JP2008192571A - Measuring device for physical property of diffusion layer - Google Patents

Measuring device for physical property of diffusion layer Download PDF

Info

Publication number
JP2008192571A
JP2008192571A JP2007028549A JP2007028549A JP2008192571A JP 2008192571 A JP2008192571 A JP 2008192571A JP 2007028549 A JP2007028549 A JP 2007028549A JP 2007028549 A JP2007028549 A JP 2007028549A JP 2008192571 A JP2008192571 A JP 2008192571A
Authority
JP
Japan
Prior art keywords
diffusion layer
measuring
board
air permeability
physical property
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007028549A
Other languages
Japanese (ja)
Inventor
Susumu Minami
晋 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007028549A priority Critical patent/JP2008192571A/en
Publication of JP2008192571A publication Critical patent/JP2008192571A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To acquire a measuring device for the physical property of a diffusion layer capable of measuring two or more physical properties of a diffusion layer in continuous processes using one measuring device. <P>SOLUTION: The measuring device A for a physical property of a diffusion layer comprises a lower disk 10 and upper disk 30, in which zones coming in contact with the diffusion layer P are set up to be nonconductive, capable of airtightly sandwiching a diffusion layer P, a weighing means for weighing weight of the diffusion layer p mounted on the lower disk 10, a gap measuring means for measuring a gap between the lower disk 10 and upper disk 30, an air permeability measuring means for supplying a gas for measuring to the sandwiched diffusion layer P and measuring air permeability of the diffusion layer P by measuring back pressure of the supplied gas, and a contact resistance measuring means for measuring contact resistance on the surface of the diffusion layer by applying voltage on the surface of the sandwiched diffusion layer P. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、燃料電池を構成する膜電極接合体で用いられる拡散層の諸物性を測定するための装置に関する。   The present invention relates to an apparatus for measuring various physical properties of a diffusion layer used in a membrane electrode assembly constituting a fuel cell.

例えば固体高分子電解質型燃料電池では、図3に示すように、電解質膜1とその表裏面に塗布された電極触媒層2、2からなる電極(MEA:Membrane-Electrode Assembly)3が用いられ、該電極3は、拡散層4、4を介して、燃料ガス(水素)および酸化ガス(酸素、通常は空気)を供給するための流体流路5を形成しかつ集電体として機能するセレータ6により挟持されて単位セルAとされる。拡散層4は燃料ガスや酸化ガスを効率よく拡散させるためのものでありカーボンクロスやカーボンペーパーなどが用いられる。   For example, in a polymer electrolyte fuel cell, as shown in FIG. 3, an electrode (MEA: Membrane-Electrode Assembly) 3 comprising an electrolyte membrane 1 and electrode catalyst layers 2 and 2 applied to the front and back surfaces thereof is used. The electrode 3 forms a fluid flow path 5 for supplying a fuel gas (hydrogen) and an oxidizing gas (oxygen, usually air) through the diffusion layers 4 and 4 and functions as a current collector 6. To be unit cell A. The diffusion layer 4 is for efficiently diffusing the fuel gas and the oxidizing gas, and carbon cloth, carbon paper, or the like is used.

燃料電池あるいはその単位セルは、前記のように、電解質膜1、電極触媒層2、拡散層4、セパレータ6などの複数の部材が有機的に組み合わされて構成されており、その放電(発電)性能の良否は、それらの組み合わせ状態に起因する場合もあり、個々の構成部材それ自身に起因する場合もある。個々の構成部材について、個々に客観的な性能評価を行うことができれば、得られたデータは効率の良い燃料電池(単位セル)を設計するのにきわめて有効なものとなる。   As described above, the fuel cell or its unit cell is configured by organically combining a plurality of members such as the electrolyte membrane 1, the electrode catalyst layer 2, the diffusion layer 4, and the separator 6, and discharge (power generation) thereof. The quality of performance may be attributed to a combination state thereof, or may be attributed to individual component members themselves. If objective performance evaluation can be performed individually for each component member, the obtained data will be extremely effective for designing an efficient fuel cell (unit cell).

そのような観点から、特許文献1、2には、燃料電池を構成する個々の部材のうち、特に拡散層に注目し、当該拡散層の透気度(通気性能)についての性能評価を拡散層単独で行い得るようにした性能評価装置が記載されている。   From such a point of view, Patent Documents 1 and 2 particularly focus on the diffusion layer among the individual members constituting the fuel cell and evaluate the performance of the diffusion layer in terms of air permeability (air permeability). A performance evaluation apparatus that can be performed alone is described.

特開2004−363041号公報JP 2004-363041 A 特開2004−178881号公報Japanese Patent Laid-Open No. 2004-178881

効率の良い燃料電池(単位セル)を得るために、そこで使用する拡散層について透気度に関するデータを取得することは有効であるが、当該拡散層の厚みや秤量、さらにはセパレータあるいは触媒層と接する面での接触抵抗値等の他の物性値についての客観的データを入手することも、また有効かつ必要である。現在、拡散層の諸物性値を入手するのに、透気度については前記特許文献1あるいは2に記載するような装置が用いられ、また、厚みや秤量や接触抵抗等の測定には、それぞれ専用の測定値が用いられている。すなわち、一枚の拡散層について必要な諸物性値を入手するのに、他種類の測定装置を用い、かつ多くの作業時間を必要としている。   In order to obtain an efficient fuel cell (unit cell), it is effective to acquire data on the air permeability of the diffusion layer used therein, but the thickness and weight of the diffusion layer, and further, the separator or catalyst layer It is also valid and necessary to obtain objective data on other physical property values such as contact resistance values at the contact surface. Currently, to obtain various physical property values of the diffusion layer, an apparatus as described in Patent Document 1 or 2 is used for air permeability, and for measuring thickness, weighing, contact resistance, etc., respectively. Dedicated measurements are used. That is, in order to obtain various physical property values necessary for one diffusion layer, another type of measuring device is used and a lot of work time is required.

本発明は、上記のような事情に鑑みてなされたものであり、1つの測定装置でもって拡散層の2つ以上の物性値を連続するプロセスで測定することを可能とする拡散層物性値測定装置を提供することを課題とする。   The present invention has been made in view of the circumstances as described above, and it is possible to measure a physical property value of a diffusion layer that enables measurement of two or more physical property values of the diffusion layer by a continuous process with a single measuring device. It is an object to provide an apparatus.

本発明による拡散層物性値測定装置は、拡散層の2以上の物性値を測定する装置であって、被測定体である拡散層を気密的に挟持することができかつ少なくとも前記拡散層と接する領域は非導電性とされている下盤と上盤とを備えており、さらに、前記下盤に載置した拡散層の重量を測定する秤量手段と、前記下盤と前記上盤との間の隙間を測定する隙間測定手段と、前記下盤と前記上盤の間に挟持した拡散層に対して測定用ガスを供給し供給したガスの背圧を測定して該拡散層の透気度を測定する透気度測定手段と、前記下盤と前記上盤の間に挟持した拡散層の表面に電圧をかけて該拡散層表面の接触抵抗を測定する接触抵抗測定手段とを少なくとも備えることを特徴とする。   A diffusion layer property value measuring device according to the present invention is a device for measuring two or more property values of a diffusion layer, and can hermetically sandwich a diffusion layer as a measured object and at least comes into contact with the diffusion layer. The region includes a lower plate and an upper plate made non-conductive, and further includes a weighing means for measuring the weight of the diffusion layer placed on the lower plate, and a space between the lower plate and the upper plate. A gap measuring means for measuring the gap between the lower plate and the upper plate, measuring gas is supplied to the diffusion layer sandwiched between the lower plate and the back pressure of the supplied gas to measure the air permeability of the diffusion layer Air permeability measuring means for measuring the pressure, and contact resistance measuring means for measuring the contact resistance of the surface of the diffusion layer by applying a voltage to the surface of the diffusion layer sandwiched between the lower plate and the upper plate. It is characterized by.

上記の測定装置では、拡散層の2以上の物性値を一連のプロセスを踏むことにより測定することができる。測定に当たっては、下盤と上盤とを離間した状態におき、下盤の非導電性とされた領域に被測定体である拡散層をセットする。下盤には例えば電磁力平衡式秤量機のような秤量手段が備えられており、前記拡散層の秤量が行われる。次にあるいは秤量中に、下盤および上盤の双方あるいはいずれか一方を移動して、両盤の間に前記拡散層を気密的に挟持する。挟持状態が終了した時点で、下盤と上盤との間の隙間が隙間測定手段により測定される。この測定値は当該拡散層の厚さとなる。盤の移動距離を変えることにより、非圧縮状態での拡散層の厚さを測定することもでき、実際の燃料電池におけるようにある程度圧縮された状態の拡散層の厚さを測定することもできる。隙間測定手段としては、ダイヤルゲージのような手段を採用することができる。   In the above measurement apparatus, two or more physical property values of the diffusion layer can be measured by going through a series of processes. In the measurement, the lower board and the upper board are separated from each other, and a diffusion layer as a measurement object is set in a non-conductive region of the lower board. The lower board is provided with weighing means such as an electromagnetic force balance type weighing machine, and the diffusion layer is weighed. Next, or during weighing, both or either of the lower board and the upper board are moved, and the diffusion layer is hermetically sandwiched between the two boards. When the clamping state is finished, the gap between the lower board and the upper board is measured by the gap measuring means. This measured value is the thickness of the diffusion layer. By changing the travel distance of the panel, the thickness of the diffusion layer in the uncompressed state can also be measured, and the thickness of the diffusion layer in a state compressed to some extent as in an actual fuel cell can also be measured. . A means such as a dial gauge can be adopted as the gap measuring means.

拡散層の透気度を測定するには、透気度測定手段を用いる。すなわち、下盤と上盤との間に拡散層を気密状態に挟持した後、透気度測定手段により、挟持した拡散層に対して測定用ガスを供給し、供給したガスの背圧あるいは背圧の変化を測定する。より具体的には、前記透気度測定手段は、前記下盤と前記上盤の間に気密状態に挟持した拡散層の面内透気度と法線透気度の双方を測定できるように、前記下盤と前記上盤のいずれか一方に測定ガスの供給部を備え、前記下盤と前記上盤の双方に排気部とを備える。   In order to measure the air permeability of the diffusion layer, an air permeability measuring means is used. That is, after the diffusion layer is sandwiched between the lower plate and the upper plate in an airtight state, the gas for measurement is supplied to the sandwiched diffusion layer by the air permeability measurement means, and the back pressure or back of the supplied gas is supplied. Measure the change in pressure. More specifically, the air permeability measuring means can measure both in-plane air permeability and normal air permeability of the diffusion layer sandwiched between the lower plate and the upper plate in an airtight state. One of the lower board and the upper board is provided with a measurement gas supply unit, and both the lower board and the upper board are provided with exhaust parts.

測定ガスの供給部は加圧ガス供給源に接続しており、一定圧力の測定ガスが気密状態に挟持されている拡散層の一方の面から供給される。供給された測定ガスは拡散槽内を通って、好ましくは大気側に開放した排気部から排出される。拡散層のガス透気度に応じて供給するガスの背圧が変化するので、ガス背圧を測定することにより、当該拡散層の透気度を測定することができる。測定ガス供給部が設けてある側の排気部を閉鎖し、対向する盤に形成した排気部のみを開放することにより、法線方向の透気度が測定でき、測定ガス供給部が設けてある側の排気部を開放し、対向する盤に形成した排気部を閉鎖することにより、面内方向の透気度を測定することができる。   The measurement gas supply unit is connected to a pressurized gas supply source, and a measurement gas having a constant pressure is supplied from one surface of the diffusion layer sandwiched in an airtight state. The supplied measurement gas passes through the diffusion tank and is preferably discharged from an exhaust section opened to the atmosphere side. Since the back pressure of the supplied gas changes according to the gas permeability of the diffusion layer, the gas permeability of the diffusion layer can be measured by measuring the gas back pressure. The air permeability in the normal direction can be measured by closing the exhaust part on the side where the measurement gas supply part is provided and opening only the exhaust part formed on the opposing board, and the measurement gas supply part is provided The air permeability in the in-plane direction can be measured by opening the exhaust part on the side and closing the exhaust part formed on the opposing board.

拡散層表面の接触抵抗を測定には、接触抵抗測定手段に用いる。すなわち、前記下盤と前記上盤の間に挟持した拡散層の表面に電圧をかけ、式:(電圧)/(電流)×(電極長さ)/(電極間隔)により、該拡散層表面の接触抵抗を測定する。より好ましい態様では、前記下盤と前記上盤の間に挟持した拡散層の上面側と下面側の接触抵抗を同時に測定できるように、前記下盤と前記上盤のそれぞれに一対の電極を備えるようにする。   For measuring the contact resistance on the surface of the diffusion layer, it is used as a contact resistance measuring means. That is, a voltage is applied to the surface of the diffusion layer sandwiched between the lower plate and the upper plate, and the surface of the diffusion layer is expressed by the formula: (voltage) / (current) × (electrode length) / (electrode interval). Measure the contact resistance. In a more preferred aspect, each of the lower board and the upper board is provided with a pair of electrodes so that the contact resistance on the upper surface side and the lower surface side of the diffusion layer sandwiched between the lower board and the upper board can be measured simultaneously. Like that.

なお、前記透気度測定と接触抵抗測定は、どちらを先に行ってもよい。また、上記した測定項目のすべてを行う必要もなく、被測定体である拡散層の複数個の物性値のうち、そのときに必要となるいずれかの物性値のみを測定するように拡散層物性値測定装置の運転を行うようにしてもよい。   Note that either the air permeability measurement or the contact resistance measurement may be performed first. In addition, it is not necessary to perform all of the above measurement items, and among the plurality of physical property values of the diffusion layer that is the object to be measured, only one of the physical property values required at that time is measured. The value measuring device may be operated.

本発明による拡散層物性値測定装置を用いることにより、燃料電池で使用される拡散層の2つ以上の物性値を一連のプロセスないで測定することが可能となり、物性値測定の迅速化が可能となる。   By using the diffusion layer property value measuring apparatus according to the present invention, it is possible to measure two or more property values of a diffusion layer used in a fuel cell without a series of processes, and it is possible to speed up the property value measurement. It becomes.

以下、図面を参照しながら、本発明による拡散層物性値測定装置の一実施の形態を説明する。図1はその概略的な側面図であり、図2は前記装置の下盤および上盤における電解質膜が接する領域の概略図である。   Hereinafter, an embodiment of a diffusion layer physical property measuring apparatus according to the present invention will be described with reference to the drawings. FIG. 1 is a schematic side view thereof, and FIG. 2 is a schematic view of a region where the electrolyte membrane is in contact with the lower plate and the upper plate of the apparatus.

この例において、拡散層物性値測定装置Aは、下盤10と上盤30を備える。下盤10には鉛直方向の延びる支柱11が取り付けられ、該支柱11には下盤10から所定高さの位置に箱体12が固定されている。該箱体12内には、作動方向が前記下盤10に対して鉛直方向であるエアシリンダ装置13と、エアシリンダ装置13のピストン14が移動する距離を計測することのできるダイヤルゲージのような距離計測手段(不図示)が内装されている。そして、前記上盤30は前記ピストン14の先端に装着されている。   In this example, the diffusion layer property value measuring apparatus A includes a lower board 10 and an upper board 30. A column 11 extending in the vertical direction is attached to the lower plate 10, and a box 12 is fixed to the column 11 at a predetermined height from the lower plate 10. In the box 12, such as a dial gauge that can measure the distance that the piston 14 of the air cylinder device 13 moves and the air cylinder device 13 whose operating direction is perpendicular to the lower plate 10. A distance measuring means (not shown) is internally provided. The upper board 30 is attached to the tip of the piston 14.

下盤10は、上面側に拡散層Pの載置プレート15を有し、該載置プレート15の少なくとも上面側は非導電性材料(例えば、テフロンコーティング)により作られている。図示しないが、下盤10または載置プレート15には、載置プレート15に載置される拡散層Pの重さを秤量できる電磁力平衡式秤量機のような秤量手段が取り付けられる。   The lower board 10 has a mounting plate 15 having a diffusion layer P on the upper surface side, and at least the upper surface side of the mounting plate 15 is made of a non-conductive material (for example, Teflon coating). Although not shown, weighing means such as an electromagnetic force balance type weighing machine capable of weighing the diffusion layer P placed on the placing plate 15 is attached to the lower plate 10 or the placing plate 15.

図2aは前記載置プレート15上から見た図であり、その外縁近傍にはOリング16が全周にわたって取り付けてある。その内側には、やはり全周にわたって、第1の測定ガス排出口17が形成されており、さらにその内側には、やはり全周にわたって、測定ガス封入口18が形成されている。図1に示すように、前記第1の測定ガス排出口17は、大気に開放するガス出口19に連通しており、前記測定ガス封入口18は、所定圧の測定ガス源(不図示)に接続する加圧ガス入口20に接続している。該加圧ガス入口20から測定ガス封入口18に至る管路21にはガス圧力測定器22が取り付けてある。また、第1の測定ガス排出口17には図示しない制御機構で操作される開閉シャッタ(不図示)が取り付けてある。   FIG. 2 a is a view from above the mounting plate 15, and an O-ring 16 is attached to the entire periphery in the vicinity of the outer edge. A first measurement gas discharge port 17 is also formed on the inner side of the entire circumference, and a measurement gas filling port 18 is also formed on the inner side of the first measurement gas discharge port 17. As shown in FIG. 1, the first measurement gas discharge port 17 communicates with a gas outlet 19 opened to the atmosphere, and the measurement gas filling port 18 is connected to a measurement gas source (not shown) having a predetermined pressure. Connected to the pressurized gas inlet 20 to be connected. A gas pressure measuring device 22 is attached to a pipe line 21 extending from the pressurized gas inlet 20 to the measurement gas filling port 18. Further, an opening / closing shutter (not shown) operated by a control mechanism (not shown) is attached to the first measurement gas discharge port 17.

載置プレート15の前記測定ガス封入口18で囲まれた領域内の表面には、対向するようにして陽極電極23と陰極電極24が取り付けてあり、図1に示すように、陽極電極23と陰極電極24は電源25に接続している。   An anode electrode 23 and a cathode electrode 24 are attached to the surface in the region surrounded by the measurement gas sealing port 18 of the mounting plate 15 so as to face each other. As shown in FIG. The cathode electrode 24 is connected to a power source 25.

上盤30は、下面側に、前記下盤10の載置プレート15上に置かれた拡散層Pに密着することのできる密着プレート31を有する。該密着プレート31の少なくとも上面側は、前記載置プレート15と同様、非導電性材料(例えば、テフロンコーティング)により作られている。   The upper board 30 has a contact plate 31 that can be in close contact with the diffusion layer P placed on the mounting plate 15 of the lower board 10 on the lower surface side. At least the upper surface side of the contact plate 31 is made of a non-conductive material (for example, Teflon coating) in the same manner as the mounting plate 15 described above.

図2bは前記密着プレート31を下から見た図であり、その外縁近傍における前記載置プレート15に形成した第1の測定ガス排出口17に対向する位置には、第2の測定ガス排出口32が形成されている。そして、図1に示すように、前記第2の測定ガス排出口32は、大気に開放するガス出口33に連通している。さらに、密着プレート31の表面における前記載置プレート15に取り付けた陽極電極23と陰極電極24に対向する位置には、陽極電極34と陰極電極35が取り付けてあり、2つの電極は電源36に接続している。   FIG. 2B is a view of the contact plate 31 as viewed from below, and a second measurement gas discharge port is provided at a position facing the first measurement gas discharge port 17 formed in the mounting plate 15 in the vicinity of the outer edge thereof. 32 is formed. As shown in FIG. 1, the second measurement gas discharge port 32 communicates with a gas outlet 33 that opens to the atmosphere. Further, an anode electrode 34 and a cathode electrode 35 are attached at positions facing the anode electrode 23 and the cathode electrode 24 attached to the mounting plate 15 on the surface of the contact plate 31, and the two electrodes are connected to a power source 36. is doing.

上記拡散層物性値測定装置Aの使用態様(拡散層の諸物性値の測定態様)の一例を説明する。測定開始に当たり、図示しない制御装置を操作してエアシリンダ装置13を作動し、下盤10と上盤30との間隔を広げるとともに、下盤10と上盤30との間の距離を制御装置内のメモリーに記憶させる。その状態で、被測定体である拡散層Pを下盤10の載置プレート15の上に置く。前記した秤量手段は載置された拡散層Pの重さを秤量し、制御装置内のメモリーに記憶させる。   An example of the usage mode (measurement mode of various physical property values of the diffusion layer) of the diffusion layer physical property value measuring apparatus A will be described. At the start of measurement, a control device (not shown) is operated to operate the air cylinder device 13 to widen the distance between the lower board 10 and the upper board 30 and to set the distance between the lower board 10 and the upper board 30 in the control apparatus. Store in the memory. In this state, the diffusion layer P that is the object to be measured is placed on the mounting plate 15 of the lower panel 10. The weighing means measures the weight of the placed diffusion layer P and stores it in the memory in the control device.

再度、エアシリンダ装置13を作動して上盤30を下盤10に接近させ、載置プレート15上に載置した拡散層Pの上面に上盤30に設けた密着プレート31が密着した状態とする。その状態では、Oリング16が作用して、拡散層Pは上盤30を下盤10の間で気密的に挟持された状態となる。また、当初の状態から拡散層Pに密着するまでの距離が距離計測手段により計測され、その値が制御装置に送られる。制御装置は、メモリーが記憶している当初値と前記移動距離との差分を取ることにより、その状態での載置プレート15と密着プレート31との間の隙間、すなわち拡散層Pの厚さを演算し、その値をメモリーに記憶する。   Again, the air cylinder device 13 is operated to bring the upper plate 30 closer to the lower plate 10, and the contact plate 31 provided on the upper plate 30 is in close contact with the upper surface of the diffusion layer P placed on the placement plate 15. To do. In this state, the O-ring 16 acts and the diffusion layer P is in a state in which the upper board 30 is airtightly sandwiched between the lower boards 10. Further, the distance from the initial state to the close contact with the diffusion layer P is measured by the distance measuring means, and the value is sent to the control device. The control device takes the difference between the initial value stored in the memory and the moving distance, thereby determining the gap between the mounting plate 15 and the contact plate 31 in that state, that is, the thickness of the diffusion layer P. Calculate and store the value in memory.

通気度を測定するに当たっては、制御装置を操作して、加圧された測定ガスを加圧ガス入口20から管路21を通して載置プレート15に形成した測定ガス封入口18に送り込む。当初は、第1の測定ガス排出口17および第2の測定ガス排出口32に取り付けた開閉シャッタを双方とも閉じておく。その状態で、管路21に取り付けたガス圧力測定器22の読み取り値を制御装置のメモリーに記憶する。その後、第1の測定ガス排出口17側の開閉シャッタのみを開くと、測定ガス封入口18から供給される測定ガスは、拡散層P内を面内方向に移動して、第1の測定ガス排出口17から大気に排出される。測定ガスが排出されているときのガス圧力測定器22の読み取り値(すなわち、背圧)が制御装置に送られる。制御装置はメモリーに記憶した当初の読み取り値と送り込まれた読み取り値の差分を演算し、その値をベースとして、拡散層Pの面内方向の通気度を演算するとともに、メモリーに格納する。   In measuring the air permeability, the controller is operated to send the pressurized measurement gas from the pressurized gas inlet 20 through the conduit 21 to the measurement gas filling port 18 formed in the mounting plate 15. Initially, both the opening and closing shutters attached to the first measurement gas discharge port 17 and the second measurement gas discharge port 32 are closed. In this state, the reading value of the gas pressure measuring device 22 attached to the pipe line 21 is stored in the memory of the control device. Thereafter, when only the open / close shutter on the first measurement gas discharge port 17 side is opened, the measurement gas supplied from the measurement gas filling port 18 moves in the in-plane direction within the diffusion layer P, and the first measurement gas is supplied. The gas is discharged from the discharge port 17 to the atmosphere. The reading value (i.e., back pressure) of the gas pressure measuring device 22 when the measurement gas is discharged is sent to the control device. The control device calculates the difference between the original reading value stored in the memory and the reading value sent in, calculates the air permeability in the in-plane direction of the diffusion layer P based on this value, and stores it in the memory.

次に、第1の測定ガス排出口17側の開閉シャッタを閉じ、第2の測定ガス排出口32側の開閉シャッタを開く。それにより、測定ガス封入口18から供給される測定ガスは、拡散層P内を法線方向に移動して、第2の測定ガス排出口32から大気に排出される。測定ガスが排出されているときのガス圧力測定器22の読み取り値(すなわち、背圧)から、制御装置は、前記と同様にして、拡散層Pの法線方向の通気度を演算するとともにメモリーに格納する。   Next, the open / close shutter on the first measurement gas discharge port 17 side is closed, and the open / close shutter on the second measurement gas discharge port 32 side is opened. Thereby, the measurement gas supplied from the measurement gas filling port 18 moves in the normal direction in the diffusion layer P and is discharged from the second measurement gas discharge port 32 to the atmosphere. From the reading value (ie, back pressure) of the gas pressure measuring device 22 when the measurement gas is discharged, the control device calculates the air permeability in the normal direction of the diffusion layer P and stores the memory in the same manner as described above. To store.

拡散層Pの接触抵抗を測定するに当たっては、前記電源25から電極23,24に通電し、電源36から電極34,35に通電する。拡散層Pのいずれか一方の面の接触抵抗のみを測定したい場合には、その面に対応する電極のみに電力を供給する。対向する電極間を流れる電流値と電源の電圧をベースとして、制御装置は拡散層Pのいずれか一方の面あるいは双方の面の接触抵抗を演算するとともに、その値をメモリーに格納する。   In measuring the contact resistance of the diffusion layer P, power is supplied from the power source 25 to the electrodes 23 and 24, and power is supplied from the power source 36 to the electrodes 34 and 35. When it is desired to measure only the contact resistance of one surface of the diffusion layer P, power is supplied only to the electrode corresponding to that surface. Based on the value of the current flowing between the electrodes facing each other and the voltage of the power supply, the control device calculates the contact resistance of one or both surfaces of the diffusion layer P and stores the value in the memory.

装置Aの使用者は、メモリー内から所望の演算値を取り出すことにより、被測定体である拡散層Pの複数個の物性値を同時に入手することができる。測定後の拡散層Pを装置Aから取り出し、新たな拡散層を再度セットして、同様な操作を行いメモリーに演算結果を格納することを繰り返すことにより、多くの拡散層の諸物性値を一つの群として認識しかつ分析することも可能となる。   The user of the apparatus A can simultaneously obtain a plurality of physical property values of the diffusion layer P that is the object to be measured by taking out a desired calculated value from the memory. The measured diffusion layer P is taken out from the device A, a new diffusion layer is set again, the same operation is repeated, and the calculation results are stored in the memory. It can also be recognized and analyzed as a group.

本発明による拡散層物性値測定装置の一実施の形態の概略的な側面図。1 is a schematic side view of an embodiment of a diffusion layer property value measuring apparatus according to the present invention. 図1に示す装置での下盤および上盤における電解質膜が接する領域の概略図であり、図2aは下盤側を、図2bは上盤側を示している。FIG. 2 is a schematic view of a region where the electrolyte membrane is in contact with the lower board and the upper board in the apparatus shown in FIG. 1, FIG. 2 a shows the lower board side and FIG. 燃料電池(単位セル)を説明するための概略図。Schematic for demonstrating a fuel cell (unit cell).

符号の説明Explanation of symbols

A…拡散層物性値測定装置、P…拡散層、10…下盤、11…支柱、12…箱体、13…エアシリンダ装置、14…ピストン、15…載置プレート、16…Oリング、17…第1の測定ガス排出口、18…測定ガス封入口、19…大気に開放するガス出口、20…加圧ガス入口、21…管路、22…ガス圧力測定器、23…陽極電極、24…陰極電極、25…電源、30…上盤、31…密着プレート、32…第2の測定ガス排出口、33…大気に開放するガス出口、34…陽極電極、35…陰極電極、36…電源   A ... Diffusion layer property value measuring device, P ... Diffusion layer, 10 ... Lower panel, 11 ... Column, 12 ... Box, 13 ... Air cylinder device, 14 ... Piston, 15 ... Mounting plate, 16 ... O-ring, 17 DESCRIPTION OF SYMBOLS 1st measurement gas discharge port, 18 ... Measurement gas filling port, 19 ... Gas outlet opened to air | atmosphere, 20 ... Pressurized gas inlet, 21 ... Pipe line, 22 ... Gas pressure measuring device, 23 ... Anode electrode, 24 ... Cathode electrode, 25 ... Power source, 30 ... Upper panel, 31 ... Close contact plate, 32 ... Second measurement gas discharge port, 33 ... Gas outlet opening to the atmosphere, 34 ... Anode electrode, 35 ... Cathode electrode, 36 ... Power source

Claims (3)

拡散層の2以上の物性値を測定する装置であって、
被測定体である拡散層を気密的に挟持することができかつ少なくとも前記拡散層と接する領域は非導電性とされている下盤と上盤とを備えており、さらに、
前記下盤に載置した拡散層の重量を測定する秤量手段と、
前記下盤と前記上盤との間の隙間を測定する隙間測定手段と、
前記下盤と前記上盤の間に挟持した拡散層に対して測定用ガスを供給し、供給したガスの背圧を測定して該拡散層の透気度を測定する透気度測定手段と、
前記下盤と前記上盤の間に挟持した拡散層の表面に電圧をかけて該拡散層表面の接触抵抗を測定する接触抵抗測定手段と、
を少なくとも備えることを特徴とする拡散層物性値測定装置。
An apparatus for measuring two or more physical property values of a diffusion layer,
A diffusion layer that is a measurement object can be hermetically sandwiched, and at least a region in contact with the diffusion layer includes a lower board and an upper board that are non-conductive, and
Weighing means for measuring the weight of the diffusion layer placed on the lower plate,
A gap measuring means for measuring a gap between the lower board and the upper board;
An air permeability measuring means for supplying a measurement gas to the diffusion layer sandwiched between the lower plate and the upper plate and measuring the air pressure of the diffusion layer by measuring the back pressure of the supplied gas; ,
Contact resistance measuring means for measuring the contact resistance of the surface of the diffusion layer by applying a voltage to the surface of the diffusion layer sandwiched between the lower plate and the upper plate;
A device for measuring physical property values of a diffusion layer, comprising:
前記透気度測定手段は、前記下盤と前記上盤の間に挟持した拡散層の面内透気度と法線透気度の双方を測定できるように、前記下盤と前記上盤のいずれか一方に測定ガスの供給部を備え、前記下盤と前記上盤の双方に排気部とを備えることを特徴とする請求項1に記載の拡散層物性値測定装置。   The air permeability measuring means can measure both the in-plane air permeability and the normal air permeability of the diffusion layer sandwiched between the lower board and the upper board. 2. The diffusion layer property value measuring apparatus according to claim 1, further comprising a measurement gas supply unit on one of them, and an exhaust unit on both of the lower plate and the upper plate. 前記接触抵抗測定手段は、前記下盤と前記上盤の間に挟持した拡散層の上面側と下面側の接触抵抗を同時に測定できるように、前記下盤と前記上盤のそれぞれに一対の電極を備えることを特徴とする請求項1または2に記載の拡散層物性値測定装置。   The contact resistance measuring means has a pair of electrodes on each of the lower board and the upper board so that the contact resistance on the upper surface side and the lower surface side of the diffusion layer sandwiched between the lower board and the upper board can be measured simultaneously. The device for measuring a physical property value of a diffusion layer according to claim 1 or 2, comprising:
JP2007028549A 2007-02-07 2007-02-07 Measuring device for physical property of diffusion layer Pending JP2008192571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007028549A JP2008192571A (en) 2007-02-07 2007-02-07 Measuring device for physical property of diffusion layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007028549A JP2008192571A (en) 2007-02-07 2007-02-07 Measuring device for physical property of diffusion layer

Publications (1)

Publication Number Publication Date
JP2008192571A true JP2008192571A (en) 2008-08-21

Family

ID=39752457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007028549A Pending JP2008192571A (en) 2007-02-07 2007-02-07 Measuring device for physical property of diffusion layer

Country Status (1)

Country Link
JP (1) JP2008192571A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101320786B1 (en) 2012-11-09 2013-10-23 현대하이스코 주식회사 Apparatus for measuring of contact resistance and method for measuring of contact resistance of bopolar plate for a fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101320786B1 (en) 2012-11-09 2013-10-23 현대하이스코 주식회사 Apparatus for measuring of contact resistance and method for measuring of contact resistance of bopolar plate for a fuel cell

Similar Documents

Publication Publication Date Title
Liang et al. Contact resistance prediction of proton exchange membrane fuel cell considering fabrication characteristics of metallic bipolar plates
US8197978B2 (en) Fuel cell systems with fuel utilization and oxidation monitoring
Kientiz et al. Interfacial water transport effects in proton-exchange membranes
KR101493113B1 (en) Method and apparatus for examining ion-conductive electrolyte membrane
Chen et al. Heat and mass transfer of a planar membrane humidifier for proton exchange membrane fuel cell
US20170317365A1 (en) Method for operating a fuel cell system
CN108206293B (en) Method and apparatus for detecting damage to a fuel cell stack and adjusting operating characteristics in a fuel cell system
US8720252B2 (en) Quality control apparatus for gas diffusion layer for fuel cells
JP2014132561A (en) Method for controlling fuel cell humidification
Li et al. Electrochemical impedance spectroscopy analysis of V–I characteristics and a fast prediction model for PEM-based electrolytic air dehumidification
Wang et al. Analyzing in-plane temperature distribution via a micro-temperature sensor in a unit polymer electrolyte membrane fuel cell
Bharti et al. Proton exchange membrane testing and diagnostics
JP2008192571A (en) Measuring device for physical property of diffusion layer
Himanen et al. Characterization of membrane electrode assembly with hydrogen–hydrogen cell and ac-impedance spectroscopy: Part I. Experimental
KR20200002437A (en) Apparatus and Method for Continuous Inspecting Membrane Electrode Assembly for Fuel Cell
KR101320786B1 (en) Apparatus for measuring of contact resistance and method for measuring of contact resistance of bopolar plate for a fuel cell
KR101493112B1 (en) Method and apparatus for examining ion-conductive electrolyte membrane
JP2018092784A (en) Film thickness evaluation method of electrolyte membrane and device thereof
JP5649320B2 (en) Method for producing electrode catalyst layer for fuel cell and fuel cell
Xu Experimental measurement of mass transport parameters of gas diffusion layer and catalyst layer in PEM fuel cell
JP2003022834A (en) Shape measuring method of fuel cell separator
JP2002207024A (en) Co sensor and co concentration measuring method
JP2018133228A (en) Oxygen diffusion coefficient measurement device
CN110268244B (en) Porous body quality inspection device and porous body quality inspection method
Wang et al. Development of a micro temperature sensor and 3D temperature analysis for a proton exchange membrane fuel cell