JP2008192454A - Fuel cell and its voltage measuring method - Google Patents

Fuel cell and its voltage measuring method Download PDF

Info

Publication number
JP2008192454A
JP2008192454A JP2007025601A JP2007025601A JP2008192454A JP 2008192454 A JP2008192454 A JP 2008192454A JP 2007025601 A JP2007025601 A JP 2007025601A JP 2007025601 A JP2007025601 A JP 2007025601A JP 2008192454 A JP2008192454 A JP 2008192454A
Authority
JP
Japan
Prior art keywords
fuel cell
gas
fuel
flow path
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007025601A
Other languages
Japanese (ja)
Other versions
JP5127254B2 (en
Inventor
Isamu Kikuchi
勇 菊池
Soichiro Shimotori
宗一郎 霜鳥
Kazuhisa Tanaka
和久 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Fuel Cell Power Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Fuel Cell Power Systems Corp filed Critical Toshiba Corp
Priority to JP2007025601A priority Critical patent/JP5127254B2/en
Publication of JP2008192454A publication Critical patent/JP2008192454A/en
Application granted granted Critical
Publication of JP5127254B2 publication Critical patent/JP5127254B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To carry out voltage measurement of unit batteries using a voltage measuring means which is easy in mounting, and furthermore, in which attachment and detachment are possible according to necessity in a fuel cell with the external manifold system. <P>SOLUTION: The fuel cell has a fuel cell laminate 50 constituted by laminating unit batteries 1, and gas manifolds 4, 5, 6, 7 disposed neighboring side surfaces of the fuel cell laminate 50 and equipped with gas chambers 51, 52, 57 in order to supply fuel and oxidizer to the respective fuel gas flow passages and oxidizer gas flow passages of each unit battery of the fuel cell laminate 50. In the gas chamber 52 of the gas manifolds 4, 5, 6, 7, a gas chamber opening 9 is formed, and a gas chamber cover 12 covering the gas chamber opening 9 and hermetically sealing the gas chamber 52 is disposed. A voltage measuring terminal 10 disposed in a voltage measuring part of the unit batteries 1, and a conductive part 11 which is in order to connect a voltage measuring device 55 disposed outside and the voltage measuring terminal 10 is air-tightly pinched between the gas chamber opening 9 and the gas chamber cover 12. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、外部マニホールド方式の燃料電池およびその単位電池の電圧を測定する方法に関する。   The present invention relates to an external manifold type fuel cell and a method for measuring the voltage of the unit cell.

一般的な燃料電池は、電解質の両側にそれぞれアノード電極とカソード電極とを配し、アノード電極とカソード電極にそれぞれ接して配置した燃料ガス流通路および酸化剤ガス流通路とからなる単位電池を複数個積層して構成された燃料電池積層体を有する。そして、燃料電池積層体のそれぞれの燃料ガス流通路および酸化剤ガス流通路に燃料および酸化剤を供給するための単数もしくは複数のガス室を有するガスマニホールドが形成されている。水素等の燃料と空気等の酸化剤を燃料電池積層体に供給して、電気化学的に反応させることにより燃料の持つ化学エネルギーを直接電気エネルギーに変換し外部へ取り出す。   In general fuel cells, an anode electrode and a cathode electrode are arranged on both sides of an electrolyte, and a plurality of unit cells each composed of a fuel gas flow passage and an oxidant gas flow passage arranged in contact with the anode electrode and the cathode electrode, respectively. It has a fuel cell stack constructed by stacking individual pieces. A gas manifold having one or a plurality of gas chambers for supplying fuel and oxidant to the respective fuel gas flow passages and oxidant gas flow passages of the fuel cell stack is formed. A fuel such as hydrogen and an oxidant such as air are supplied to the fuel cell stack and reacted electrochemically to convert the chemical energy of the fuel directly into electrical energy and take it out.

ここで、燃料電池の運転中に燃料電池積層体の単位電池に故障または劣化などの異常が発生した場合には単位電池のアノード電極とカソード電極の間の電圧が低下してしまう。しかし、燃料電池積層体の全体での電圧を測定しても異常が発生している単位電池を特定することはできない。そのため、運転状況の確認や異常個所の特定および異常原因の推定のためには全ての単位電池または複数の単位電池ごとの電圧を監視することが有効であり、各単位電池の電圧を測定する方法が提案されている(たとえば、特許文献1参照)。
特開平11−339828号公報
Here, when an abnormality such as failure or deterioration occurs in the unit cell of the fuel cell stack during the operation of the fuel cell, the voltage between the anode electrode and the cathode electrode of the unit cell decreases. However, even if the voltage across the entire fuel cell stack is measured, the unit cell in which an abnormality has occurred cannot be identified. Therefore, it is effective to monitor the voltage of all unit cells or a plurality of unit cells in order to check the operation status, identify the location of the abnormality, and estimate the cause of the abnormality, and a method for measuring the voltage of each unit cell Has been proposed (see, for example, Patent Document 1).
JP 11-339828 A

燃料電池の運転状況の確認や異常個所の特定および異常原因の推定は常時必要となるのではなく、異常発生時または定時間おきに単位電池の電圧分布を確認できれば十分に効果がある。これに対して特許文献1による方法では、単位電圧を測定するための部品が各単位電池に常設されているため、燃料電池の製造コストが増大してしまうという課題があった。   It is not always necessary to check the operating status of the fuel cell, identify the location of the abnormality, and estimate the cause of the abnormality, but it is sufficiently effective if the voltage distribution of the unit cell can be confirmed when an abnormality occurs or at regular intervals. On the other hand, the method according to Patent Document 1 has a problem that the manufacturing cost of the fuel cell increases because components for measuring the unit voltage are permanently installed in each unit cell.

また、一般的に各単位電池の燃料ガス流通路および酸化剤ガス流通路は、電気伝導性があり、ガス不透過性の部材に多数の溝を形成した板状の部品(以下、セパレータという)により構成されており、電解質を挟んで隣接するセパレータの電位差を測定することで単位電池の電圧を測定できる。ここで、特許文献1の燃料電池は、内部マニホールド方式であるので、燃料電池積層体の側面には単位電池のセパレータ側面が露出しており、単位電池の電圧を測定する電位線などからなる導通部を容易に接続することができる。ただし、内部マニホールド方式とは、各単位電池の燃料ガス流通路および酸化剤ガス流通路を構成するセパレータに積層方向に貫通した複数の貫通穴があり、その貫通穴が連結されて複数のガス室を構成する構造をいう。   In general, the fuel gas flow path and the oxidant gas flow path of each unit cell are electrically conductive and have a plate-like component in which a number of grooves are formed in a gas-impermeable member (hereinafter referred to as a separator). The voltage of the unit cell can be measured by measuring the potential difference between adjacent separators with the electrolyte in between. Here, since the fuel cell of patent document 1 is an internal manifold system, the separator side surface of the unit cell is exposed on the side surface of the fuel cell stack, and the continuity made up of a potential line or the like for measuring the voltage of the unit cell. The parts can be easily connected. However, the internal manifold type means that there are a plurality of through holes penetrating in the stacking direction in the separator constituting the fuel gas flow path and the oxidant gas flow path of each unit cell, and the through holes are connected to form a plurality of gas chambers. The structure which comprises.

一方、外部マニホールド方式の燃料電池では、一般的に、長方形の単位電池の4辺がそれぞれマニホールドに覆われており、セパレータの側面が外部に露出している範囲が狭く、電圧を測定する導通部を単位電池に接続するのが困難であるという課題もあった。ただし、外部マニホールド方式の燃料電池とは、単位電池に積層方向に貫通した貫通穴を設置する代わりに、燃料電池積層体の外側面と接する面に開口部を有する箱型の構造物を、燃料電池積層体のセパレータ側面に接触するように固定することで、燃料ガス流通路および酸化剤ガス流通路に燃料および酸化剤を供給するためのガス室を構成する構造の燃料電池をいう。   On the other hand, in an external manifold type fuel cell, in general, four sides of a rectangular unit cell are each covered with a manifold, and the range in which the side surface of the separator is exposed to the outside is narrow, and a conducting part that measures voltage is used. There is also a problem that it is difficult to connect to the unit battery. However, an external manifold type fuel cell refers to a box-shaped structure having an opening on the surface in contact with the outer surface of the fuel cell stack, instead of installing a through-hole penetrating the unit cell in the stacking direction. A fuel cell having a structure that constitutes a gas chamber for supplying fuel and an oxidant to the fuel gas flow passage and the oxidant gas flow passage by being fixed so as to be in contact with the separator side surface of the battery stack.

本発明は、上記のような従来技術の課題を解決するためになされたものであり、その目的は、外部マニホールド方式の燃料電池において、取り付けが容易で、さらに必要に応じて着脱が可能な電圧測定手段を用いて簡便に単位電池の電圧測定を可能とすることにある。   The present invention has been made to solve the above-described problems of the prior art, and an object of the present invention is to provide a voltage that can be easily attached and detached as required in an external manifold type fuel cell. The object is to make it possible to easily measure the voltage of a unit battery using a measuring means.

上記の目的を達成するため、本発明の燃料電池は、電解質膜と、この電解質膜の両面側にそれぞれ隣接して配置されたアノード電極およびカソード電極と、前記アノード電極およびカソード電極にそれぞれ隣接して形成された燃料ガス流通路および酸化剤ガス流通路と、を具備する単位電池を複数個積層して構成された燃料電池積層体と、前記燃料電池積層体の側面に隣接して配置され、前記燃料電池積層体の各単位電池それぞれの前記燃料ガス流通路および前記酸化剤ガス流通路に燃料および酸化剤を供給するためのガス室を備えたガスマニホールドと、を有する燃料電池において、前記ガスマニホールドの少なくとも一つの前記ガス室にはガス室開口部が形成され、前記ガス室開口部を覆い当該ガス室を密閉するガス室カバーが配置されており、前記単位電池の電圧測定部に電圧測定端子が配置され、前記ガスマニホールドの外部に配置された電圧測定装置と前記電圧測定端子とを接続するための導通部が前記ガス室開口部と前記ガス室カバーとの間で気密に挟持されていること、を特徴とする。   In order to achieve the above object, a fuel cell of the present invention comprises an electrolyte membrane, an anode electrode and a cathode electrode arranged adjacent to both sides of the electrolyte membrane, and an anode electrode and a cathode electrode, respectively. A fuel cell stack formed by stacking a plurality of unit cells each including a fuel gas flow path and an oxidant gas flow path formed in a manner adjacent to a side surface of the fuel cell stack, A gas manifold provided with a gas chamber for supplying fuel and an oxidant to the fuel gas flow path and the oxidant gas flow path of each unit cell of the fuel cell stack; A gas chamber opening is formed in at least one of the gas chambers of the manifold, and a gas chamber cover that covers the gas chamber opening and seals the gas chamber is disposed. A voltage measurement terminal is disposed in the voltage measurement unit of the unit battery, and a conduction unit for connecting the voltage measurement terminal and the voltage measurement terminal disposed outside the gas manifold is provided in the gas chamber opening and the unit. It is characterized by being airtightly sandwiched between the gas chamber cover.

また、本発明の燃料電池は、電解質膜と、この電解質膜の両面側にそれぞれ隣接して配置されたアノード電極およびカソード電極と、前記アノード電極およびカソード電極にそれぞれ隣接して形成された燃料ガス流通路および酸化剤ガス流通路と、を具備する単位電池を複数個積層して構成された燃料電池積層体と、前記燃料電池積層体の側面に隣接して配置され、前記燃料電池積層体の各単位電池それぞれの前記燃料ガス流通路および前記酸化剤ガス流通路に燃料および酸化剤を供給するためのガス室を備えたガスマニホールドと、を有する燃料電池において、前記ガスマニホールドの少なくとも一つの前記ガス室にはガス室開口部が形成され、前記開口部を覆い当該ガス室を密閉してカバー開口部を有するガス室カバーが配置されており、前記単位電池の電圧測定部に電圧測定端子が配置され、前記ガスマニホールドの外部に配置された電圧測定装置と前記電圧測定端子とを接続するための導通部が前記カバー開口部を貫通し、前記導通部がカバー開口部を貫通する部分が気密に構成されていること、を特徴とする。   The fuel cell of the present invention includes an electrolyte membrane, an anode electrode and a cathode electrode arranged adjacent to both sides of the electrolyte membrane, and a fuel gas formed adjacent to the anode electrode and the cathode electrode, respectively. A fuel cell stack formed by stacking a plurality of unit cells each having a flow path and an oxidant gas flow path, and disposed adjacent to a side surface of the fuel cell stack, A gas manifold having a gas chamber for supplying fuel and an oxidant to the fuel gas flow path and the oxidant gas flow path of each unit cell, wherein at least one of the gas manifolds A gas chamber opening is formed in the gas chamber, and a gas chamber cover that covers the opening and seals the gas chamber and has a cover opening is disposed. A voltage measurement terminal is disposed in the voltage measurement unit of the unit battery, and a conduction unit for connecting the voltage measurement terminal and the voltage measurement terminal disposed outside the gas manifold passes through the cover opening. A portion where the conducting portion passes through the cover opening is configured to be airtight.

また、本発明の燃料電池は、電解質膜と、この電解質膜の両面側にそれぞれ隣接して配置されたアノード電極およびカソード電極と、前記アノード電極およびカソード電極にそれぞれ隣接して形成された燃料ガス流通路および酸化剤ガス流通路と、を具備する単位電池を複数個積層して構成された燃料電池積層体と、前記燃料電池積層体の側面に隣接して配置され、前記燃料電池積層体の各単位電池それぞれの前記燃料ガス流通路および前記酸化剤ガス流通路に燃料および酸化剤を供給するためのガス室を備えたガスマニホールドと、を有する燃料電池において、前記ガスマニホールドの少なくとも一箇所に、前記ガス室を通過せずに前記燃料電池積層体の側面部と前記ガスマニホールドの外部とを貫通する貫通穴が形成されており、前記単位電池の電圧測定部に電圧測定端子が配置され、前記ガスマニホールドの外部に設置された電圧測定装置と前記電圧測定端子とを接続するための導通部が前記貫通穴を通って配置されていること、を特徴とする。   The fuel cell of the present invention includes an electrolyte membrane, an anode electrode and a cathode electrode arranged adjacent to both sides of the electrolyte membrane, and a fuel gas formed adjacent to the anode electrode and the cathode electrode, respectively. A fuel cell stack formed by stacking a plurality of unit cells each having a flow path and an oxidant gas flow path, and disposed adjacent to a side surface of the fuel cell stack, A gas manifold having a gas chamber for supplying fuel and an oxidant to the fuel gas flow passage and the oxidant gas flow passage of each unit cell, and at least one portion of the gas manifold. A through hole penetrating the side surface of the fuel cell stack and the outside of the gas manifold without passing through the gas chamber is formed. A voltage measurement terminal is arranged in the voltage measurement part of the battery, and a conduction part for connecting the voltage measurement terminal installed outside the gas manifold and the voltage measurement terminal is arranged through the through hole. It is characterized by.

また、本発明の燃料電池の電圧測定方法は、電解質膜と、この電解質膜の両面側にそれぞれ隣接して配置されたアノード電極およびカソード電極と、前記アノード電極およびカソード電極にそれぞれ隣接して形成された燃料ガス流通路および酸化剤ガス流通路と、を具備する単位電池を複数個積層して構成された燃料電池積層体と、前記燃料電池積層体の側面に隣接して配置され、前記燃料電池積層体の各単位電池それぞれの前記燃料ガス流通路および前記酸化剤ガス流通路に燃料および酸化剤を供給するためのガス室を備えたガスマニホールドと、を有する燃料電池における単位電池の電圧を測定する方法において、前記ガスマニホールドの少なくとも一つの前記ガス室にガス室開口部を形成し、前記ガス室開口部を覆い当該ガス室を密閉するガス室カバーを配置し、前記単位電池の電圧測定部に電圧測定端子を配置し、前記ガスマニホールドの外部に電圧測定装置を配置し、前記電圧測定装置と電圧測定端子とを接続するための導通部を、前記ガス室開口部と前記ガス室カバーとの間で気密に挟持すること、を特徴とする。   Further, the voltage measurement method for a fuel cell according to the present invention includes an electrolyte membrane, an anode electrode and a cathode electrode arranged adjacent to both sides of the electrolyte membrane, and an anode electrode and a cathode electrode, respectively. A fuel cell stack formed by stacking a plurality of unit cells each having a fuel gas flow path and an oxidant gas flow path formed, and disposed adjacent to a side surface of the fuel cell stack, And a gas manifold having a gas chamber for supplying fuel and an oxidant to the fuel gas flow passage and the oxidant gas flow passage of each unit cell of the battery stack. In the measuring method, a gas chamber opening is formed in at least one gas chamber of the gas manifold, the gas chamber opening is covered, and the gas chamber is sealed. A gas chamber cover, a voltage measuring terminal in the voltage measuring part of the unit cell, a voltage measuring device outside the gas manifold, and connecting the voltage measuring device and the voltage measuring terminal. The conducting portion is hermetically sandwiched between the gas chamber opening and the gas chamber cover.

また、本発明の燃料電池の電圧測定方法は、電解質膜と、この電解質膜の両面側にそれぞれ隣接して配置されたアノード電極およびカソード電極と、前記アノード電極およびカソード電極にそれぞれ隣接して形成された燃料ガス流通路および酸化剤ガス流通路と、を具備する単位電池を複数個積層して構成された燃料電池積層体と、前記燃料電池積層体の側面に隣接して配置され、前記燃料電池積層体の各単位電池それぞれの前記燃料ガス流通路および前記酸化剤ガス流通路に燃料および酸化剤を供給するためのガス室を備えたガスマニホールドと、を有する燃料電池における、単位電池の電圧を測定する方法であって、前記ガスマニホールドの少なくとも一つの前記ガス室にガス室開口部を形成し、前記開口部を覆い当該ガス室を密閉してカバー開口部を有するガス室カバーを配置し、前記単位電池の電圧測定部に電圧測定端子を配置し、前記ガスマニホールドの外部に電圧測定装置を配置し、前記電圧測定装置と電圧測定端子とを接続するための導通部が前記カバー開口部を貫通するように配置し、前記導通部がカバー開口部を貫通する部分を気密に構成すること、を特徴とする。   Further, the voltage measurement method for a fuel cell according to the present invention includes an electrolyte membrane, an anode electrode and a cathode electrode arranged adjacent to both sides of the electrolyte membrane, and an anode electrode and a cathode electrode, respectively. A fuel cell stack formed by stacking a plurality of unit cells each having a fuel gas flow path and an oxidant gas flow path formed, and disposed adjacent to a side surface of the fuel cell stack, Unit cell voltage in a fuel cell having a gas manifold for supplying fuel and oxidant to the fuel gas flow passage and the oxidant gas flow passage of each unit cell of the battery stack A gas chamber opening is formed in at least one of the gas chambers of the gas manifold, the gas chamber is covered and covered with the opening. A gas chamber cover having a bar opening is arranged, a voltage measuring terminal is arranged in the voltage measuring unit of the unit battery, a voltage measuring device is arranged outside the gas manifold, and the voltage measuring device and the voltage measuring terminal are arranged. A conductive portion for connection is disposed so as to penetrate the cover opening, and a portion where the conductive portion penetrates the cover opening is hermetically configured.

また、本発明の燃料電池の電圧測定方法は、電解質膜と、この電解質膜の両面側にそれぞれ隣接して配置されたアノード電極およびカソード電極と、前記アノード電極およびカソード電極にそれぞれ隣接して形成された燃料ガス流通路および酸化剤ガス流通路と、を具備する単位電池を複数個積層して構成された燃料電池積層体と、前記燃料電池積層体の側面に隣接して配置され、前記燃料電池積層体の各単位電池それぞれの前記燃料ガス流通路および前記酸化剤ガス流通路に燃料および酸化剤を供給するためのガス室を備えたガスマニホールドと、を有する燃料電池における単位電池の電圧を測定する方法において、前記ガスマニホールドの少なくとも一箇所に、前記ガス室を通過せずに前記燃料電池積層体の側面部と前記ガスマニホールドの外部とを貫通する貫通穴を形成し、前記単位電池の電圧測定部に電圧測定端子を配置し、前記ガスマニホールドの外部に電圧測定装置を設置し、前記電圧測定装置と電圧測定端子とを接続するための導通部を、前記貫通穴を通るように配置すること、を特徴とする。   Further, the voltage measurement method for a fuel cell according to the present invention includes an electrolyte membrane, an anode electrode and a cathode electrode arranged adjacent to both sides of the electrolyte membrane, and an anode electrode and a cathode electrode, respectively. A fuel cell stack formed by stacking a plurality of unit cells each having a fuel gas flow path and an oxidant gas flow path formed, and disposed adjacent to a side surface of the fuel cell stack, And a gas manifold having a gas chamber for supplying fuel and an oxidant to the fuel gas flow passage and the oxidant gas flow passage of each unit cell of the battery stack. In the measuring method, the side surface portion of the fuel cell stack and the gas manifold are not passed through the gas chamber in at least one place of the gas manifold. A through hole penetrating the outside of the unit battery, a voltage measuring terminal disposed in the voltage measuring portion of the unit cell, a voltage measuring device installed outside the gas manifold, and the voltage measuring device and the voltage measuring terminal The conductive portion for connection is disposed so as to pass through the through hole.

本発明によれば、外部マニホールド方式の燃料電池において、取り付けが容易で、さらに必要に応じて着脱が可能な電圧測定手段を用いて簡便に単位電池の電圧測定をすることができる。これにより、各単位電池の電圧を測定するための部品を常設する必要がなく、製造コストの削減が可能である。   According to the present invention, in an external manifold type fuel cell, it is possible to easily measure the voltage of a unit cell by using voltage measuring means that is easy to attach and can be attached and detached as necessary. Thereby, it is not necessary to permanently install a part for measuring the voltage of each unit battery, and the manufacturing cost can be reduced.

以下、本発明に係る燃料電池システムの実施形態について、図面を参照して説明する。   Embodiments of a fuel cell system according to the present invention will be described below with reference to the drawings.

[第1の実施形態]
図1〜図6を参照して第1の実施形態の構成を説明する。ここに、図1は燃料電池のカバーを外した状態を示す斜視図、図2は燃料電池の運転状態を示す斜視図、図3は単位電池を示す断面図、図4は燃料電池の酸化剤ガス流通路の形成された平面で切断したときの横断面図、図5は燃料電池の電圧測定端子付近を拡大して示す斜視図、図6は燃料電池の導通部を取り外した運転状態を示す斜視図である。
[First Embodiment]
The configuration of the first embodiment will be described with reference to FIGS. 1 is a perspective view showing a state in which the cover of the fuel cell is removed, FIG. 2 is a perspective view showing an operating state of the fuel cell, FIG. 3 is a sectional view showing a unit cell, and FIG. 4 is an oxidant of the fuel cell. FIG. 5 is an enlarged perspective view showing the vicinity of the voltage measurement terminal of the fuel cell, and FIG. 6 shows an operating state with the conduction part of the fuel cell removed, taken along the plane where the gas flow passage is formed. It is a perspective view.

図1などに示すように、本実施形態の燃料電池は、単位電池1を複数枚積層した燃料電池積層体50と、燃料電池積層体50の積層方向両端に設置された各1枚の締付板2と、2枚の締付板2を互いに近接する方向に締め付けているタイロッド3とを有する。燃料電池積層体50はほぼ四角柱(直方体)形状であって、その側面には、それぞれ、空気入口側ガスマニホールド4と空気出口側ガスマニホールド5と燃料入口側ガスマニホールド6と燃料出口側ガスマニホールド7とが配置されている。   As shown in FIG. 1 and the like, the fuel cell according to the present embodiment includes a fuel cell stack 50 in which a plurality of unit cells 1 are stacked, and one clamp that is installed at both ends of the fuel cell stack 50 in the stacking direction. It has the board 2 and the tie rod 3 which clamps the two clamping plates 2 in the direction which adjoins mutually. The fuel cell stack 50 has a substantially quadrangular prism (rectangular) shape, and the air inlet side gas manifold 4, the air outlet side gas manifold 5, the fuel inlet side gas manifold 6, and the fuel outlet side gas manifold are respectively provided on the side surfaces thereof. 7 are arranged.

各ガスマニホールド4,5,6,7は、それぞれに接する燃料電池積層体50の側面に開口部を有する箱型の構造物であって、燃料電池積層体50のセパレータ(後述の酸化剤側セパレータ24および燃料側セパレータ26。図3参照)の側面に接触するように固定される。これにより、燃料ガス流通路25および酸化剤ガス流通路23に燃料および酸化剤を供給するためのガス室51,52,57が形成される(図4等参照)。   Each of the gas manifolds 4, 5, 6, and 7 is a box-shaped structure having an opening on the side surface of the fuel cell stack 50 that is in contact with each of the gas manifolds 4, and is a separator of the fuel cell stack 50 (the oxidant side separator described later). 24 and the fuel separator 26 (see FIG. 3) are fixed so as to be in contact with the side surfaces. As a result, gas chambers 51, 52, and 57 for supplying fuel and oxidant to the fuel gas flow passage 25 and the oxidant gas flow passage 23 are formed (see FIG. 4 and the like).

ここで、図4に示すように、空気入口側ガスマニホールド4と空気出口側ガスマニホールド5の箱型の筐体内部にはそれぞれ仕切り板4a,5aが設置されており、燃料電池積層体50に面した内部空間が二つに分割され、酸化剤を供給するためのガス室51,52のほかに燃料電池積層体50に冷却水を流通させるための冷却水室53が形成されている。また、各ガスマニホールドには、配管部8がそれぞれ設置されており、この配管部8を通じて、燃料ガスおよび酸化剤ガスとしての空気および燃料電池冷却用の冷却水が供給または排出される。   Here, as shown in FIG. 4, partition plates 4 a and 5 a are installed inside the box-shaped housings of the air inlet side gas manifold 4 and the air outlet side gas manifold 5, respectively. The facing internal space is divided into two, and in addition to gas chambers 51 and 52 for supplying an oxidant, a cooling water chamber 53 for flowing cooling water through the fuel cell stack 50 is formed. In addition, each gas manifold is provided with a piping portion 8 through which air as fuel gas and oxidant gas and cooling water for cooling the fuel cell are supplied or discharged.

空気出口側ガスマニホールド5のガス室52には燃料電池外部に対して開いたガス室開口部9が設けられている。さらに、それぞれの単位電池1には、単位電池1の電圧を測定するための電圧測定端子10と、電圧測定端子10と燃料電池の外部に設置された電圧測定装置55とを接続するための導通部11が設置され、導通部11は、空気出口側ガスマニホールド5のガス室52に設けられたガス室開口部9を通り燃料電池外部に引き出されている。   The gas chamber 52 of the air outlet side gas manifold 5 is provided with a gas chamber opening 9 that opens to the outside of the fuel cell. Further, each unit cell 1 is connected to a voltage measurement terminal 10 for measuring the voltage of the unit cell 1 and a voltage measurement terminal 10 and a voltage measurement device 55 installed outside the fuel cell. The conduction part 11 is drawn out of the fuel cell through the gas chamber opening 9 provided in the gas chamber 52 of the air outlet side gas manifold 5.

また、燃料電池の運転状態では、図2に示すように、ガス室開口部9には、ガス室カバー12がシリコンゴム等の弾性体またはパテ状の充填材からなるシール材13を介して空気出口側ガスマニホールド5に固定されており、導通部11はシール材13とガス室カバー12に挟持されている。このとき、導通部11により生じる凹凸は、シール材13の変形により吸収され、空気出口側ガスマニホールド5のガス室52は密閉された状態となる。また、ガス室カバー12としては、ガス室52を密閉する機能を有し、ガス室52内に飛散するコンタミ(汚染物)の量が一定の基準値を下回る材料であれば如何なる材料も使用可能である。ガラスエポシキ樹脂等の透明な材料を使用することにより、電圧測定端子10の接続状態を外部から目視にて確認できるのでさらに好ましい。   Further, in the operating state of the fuel cell, as shown in FIG. 2, the gas chamber cover 12 is provided with air through a sealing material 13 made of an elastic body such as silicon rubber or a putty-like filler in the gas chamber opening 9. It is fixed to the outlet side gas manifold 5, and the conducting portion 11 is sandwiched between the sealing material 13 and the gas chamber cover 12. At this time, the unevenness caused by the conducting portion 11 is absorbed by the deformation of the sealing material 13, and the gas chamber 52 of the air outlet side gas manifold 5 is in a sealed state. As the gas chamber cover 12, any material can be used as long as it has a function of sealing the gas chamber 52 and the amount of contaminants (contaminants) scattered in the gas chamber 52 is below a certain reference value. It is. By using a transparent material such as glass epoxy resin, the connection state of the voltage measuring terminal 10 can be visually confirmed from the outside, which is more preferable.

単位電池1は、図3に示すように、電解質膜20をカソード電極21とアノード電極22で挟持し、それぞれの電極に接して配置され酸化剤ガス流通路23を形成する酸化剤側セパレータ24および燃料ガス流通路25を形成する燃料側セパレータ26により構成されている。酸化剤側セパレータ24の酸化剤ガス流通路23が形成された面の裏面には冷却水流通路27が形成されている。   As shown in FIG. 3, the unit cell 1 includes an oxidant side separator 24 that sandwiches an electrolyte membrane 20 between a cathode electrode 21 and an anode electrode 22 and is disposed in contact with each electrode to form an oxidant gas flow passage 23. A fuel-side separator 26 that forms a fuel gas flow passage 25 is used. A cooling water flow passage 27 is formed on the back surface of the surface on which the oxidant gas flow passage 23 of the oxidant side separator 24 is formed.

次に図4、図5を用いてこの第1の実施形態の電圧測定端子10と導通部11付近の詳細について説明する。電圧測定端子10は、棒状の金線からなる電位ピン30と被覆導線からなる導通部11を圧着スリーブ31にて接続したのち、圧着スリーブ31の外面を絶縁被覆32にて覆い絶縁処理したものを、酸化剤ガス流通路23に挿入することで構成されている。   Next, details of the vicinity of the voltage measurement terminal 10 and the conductive portion 11 of the first embodiment will be described with reference to FIGS. The voltage measuring terminal 10 is formed by connecting a potential pin 30 made of a rod-shaped gold wire and a conducting portion 11 made of a coated conducting wire by a crimping sleeve 31 and then covering the outer surface of the crimping sleeve 31 with an insulating coating 32 for insulation treatment. The oxidant gas flow passage 23 is inserted.

ここで、電位ピン30は、酸化剤ガス流通路23に挿入されることで固定されているため、容易に抜き差しが可能である。また、酸化剤ガス流通路23は電位ピン30により部分的に閉塞されるが、酸化剤ガスはカソード電極21を構成するガス拡散層を通じて隣接する酸化剤ガス流通路から供給されるため、燃料電池の運転上は実質的な障害とはならない。ただし、電位ピン30は酸化剤ガスの流路に沿って下流側に設置することで、酸化剤ガス流通路23の閉塞による影響をより少なくすることができる。   Here, since the potential pin 30 is fixed by being inserted into the oxidant gas flow passage 23, it can be easily inserted and removed. The oxidant gas flow passage 23 is partially blocked by the potential pin 30, but the oxidant gas is supplied from the adjacent oxidant gas flow passage through the gas diffusion layer constituting the cathode electrode 21. There is no substantial obstacle in driving. However, by installing the potential pin 30 on the downstream side along the flow path of the oxidant gas, the influence due to the blockage of the oxidant gas flow path 23 can be reduced.

さらに、各単位電池1に設置された電位ピン30から導通部11までの部品を取り外した状態での燃料電池の外観を図6に示す。図6では、ガス室カバー12の代わりに開口部閉止カバー40が設置されており、導通部11がない状態でも空気出口側ガスマニホールド5のガス室52は密閉された状態となり、燃料電池が正常に運転される。ここで、ガス室カバー12と開口部閉止カバー40としては同一の部品を使用することも可能である。   Furthermore, FIG. 6 shows the appearance of the fuel cell in a state in which components from the potential pin 30 installed in each unit cell 1 to the conduction portion 11 are removed. In FIG. 6, an opening closing cover 40 is installed instead of the gas chamber cover 12, and the gas chamber 52 of the air outlet side gas manifold 5 is sealed even in the absence of the conducting portion 11, and the fuel cell is normal. Drive to. Here, as the gas chamber cover 12 and the opening portion closing cover 40, the same parts can be used.

以上説明したように、本実施形態では、単位電池1のセパレータに新たに電圧測定端子を形成することなしに、ガスマニホールドを取り付けた状態で、導通部11に接続された電位ピン30を酸化剤ガス流通路23に挿入したのち、ガス室カバー12を取り付けることで単位電池1の電圧測定が容易に実施可能となる。さらに、電位ピン30から導通部11までの部品は容易に着脱が可能であり電圧測定が不要な場合には電圧測定端子品を取り外した状態でも燃料電池を正常に運転することができる。これにより、各単位電池1の電圧を測定するための部品を常設する必要がなく、製造コストの削減が可能な燃料電池を提供することができる。   As described above, in the present embodiment, the potential pin 30 connected to the conducting portion 11 is connected to the oxidant without attaching a new voltage measurement terminal to the separator of the unit battery 1 with the gas manifold attached. After the gas passage 23 is inserted, the voltage of the unit cell 1 can be easily measured by attaching the gas chamber cover 12. Furthermore, the components from the potential pin 30 to the conducting portion 11 can be easily attached and detached, and when voltage measurement is unnecessary, the fuel cell can be operated normally even when the voltage measurement terminal product is removed. Thereby, there is no need to permanently install a component for measuring the voltage of each unit cell 1, and a fuel cell capable of reducing the manufacturing cost can be provided.

[第2の実施形態]
図7を用いて第2の実施形態の構成を説明する。図7はこの実施形態の燃料電池の運転状態を示す斜視図である。なお第1の実施形態と同一の構成には同一の符号を付し、重複する説明は省略する。本実施形態の燃料電池は、第1の実施形態の燃料電池においてガス室開口部9のガス室カバー12にカバー開口部14をさらに設け、導通部11を、カバー開口部14を通して燃料電池外部に引き出すことでガス室開口部9とガス室カバー12との間の気密性をより容易に確保できる構成とした。ここで、カバー開口部14と導通部11の隙間はシリコンゴム等の弾性体またはパテ状の充填材からなるシール材15により閉塞され空気出口側ガスマニホールド5のガス室52は密閉された状態となる。
[Second Embodiment]
The configuration of the second embodiment will be described with reference to FIG. FIG. 7 is a perspective view showing the operating state of the fuel cell of this embodiment. In addition, the same code | symbol is attached | subjected to the structure same as 1st Embodiment, and the overlapping description is abbreviate | omitted. The fuel cell of the present embodiment is further provided with a cover opening 14 in the gas chamber cover 12 of the gas chamber opening 9 in the fuel cell of the first embodiment, and the conduction portion 11 is provided outside the fuel cell through the cover opening 14. By pulling out, the airtightness between the gas chamber opening 9 and the gas chamber cover 12 can be secured more easily. Here, the gap between the cover opening 14 and the conducting portion 11 is closed by a sealing material 15 made of an elastic body such as silicon rubber or a putty-like filler, and the gas chamber 52 of the air outlet side gas manifold 5 is sealed. Become.

以上の通り、本実施形態では第1の実施形態と同等の効果が得られるとともに、ガス室開口部9とガス室カバー12との間の気密性をより容易に確保できる燃料電池を提供できる。   As described above, the present embodiment can provide a fuel cell that can obtain the same effects as those of the first embodiment and can more easily ensure the airtightness between the gas chamber opening 9 and the gas chamber cover 12.

[第3の実施形態]
図8を用いて第3の実施形態の構成を説明する。図8は第3の実施形態の燃料電池の酸化剤ガス流通路の形成された平面で切断したときの横断面図である。なお第1の実施形態と同一の構成には同一の符号を付し、重複する説明は省略する。本第3の実施形態の燃料電池は、第1の実施形態の燃料電池においてガス室開口部9とガス室カバー12の代わりにガス室を通過せずに燃料電池積層体に面した部分とガスマニホールドの外部とを貫通する貫通穴16と貫通穴カバー17とシール材18を設置した。
[Third Embodiment]
The configuration of the third embodiment will be described with reference to FIG. FIG. 8 is a cross-sectional view taken along the plane where the oxidant gas flow passage of the fuel cell of the third embodiment is formed. In addition, the same code | symbol is attached | subjected to the structure same as 1st Embodiment, and the overlapping description is abbreviate | omitted. The fuel cell according to the third embodiment is different from the gas cell opening 9 and the gas chamber cover 12 in the fuel cell according to the first embodiment in that it does not pass through the gas chamber and faces the fuel cell stack. A through hole 16, a through hole cover 17 and a sealing material 18 penetrating the outside of the manifold were installed.

また、酸化剤ガス流通路23と同一平面上には、貫通穴16に対して開口しており酸化剤ガスが流通しない電圧測定溝19が形成されており、単位電池の電圧を測定するための電圧測定端子10は、電圧測定溝19に挿入された電位ピン30により構成されている。   Further, on the same plane as the oxidant gas flow passage 23, there is formed a voltage measurement groove 19 that is open to the through hole 16 and through which the oxidant gas does not flow, for measuring the voltage of the unit cell. The voltage measurement terminal 10 is constituted by a potential pin 30 inserted in the voltage measurement groove 19.

ここで、電圧測定溝19の周辺において燃料電池積層体の各単位電池の構成部材間のシール性が十分に確保されていれば、貫通穴16には貫通穴カバー17を設置しなくとも燃料電池は正常に運転が可能である。   Here, if the sealing performance between the constituent members of each unit cell of the fuel cell stack is sufficiently secured around the voltage measurement groove 19, the fuel cell does not have to be provided in the through hole 16. Can operate normally.

以上説明したように、本実施形態では、ガスマニホールドを取り付けた状態で、導通部11に接続された電位ピン30を電圧測定溝19に挿入することで単位電池1の電圧測定が容易に実施可能となる。さらに、電位ピン30から導通部11までの部品は容易に着脱が可能であり電圧測定が不要な場合には電圧測定端子品を取り外した状態でも燃料電池を正常に運転することができる。そのため、各単位電池1の電圧を測定するための部品を常設する必要がなく、製造コストの削減が可能な燃料電池を提供することができる。   As described above, in this embodiment, voltage measurement of the unit cell 1 can be easily performed by inserting the potential pin 30 connected to the conduction portion 11 into the voltage measurement groove 19 with the gas manifold attached. It becomes. Furthermore, the components from the potential pin 30 to the conducting portion 11 can be easily attached and detached, and when voltage measurement is unnecessary, the fuel cell can be operated normally even when the voltage measurement terminal product is removed. Therefore, there is no need to permanently install components for measuring the voltage of each unit cell 1, and a fuel cell capable of reducing manufacturing costs can be provided.

[第4の実施形態]
図9、図10を用いて第4の実施形態の構成を説明する。ここで、図9は第4の実施形態の燃料電池の酸化剤ガス流通路の形成された平面で切断したときの横断面図であり、図10はその燃料電池の電圧測定端子を示す斜視図である。なお、第1または第3の実施形態と同一の構成には同一の符号を付し、重複する説明は省略する。本実施形態の燃料電池は、第3の実施形態の燃料電池において電位ピン30の代わりに、燃料電池積層体のセパレータの側面方向から酸化剤側セパレータ24または燃料側セパレータ26に接触するように設置された電圧測定端子10により電圧を計測する構成とした。
[Fourth Embodiment]
The configuration of the fourth embodiment will be described with reference to FIGS. 9 and 10. Here, FIG. 9 is a cross-sectional view taken along the plane where the oxidant gas flow passage of the fuel cell of the fourth embodiment is formed, and FIG. 10 is a perspective view showing the voltage measurement terminal of the fuel cell. It is. In addition, the same code | symbol is attached | subjected to the structure same as 1st or 3rd embodiment, and the overlapping description is abbreviate | omitted. The fuel cell of this embodiment is installed so as to contact the oxidant side separator 24 or the fuel side separator 26 from the side surface direction of the separator of the fuel cell stack instead of the potential pin 30 in the fuel cell of the third embodiment. The voltage was measured by the measured voltage measuring terminal 10.

電圧測定端子10は、板状の絶縁材料33の表面に電圧を測定する単位電池1の積層方向の間隔と等間隔に帯状に形成された導電材料34を、燃料電池積層体50のセパレータの側面方向から酸化剤側セパレータ24または燃料側セパレータ26に接触するように設置することで形成されている。導通部11は導電材料34の単位電池に接しない部分と導電材料34に接続された被覆導線から構成されている。   The voltage measuring terminal 10 includes a conductive material 34 formed in a band shape at equal intervals in the stacking direction of the unit cells 1 that measure voltage on the surface of the plate-shaped insulating material 33, and the side surface of the separator of the fuel cell stack 50. It is formed by being installed so as to contact the oxidant side separator 24 or the fuel side separator 26 from the direction. The conducting portion 11 is composed of a portion of the conductive material 34 that is not in contact with the unit cell and a covered conductive wire connected to the conductive material 34.

また、絶縁材料33および導電材料34は、貫通穴カバー17に固定されており、貫通穴カバー17を空気出口側ガスマニホールド5に取り付け、シール材18を押し潰す方向に締め付けることにより、導電材料34が燃料電池積層体50に押し付けられ、その接触部において単位電池1の電圧を測定することができる。   The insulating material 33 and the conductive material 34 are fixed to the through hole cover 17. The conductive material 34 is attached by attaching the through hole cover 17 to the air outlet side gas manifold 5 and tightening the seal material 18 in a crushing direction. Is pressed against the fuel cell stack 50, and the voltage of the unit cell 1 can be measured at the contact portion.

以上の通り、本実施形態では、ガスマニホールドを取り付けた状態で、導通部11に接続された導電材料34を燃料電池積層体50に接触させることで、単位電池1の電圧測定が容易に実施可能となる。さらに、導電材料34から導通部11までの部品は容易に着脱が可能であり、電圧測定が不要な場合には電圧測定端子品を取り外した状態でも燃料電池を正常に運転することができる。したがって、各単位電池1の電圧を測定するための部品を常設する必要がなく、製造コストの削減が可能な燃料電池を提供することができる。   As described above, in this embodiment, the voltage of the unit cell 1 can be easily measured by bringing the conductive material 34 connected to the conduction part 11 into contact with the fuel cell stack 50 with the gas manifold attached. It becomes. Further, the components from the conductive material 34 to the conductive portion 11 can be easily attached and detached, and when voltage measurement is unnecessary, the fuel cell can be normally operated even when the voltage measurement terminal product is removed. Therefore, it is not necessary to permanently install a part for measuring the voltage of each unit cell 1, and a fuel cell capable of reducing the manufacturing cost can be provided.

[他の実施形態]
この発明は前述した各実施形態に限定されるものではない。たとえば、各ガスマニホールドのガス室は各ガスマニホールドにつき各1部屋とする必要はなく、ガス室内に仕切り板を設け、ガス流路を入口側ガス室から出口側ガス室にガスが流通する間に別なガス室を通過して折り返して流れるように構成し、ガスマニホールドの貫通穴を上述の仕切り板の位置に設置してもよい。
[Other Embodiments]
The present invention is not limited to the embodiments described above. For example, the gas chambers of each gas manifold do not need to be one room for each gas manifold, but a partition plate is provided in the gas chamber, and the gas flow path is between the inlet side gas chamber and the outlet side gas chamber. The gas manifold may be configured to flow back through another gas chamber, and the through hole of the gas manifold may be installed at the position of the partition plate.

また、ガス室にガス室開口部9を設けた場合でも、ガス室開口部9の範囲内で酸化剤ガス流通路23と同一平面上に酸化剤ガスが流通しない電圧測定溝19を形成して電圧測定部を構成してもよい。   Even when the gas chamber opening 9 is provided in the gas chamber, the voltage measuring groove 19 in which the oxidant gas does not flow is formed on the same plane as the oxidant gas flow passage 23 within the range of the gas chamber opening 9. You may comprise a voltage measurement part.

また、ガス室開口部9または貫通穴16は空気出口側ガスマニホールド5に設置するのが、より好ましいが、その他のガスマニホールドに開口部または貫通穴を設置し、燃料ガス流通路25または冷却水流通路27に電圧測定端子10を設置してもよい。   More preferably, the gas chamber opening 9 or the through hole 16 is installed in the air outlet side gas manifold 5. However, an opening or a through hole is installed in the other gas manifold, and the fuel gas flow passage 25 or the cooling water flow. The voltage measurement terminal 10 may be installed in the passage 27.

さらに、電圧を測定するための部品は着脱可能であるので、全ての単位電池の電圧を個別に測定する場合の他に、複数の単位電池の積層体をサブスタックと考え、特定の単位電池またはサブスタックの電圧を常時監視し、必要に応じて電圧を測定するための部品を着脱してその他の単位電池またはサブスタックの電圧を測定することもできる。   Further, since the components for measuring the voltage are detachable, in addition to the case where the voltages of all the unit cells are individually measured, a stack of a plurality of unit cells is considered as a sub-stack, and a specific unit cell or The voltage of the sub stack can be constantly monitored, and the voltage of other unit cells or sub stacks can be measured by attaching / detaching components for measuring the voltage as necessary.

本発明に係る第1の実施形態の燃料電池のカバーを外した状態を示す斜視図である。It is a perspective view which shows the state which removed the cover of the fuel cell of 1st Embodiment which concerns on this invention. 本発明に係る第1の実施形態の燃料電池の運転状態を示す斜視図である。It is a perspective view which shows the driving | running state of the fuel cell of 1st Embodiment which concerns on this invention. 本発明に係る第1の実施形態の燃料電池の単位電池を示す断面図である。It is sectional drawing which shows the unit cell of the fuel cell of 1st Embodiment which concerns on this invention. 本発明に係る第1の実施形態の燃料電池の酸化剤ガス流通路の形成された平面で切断したときの横断面図である。It is a cross-sectional view when it cut | disconnects in the plane in which the oxidizing gas flow path of the fuel cell of 1st Embodiment which concerns on this invention was formed. 本発明に係る第1の実施形態の燃料電池の電圧測定端子付近を拡大して示す斜視図である。It is a perspective view which expands and shows the voltage measurement terminal vicinity of the fuel cell of 1st Embodiment which concerns on this invention. 本発明に係る第1の実施形態の燃料電池の導通部を取り外した運転状態を示す斜視図である。It is a perspective view which shows the driving | running state which removed the conduction | electrical_connection part of the fuel cell of 1st Embodiment which concerns on this invention. 本発明に係る第2の実施形態の燃料電池の運転状態を示す斜視図である。It is a perspective view which shows the driving | running state of the fuel cell of 2nd Embodiment which concerns on this invention. 本発明に係る第3の実施形態の燃料電池の酸化剤ガス流通路の形成された平面で切断したときの横断面図である。It is a cross-sectional view when it cut | disconnects by the plane in which the oxidizing gas flow path of the fuel cell of the 3rd Embodiment which concerns on this invention was formed. 本発明に係る第4の実施形態の燃料電池の酸化剤ガス流通路の形成された平面で切断したときの横断面図である。It is a cross-sectional view when it cut | disconnects in the plane in which the oxidizing gas flow path of the fuel cell of 4th Embodiment which concerns on this invention was formed. 本発明に係る第4の実施形態の燃料電池の電圧測定端子を示す斜視図である。It is a perspective view which shows the voltage measurement terminal of the fuel cell of 4th Embodiment which concerns on this invention.

符号の説明Explanation of symbols

1 … 単位電池
2 … 締付板
3 … タイロッド
4 … 空気入口側ガスマニホールド
4a … 仕切り板
5 … 空気出口側ガスマニホールド
5a … 仕切り板
6 … 燃料入口側ガスマニホールド
7 … 燃料出口側ガスマニホールド
8 … 配管部
9 … ガス室開口部
10 … 電圧測定端子
11 … 導通部
12 … ガス室カバー
13 … シール材
14 … カバー開口部
15 … シール材
16 … 貫通穴
17 … 貫通穴カバー
18 … シール材
19 … 電圧測定溝
20 … 電解質膜
21 … カソード電極
22 … アノード電極
23 … 酸化剤ガス流通路
24 … 酸化剤側セパレータ
25 … 燃料ガス流通路
26 … 燃料側セパレータ
27 … 冷却水流通路
30 … 電位ピン
31 … 圧着スリーブ
32 … 絶縁被覆
33 … 絶縁材料
34 … 導電材料
40 … 開口部閉止カバー
50 … 燃料電池積層体
51,52 … ガス室
53 … 冷却水室
55 … 電圧測定装置
57 … ガス室
DESCRIPTION OF SYMBOLS 1 ... Unit battery 2 ... Clamping plate 3 ... Tie rod 4 ... Air inlet side gas manifold 4a ... Partition plate 5 ... Air outlet side gas manifold 5a ... Partition plate 6 ... Fuel inlet side gas manifold 7 ... Fuel outlet side gas manifold 8 ... Pipe portion 9 ... Gas chamber opening 10 ... Voltage measurement terminal 11 ... Conducting portion 12 ... Gas chamber cover 13 ... Sealing material 14 ... Cover opening 15 ... Sealing material 16 ... Through hole 17 ... Through hole cover 18 ... Sealing material 19 ... Voltage measurement groove 20 ... electrolyte membrane 21 ... cathode electrode 22 ... anode electrode 23 ... oxidant gas flow path 24 ... oxidant side separator 25 ... fuel gas flow path 26 ... fuel side separator 27 ... cooling water flow path 30 ... potential pin 31 ... Crimp sleeve 32 ... Insulating coating 33 ... Insulating material 34 ... Conductive material 40 ... Opening closing cover 50 ... Fuel cell stack 51, 52 ... Gas chamber 53 ... Cooling water chamber 55 ... Voltage measuring device 57 ... Gas chamber

Claims (14)

電解質膜と、この電解質膜の両面側にそれぞれ隣接して配置されたアノード電極およびカソード電極と、前記アノード電極およびカソード電極にそれぞれ隣接して形成された燃料ガス流通路および酸化剤ガス流通路と、を具備する単位電池を複数個積層して構成された燃料電池積層体と、
前記燃料電池積層体の側面に隣接して配置され、前記燃料電池積層体の各単位電池それぞれの前記燃料ガス流通路および前記酸化剤ガス流通路に燃料および酸化剤を供給するためのガス室を備えたガスマニホールドと、
を有する燃料電池において、
前記ガスマニホールドの少なくとも一つの前記ガス室にはガス室開口部が形成され、前記ガス室開口部を覆い当該ガス室を密閉するガス室カバーが配置されており、前記単位電池の電圧測定部に電圧測定端子が配置され、前記ガスマニホールドの外部に配置された電圧測定装置と前記電圧測定端子とを接続するための導通部が前記ガス室開口部と前記ガス室カバーとの間で気密に挟持されていること、を特徴とする燃料電池。
An electrolyte membrane, an anode electrode and a cathode electrode disposed adjacent to both sides of the electrolyte membrane, and a fuel gas flow path and an oxidant gas flow path formed adjacent to the anode electrode and the cathode electrode, respectively A fuel cell stack formed by stacking a plurality of unit cells comprising:
A gas chamber disposed adjacent to a side surface of the fuel cell stack, for supplying fuel and oxidant to the fuel gas flow path and the oxidant gas flow path of each unit cell of the fuel cell stack; A gas manifold with
In a fuel cell having
A gas chamber opening is formed in at least one of the gas chambers of the gas manifold, and a gas chamber cover that covers the gas chamber opening and seals the gas chamber is disposed. A voltage measurement terminal is arranged, and a conduction part for connecting the voltage measurement terminal and the voltage measurement device arranged outside the gas manifold is airtightly sandwiched between the gas chamber opening and the gas chamber cover A fuel cell, characterized in that
電解質膜と、この電解質膜の両面側にそれぞれ隣接して配置されたアノード電極およびカソード電極と、前記アノード電極およびカソード電極にそれぞれ隣接して形成された燃料ガス流通路および酸化剤ガス流通路と、を具備する単位電池を複数個積層して構成された燃料電池積層体と、
前記燃料電池積層体の側面に隣接して配置され、前記燃料電池積層体の各単位電池それぞれの前記燃料ガス流通路および前記酸化剤ガス流通路に燃料および酸化剤を供給するためのガス室を備えたガスマニホールドと、
を有する燃料電池において、
前記ガスマニホールドの少なくとも一つの前記ガス室にはガス室開口部が形成され、前記開口部を覆い当該ガス室を密閉してカバー開口部を有するガス室カバーが配置されており、前記単位電池の電圧測定部に電圧測定端子が配置され、前記ガスマニホールドの外部に配置された電圧測定装置と前記電圧測定端子とを接続するための導通部が前記カバー開口部を貫通し、前記導通部がカバー開口部を貫通する部分が気密に構成されていること、を特徴とする燃料電池。
An electrolyte membrane, an anode electrode and a cathode electrode disposed adjacent to both sides of the electrolyte membrane, and a fuel gas flow path and an oxidant gas flow path formed adjacent to the anode electrode and the cathode electrode, respectively A fuel cell stack formed by stacking a plurality of unit cells comprising:
A gas chamber disposed adjacent to a side surface of the fuel cell stack, for supplying fuel and oxidant to the fuel gas flow path and the oxidant gas flow path of each unit cell of the fuel cell stack; A gas manifold with
In a fuel cell having
A gas chamber opening is formed in at least one of the gas chambers of the gas manifold, and a gas chamber cover that covers the opening and seals the gas chamber and has a cover opening is disposed. A voltage measurement terminal is arranged in the voltage measurement unit, a conduction part for connecting the voltage measurement terminal arranged outside the gas manifold and the voltage measurement terminal passes through the cover opening, and the conduction part covers A fuel cell characterized in that a portion penetrating the opening is configured to be airtight.
前記ガス室カバーは着脱可能であって、前記ガス室カバーを外した状態で前記導通部を着脱可能であって、前記導通部を前記電圧測定部から外した状態で前記ガス室開口部を密閉可能な着脱可能の開口部閉止カバーを有すること、を特徴とする請求項1または請求項2に記載の燃料電池。   The gas chamber cover is detachable, and the conducting portion can be attached and detached with the gas chamber cover removed, and the gas chamber opening is sealed with the conducting portion removed from the voltage measuring portion. The fuel cell according to claim 1, further comprising a detachable opening closing cover. 電解質膜と、この電解質膜の両面側にそれぞれ隣接して配置されたアノード電極およびカソード電極と、前記アノード電極およびカソード電極にそれぞれ隣接して形成された燃料ガス流通路および酸化剤ガス流通路と、を具備する単位電池を複数個積層して構成された燃料電池積層体と、
前記燃料電池積層体の側面に隣接して配置され、前記燃料電池積層体の各単位電池それぞれの前記燃料ガス流通路および前記酸化剤ガス流通路に燃料および酸化剤を供給するためのガス室を備えたガスマニホールドと、
を有する燃料電池において、
前記ガスマニホールドの少なくとも一箇所に、前記ガス室を通過せずに前記燃料電池積層体の側面部と前記ガスマニホールドの外部とを貫通する貫通穴が形成されており、
前記単位電池の電圧測定部に電圧測定端子が配置され、前記ガスマニホールドの外部に設置された電圧測定装置と前記電圧測定端子とを接続するための導通部が前記貫通穴を通って配置されていること、を特徴とする燃料電池。
An electrolyte membrane, an anode electrode and a cathode electrode disposed adjacent to both sides of the electrolyte membrane, and a fuel gas flow path and an oxidant gas flow path formed adjacent to the anode electrode and the cathode electrode, respectively A fuel cell stack formed by stacking a plurality of unit cells comprising:
A gas chamber disposed adjacent to a side surface of the fuel cell stack, for supplying fuel and oxidant to the fuel gas flow path and the oxidant gas flow path of each unit cell of the fuel cell stack; A gas manifold with
In a fuel cell having
A through hole penetrating the side surface of the fuel cell stack and the outside of the gas manifold without passing through the gas chamber is formed in at least one location of the gas manifold,
A voltage measurement terminal is arranged in the voltage measurement part of the unit cell, and a conduction part for connecting the voltage measurement terminal installed outside the gas manifold and the voltage measurement terminal is arranged through the through hole. A fuel cell.
前記貫通穴を覆い前記貫通穴の内部を密閉することのできる貫通穴カバーを有し、前記導通部が前記貫通穴と前記貫通穴カバーとの間で気密に挟持されていること、を特徴とする請求項4に記載の燃料電池。   It has a through hole cover that covers the through hole and can seal the inside of the through hole, and the conduction portion is airtightly sandwiched between the through hole and the through hole cover, The fuel cell according to claim 4. 前記貫通穴を覆い前記貫通穴の内部を密閉することのできる貫通穴カバーを有し、前記導通部が前記貫通穴カバーを貫通して設置されていること、を特徴とする請求項4に記載の燃料電池。   5. The device according to claim 4, further comprising a through-hole cover that covers the through-hole and seals the inside of the through-hole, and the conductive portion is installed through the through-hole cover. Fuel cell. 前記ガスマニホールドを前記燃料電池積層体に取り付けたままで、前記導通部の着脱が可能に構成されていること、を特徴とする請求項4ないし請求項6のいずれか一項に記載の燃料電池。   The fuel cell according to any one of claims 4 to 6, wherein the conductive portion is configured to be detachable while the gas manifold is attached to the fuel cell stack. 前記導通部を前記電圧測定部から取り外した状態で前記貫通穴を密閉することのできる着脱可能な貫通穴閉止カバーを有することを特徴とする請求項7に記載の燃料電池。   8. The fuel cell according to claim 7, further comprising a detachable through hole closing cover capable of sealing the through hole in a state where the conducting portion is detached from the voltage measuring unit. 前記単位電池の電圧測定部は前記燃料ガス流通路もしくは酸化剤ガス流通路の少なくとも一つのガス流通路であって、
前記電圧測定端子は、前記電圧測定部に挿入された棒状部を具備すること、
を特徴とする請求項1ないし請求項8のいずれか一項に記載の燃料電池。
The voltage measuring unit of the unit cell is at least one gas flow path of the fuel gas flow path or the oxidant gas flow path,
The voltage measuring terminal comprises a rod-like portion inserted into the voltage measuring portion;
The fuel cell according to any one of claims 1 to 8, wherein:
前記単位電池の電圧測定部は、前記燃料ガス流通路もしくは前記酸化剤ガス流通路を構成する部品の少なくとも一つに、前記ガス流通路とは別に前記ガスマニホールドに面して開口した溝もしくは穴状に形成され、
前記電圧測定端子は、前記電圧測定部に挿入された棒状部を具備すること、
を特徴とする請求項1ないし請求項9のいずれか一項に記載の燃料電池。
The voltage measuring unit of the unit cell includes a groove or a hole opened to face the gas manifold separately from the gas flow passage in at least one of the components constituting the fuel gas flow passage or the oxidant gas flow passage. Formed into a shape,
The voltage measuring terminal comprises a rod-like portion inserted into the voltage measuring portion;
The fuel cell according to any one of claims 1 to 9, wherein:
前記電圧測定端子は、前記燃料電池積層体の側面から前記燃料ガス流通路もしくは前記酸化剤ガス流通路を構成する部材の少なくとも一つに接触するように設置された導電性部材を具備すること、を特徴とする請求項1ないし請求項8のいずれか一項に記載の燃料電池。   The voltage measuring terminal comprises a conductive member installed so as to contact at least one of the members constituting the fuel gas flow path or the oxidant gas flow path from the side surface of the fuel cell stack; The fuel cell according to any one of claims 1 to 8, wherein: 電解質膜と、この電解質膜の両面側にそれぞれ隣接して配置されたアノード電極およびカソード電極と、前記アノード電極およびカソード電極にそれぞれ隣接して形成された燃料ガス流通路および酸化剤ガス流通路と、を具備する単位電池を複数個積層して構成された燃料電池積層体と、
前記燃料電池積層体の側面に隣接して配置され、前記燃料電池積層体の各単位電池それぞれの前記燃料ガス流通路および前記酸化剤ガス流通路に燃料および酸化剤を供給するためのガス室を備えたガスマニホールドと、
を有する燃料電池における単位電池の電圧を測定する方法において、
前記ガスマニホールドの少なくとも一つの前記ガス室にガス室開口部を形成し、
前記ガス室開口部を覆い当該ガス室を密閉するガス室カバーを配置し、
前記単位電池の電圧測定部に電圧測定端子を配置し、
前記ガスマニホールドの外部に電圧測定装置を配置し、
前記電圧測定装置と電圧測定端子とを接続するための導通部を、前記ガス室開口部と前記ガス室カバーとの間で気密に挟持すること、
を特徴とする燃料電池の電圧測定方法。
An electrolyte membrane, an anode electrode and a cathode electrode disposed adjacent to both sides of the electrolyte membrane, and a fuel gas flow path and an oxidant gas flow path formed adjacent to the anode electrode and the cathode electrode, respectively A fuel cell stack formed by stacking a plurality of unit cells comprising:
A gas chamber disposed adjacent to a side surface of the fuel cell stack, for supplying fuel and oxidant to the fuel gas flow path and the oxidant gas flow path of each unit cell of the fuel cell stack; A gas manifold with
In a method for measuring the voltage of a unit cell in a fuel cell having
Forming a gas chamber opening in at least one gas chamber of the gas manifold;
A gas chamber cover that covers the gas chamber opening and seals the gas chamber;
A voltage measurement terminal is arranged in the voltage measurement unit of the unit battery,
A voltage measuring device is arranged outside the gas manifold,
Holding a conduction part for connecting the voltage measuring device and the voltage measuring terminal in an airtight manner between the gas chamber opening and the gas chamber cover;
A method for measuring the voltage of a fuel cell.
電解質膜と、この電解質膜の両面側にそれぞれ隣接して配置されたアノード電極およびカソード電極と、前記アノード電極およびカソード電極にそれぞれ隣接して形成された燃料ガス流通路および酸化剤ガス流通路と、を具備する単位電池を複数個積層して構成された燃料電池積層体と、
前記燃料電池積層体の側面に隣接して配置され、前記燃料電池積層体の各単位電池それぞれの前記燃料ガス流通路および前記酸化剤ガス流通路に燃料および酸化剤を供給するためのガス室を備えたガスマニホールドと、
を有する燃料電池における、単位電池の電圧を測定する方法であって、
前記ガスマニホールドの少なくとも一つの前記ガス室にガス室開口部を形成し、
前記開口部を覆い当該ガス室を密閉してカバー開口部を有するガス室カバーを配置し、
前記単位電池の電圧測定部に電圧測定端子を配置し、
前記ガスマニホールドの外部に電圧測定装置を配置し、
前記電圧測定装置と電圧測定端子とを接続するための導通部が前記カバー開口部を貫通するように配置し、
前記導通部がカバー開口部を貫通する部分を気密に構成すること、
を特徴とする燃料電池の電圧測定方法。
An electrolyte membrane, an anode electrode and a cathode electrode disposed adjacent to both sides of the electrolyte membrane, and a fuel gas flow path and an oxidant gas flow path formed adjacent to the anode electrode and the cathode electrode, respectively A fuel cell stack formed by stacking a plurality of unit cells comprising:
A gas chamber disposed adjacent to a side surface of the fuel cell stack, for supplying fuel and oxidant to the fuel gas flow path and the oxidant gas flow path of each unit cell of the fuel cell stack; A gas manifold with
A method of measuring a voltage of a unit cell in a fuel cell having
Forming a gas chamber opening in at least one gas chamber of the gas manifold;
A gas chamber cover that covers the opening and seals the gas chamber and has a cover opening;
A voltage measurement terminal is arranged in the voltage measurement unit of the unit battery,
A voltage measuring device is arranged outside the gas manifold,
A conductive part for connecting the voltage measuring device and the voltage measuring terminal is arranged so as to penetrate the cover opening,
Configuring the portion where the conducting portion penetrates the cover opening to be airtight;
A method for measuring the voltage of a fuel cell.
電解質膜と、この電解質膜の両面側にそれぞれ隣接して配置されたアノード電極およびカソード電極と、前記アノード電極およびカソード電極にそれぞれ隣接して形成された燃料ガス流通路および酸化剤ガス流通路と、を具備する単位電池を複数個積層して構成された燃料電池積層体と、
前記燃料電池積層体の側面に隣接して配置され、前記燃料電池積層体の各単位電池それぞれの前記燃料ガス流通路および前記酸化剤ガス流通路に燃料および酸化剤を供給するためのガス室を備えたガスマニホールドと、
を有する燃料電池における単位電池の電圧を測定する方法において、
前記ガスマニホールドの少なくとも一箇所に、前記ガス室を通過せずに前記燃料電池積層体の側面部と前記ガスマニホールドの外部とを貫通する貫通穴を形成し、
前記単位電池の電圧測定部に電圧測定端子を配置し、
前記ガスマニホールドの外部に電圧測定装置を設置し、
前記電圧測定装置と電圧測定端子とを接続するための導通部を、前記貫通穴を通るように配置すること、
を特徴とする燃料電池の電圧測定方法。
An electrolyte membrane, an anode electrode and a cathode electrode disposed adjacent to both sides of the electrolyte membrane, and a fuel gas flow path and an oxidant gas flow path formed adjacent to the anode electrode and the cathode electrode, respectively A fuel cell stack formed by stacking a plurality of unit cells comprising:
A gas chamber disposed adjacent to a side surface of the fuel cell stack, for supplying fuel and oxidant to the fuel gas flow path and the oxidant gas flow path of each unit cell of the fuel cell stack; A gas manifold with
In a method for measuring the voltage of a unit cell in a fuel cell having
Forming a through-hole penetrating the side surface of the fuel cell stack and the outside of the gas manifold without passing through the gas chamber in at least one location of the gas manifold;
A voltage measurement terminal is arranged in the voltage measurement unit of the unit battery,
A voltage measuring device is installed outside the gas manifold,
Disposing a conduction portion for connecting the voltage measuring device and the voltage measuring terminal so as to pass through the through hole;
A method for measuring the voltage of a fuel cell.
JP2007025601A 2007-02-05 2007-02-05 Fuel cell and voltage measuring method thereof Active JP5127254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007025601A JP5127254B2 (en) 2007-02-05 2007-02-05 Fuel cell and voltage measuring method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007025601A JP5127254B2 (en) 2007-02-05 2007-02-05 Fuel cell and voltage measuring method thereof

Publications (2)

Publication Number Publication Date
JP2008192454A true JP2008192454A (en) 2008-08-21
JP5127254B2 JP5127254B2 (en) 2013-01-23

Family

ID=39752355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007025601A Active JP5127254B2 (en) 2007-02-05 2007-02-05 Fuel cell and voltage measuring method thereof

Country Status (1)

Country Link
JP (1) JP5127254B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010011A (en) * 2008-06-30 2010-01-14 Honda Motor Co Ltd Fuel cell stack
JP2011028966A (en) * 2009-07-24 2011-02-10 Toshiba Corp Fuel cell
CN112259765A (en) * 2019-07-06 2021-01-22 中国科学院宁波材料技术与工程研究所 Electric signal collection method based on solid oxide fuel cell electric core with symmetrical double-cathode structure
CN113921881A (en) * 2021-12-16 2022-01-11 北京新研创能科技有限公司 Stack housing structure and fuel cell module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147470A (en) * 1984-12-18 1986-07-05 Toshiba Corp Fuel cell
JPS6247967A (en) * 1985-08-28 1987-03-02 Hitachi Ltd Fuel cell
JPS62271354A (en) * 1986-05-20 1987-11-25 Toshiba Corp Fuel cell
JPH04190571A (en) * 1990-11-22 1992-07-08 Toshiba Corp Fuel cell
JPH0878038A (en) * 1994-09-02 1996-03-22 Toshiba Corp Fuel cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147470A (en) * 1984-12-18 1986-07-05 Toshiba Corp Fuel cell
JPS6247967A (en) * 1985-08-28 1987-03-02 Hitachi Ltd Fuel cell
JPS62271354A (en) * 1986-05-20 1987-11-25 Toshiba Corp Fuel cell
JPH04190571A (en) * 1990-11-22 1992-07-08 Toshiba Corp Fuel cell
JPH0878038A (en) * 1994-09-02 1996-03-22 Toshiba Corp Fuel cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010011A (en) * 2008-06-30 2010-01-14 Honda Motor Co Ltd Fuel cell stack
JP2011028966A (en) * 2009-07-24 2011-02-10 Toshiba Corp Fuel cell
CN112259765A (en) * 2019-07-06 2021-01-22 中国科学院宁波材料技术与工程研究所 Electric signal collection method based on solid oxide fuel cell electric core with symmetrical double-cathode structure
CN112259765B (en) * 2019-07-06 2022-06-14 中国科学院宁波材料技术与工程研究所 Electric signal collection method based on solid oxide fuel cell electric core with symmetrical double-cathode structure
CN113921881A (en) * 2021-12-16 2022-01-11 北京新研创能科技有限公司 Stack housing structure and fuel cell module

Also Published As

Publication number Publication date
JP5127254B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
US20080070081A1 (en) Integrated and modular bsp/mea/manifold plates for fuel cells
JP2006244765A (en) Fuel cell stack
JP2001110439A (en) Fuel cell
JP2008010367A (en) Diagnostic device and diagnostic method of fuel cell
JP5839122B2 (en) Fuel cell stack
JP2007250353A (en) Fuel cell
CA2674156C (en) Mounting of a relay assembly for a fuel cell
JP5127254B2 (en) Fuel cell and voltage measuring method thereof
JP6117745B2 (en) Fuel cell stack
JP4060257B2 (en) A fuel cell having a connection structure between a terminal on the cell voltage measuring device side and a terminal on the fuel cell side
US8232017B2 (en) Fuel cell stack including non-fuel cell cassette
JP2008293766A (en) Fuel cell stack
JP6452809B2 (en) Fuel cell power generation unit and fuel cell stack
JP2006339100A (en) Mounting method and device of mounting member on fuel cell stack
JP2010114052A (en) Fuel cell flow passage plate equipped with case flow passage parts
JP4886406B2 (en) Fuel cell system
JP5378074B2 (en) Fuel cell stack
WO2014087785A1 (en) Fuel cell stack
KR101162669B1 (en) Solid oxide fuel cell
JP5188459B2 (en) Fuel cell stack
JP2009217939A (en) Fuel cell separator
US9899688B2 (en) Fuel cell
JP2006012669A (en) Polymer electrolyte fuel cell
JP5302758B2 (en) Fuel cell stack
JP2005216700A (en) Fuel cell stack, separator intermediate body and method of manufacture for separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090220

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121030

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5127254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350