、正極活物質としてマンガン酸リチウムを含む正極を使用した二次電池の場合には、0.1質量%以上5.0質量%以下が好ましく、更に好ましくは0.5質量%以上2.0質量%以下が特に好ましい。0.1質量%未満では電極表面に十分な皮膜が形成されず、サイクル特性やレート特性の改善効果が小さい。5.0質量%を越えると、抵抗が高くなってレート特性が悪くなる。   The concentration of the organic compound represented by Chemical Formula 1 or cyclic disulfonic acid ester contained in these gel electrolytes is not particularly limited, but a secondary battery using a positive electrode containing lithium manganate as the positive electrode active material In this case, it is preferably 0.1% by mass or more and 5.0% by mass or less, more preferably 0.5% by mass or more and 2.0% by mass or less. If it is less than 0.1% by mass, a sufficient film is not formed on the electrode surface, and the effect of improving cycle characteristics and rate characteristics is small. If it exceeds 5.0% by mass, the resistance increases and the rate characteristics deteriorate.

正極活物質としてコバルト酸リチウムを用いる場合には、ゲル電解質中に含まれる化2、化3、また環状ジスルホン酸エステルで示される有機化合物の濃度は、特に限定されるものではないが、0.5質量%以上〜5.0質量%以下が好ましい。0.5質量%未満では電極表面に十分な皮膜が形成されず、サイクル特性やレート特性の改善効果が小さい。5.0質量%を越えると、抵抗が高くなってレート特性が悪くなる。   When lithium cobaltate is used as the positive electrode active material, the concentration of the organic compound represented by Chemical Formula 2 or Chemical Formula 3 or cyclic disulfonic acid ester contained in the gel electrolyte is not particularly limited. 5 mass% or more and 5.0 mass% or less are preferable. If it is less than 0.5% by mass, a sufficient film is not formed on the electrode surface, and the effect of improving cycle characteristics and rate characteristics is small. If it exceeds 5.0% by mass, the resistance increases and the rate characteristics deteriorate.

ゲル電解質に含まれる支持塩としては、特に限定されないがLiPF6、LiBF4、LiAsPF6、LiCF3SO3、LiN(CF3SO22など一般的にリチウムポリマー電池に用いられる電解質が使用できる。 The supporting salt contained in the gel electrolyte is not particularly limited, but electrolytes generally used for lithium polymer batteries such as LiPF 6 , LiBF 4 , LiAsPF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 can be used. .

本発明において、必要に応じて、熱重合開始剤としてベンゾイン類、パーオキサイド類などが使用できるが、これらに限定されるものではない。   In the present invention, benzoins, peroxides, and the like can be used as thermal polymerization initiators as necessary, but are not limited thereto.

また正極活物質として、例えば、LiCoO2、LiNi1-xCox2、LiMn24、LiNixMn2-x4(0≦X≦1)などの複合酸化物が使用できるが、これらに限定されるものではない。 Further, as the positive electrode active material, for example, complex oxides such as LiCoO 2 , LiNi 1-x Co x O 2 , LiMn 2 O 4 , LiNi x Mn 2−x O 4 (0 ≦ X ≦ 1) can be used. It is not limited to these.

負極活物質として、例えば、黒鉛、非晶質炭素、シリコン、シリコン酸化物、金属リチウムおよびその合金などが挙げられるが、これらに限定されるものではない。   Examples of the negative electrode active material include, but are not limited to, graphite, amorphous carbon, silicon, silicon oxide, metallic lithium, and alloys thereof.

セパレータとして、ポリプロピレン、ポリエチレン等のポリオレフィン、フッ素樹脂等の多孔性フィルムなどが使用できるが、これに限定されるものではない。   The separator may be a polyolefin such as polypropylene or polyethylene, or a porous film such as a fluororesin, but is not limited thereto.

本発明において、第一の充電工程における充電電圧は、その電池の放電下限電圧以上であれば特に限定されないが、放電下限電圧が通常3.0VのCo系もしくはMn系の正極を使用した場合は、好ましくは3.2〜3.6V程度である。   In the present invention, the charging voltage in the first charging step is not particularly limited as long as it is equal to or higher than the discharge lower limit voltage of the battery, but when a Co-based or Mn-based positive electrode whose discharge lower limit voltage is usually 3.0 V is used. The voltage is preferably about 3.2 to 3.6V.

実施例により本発明を図面を参照して詳細に説明する。   The present invention will be described in detail by way of examples with reference to the drawings.

図1はリチウムポリマー電池の正極の構成を説明する図であり、図2はリチウムポリマー電池の負極の構成を説明する図であり、図3はリチウムポリマー電池の巻回後の電池要素の構成を説明する図であり、図4はリチウムポリマー電池の外装工程を説明する図である。   FIG. 1 is a diagram for explaining the configuration of the positive electrode of the lithium polymer battery, FIG. 2 is a diagram for explaining the configuration of the negative electrode of the lithium polymer battery, and FIG. 3 shows the configuration of the battery element after winding of the lithium polymer battery. FIG. 4 is a diagram illustrating an exterior process of a lithium polymer battery.

(実施例1)
先ず、図1により正極の作製について説明する。LiMn24を85質量%、導電補助材としてアセチレンブラックを7質量%、バインダーとしてポリフッ化ビニリデン8質量%とを混合したものに、N−メチルピロリドンを加えてさらに混合して正極スラリーを作製した。これをドクターブレード法により集電体となる厚さ20μmのAl箔2の両面にロールプレス処理後の厚さが160μmになるように塗布し、正極活物質塗布部3を形成した。なお、両端部にはいずれの面にも正極活物質が塗布されていない正極活物質非塗布部4を設け、続いて正極活物質片面塗布部5が設けられた一方の正極活物質非塗布部4に正極導電タブ6を設け正極1とした。
Example 1
First, the production of the positive electrode will be described with reference to FIG. A mixture of 85% by mass of LiMn 2 O 4 , 7% by mass of acetylene black as a conductive auxiliary and 8% by mass of polyvinylidene fluoride as a binder is added to N-methylpyrrolidone and further mixed to prepare a positive electrode slurry. did. This was applied to both surfaces of a 20 μm thick Al foil 2 serving as a current collector by a doctor blade method so that the thickness after the roll press treatment was 160 μm, thereby forming a positive electrode active material coating portion 3. In addition, the positive electrode active material non-application part 4 in which the positive electrode active material is not apply | coated to either surface is provided in both ends, and one positive electrode active material non-application part in which the positive electrode active material single-side application part 5 was provided subsequently 4 was provided with a positive electrode conductive tab 6 to obtain a positive electrode 1.

次に、図2により負極の作製について説明する。黒鉛90質量%、バインダーとしてポリフッ化ビニリデン10質量%とを混合し、N−メチルピロリドンを加えてさらに混合して負極スラリーを作製した。これを集電体となる厚さ10μmのCu箔8の両面にロールプレス処理後の厚さが120μmになるように塗布し、負極活物質塗布部9を形成した。なお、両端部の一方の端面には片面のみ負極活物質片面塗布部10と負極活物質が塗布されていない負極活物質非塗布部11を設け、負極導電タブ12を取り付けて負極7とした。   Next, the production of the negative electrode will be described with reference to FIG. 90% by mass of graphite and 10% by mass of polyvinylidene fluoride as a binder were mixed, and N-methylpyrrolidone was added and further mixed to prepare a negative electrode slurry. This was applied to both surfaces of a 10 μm-thick Cu foil 8 serving as a current collector so that the thickness after the roll press treatment was 120 μm to form a negative electrode active material coating portion 9. In addition, the negative electrode active material one-side application part 10 and the negative electrode active material non-application part 11 in which the negative electrode active material was not apply | coated are provided in one end surface of both ends, and the negative electrode conductive tab 12 was attached to make the negative electrode 7.

図3により電池要素の作製について説明する。膜厚12μm、気孔率35%のポリエチレン製の微多孔膜からなるセパレータ13を二枚溶着して切断した部分を巻回装置の巻き芯に固定し巻きとり、正極1、および負極7の先端を導入する。正極1および負極7は両面に電極活物質層が形成されている側を先端側として、負極は二枚のセパレータの間に、正極電極はセパレータの上面にそれぞれ配置して巻き芯を回転させ巻回し、電池要素(以下ジェリーロール(J/R)と表記)を形成した。   The production of the battery element will be described with reference to FIG. Two separators 13 made of polyethylene having a film thickness of 12 μm and a porosity of 35% are welded and cut, and the cut portion is fixed to the core of the winding device and wound, and the tips of the positive electrode 1 and the negative electrode 7 are attached. Introduce. The positive electrode 1 and the negative electrode 7 are arranged such that the side on which the electrode active material layer is formed on both sides is the tip side, the negative electrode is placed between the two separators, and the positive electrode is placed on the upper surface of the separator. Turned to form a battery element (hereinafter referred to as jelly roll (J / R)).

このJ/Rを図4に示すようにエンボス加工したラミネート外装体に収容し、ラミネート外装体の辺を折り返し、ゲル電解質注液用の部分を残して熱融着を行った。   This J / R was housed in an embossed laminate outer package as shown in FIG. 4, the sides of the laminate outer body were folded, and heat fusion was performed leaving a portion for injecting the gel electrolyte.

ゲル電解質となるプレゲル溶液は、エチレンカーボネート(EC)30質量%とジエチルカーボネート(DEC)58質量%に、リチウム塩としてLiPF612質量%からなる電解液に対して、化2で示される有機化合物を1質量%、ゲル化剤としてトリエチレングリコールジアクリレートとトリメチロールプロパントリアクリレートをそれぞれ3.8質量%、1質量%を加え、よく混合した後に、重合開始剤として、t−ブチルパーオキシピバレートを0.5質量%混合することで作製した。 The pregel solution used as the gel electrolyte is an organic compound represented by Chemical Formula 2 with respect to an electrolytic solution composed of 30% by mass of ethylene carbonate (EC) and 58% by mass of diethyl carbonate (DEC) and 12% by mass of LiPF 6 as a lithium salt. After adding 1% by mass of 3.8% by mass and 1% by mass of triethylene glycol diacrylate and trimethylolpropane triacrylate as gelling agents respectively, and mixing well, t-butyl peroxypi It was prepared by mixing 0.5% by mass of valerate.

次に、プレゲル溶液を注液部分から注液し真空含浸を行い、リチウムポリマー電池を得た。この電池の放電下限電圧は3.0Vである。   Next, the pregel solution was injected from the injection portion and vacuum impregnation was performed to obtain a lithium polymer battery. The discharge lower limit voltage of this battery is 3.0V.

得られたリチウムポリマー電池を、第一の充電工程として、電池電圧3.2Vまで充電(充電電流:0.2C、CC充電)し、一度開封した後に再度真空封止を行い、第二の充電工程として電池電圧4.2Vまで充電(充電電流:0.2C、CC−CV充電、充電時間:6.5時間)した。その後0.2Cで電池電圧3.0VまでCC放電し、そのときの放電容量を初期容量とした。   As a first charging step, the obtained lithium polymer battery is charged to a battery voltage of 3.2 V (charging current: 0.2 C, CC charging), opened once, and then vacuum-sealed again to form a second charging As a process, the battery voltage was charged to 4.2 V (charging current: 0.2 C, CC-CV charging, charging time: 6.5 hours). Thereafter, CC discharge was performed at 0.2 C to a battery voltage of 3.0 V, and the discharge capacity at that time was defined as the initial capacity.

得られたリチウムポリマー電池のレート特性は、電池電圧4.2Vまで充電された電池を0.2Cで電池電圧3.0Vまで放電し得られた放電容量を100とし、放電レート(1C)で放電し得られた放電容量との比で表2に示した。   The rate characteristics of the obtained lithium polymer battery were as follows: a battery charged to a battery voltage of 4.2V was discharged at 0.2C to a battery voltage of 3.0V, and the discharge capacity was 100, and discharged at a discharge rate (1C). It was shown in Table 2 by the ratio with the obtained discharge capacity.

得られたリチウムポリマー電池のサイクル後の電池体積変化率は、初期充電後の電池体積を1とし、サイクル後の電池体積との比として表2に示した。なお、サイクルの条件は、充電:上限電圧4.2V、電流:1C、時間2.5H、放電:下限電圧3.0V、電流:1Cいずれも20℃で実施した。容量維持率は1サイクル目の放電容量(1C)に対する100サイクル目の放電容量(1C)の割合で示した。   The battery volume change rate after cycling of the obtained lithium polymer battery was shown in Table 2 as the ratio of the battery volume after initial charging to 1 and the battery volume after cycling. The cycle conditions were as follows: charge: upper limit voltage 4.2V, current: 1C, time 2.5H, discharge: lower limit voltage 3.0V, current: 1C. The capacity retention rate was expressed as a ratio of the discharge capacity (1C) at the 100th cycle to the discharge capacity (1C) at the first cycle.

Figure 0005618385
Figure 0005618385

(実施例2)
第一の充電工程の充電電圧を3.0Vとする以外、実施例1と同様に電池を作製し、評価を行った。
(Example 2)
A battery was prepared and evaluated in the same manner as in Example 1 except that the charging voltage in the first charging step was set to 3.0V.

(実施例3)
第一の充電工程の充電電圧を3.4Vとする以外、実施例1と同様に電池を作製し、評価を行った。
Example 3
A battery was prepared and evaluated in the same manner as in Example 1 except that the charging voltage in the first charging step was 3.4V.

(実施例4)
第一の充電工程の充電電圧を3.6Vとする以外、実施例1と同様に電池を作製し、評価を行った。
Example 4
A battery was prepared and evaluated in the same manner as in Example 1 except that the charging voltage in the first charging step was 3.6V.

(実施例5)
第一の充電工程の充電電圧を3.8Vとする以外、実施例1と同様に電池を作製し、評価を行った。
(Example 5)
A battery was prepared and evaluated in the same manner as in Example 1 except that the charging voltage in the first charging step was 3.8V.

(実施例6)
第一の充電工程の充電電圧を2.8Vとする以外、実施例1と同様に電池を作製し、評価を行った。
(Example 6)
A battery was prepared and evaluated in the same manner as in Example 1 except that the charging voltage in the first charging step was 2.8V.

(比較例1)
第一の充電工程を行わず、4.2Vまで初期充電を行った後に満充電状態でガス除去工程を行った以外、実施例1と同様に電池を作製し、評価を行った。
(Comparative Example 1)
A battery was fabricated and evaluated in the same manner as in Example 1 except that the first charging step was not performed and the gas removal step was performed in a fully charged state after performing initial charging to 4.2V.

(比較例2)
第一の充電工程およびガス除去工程を行わなかった以外、実施例1と同様に電池を作製し、評価を行った。
(Comparative Example 2)
A battery was produced and evaluated in the same manner as in Example 1 except that the first charging step and the gas removal step were not performed.

本発明のリチウムポリマー電池において、表2の実施例1〜5、比較例1に示すように、第一段階の充電電圧を放電下限電圧以上に設定し、ガス抜き工程を行うことにより、二段階充電を行わず満充電状態でガス抜きを行った電池と同等の特性を示すことが分かった。これにより、より安全な状態で工程を進めることが出来る。また、表2の実施例6、比較例1より、第一段階の充電電圧が放電下限電圧以下の場合は、やや特性が劣るものの、比較的良好な特性を示すことが分かった。   In the lithium polymer battery of the present invention, as shown in Examples 1 to 5 and Comparative Example 1 of Table 2, the first stage charging voltage is set to the discharge lower limit voltage or more, and the degassing step is performed, thereby performing two stages. It was found that the battery exhibited the same characteristics as a battery that was not charged and degassed in a fully charged state. Thereby, a process can be advanced in a safer state. Further, from Example 6 and Comparative Example 1 in Table 2, it was found that when the charge voltage at the first stage was lower than the discharge lower limit voltage, relatively good characteristics were exhibited although the characteristics were slightly inferior.

また、本発明のリチウムポリマー電池において、表2の実施例1〜5、比較例2に示すように、第一段階の充電電圧を放電下限電圧以上に設定し、ガス抜き工程を行うことにより、二段階充電およびガス抜きを行わない電池よりも特性が良好であることが分かった。また、表2の実施例6、比較例2より、第一段階の充電電圧が放電下限電圧以下においても、二段階充電およびガス抜きを行わない電池よりも特性が良好であることが分かった。   Moreover, in the lithium polymer battery of the present invention, as shown in Examples 1 to 5 and Comparative Example 2 in Table 2, by setting the first stage charging voltage to be equal to or higher than the discharge lower limit voltage and performing the degassing step, It has been found that the characteristics are better than batteries without two-stage charging and degassing. Further, from Example 6 and Comparative Example 2 in Table 2, it was found that the characteristics were better than the battery that did not perform two-stage charging and degassing even when the first stage charging voltage was lower than the discharge lower limit voltage.

(実施例7)
化2で示される有機化合物の代わりに化3で示される有機化合物を用いる以外、実施例1と同様に電池を作製し、評価を行った。
(Example 7)
A battery was prepared and evaluated in the same manner as in Example 1 except that the organic compound represented by Chemical Formula 3 was used instead of the organic compound represented by Chemical Formula 2.

(実施例8)
化2で示される有機化合物の代わりに化3で示される有機化合物を用いる以外、実施例2と同様に電池を作製し、評価を行った。
(Example 8)
A battery was prepared and evaluated in the same manner as in Example 2 except that the organic compound represented by Chemical Formula 3 was used instead of the organic compound represented by Chemical Formula 2.

(実施例9)
化2で示される有機化合物の代わりに化3で示される有機化合物を用いる以外、実施例3と同様に電池を作製し、評価を行った。
Example 9
A battery was prepared and evaluated in the same manner as in Example 3 except that the organic compound represented by Chemical formula 3 was used instead of the organic compound represented by Chemical formula 2.

(実施例10)
化2で示される有機化合物の代わりに化3で示される有機化合物を用いる以外、実施例4と同様に電池を作製し、評価を行った。
(Example 10)
A battery was prepared and evaluated in the same manner as in Example 4 except that the organic compound represented by Chemical Formula 3 was used instead of the organic compound represented by Chemical Formula 2.

(実施例11)
化2で示される有機化合物の代わりに化3で示される有機化合物を用いる以外、実施例5と同様に電池を作製し、評価を行った。
(Example 11)
A battery was prepared and evaluated in the same manner as in Example 5 except that the organic compound represented by Chemical formula 3 was used instead of the organic compound represented by Chemical formula 2.

(実施例12)
化2で示される有機化合物の代わりに化3で示される有機化合物を用いる以外、実施例6と同様に電池を作製し、評価を行った。
(Example 12)
A battery was prepared and evaluated in the same manner as in Example 6 except that the organic compound represented by Chemical formula 3 was used instead of the organic compound represented by Chemical formula 2.

(比較例3)
化2で示される有機化合物の代わりに化3で示される有機化合物を用いる以外、比較例1と同様に電池を作製し、評価を行った。
(Comparative Example 3)
A battery was prepared and evaluated in the same manner as in Comparative Example 1 except that the organic compound represented by Chemical Formula 3 was used instead of the organic compound represented by Chemical Formula 2.

(比較例4)
化2で示される有機化合物の代わりに化3で示される有機化合物を用いる以外、比較例2と同様に電池を作製し、評価を行った。
(Comparative Example 4)
A battery was prepared and evaluated in the same manner as in Comparative Example 2 except that the organic compound represented by Chemical Formula 3 was used instead of the organic compound represented by Chemical Formula 2.

実施例7〜12および比較例3、4についてのレート特性、容量維持率、電池体積変化率について表3に示した。   Table 3 shows the rate characteristics, capacity retention rate, and battery volume change rate for Examples 7 to 12 and Comparative Examples 3 and 4.

Figure 0005618385
Figure 0005618385

(実施例13)
化2で示される有機化合物の代わりにメチレンメタンジスルホネートを用いる以外、実施例1と同様に電池を作製し、評価を行った。
(Example 13)
A battery was prepared and evaluated in the same manner as in Example 1 except that methylenemethane disulfonate was used instead of the organic compound represented by Chemical Formula 2.

(実施例14)
化2で示される有機化合物の代わりにメチレンメタンジスルホネートを用いる以外、実施例2と同様に電池を作製し、評価を行った。
(Example 14)
A battery was prepared and evaluated in the same manner as in Example 2 except that methylenemethane disulfonate was used instead of the organic compound represented by Chemical Formula 2.

(実施例15)
化2で示される有機化合物の代わりにメチレンメタンジスルホネートを用いる以外、実施例3と同様に電池を作製し、評価を行った。
(Example 15)
A battery was prepared and evaluated in the same manner as in Example 3 except that methylenemethane disulfonate was used instead of the organic compound represented by Chemical Formula 2.

(実施例16)
化2で示される有機化合物の代わりにメチレンメタンジスルホネートを用いる以外、実施例4と同様に電池を作製し、評価を行った。
(Example 16)
A battery was prepared and evaluated in the same manner as in Example 4 except that methylenemethane disulfonate was used instead of the organic compound represented by Chemical Formula 2.

(実施例17)
化2で示される有機化合物の代わりにメチレンメタンジスルホネートを用いる以外、実施例5と同様に電池を作製し、評価を行った。
(Example 17)
A battery was prepared and evaluated in the same manner as in Example 5 except that methylenemethane disulfonate was used instead of the organic compound represented by Chemical Formula 2.

(実施例18)
化2で示される有機化合物の代わりにメチレンメタンジスルホネートを用いる以外、実施例6と同様に電池を作製し、評価を行った。
(Example 18)
A battery was prepared and evaluated in the same manner as in Example 6 except that methylenemethane disulfonate was used instead of the organic compound represented by Chemical Formula 2.

(比較例5)
化2で示される有機化合物の代わりにメチレンメタンジスルホネートを用いる以外、比較例1と同様に電池を作製し、評価を行った。
(Comparative Example 5)
A battery was prepared and evaluated in the same manner as in Comparative Example 1 except that methylenemethane disulfonate was used instead of the organic compound represented by Chemical Formula 2.

(比較例6)
化2で示される有機化合物の代わりにメチレンメタンジスルホネートを用いる以外、比較例2と同様に電池を作製し、評価を行った。
(Comparative Example 6)
A battery was prepared and evaluated in the same manner as in Comparative Example 2 except that methylenemethane disulfonate was used instead of the organic compound represented by Chemical Formula 2.

実施例13〜18および比較例5、6についてのレート特性、容量維持率、電池体積変化率について表4に示した。   Table 4 shows the rate characteristics, capacity retention rate, and battery volume change rate for Examples 13 to 18 and Comparative Examples 5 and 6.

Figure 0005618385
Figure 0005618385

本発明のリチウムポリマー電池において、表3の実施例7〜11、比較例3に示すように、化2で示される有機化合物の代わりに化3で示される有機化合物を用いた場合においても、第一段階の充電電圧を放電下限電圧以上に設定し、ガス抜き工程を行うことにより、二段階充電を行わず満充電状態でガス抜きを行った電池と同等の特性を示すことが分かった。また、表3の実施例12、比較例3より、第一段階の充電電圧が放電下限電圧以下の場合は、やや特性が劣るものの、比較的良好な特性を示すことが分かった。   In the lithium polymer battery of the present invention, as shown in Examples 7 to 11 and Comparative Example 3 in Table 3, even when the organic compound represented by Chemical Formula 3 was used instead of the organic compound represented by Chemical Formula 2, It was found that by setting the one-stage charging voltage to be equal to or higher than the discharge lower limit voltage and performing the degassing step, the characteristics equivalent to those of the battery degassed in the fully charged state without performing the two-stage charging were shown. Further, from Example 12 and Comparative Example 3 in Table 3, it was found that, when the charge voltage at the first stage was equal to or lower than the discharge lower limit voltage, although the characteristics were slightly inferior, relatively good characteristics were exhibited.

さらに、本発明のリチウムポリマー電池において、表4の実施例13〜17、比較例5に示すように、化2で示される有機化合物の代わりにメチレンメタンジスルホネートを用いた場合においても、第一段階の充電電圧を放電下限電圧以上に設定し、ガス抜き工程を行うことにより、二段階充電およびガス抜きを行わない電池よりも特性が良好であることが分かった。また、表4の実施例18、比較例6より、第一段階の充電電圧が放電下限電圧以下においても、二段階充電およびガス抜きを行わない電池よりも特性が良好であることが分かった。   Furthermore, in the lithium polymer battery of the present invention, as shown in Examples 13 to 17 and Comparative Example 5 in Table 4, when methylenemethane disulfonate was used instead of the organic compound represented by Chemical Formula 2, It was found that by setting the stage charge voltage to be equal to or higher than the discharge lower limit voltage and performing the degassing step, the characteristics were better than those of the battery not performing two-stage charge and degassing. Further, from Example 18 and Comparative Example 6 in Table 4, it was found that the characteristics were better than the battery that did not perform two-stage charging and degassing even when the first-stage charging voltage was lower than the discharge lower limit voltage.

(実施例19)
正極活物質にコバルト酸リチウムを用いた本実施例における正極は次のように作製した。LiCoO2を87質量%、導電補助材としてアセチレンブラックを5質量%、バインダーとしてポリフッ化ビニリデン8質量%を混合したものに、N−メチルピロリドンを加えてさらに混合して正極スラリーを作製した。それ以外は実施例1と同様に正極、負極を作製し電池を作製した。また、プレゲル溶液は、VC:0.5質量%、化2で示される有機化合物の質量を1.0質量%とした以外は実施例1と同様に電池を作製し、評価を行った。
(Example 19)
The positive electrode in this example using lithium cobaltate as the positive electrode active material was produced as follows. N-methylpyrrolidone was added to and mixed with 87% by mass of LiCoO 2 , 5% by mass of acetylene black as a conductive auxiliary material, and 8% by mass of polyvinylidene fluoride as a binder to prepare a positive electrode slurry. Otherwise, a positive electrode and a negative electrode were produced in the same manner as in Example 1 to produce a battery. Moreover, the pregel solution produced and evaluated the battery similarly to Example 1 except having set the mass of the organic compound shown by VC: 0.5 mass% and chemical formula 2 to 1.0 mass%.

(実施例20)
第一の充電工程の充電電圧を3.0Vとする以外、実施例19と同様に電池を作製し、評価を行った。
(Example 20)
A battery was prepared and evaluated in the same manner as in Example 19 except that the charging voltage in the first charging step was set to 3.0V.

(実施例21)
第一の充電工程の充電電圧を3.4Vとする以外、実施例19と同様に電池を作製し、評価を行った。
(Example 21)
A battery was produced and evaluated in the same manner as in Example 19 except that the charging voltage in the first charging step was 3.4 V.

(実施例22)
第一の充電工程の充電電圧を3.6Vとする以外、実施例19と同様に電池を作製し、評価を行った。
(Example 22)
A battery was fabricated and evaluated in the same manner as in Example 19 except that the charging voltage in the first charging step was 3.6V.

(実施例23)
第一の充電工程の充電電圧を3.8Vとする以外、実施例19と同様に電池を作製し、評価を行った。
(Example 23)
A battery was produced and evaluated in the same manner as in Example 19 except that the charging voltage in the first charging step was 3.8V.

(実施例24)
第一の充電工程の充電電圧を2.8Vとする以外、実施例19と同様に電池を作製し、評価を行った。
(Example 24)
A battery was produced and evaluated in the same manner as in Example 19 except that the charging voltage in the first charging step was 2.8V.

(比較例7)
二段階充電を行わず、4.2Vまで初期充電を行った後に満充電状態でガス抜き工程を行った以外、実施例19と同様に電池を作製し、評価を行った。
(Comparative Example 7)
A battery was prepared and evaluated in the same manner as in Example 19 except that the two-stage charging was not performed and the degassing step was performed in a fully charged state after the initial charging to 4.2V.

(比較例8)
二段階充電およびガス抜き工程を行わなかった以外、実施例19と同様に電池を作製し、評価を行った。
(Comparative Example 8)
A battery was prepared and evaluated in the same manner as in Example 19 except that the two-stage charging and degassing steps were not performed.

実施例19〜24および比較例7、8についてのレート特性、容量維持率、電池体積変化率について表5に示した。


Table 5 shows the rate characteristics, capacity retention ratio, and battery volume change rate for Examples 19 to 24 and Comparative Examples 7 and 8.


Figure 0005618385
Figure 0005618385

本発明のリチウムポリマー電池において、表5の実施例19〜23、比較例7に示すように、第一段階の充電電圧を放電下限電圧以上に設定し、ガス抜き工程を行うことにより、二段階充電を行わず満充電状態でガス抜きを行った電池と同等の特性を示すことが分かった。これにより、より安全な状態で工程を進めることが出来る。また、表5の実施例24、比較例7より、第一段階の充電電圧が放電下限電圧以下の場合は、やや特性が劣るものの、比較的良好な特性を示すことが分かった。   In the lithium polymer battery of the present invention, as shown in Examples 19 to 23 and Comparative Example 7 in Table 5, the first stage charging voltage is set to the discharge lower limit voltage or more, and the degassing step is performed, so that two steps are performed. It was found that the battery exhibited the same characteristics as a battery that was not charged and degassed in a fully charged state. Thereby, a process can be advanced in a safer state. Further, from Example 24 and Comparative Example 7 in Table 5, it was found that when the charge voltage at the first stage was equal to or lower than the discharge lower limit voltage, although the characteristics were slightly inferior, relatively good characteristics were exhibited.

また、本発明のリチウムポリマー電池において、表5の実施例19〜23、比較例8に示すように、第一段階の充電電圧を放電下限電圧以上に設定し、ガス抜き工程を行うことにより、二段階充電およびガス抜きを行わない電池よりも特性が良好であることが分かった。また、表5の実施例24、比較例8より、第一段階の充電電圧が放電下限電圧以下においても、二段階充電およびガス抜きを行わない電池よりも特性が良好であることが分かった。   Moreover, in the lithium polymer battery of the present invention, as shown in Examples 19 to 23 of Table 5 and Comparative Example 8, by setting the first stage charging voltage to be equal to or higher than the discharge lower limit voltage and performing the degassing step, It has been found that the characteristics are better than batteries without two-stage charging and degassing. In addition, from Example 24 and Comparative Example 8 in Table 5, it was found that the characteristics were better than the battery that did not perform two-stage charging and degassing even when the first-stage charging voltage was lower than the discharge lower limit voltage.

(実施例25)
化2で示される有機化合物の代わりに化3で示される有機化合物を用いる以外、実施例19と同様に電池を作製し、評価を行った。
(Example 25)
A battery was prepared and evaluated in the same manner as in Example 19 except that the organic compound represented by Chemical formula 3 was used instead of the organic compound represented by Chemical formula 2.

(実施例26)
化2で示される有機化合物の代わりに化3で示される有機化合物を用いる以外、実施例20と同様に電池を作製し、評価を行った。
(Example 26)
A battery was prepared and evaluated in the same manner as in Example 20 except that the organic compound represented by Chemical formula 3 was used instead of the organic compound represented by Chemical formula 2.

(実施例27)
化2で示される有機化合物の代わりに化3で示される有機化合物を用いる以外、実施例21と同様に電池を作製し、評価を行った。
(Example 27)
A battery was prepared and evaluated in the same manner as in Example 21 except that the organic compound represented by Chemical formula 3 was used instead of the organic compound represented by Chemical formula 2.

(実施例28)
化2で示される有機化合物の代わりに化3で示される有機化合物を用いる以外、実施例22と同様に電池を作製し、評価を行った。
(Example 28)
A battery was prepared and evaluated in the same manner as in Example 22 except that the organic compound represented by Chemical formula 3 was used instead of the organic compound represented by Chemical formula 2.

(実施例29)
化2で示される有機化合物の代わりに化3で示される有機化合物を用いる以外、実施例23と同様に電池を作製し、評価を行った。
(Example 29)
A battery was prepared and evaluated in the same manner as in Example 23 except that the organic compound represented by Chemical formula 3 was used instead of the organic compound represented by Chemical formula 2.

(実施例30)
化2で示される有機化合物の代わりに化3で示される有機化合物を用いる以外、実施例24と同様に電池を作製し、評価を行った。
(Example 30)
A battery was prepared and evaluated in the same manner as in Example 24 except that the organic compound represented by Chemical formula 3 was used instead of the organic compound represented by Chemical formula 2.

(比較例9)
化2で示される有機化合物の代わりに化3で示される有機化合物を用いる以外、比較例7と同様に電池を作製し、評価を行った。
(Comparative Example 9)
A battery was prepared and evaluated in the same manner as in Comparative Example 7 except that the organic compound represented by Chemical Formula 3 was used instead of the organic compound represented by Chemical Formula 2.

(比較例10)
化2で示される有機化合物の代わりに化3で示される有機化合物を用いる以外、比較例8と同様に電池を作製し、評価を行った。
(Comparative Example 10)
A battery was prepared and evaluated in the same manner as in Comparative Example 8 except that the organic compound represented by Chemical Formula 3 was used instead of the organic compound represented by Chemical Formula 2.

実施例25〜30および比較例9、10についてのレート特性、容量維持率、電池体積変化率について表6に示した。   Table 6 shows the rate characteristics, capacity retention rate, and battery volume change rate for Examples 25 to 30 and Comparative Examples 9 and 10.

Figure 0005618385
Figure 0005618385

(実施例31)
化2で示される有機化合物の代わりにメチレンメタンジスルホネートを用いる以外、実施例19と同様に電池を作製し、評価を行った。
(Example 31)
A battery was prepared and evaluated in the same manner as in Example 19 except that methylenemethane disulfonate was used instead of the organic compound represented by Chemical Formula 2.

(実施例32)
化2で示される有機化合物の代わりにメチレンメタンジスルホネートを用いる以外、実施例20と同様に電池を作製し、評価を行った。
(Example 32)
A battery was prepared and evaluated in the same manner as in Example 20 except that methylenemethane disulfonate was used instead of the organic compound represented by Chemical Formula 2.

(実施例33)
化2で示される有機化合物の代わりにメチレンメタンジスルホネートを用いる以外、実施例21と同様に電池を作製し、評価を行った。
(Example 33)
A battery was prepared and evaluated in the same manner as in Example 21 except that methylenemethane disulfonate was used instead of the organic compound represented by Chemical Formula 2.

(実施例34)
化2で示される有機化合物の代わりにメチレンメタンジスルホネートを用いる以外、実施例22と同様に電池を作製し、評価を行った。
(Example 34)
A battery was prepared and evaluated in the same manner as in Example 22 except that methylenemethane disulfonate was used instead of the organic compound represented by Chemical Formula 2.

(実施例35)
化2で示される有機化合物の代わりにメチレンメタンジスルホネートを用いる以外、実施例23と同様に電池を作製し、評価を行った。
(Example 35)
A battery was prepared and evaluated in the same manner as in Example 23 except that methylenemethane disulfonate was used instead of the organic compound represented by Chemical Formula 2.

(実施例36)
化2で示される有機化合物の代わりにメチレンメタンジスルホネートを用いる以外、実施例24と同様に電池を作製し、評価を行った。
(Example 36)
A battery was prepared and evaluated in the same manner as in Example 24 except that methylenemethane disulfonate was used instead of the organic compound represented by Chemical Formula 2.

(比較例12)
化2で示される有機化合物の代わりにメチレンメタンジスルホネートを用いる以外、比較例7と同様に電池を作製し、評価を行った。
(Comparative Example 12)
A battery was prepared and evaluated in the same manner as in Comparative Example 7 except that methylenemethane disulfonate was used instead of the organic compound represented by Chemical Formula 2.

(比較例13)
化2で示される有機化合物の代わりにメチレンメタンジスルホネートを用いる以外、比較例8と同様に電池を作製し、評価を行った。
(Comparative Example 13)
A battery was prepared and evaluated in the same manner as in Comparative Example 8 except that methylenemethane disulfonate was used instead of the organic compound represented by Chemical Formula 2.

実施例31〜36および比較例12、13についてのレート特性、容量維持率、電池体積変化率について表7に示した。   Table 7 shows the rate characteristics, capacity retention rate, and battery volume change rate for Examples 31 to 36 and Comparative Examples 12 and 13.

Figure 0005618385
Figure 0005618385

本発明のリチウムポリマー電池において、表6の実施例25〜29、比較例10に示すように、化2で示される有機化合物の代わりに化3で示される有機化合物を用いた場合においても、第一段階の充電電圧を放電下限電圧以上に設定し、ガス抜き工程を行うことにより、二段階充電を行わず満充電状態でガス抜きを行った電池と同等の特性を示すことが分かった。また、表6の実施例30、比較例10より、第一段階の充電電圧が放電下限電圧以下の場合は、やや特性が劣るものの、比較的良好な特性を示すことが分かった。   In the lithium polymer battery of the present invention, as shown in Examples 25 to 29 and Comparative Example 10 in Table 6, even when the organic compound represented by Chemical Formula 3 was used instead of the organic compound represented by Chemical Formula 2, It was found that by setting the one-stage charging voltage to be equal to or higher than the discharge lower limit voltage and performing the degassing step, the characteristics equivalent to those of the battery degassed in the fully charged state without performing the two-stage charging were shown. Further, from Example 30 and Comparative Example 10 in Table 6, it was found that when the charge voltage at the first stage was lower than the discharge lower limit voltage, relatively good characteristics were exhibited although the characteristics were slightly inferior.

また、本発明のリチウムポリマー電池において、表6の実施例25〜29、比較例11に示すように、第一段階の充電電圧を放電下限電圧以上に設定し、ガス抜き工程を行うことにより、二段階充電およびガス抜きを行わない電池よりも特性が良好であることが分かった。また、表6の実施例30、比較例11より、第一段階の充電電圧が放電下限電圧以下においても、二段階充電およびガス抜きを行わない電池よりも特性が良好であることが分かった。   Further, in the lithium polymer battery of the present invention, as shown in Examples 25 to 29 of Table 6 and Comparative Example 11, by setting the first stage charging voltage to be equal to or higher than the discharge lower limit voltage and performing the degassing step, It has been found that the characteristics are better than batteries without two-stage charging and degassing. Further, from Example 30 and Comparative Example 11 in Table 6, it was found that the characteristics were better than the battery that did not perform two-stage charging and degassing even when the first stage charging voltage was lower than the discharge lower limit voltage.

さらに、本発明のリチウムポリマー電池において、表7の実施例31〜35、比較例12に示すように、化2で示される有機化合物の代わりにメチレンメタンジスルホネートを用いた場合においても、第一段階の充電電圧を放電下限電圧以上に設定し、ガス抜き工程を行うことにより、二段階充電およびガス抜きを行わない電池よりも特性が良好であることが分かった。また、表7の実施例36、比較例13より、第一段階の充電電圧が放電下限電圧以下においても、二段階充電およびガス抜きを行わない電池よりも特性が良好であることが分かった。   Further, in the lithium polymer battery of the present invention, as shown in Examples 31 to 35 and Comparative Example 12 in Table 7, even when methylenemethane disulfonate was used instead of the organic compound represented by Chemical Formula 2, It was found that by setting the stage charge voltage to be equal to or higher than the discharge lower limit voltage and performing the degassing step, the characteristics were better than those of the battery not performing two-stage charge and degassing. Further, from Example 36 and Comparative Example 13 in Table 7, it was found that the characteristics were better than the battery that did not perform two-stage charging and degassing even when the first stage charging voltage was lower than the discharge lower limit voltage.

また、本発明のリチウムポリマー電池において、表7の実施例31〜35、比較例13に示すように、第一段階の充電電圧を放電下限電圧以上に設定し、ガス抜き工程を行うことにより、二段階充電およびガス抜きを行わない電池よりも特性が良好であることが分かった。また、表5の実施例36、比較例13より、第一段階の充電電圧が放電下限電圧以下においても、二段階充電およびガス抜きを行わない電池よりも特性が良好であることが分かった。   Further, in the lithium polymer battery of the present invention, as shown in Examples 31 to 35 and Comparative Example 13 in Table 7, by setting the first stage charging voltage to be equal to or higher than the discharge lower limit voltage and performing the degassing step, It has been found that the characteristics are better than batteries without two-stage charging and degassing. Further, from Example 36 and Comparative Example 13 in Table 5, it was found that the characteristics were better than the battery that did not perform two-stage charging and degassing even when the first stage charging voltage was lower than the discharge lower limit voltage.

1 正極
2 Al箔
3 正極活物質塗布部
4 正極活物質非塗布部
5 正極活物質片面塗布部
6 正極導電タブ
7 負極
8 Cu箔
9 負極活物質塗布部
10 負極活物質片面塗布部
11 負極活物質非塗布部
12 負極導電タブ
13 セパレータ
14 電池
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Al foil 3 Positive electrode active material application part 4 Positive electrode active material non-application part 5 Positive electrode active material single side application part 6 Positive electrode conductive tab 7 Negative electrode 8 Cu foil 9 Negative electrode active material application part 10 Negative electrode active material single side application part 11 Negative electrode active Substance non-applied portion 12 Negative electrode conductive tab 13 Separator 14 Battery

Claims (7)

少なくとも正極と、負極と、溶媒と、有機化合物からなる添加剤を含有する電解質とを外装体に封入する工程および、前記添加剤が分解される電圧以上、満充電電圧未満まで充電する第一の充電工程および、前記第一の充電工程後に外装体を開封して発生ガスを除去する工程および、外装体を封口する工程および、満充電まで充電する第二の充電工程を有し、
前記有機化合物が、化1、化2および化3の化合物番号1〜6で示される化合物から選ばれる少なくとも一種、またはメチレンメタンジスルホネート、エチレンメタンジスルホネートおよびプロピレンメタンジスルホネートから選ばれる少なくとも一種の環状ジスルホン酸エステルであることを特徴とするリチウム二次電池の製造方法;
Figure 0005618385

Figure 0005618385

Figure 0005618385

At least a positive electrode, a negative electrode, a step of enclosing a solvent and an electrolyte containing an additive consisting of organic compounds in the exterior body and a voltage more than the additive is decomposed, first to charge to less than the full-charge voltage charging process and the steps of removing a generated gas and opening the exterior body after said first charging step and, and processes for sealing the exterior body, have a second charging step of charging to the full charge,
The organic compound is at least one selected from the compounds represented by the compound numbers 1 to 6 of Chemical Formula 1, Chemical Formula 2 and Chemical Formula 3, or at least one selected from methylenemethane disulfonate, ethylenemethane disulfonate and propylenemethane disulfonate. A method for producing a lithium secondary battery, which is a cyclic disulfonic acid ester ;
Figure 0005618385

Figure 0005618385

Figure 0005618385

.
前記添加剤の最低空軌道エネルギー(LUMO)が、−1.5(eV)以上0(eV)以下であることを特徴とする請求項1に記載のリチウム二次電池の製造方法。   2. The method of manufacturing a lithium secondary battery according to claim 1, wherein a minimum empty orbit energy (LUMO) of the additive is −1.5 (eV) or more and 0 (eV) or less. 前記第一の充電工程における到達電圧は、放電下限電圧以上とすることを特徴とする請求項1又は2に記載のリチウム二次電池の製造方法。   The method for producing a lithium secondary battery according to claim 1, wherein the ultimate voltage in the first charging step is equal to or higher than a discharge lower limit voltage. 前記溶媒が少なくとも鎖状カーボネートおよび環状カーボネートを含有することを特徴とする請求項1〜3のいずれか1項に記載のリチウム二次電池の製造方法。   The method for producing a lithium secondary battery according to claim 1, wherein the solvent contains at least a chain carbonate and a cyclic carbonate. 前記鎖状カーボネートおよび環状カーボネートとして、それぞれ、エチレンカーボネート(EC)およびジエチルカーボネート(DEC)を含有することを特徴とする請求項4に記載のリチウム二次電池の製造方法。   The method for producing a lithium secondary battery according to claim 4, wherein the chain carbonate and the cyclic carbonate contain ethylene carbonate (EC) and diethyl carbonate (DEC), respectively. 前記負極が活物質として黒鉛を含有することを特徴とする請求項1〜のいずれか1項に記載のリチウム二次電池の製造方法。 The negative electrode is a method for manufacturing a lithium secondary battery according to any one of claims 1 to 5, characterized in that it contains graphite as an active material. 前記外装体がラミネート材からなることを特徴とする請求項1〜のいずれか1項に記載のリチウム二次電池の製造方法。 Method for producing a lithium secondary battery according to any one of claims 1 to 6 wherein said outer body is characterized by comprising the laminated material.
JP2012257491A 2007-03-16 2012-11-26 Method for producing lithium polymer battery Active JP5618385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012257491A JP5618385B2 (en) 2007-03-16 2012-11-26 Method for producing lithium polymer battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007068434 2007-03-16
JP2007068434 2007-03-16
JP2012257491A JP5618385B2 (en) 2007-03-16 2012-11-26 Method for producing lithium polymer battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007315330A Division JP5240818B2 (en) 2007-03-16 2007-12-06 Method for producing lithium polymer battery

Publications (2)

Publication Number Publication Date
JP2013048113A JP2013048113A (en) 2013-03-07
JP5618385B2 true JP5618385B2 (en) 2014-11-05

Family

ID=39985192

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2007315330A Active JP5240818B2 (en) 2007-03-16 2007-12-06 Method for producing lithium polymer battery
JP2012257491A Active JP5618385B2 (en) 2007-03-16 2012-11-26 Method for producing lithium polymer battery

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2007315330A Active JP5240818B2 (en) 2007-03-16 2007-12-06 Method for producing lithium polymer battery

Country Status (1)

Country Link
JP (2) JP5240818B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5240818B2 (en) * 2007-03-16 2013-07-17 Necエナジーデバイス株式会社 Method for producing lithium polymer battery
JP6010302B2 (en) * 2012-01-20 2016-10-19 オートモーティブエナジーサプライ株式会社 Method for producing non-aqueous electrolyte secondary battery
JP6224399B2 (en) * 2013-10-01 2017-11-01 オートモーティブエナジーサプライ株式会社 Method for producing non-aqueous electrolyte secondary battery
JP6287015B2 (en) * 2013-10-03 2018-03-07 株式会社Gsユアサ Non-aqueous electrolyte secondary battery manufacturing method and non-aqueous electrolyte secondary battery
JP6457272B2 (en) * 2015-01-07 2019-01-23 積水化学工業株式会社 Method for reducing uneven charging of secondary battery and method for manufacturing secondary battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4166906B2 (en) * 1999-06-08 2008-10-15 Tdk株式会社 Manufacturing method of sheet type battery
JP4608735B2 (en) * 2000-05-16 2011-01-12 ソニー株式会社 Non-aqueous electrolyte secondary battery charging method
KR100412092B1 (en) * 2001-05-03 2003-12-24 삼성에스디아이 주식회사 Polymer electrolyte and lithium battery employing the same
JP4175792B2 (en) * 2001-08-27 2008-11-05 セントラル硝子株式会社 Electrolytic solution or gel electrolyte for electrochemical device and battery
JP4577482B2 (en) * 2004-02-06 2010-11-10 日本電気株式会社 Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP4876409B2 (en) * 2005-03-01 2012-02-15 日本電気株式会社 Secondary battery electrolyte and secondary battery using the same
JP5240818B2 (en) * 2007-03-16 2013-07-17 Necエナジーデバイス株式会社 Method for producing lithium polymer battery

Also Published As

Publication number Publication date
JP5240818B2 (en) 2013-07-17
JP2013048113A (en) 2013-03-07
JP2008262895A (en) 2008-10-30

Similar Documents

Publication Publication Date Title
JP7239267B2 (en) Electrochemical Cells Containing Lewis Acid:Lewis Base Complex Electrolyte Additives
US9362592B2 (en) Method of preparing gel polymer electrolyte secondary battery and gel polymer electrolyte secondary battery
KR101999615B1 (en) non-aqueous liquid electrolyte and lithium secondary battery comprising the same
WO2011052428A1 (en) Nonaqueous electrolyte solution and device comprising same
JP2007273445A (en) Polymer gel electrolyte and polymer secondary battery using the same
JP2004103573A (en) Electrolyte for lithium cell and lithium cell containing it
WO2009035222A1 (en) Non-aqueous electrolyte lithium secondary battery
CN110462909B (en) Lithium ion secondary battery
JP2009218065A (en) Lithium secondary battery and method for manufacturing the same
JP4014816B2 (en) Lithium polymer secondary battery
EP2149172A1 (en) Secondary battery and manufacturing method of the same
JP5618385B2 (en) Method for producing lithium polymer battery
KR20040065152A (en) Non aqueous electrolyte and rechargeable lithium battery
JP2011154983A (en) Lithium ion polymer battery
EP3301749A1 (en) Method for producing secondary battery
JPWO2011004483A1 (en) Polymer gel electrolyte and polymer secondary battery using the same
JP2008112722A (en) Lithium polymer battery
JP2008287932A (en) Lithium ion polymer battery
KR20110088372A (en) Nonaqueous secondary battery
JP5105807B2 (en) Lithium polymer battery
JP2012248544A (en) Lithium polymer battery
JP6116029B2 (en) Gel electrolyte and polymer secondary battery using the same
JP2009158460A (en) Nonaqueous electrolyte secondary battery
JP4707313B2 (en) Non-aqueous solvent type secondary battery
JP7442660B2 (en) Method for producing a gel polymer electrolyte secondary battery, and a gel polymer electrolyte secondary battery produced thereby

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20140513

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140911

R150 Certificate of patent or registration of utility model

Ref document number: 5618385

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250