JP2008190788A - Maintenance device of heat exchanger - Google Patents

Maintenance device of heat exchanger Download PDF

Info

Publication number
JP2008190788A
JP2008190788A JP2007025902A JP2007025902A JP2008190788A JP 2008190788 A JP2008190788 A JP 2008190788A JP 2007025902 A JP2007025902 A JP 2007025902A JP 2007025902 A JP2007025902 A JP 2007025902A JP 2008190788 A JP2008190788 A JP 2008190788A
Authority
JP
Japan
Prior art keywords
heat exchanger
water
pipe
heat
cleaning liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007025902A
Other languages
Japanese (ja)
Other versions
JP4879770B2 (en
Inventor
Shuichi Ishii
秀一 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2007025902A priority Critical patent/JP4879770B2/en
Publication of JP2008190788A publication Critical patent/JP2008190788A/en
Application granted granted Critical
Publication of JP4879770B2 publication Critical patent/JP4879770B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a maintenance device capable of measuring the level of contamination inside of a heat exchanger with high accuracy and cleaning the inside of the heat exchanger according to necessity. <P>SOLUTION: This maintenance device 2 of the heat exchanger 11 exchanging heat between heat source water and heat-exchanged fluid, has a tank 51 for storing the water or cleaning fluid, an upstream-side pipe 55 connected to a going-side pipe 15 for supplying the heat source water to the heat exchanger 11, a downstream-side pipe 56 connected to a returning-side pipe 18 for discharging the heat source water from the heat exchanger 11, a pump 60 for circulating the water or cleaning fluid to the heat exchanger 11 through the upstream-side pipe 55 and the downstream-side pipe 56, a flow rate adjustment valve 65 for adjusting a flow rate of the water or cleaning fluid circulated to the heat exchanger 11, a flowmeter 67 for measuring the flow rate of the water or cleaning fluid circulated in the heat exchanger 11, and a differential-pressure meter 75 for measuring differential pressure between the heat source water and the water or cleaning fluid between the upstream and downstream of the heat exchanger 11. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、熱交換器の内部の汚れ具合を検査し、必要に応じて熱交換器の内部の洗浄も行うことができるメンテナンス装置に関する。   The present invention relates to a maintenance device capable of inspecting the degree of dirt inside a heat exchanger and cleaning the inside of the heat exchanger as necessary.

例えば建築設備や生産設備などにおいて、熱交換器は多く使用されている。熱交換器には種々の形式のものがあるが、その中でもコンパクトで高効率な熱交換のできるブレージングプレート式熱交換器が近年広く使用されるようになってきている。   For example, heat exchangers are often used in building facilities and production facilities. There are various types of heat exchangers. Among them, brazing plate type heat exchangers that can perform compact and highly efficient heat exchange have been widely used in recent years.

しかし、ブレージングプレート式熱交換器は流路幅が例えば2〜3mmと狭いために、熱源水として開放式冷却塔の水や硬度の高い地下水を循環させた場合に内部に汚れが付着し、循環流量や熱交換量の減少、循環ポンプ動力の増加といった問題が生じやすい。そこで、ブレージングプレート式熱交換器では、熱交換器の上下流に圧力計や水温計をそれぞれ設置し、定期的にこの値をチェックして内部の汚れ具合を調査する方策が一般的にとられている。   However, since the brazing plate heat exchanger has a narrow flow path width of, for example, 2 to 3 mm, when the water of the open cooling tower or the groundwater with high hardness is circulated as the heat source water, dirt adheres to the inside and circulates. Problems such as a decrease in the flow rate and heat exchange amount and an increase in circulation pump power are likely to occur. Therefore, for brazing plate heat exchangers, it is common to install pressure gauges and water thermometers on the upstream and downstream sides of the heat exchanger, and periodically check these values to investigate the degree of internal contamination. ing.

また、内部の汚れ具合を調査する場合、熱源水の流量も測定する必要がある。しかし流量計は高価なため、例えば建築設備や生産設備などに多数のブレージングプレート式熱交換器が設置されているような場合は、各熱交換器に流量計を一つずつ設置することはせずに、必要なときにだけクランプオン式の超音波流量計を配管に装着し、外部から測定するのが一般的である。   Moreover, when investigating the degree of internal contamination, it is necessary to measure the flow rate of the heat source water. However, since flow meters are expensive, for example, when many brazing plate heat exchangers are installed in building equipment, production equipment, etc., one flow meter should not be installed in each heat exchanger. Instead, it is common to mount a clamp-on type ultrasonic flowmeter on the pipe only when necessary, and measure from the outside.

なお、ブレージングプレート式熱交換器以外の方式の熱交換器として、例えば多管式の熱交換器などについては、伝熱管の周面に高圧洗浄水をノズルから噴射して付着スケールなどを除去することも行われている(例えば特許文献1)。しかしながら、ブレージングプレート式熱交換器では、熱源水の流路が外部に露出しておらず、分解洗浄が不可能な構造のため、そのようにノズルから高圧洗浄水を噴射して内部を洗浄することは不可能である。そのためブレージングプレート式熱交換器では、上述したように熱交換器の上下流に圧力計や水温計を設置して内部の汚れ具合を調査し、内部の汚れが著しくなった場合は、水や薬液などの洗浄液を熱交換器の内部に循環させて洗浄することが行われている。
実用新案登録第2537554号公報
In addition, as a heat exchanger of a system other than the brazing plate heat exchanger, for example, a multi-tube heat exchanger, etc., high pressure washing water is sprayed from the nozzle to the peripheral surface of the heat transfer tube to remove the adhesion scale and the like. (For example, Patent Document 1). However, in the brazing plate type heat exchanger, the flow path of the heat source water is not exposed to the outside and the structure cannot be disassembled and washed, so the high pressure washing water is jetted from the nozzle to wash the inside. It is impossible. For this reason, in the brazing plate heat exchanger, as described above, pressure gauges and water temperature gauges are installed upstream and downstream of the heat exchanger to investigate the degree of internal contamination. Such cleaning liquid is circulated inside the heat exchanger for cleaning.
Utility Model Registration No. 2533754

しかしながら、従来の方法によると次のような問題があった。
(1)熱交換器圧損の測定精度の悪さ
熱交換器の上下流に圧力計をそれぞれ設置し、2つの圧力計による測定値を比較して熱交換器の上下流間における圧損を測定する場合、圧力計の測定レンジに対して熱交換器による圧損が小さいと、2つの圧力計の測定値の差から求めた熱交換器の圧損の値は低精度となる。例えば一般的に用いられるブルドン管式の圧力計(レンジ100[kPa])の精度は±1.5〜3[kPa]であり、10[kPa]の圧損を測定しようとした場合の誤差は、15〜30%以上となる。熱交換器における圧損を高精度に測定するためには微差圧計を設置する必要があるが、微差圧計はブルドン管式圧力計に比べて高価なため、熱交換器1台毎に微差圧計を1台ずつ設置するのは経済的に難しい。
However, the conventional method has the following problems.
(1) Poor measurement accuracy of heat exchanger pressure loss When pressure gauges are installed upstream and downstream of the heat exchanger, and the pressure loss between the upstream and downstream of the heat exchanger is measured by comparing the measured values of the two pressure gauges. When the pressure loss due to the heat exchanger is small relative to the measurement range of the pressure gauge, the pressure loss value of the heat exchanger obtained from the difference between the measurement values of the two pressure gauges becomes low accuracy. For example, the accuracy of a Bourdon tube type pressure gauge (range 100 [kPa]) generally used is ± 1.5 to 3 [kPa], and an error when trying to measure a pressure loss of 10 [kPa] is as follows: 15 to 30% or more. In order to measure the pressure loss in the heat exchanger with high accuracy, it is necessary to install a micro differential pressure gauge. However, since the micro differential pressure gauge is more expensive than a Bourdon tube pressure gauge, there is a slight difference for each heat exchanger. It is economically difficult to install one pressure gauge at a time.

(2)熱交換器の循環流量測定精度の悪さ
熱交換器の循環流量をクランプオン式の超音波流量計で測定する場合、配管材料によって測定が不可能になったり、錆による管内径の縮小で誤差が生じたりすることがある。流量を高精度に測定するには、配管途中に電磁流量計などを設置する方法が確実であるが、取外しができないため熱交換器1台毎に1台ずつ設置する必要が生じ、経済的・設置スペース的に難しい。
(2) Poor accuracy of heat exchanger circulating flow rate When measuring the heat exchanger circulating flow rate with a clamp-on type ultrasonic flow meter, it becomes impossible to measure depending on the piping material, or the inner diameter of the tube is reduced due to rust. May cause errors. In order to measure the flow rate with high accuracy, it is reliable to install an electromagnetic flow meter in the middle of the pipe. However, since it cannot be removed, it is necessary to install one unit for each heat exchanger. Difficult to install.

(3)熱交換器の洗浄効果の不明確さ
(1)、(2)で述べたように、熱交換器の圧損や循環流量を経済的かつ高精度に測定することが困難なため、熱交換器を洗浄しても、その効果を定量的に把握しにくい。そのため洗浄に使用する薬液量や洗浄時間が過剰になったり不足したりする可能性がある。
(3) Unclearness of cleaning effect of heat exchanger As described in (1) and (2), it is difficult to measure the pressure loss and circulation flow rate of the heat exchanger economically and with high accuracy. Even if the exchanger is cleaned, it is difficult to quantitatively grasp the effect. Therefore, there is a possibility that the amount of chemicals used for cleaning and the cleaning time may be excessive or insufficient.

したがって本発明の目的は、熱交換器の内部の汚れ具合を精度良く測定することができ、また、必要に応じて熱交換器の内部の洗浄も行うことができるメンテナンス装置を提供することにある。   Accordingly, an object of the present invention is to provide a maintenance device that can accurately measure the degree of dirt inside the heat exchanger and can also clean the inside of the heat exchanger as necessary. .

本発明によれば、熱源水と被熱交換流体とを熱交換させる熱交換器のメンテナンス装置であって、水または洗浄液を貯めるタンクと、前記熱交換器に熱源水を供給する往き側配管に接続される上流側配管と、前記熱交換器から熱源水を排出する還り側配管に接続される下流側配管と、前記上流側配管および前記下流側配管を通じて水または洗浄液を前記熱交換器に循環させるポンプと、前記熱交換器に循環させる水または洗浄液の流量を調節するための流量調節弁と、前記熱交換器に循環させる水または洗浄液の流量を測定する流量計と、前記熱交換器の上下流間における熱源水および水または洗浄液の差圧を測定する差圧計とを有することを特徴とする、メンテナンス装置が提供される。   According to the present invention, a heat exchanger maintenance device for exchanging heat between heat source water and a heat exchange fluid includes a tank for storing water or cleaning liquid, and a forward side pipe for supplying heat source water to the heat exchanger. Circulating water or cleaning liquid to the heat exchanger through the upstream pipe connected, the downstream pipe connected to the return pipe discharging the heat source water from the heat exchanger, and the upstream pipe and the downstream pipe A flow control valve for adjusting the flow rate of water or cleaning liquid to be circulated to the heat exchanger, a flow meter for measuring the flow rate of water or cleaning liquid to be circulated to the heat exchanger, and the heat exchanger There is provided a maintenance device comprising a heat source water between upstream and downstream and a differential pressure gauge for measuring a differential pressure of water or cleaning liquid.

また、本発明によれば、熱源水と被熱交換流体とを熱交換させる熱交換器のメンテナンス装置であって、水または洗浄液を貯めるタンクと、前記熱交換器に熱源水を供給する往き側配管に接続される上流側配管と、前記熱交換器から熱源水を排出する還り側配管に接続される下流側配管と、前記上流側配管および前記下流側配管を通じて前記熱交換器に水または洗浄液を循環させる流量可変のポンプと、前記熱交換器に循環させる水または洗浄液の流量を測定する流量計と、前記熱交換器の上下流間における熱源水および水または洗浄液の差圧を測定する差圧計とを有することを特徴とする、メンテナンス装置が提供される。   According to the present invention, there is also provided a heat exchanger maintenance device for exchanging heat between the heat source water and the heat exchange fluid, a tank for storing water or a cleaning liquid, and a forward side for supplying the heat source water to the heat exchanger. An upstream pipe connected to the pipe, a downstream pipe connected to a return pipe that discharges heat source water from the heat exchanger, and water or cleaning liquid to the heat exchanger through the upstream pipe and the downstream pipe A flow rate variable pump that circulates the heat exchanger, a flow meter that measures the flow rate of water or cleaning liquid circulated to the heat exchanger, and a difference that measures the differential pressure of the heat source water and water or cleaning liquid between the upstream and downstream of the heat exchanger A maintenance device is provided, comprising a pressure gauge.

なお、本発明において、前記熱交換器は、例えばブレージングプレート式熱交換器である。また、前記差圧計として、低圧力測定が可能な微差圧計を用いることができる。   In the present invention, the heat exchanger is, for example, a brazing plate heat exchanger. As the differential pressure gauge, a fine differential pressure gauge capable of low pressure measurement can be used.

本発明によれば、熱交換器における熱源水および水または洗浄液の圧力損失を、熱交換器の上下流間における差圧として測定することにより、圧力損失を高精度に測定できるようになる。また、熱交換器に循環させる水または洗浄液の流量を測定することによって、熱交換器の汚れ具合を、高精度かつ経済的に把握することができるようになる。これにより、熱交換器の洗浄作業を、過不足なく効率的に行うことができるようになる。   According to the present invention, the pressure loss can be measured with high accuracy by measuring the pressure loss of the heat source water and water or the cleaning liquid in the heat exchanger as the differential pressure between the upstream and downstream of the heat exchanger. In addition, by measuring the flow rate of water or cleaning liquid circulated through the heat exchanger, it becomes possible to grasp the contamination of the heat exchanger with high accuracy and economically. Thereby, the cleaning operation of the heat exchanger can be efficiently performed without excess or deficiency.

以下、本発明の実施の形態を、図面を参照にして説明する。図1は、本発明の実施の形態にかかるメンテナンス装置2を取り付けた状態の、空調システム1の説明図である。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Drawing 1 is an explanatory view of air-conditioning system 1 in the state where maintenance device 2 concerning an embodiment of the invention was attached. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

図示の空調システム1は、建物などの冷房運転を行うビル用マルチ方式の空調設備10と、この空調設備10の冷房負荷を処理する熱交換器11と、熱交換器11に熱源水としての冷却水を循環供給させる熱源設備12を備えている。熱交換器11は、伝熱性に優れた金属プレートをろう付け(ブレージング)によって一体化させたブレージングプレート式熱交換器が用いられている。なお、図1では、熱交換器11を1つのみ示しているが、空調システム1には、複数の熱交換器11が設置されており、それら複数の熱交換器11のそれぞれに対して、熱源設備12から冷却水が循環供給されるようになっている。   The illustrated air conditioning system 1 includes a building multi-type air conditioning facility 10 that performs a cooling operation of a building, a heat exchanger 11 that processes a cooling load of the air conditioning facility 10, and cooling the heat exchanger 11 as heat source water. A heat source facility 12 for circulating and supplying water is provided. As the heat exchanger 11, a brazing plate heat exchanger in which metal plates having excellent heat conductivity are integrated by brazing is used. In FIG. 1, only one heat exchanger 11 is shown, but the air conditioning system 1 is provided with a plurality of heat exchangers 11. For each of the plurality of heat exchangers 11, Cooling water is circulated and supplied from the heat source facility 12.

熱源設備12では、図示しない冷凍機などで冷却した熱源水としての冷却水が、往き側配管15から熱源水入側流路16を通じて熱交換器11内に供給されると共に、熱交換器11内で熱交換した後の冷却水が、熱源水出側流路17から還り側配管18を通じて冷凍機などに戻されるようになっている。往き側配管15には、熱交換器11への冷却水の供給を制御する開閉弁20、冷却水中の異物を除去するためのストレーナ21、冷却水の往き側温度を測定する水温計22が設けられている。還り側配管18には、冷却水の還り側温度を測定する水温計25、冷凍機などへの冷却水の排出(流量)を制御する開閉弁26が設けられている。   In the heat source facility 12, cooling water as heat source water cooled by a refrigerator or the like (not shown) is supplied into the heat exchanger 11 from the forward side pipe 15 through the heat source water inlet side flow path 16, and in the heat exchanger 11. The cooling water after the heat exchange is returned from the heat source water outlet side flow path 17 to the refrigerator or the like through the return side pipe 18. The forward side pipe 15 is provided with an on-off valve 20 for controlling the supply of cooling water to the heat exchanger 11, a strainer 21 for removing foreign substances in the cooling water, and a water temperature meter 22 for measuring the forward side temperature of the cooling water. It has been. The return side pipe 18 is provided with a water temperature gauge 25 for measuring the return side temperature of the cooling water, and an on-off valve 26 for controlling the discharge (flow rate) of the cooling water to the refrigerator or the like.

空調設備10は、室内機30と室外機31を備えている。なお、空調システム1には、複数の室内機30と室外機31が設置されている。室内機30は、コイル35とファン36と膨張弁41を有している。熱交換器11において冷却水によって冷却された被熱交換流体としての熱媒液が、液管40を経て、室内機30内において膨張弁41を介してコイル35に供給されている。室内機30内には空調対象空気がファン36によって送風されており、コイル35に空調対象空気が熱的に接触して冷却されるようになっている。こうして冷却された空調対象空気が、建物などの内部に形成された空調領域に供給されるようになっている。   The air conditioning equipment 10 includes an indoor unit 30 and an outdoor unit 31. The air conditioning system 1 is provided with a plurality of indoor units 30 and outdoor units 31. The indoor unit 30 includes a coil 35, a fan 36, and an expansion valve 41. A heat transfer fluid as a heat exchange fluid cooled by cooling water in the heat exchanger 11 is supplied to the coil 35 via the liquid pipe 40 and the expansion valve 41 in the indoor unit 30. Air to be conditioned is blown into the indoor unit 30 by a fan 36, and the air to be conditioned is brought into thermal contact with the coil 35 to be cooled. The air-conditioning target air thus cooled is supplied to an air-conditioning area formed inside a building or the like.

また、空調対象空気を冷却したことによって相対的に昇温されて、気化した被熱交換流体としての熱媒ガスが、ガス管42を経て、室外機31に供給されている。室外機31は、圧縮機44と冷却コイル45を備えており、圧縮機44で昇圧した熱媒ガスを冷却コイル45において外気で冷却することにより、凝縮液化させるようになっている。こうして室外機31において液化させられた被熱交換流体としての熱媒液が、液管46を経て、再び熱交換器11に戻されている。   In addition, the heat medium gas as the heat exchange fluid that has been heated up relatively by cooling the air to be air-conditioned and is vaporized is supplied to the outdoor unit 31 through the gas pipe 42. The outdoor unit 31 includes a compressor 44 and a cooling coil 45, and the heat medium gas boosted by the compressor 44 is condensed and liquefied by cooling it with outside air in the cooling coil 45. Thus, the heat transfer fluid as the heat exchange fluid liquefied in the outdoor unit 31 is returned to the heat exchanger 11 again through the liquid pipe 46.

メンテナンス装置2は、移動可能な台車50に、水(清水)または洗浄液を貯めるタンク51を搭載した構成である。洗浄液は、例えば薬液などである。後述するように、水は、空調システム1が備えている熱交換器11の内部の汚れ具合の測定や洗浄液のすすぎに使用され、洗浄液は、熱交換器11の内部の洗浄に使用される。   The maintenance device 2 has a configuration in which a tank 51 for storing water (fresh water) or cleaning liquid is mounted on a movable carriage 50. The cleaning liquid is, for example, a chemical liquid. As will be described later, water is used for measuring the degree of contamination inside the heat exchanger 11 provided in the air conditioning system 1 and rinsing the cleaning liquid, and the cleaning liquid is used for cleaning the inside of the heat exchanger 11.

メンテナンス装置2は、熱交換器11に熱源水としての冷却水を供給する往き側配管15に接続される上流側配管55と、熱交換器11から冷却水を戻す還り側配管18に接続される下流側配管56を有している。これら上流側配管55および下流側配管56には、例えば可撓性と耐薬品性に優れた材料、例えば耐熱塩ビなどからなるホースが利用される。上流側配管55および下流側配管56をそのようなホースで構成することにより、使用しない場合はコンパクトにたたんでおくことができる。メンテナンス装置2を空調システム1の近傍に移動させ、上流側配管55と下流側配管56を往き側配管15と還り側配管18に接続することによって、メンテナンス装置2を空調システム1に取り付けることができる。   The maintenance device 2 is connected to an upstream pipe 55 connected to an outgoing pipe 15 that supplies cooling water as heat source water to the heat exchanger 11, and to a return pipe 18 that returns the cooling water from the heat exchanger 11. A downstream pipe 56 is provided. For the upstream side pipe 55 and the downstream side pipe 56, for example, a hose made of a material excellent in flexibility and chemical resistance, for example, heat-resistant PVC is used. By configuring the upstream pipe 55 and the downstream pipe 56 with such hoses, the pipes can be folded compactly when not in use. The maintenance device 2 can be attached to the air conditioning system 1 by moving the maintenance device 2 to the vicinity of the air conditioning system 1 and connecting the upstream side piping 55 and the downstream side piping 56 to the outgoing side piping 15 and the return side piping 18. .

メンテナンス装置2を空調システム1に取り付ける場合、上流側配管55の一端を、開閉弁20と熱交換器11の間において、往き側配管15に接続すると共に、下流側配管56の一端を、開閉弁26と熱交換器11の間において、還り側配管18に接続する。   When the maintenance device 2 is attached to the air conditioning system 1, one end of the upstream pipe 55 is connected to the forward pipe 15 between the on-off valve 20 and the heat exchanger 11, and one end of the downstream pipe 56 is connected to the on-off valve. 26 and the heat exchanger 11 are connected to the return side pipe 18.

上流側配管55の他端には、タンク51内の水または洗浄液を、上流側配管55を介して熱交換器11に送液するためのポンプ60が取り付けられている。上流側配管55には、往き側配管15に近い位置に配置された開閉弁61と、タンク51(ポンプ60)に近い位置に配置された開閉弁62が設けられている。また、開閉弁62とポンプ60の間には、流量調節弁としての三方弁65、水または洗浄液中の異物を除去するためのストレーナ66、上流側配管55を介して熱交換器11に送液される水または洗浄液の流量を測定する電磁流量計67が設けられている。三方弁65にはバイパス回路68が接続してあり、三方弁65によって流量調節した際に生じた余剰の水または洗浄液が、このバイパス回路68から次に説明する下流側配管56の他端を経てタンク51に戻されるようになっている。開閉弁61、62および三方弁65は、耐薬品性、耐熱性に優れた例えばエンジニアリングプラスチックなどで構成することができる。   The other end of the upstream pipe 55 is attached with a pump 60 for sending water or cleaning liquid in the tank 51 to the heat exchanger 11 via the upstream pipe 55. The upstream pipe 55 is provided with an open / close valve 61 disposed at a position close to the forward pipe 15 and an open / close valve 62 disposed at a position close to the tank 51 (pump 60). Further, between the on-off valve 62 and the pump 60, the liquid is sent to the heat exchanger 11 via a three-way valve 65 as a flow control valve, a strainer 66 for removing foreign substances in water or cleaning liquid, and an upstream pipe 55. An electromagnetic flow meter 67 is provided for measuring the flow rate of the water or cleaning liquid. A bypass circuit 68 is connected to the three-way valve 65, and excess water or cleaning liquid generated when the flow rate is adjusted by the three-way valve 65 passes through the other end of the downstream pipe 56 described below from the bypass circuit 68. It is returned to the tank 51. The on-off valves 61 and 62 and the three-way valve 65 can be made of, for example, engineering plastics having excellent chemical resistance and heat resistance.

下流側配管56の他端は、タンク51の上方に配置されている。また、下流側配管56の他端下方にはフィルタ70が配置してあり、後述するように、下流側配管56の他端から吐出された水または洗浄液が、フィルタ70を経てタンク51内に戻されるようになっている。なお、先に説明した三方弁65によって流量調節した際に生じた余剰の水または洗浄液も、バイパス回路68から下流側配管56の他端を経て、タンク51内に戻されるようになっている。下流側配管56には、還り側配管18に近い位置に配置された開閉弁71と、タンク51に近い位置に配置された開閉弁72が設けられている。開閉弁71、72は、耐薬品性、耐熱性に優れた例えばエンジニアリングプラスチックなどで構成することができる。   The other end of the downstream pipe 56 is disposed above the tank 51. Further, a filter 70 is disposed below the other end of the downstream pipe 56, and water or cleaning liquid discharged from the other end of the downstream pipe 56 returns to the tank 51 through the filter 70 as will be described later. It is supposed to be. Note that excess water or cleaning liquid generated when the flow rate is adjusted by the three-way valve 65 described above is also returned from the bypass circuit 68 to the tank 51 through the other end of the downstream pipe 56. The downstream side pipe 56 is provided with an on-off valve 71 disposed at a position close to the return side pipe 18 and an on-off valve 72 disposed at a position close to the tank 51. The on-off valves 71 and 72 can be made of, for example, engineering plastics having excellent chemical resistance and heat resistance.

メンテナンス装置2には、上流側配管55中の水または洗浄液と下流側配管56中の水または洗浄液との差圧を測定する差圧計75が備えられている。差圧計75は、開閉弁61および開閉弁62の間における上流側配管55中の水または洗浄液の圧力と、開閉弁71および開閉弁72の間における下流側配管56中の水または洗浄液の圧力との差(差圧)を測定するようになっている。なお、差圧計75には、例えば10[kPa]程度の圧損を測定可能な微差圧計が用いられる。   The maintenance device 2 includes a differential pressure gauge 75 that measures a differential pressure between water or cleaning liquid in the upstream pipe 55 and water or cleaning liquid in the downstream pipe 56. The differential pressure gauge 75 includes the pressure of water or cleaning liquid in the upstream pipe 55 between the on-off valve 61 and the on-off valve 62, and the pressure of water or cleaning liquid in the downstream pipe 56 between the on-off valve 71 and the on-off valve 72. The difference (differential pressure) is measured. As the differential pressure gauge 75, for example, a fine differential pressure gauge capable of measuring a pressure loss of about 10 [kPa] is used.

次に、以上のように構成されたメンテナンス装置2を用いて空調システム1の熱交換器11の内部の汚れ具合を検査し、必要に応じて熱交換器11の内部の洗浄を行う方法を説明する。   Next, a method for inspecting the degree of dirt inside the heat exchanger 11 of the air conditioning system 1 using the maintenance device 2 configured as described above and cleaning the inside of the heat exchanger 11 as necessary will be described. To do.

空調システム1による通常の運転時においては、熱源設備12の往き側配管15および還り側配管18を通じて熱交換器11に冷却水が循環供給させられる。また、空調設備10では、こうして熱交換器11に供給される冷却水の冷熱を利用して、空調領域の冷房運転が行われる。この場合、往き側配管15の開閉弁20と還り側配管18の開閉弁26は開かれている。   During normal operation by the air conditioning system 1, the cooling water is circulated and supplied to the heat exchanger 11 through the outward piping 15 and the return piping 18 of the heat source facility 12. Further, in the air conditioning facility 10, the cooling operation of the air conditioning region is performed using the cooling water of the cooling water supplied to the heat exchanger 11 in this way. In this case, the open / close valve 20 of the forward side pipe 15 and the open / close valve 26 of the return side pipe 18 are opened.

一方、空調システム1の熱交換器11の内部の汚れ具合を検査する場合、図1に示したように、メンテナンス装置2を空調システム1の近傍に移動させ、上流側配管55の一端を、開閉弁20と熱交換器11の間において、往き側配管15に接続すると共に、下流側配管56の一端を、開閉弁26と熱交換器11の間において、還り側配管18に接続することによって、メンテナンス装置2を空調システム1に取り付ける。   On the other hand, when inspecting the inside of the heat exchanger 11 of the air conditioning system 1, as shown in FIG. 1, the maintenance device 2 is moved to the vicinity of the air conditioning system 1 and one end of the upstream pipe 55 is opened and closed. By connecting to the return side pipe 15 between the valve 20 and the heat exchanger 11, and connecting one end of the downstream side pipe 56 to the return side pipe 18 between the on-off valve 26 and the heat exchanger 11, The maintenance device 2 is attached to the air conditioning system 1.

そして先ず、熱交換器11の圧損V1を測定する。この場合、メンテナンス装置2のタンク51内に水を入れる。そして、往き側配管15の開閉弁20と還り側配管18の開閉弁26を閉じ、熱交換器11への冷却水の循環供給を停止させる。また、上流側配管55の開閉弁61、62と下流側配管56の開閉弁71、72を開く。そして、ポンプ60を運転し、往き側配管15に接続した上流側配管55の内部と、還り側配管18に接続した下流側配管56の内部に、タンク51内の水を充満させる。   First, the pressure loss V1 of the heat exchanger 11 is measured. In this case, water is put into the tank 51 of the maintenance device 2. Then, the on-off valve 20 of the outgoing side pipe 15 and the on-off valve 26 of the return side pipe 18 are closed, and the circulation supply of the cooling water to the heat exchanger 11 is stopped. Further, the on-off valves 61 and 62 of the upstream pipe 55 and the on-off valves 71 and 72 of the downstream pipe 56 are opened. Then, the pump 60 is operated to fill the water in the tank 51 into the inside of the upstream side pipe 55 connected to the outgoing side pipe 15 and the inside of the downstream side pipe 56 connected to the return side pipe 18.

上流側配管55の内部と下流側配管56の内部に水を充満した後、ポンプ60の運転を停止し、開閉弁62,72を閉じる。そして、図2に示すように、上流側配管55の開閉弁20と下流側配管56の開閉弁26を開く。これにより、熱源設備12の冷却水が、往き側配管15および還り側配管18を通じて、熱交換器11に再び循環供給させられる。なお、開閉弁61,71は開かれたままである。   After filling the inside of the upstream pipe 55 and the inside of the downstream pipe 56 with water, the operation of the pump 60 is stopped, and the on-off valves 62 and 72 are closed. Then, as shown in FIG. 2, the on-off valve 20 of the upstream pipe 55 and the on-off valve 26 of the downstream pipe 56 are opened. Thereby, the cooling water of the heat source facility 12 is circulated and supplied to the heat exchanger 11 again through the outward piping 15 and the return piping 18. The on-off valves 61 and 71 remain open.

この状態で、上流側配管55中の水と下流側配管56中の水との差圧を差圧計75によって測定する。これにより、熱源設備12によって熱交換器11に冷却水が循環供給させられている際に、熱交換器11の上下流の間に生じている圧損(差圧)V1を、差圧計75によって正確に測定することが可能となる。   In this state, the differential pressure between the water in the upstream pipe 55 and the water in the downstream pipe 56 is measured by the differential pressure gauge 75. Thereby, when the cooling water is circulated and supplied to the heat exchanger 11 by the heat source facility 12, the pressure loss (differential pressure) V1 generated between the upstream and downstream of the heat exchanger 11 is accurately detected by the differential pressure gauge 75. It becomes possible to measure.

次に、熱交換器11における冷却水の流量を測定する。この場合、図3に示すように、往き側配管15の開閉弁20と還り側配管18の開閉弁26を閉じ、熱源設備12から熱交換器11への冷却水の循環供給を停止させる。また、上流側配管55の開閉弁61、62と下流側配管56の開閉弁71、72を開く。そして、ポンプ60を運転し、上流側配管55と下流側配管56を通じて、タンク51内の水を熱交換器11へ循環供給させる。   Next, the flow rate of the cooling water in the heat exchanger 11 is measured. In this case, as shown in FIG. 3, the on-off valve 20 of the outgoing side pipe 15 and the on-off valve 26 of the return side pipe 18 are closed, and the circulation of the cooling water from the heat source facility 12 to the heat exchanger 11 is stopped. Further, the on-off valves 61 and 62 of the upstream pipe 55 and the on-off valves 71 and 72 of the downstream pipe 56 are opened. Then, the pump 60 is operated to circulate and supply the water in the tank 51 to the heat exchanger 11 through the upstream pipe 55 and the downstream pipe 56.

次に、上流側配管55中の水と下流側配管56中の水との差圧V2を差圧計75によって測定し、循環水量を電磁流量計67で測定する。ここで測定した差圧は、熱交換器11における圧損と、上流側配管55および下流側配管56における圧損の合計値である。後者が前者に比べて相対的に大きい場合(例えば上流側配管55と下流側配管56の配管長が長い場合)、後者の値を循環水量から推定する。配管圧損は循環水量の二乗に概ね比例し、その比例係数は配管内面の材質と内径で決まることが一般的に知られている。上流側配管55と下流側配管56の配管内面の材質が塩ビで、内径(ホース内径)が32mmの場合は、その配管圧損(ホースにおける圧損)と循環水量は図4のような関係にある。   Next, the differential pressure V2 between the water in the upstream side pipe 55 and the water in the downstream side pipe 56 is measured by the differential pressure gauge 75, and the amount of circulating water is measured by the electromagnetic flow meter 67. The differential pressure measured here is the total value of the pressure loss in the heat exchanger 11 and the pressure loss in the upstream side pipe 55 and the downstream side pipe 56. When the latter is relatively larger than the former (for example, when the upstream pipe 55 and the downstream pipe 56 are long), the latter value is estimated from the amount of circulating water. It is generally known that the pipe pressure loss is approximately proportional to the square of the circulating water volume, and the proportionality factor is determined by the material and the inner diameter of the inner surface of the pipe. When the material of the pipe inner surfaces of the upstream pipe 55 and the downstream pipe 56 is PVC and the inner diameter (hose inner diameter) is 32 mm, the pipe pressure loss (pressure loss in the hose) and the amount of circulating water have a relationship as shown in FIG.

循環水量と図4から、上流側配管55および下流側配管56における圧損を推定し、この値を圧損V1に加えた値と圧損V2が等しくなるように、循環水量を三方弁65によって調節する。この調節で循環水量も多少変化するので、再度図4から上流側配管55および下流側配管56における圧損を推定し、三方弁65を調節する。この作業を数回繰り返し、三方弁65の調節が不要な状態にする。   The pressure loss in the upstream pipe 55 and the downstream pipe 56 is estimated from the circulating water amount and FIG. 4, and the circulating water amount is adjusted by the three-way valve 65 so that the value obtained by adding this value to the pressure loss V1 is equal to the pressure loss V2. Since the amount of circulating water slightly changes due to this adjustment, the pressure loss in the upstream pipe 55 and the downstream pipe 56 is estimated again from FIG. 4 and the three-way valve 65 is adjusted. This operation is repeated several times to make the adjustment of the three-way valve 65 unnecessary.

なお、三方弁65によって流量調節した際に生じた余剰の水は、バイパス回路68から下流側配管56の他端を経てタンク51に戻される。この場合、熱交換器11へ循環供給されて下流側配管56の他端から吐出される水、および、バイパス回路68から下流側配管56の他端に吐出される水は、いずれもフィルタ70を経てからタンク51内に戻される。   Excess water generated when the flow rate is adjusted by the three-way valve 65 is returned from the bypass circuit 68 to the tank 51 through the other end of the downstream pipe 56. In this case, the water that is circulated and supplied to the heat exchanger 11 and discharged from the other end of the downstream pipe 56 and the water that is discharged from the bypass circuit 68 to the other end of the downstream pipe 56 both pass through the filter 70. After that, it is returned to the tank 51.

こうして、熱交換器11へ循環供給させる水の流量を、必然的に熱源設備12の冷却水を熱交換器11に循環供給させているときと同じ流量にすることができる。この状態で、電磁流量計67によって熱交換器11に送液される水の流量を測定する。こうして、熱源設備12の冷却水を熱交換器11に循環供給させているときの流量を間接的に測定できる。   In this manner, the flow rate of water to be circulated and supplied to the heat exchanger 11 can be inevitably set to the same flow rate as when cooling water of the heat source facility 12 is circulated and supplied to the heat exchanger 11. In this state, the flow rate of water sent to the heat exchanger 11 is measured by the electromagnetic flow meter 67. In this way, it is possible to indirectly measure the flow rate when circulating the cooling water of the heat source facility 12 to the heat exchanger 11.

そして、熱源設備12から熱交換器11に循環供給される冷却水の流量の二乗を差圧V1で割った値が、熱交換器11の使用開始時の値から実質的に低下していない場合は、熱交換器11の内部が汚れていないと判断する。   And the value which divided the square of the flow volume of the cooling water circulated and supplied from the heat source equipment 12 to the heat exchanger 11 by the differential pressure V1 is not substantially lowered from the value at the start of use of the heat exchanger 11 Determines that the inside of the heat exchanger 11 is not dirty.

熱交換器11の内部が汚れていないと判断された場合は、まだ熱交換器11の内部を洗浄する必要が無いので、空調システム1からメンテナンス装置2を取り外し、空調システム1の冷房運転を続行する。なお、空調システム1からメンテナンス装置2を取り外す場合、ポンプ60の運転を停止し、上流側配管55の開閉弁61、62と下流側配管56の開閉弁71、72を閉じる。そして、上流側配管55を往き側配管15から取り外し、下流側配管56を還り側配管18から取り外す。そして、往き側配管15の開閉弁20と還り側配管18の開閉弁26を開き、熱源設備12の冷却水を熱交換器11に循環供給する。   If it is determined that the inside of the heat exchanger 11 is not dirty, it is not necessary to clean the inside of the heat exchanger 11 yet, so the maintenance device 2 is removed from the air conditioning system 1 and the cooling operation of the air conditioning system 1 is continued. To do. In addition, when removing the maintenance apparatus 2 from the air conditioning system 1, the driving | operation of the pump 60 is stopped and the on-off valves 61 and 62 of the upstream piping 55 and the on-off valves 71 and 72 of the downstream piping 56 are closed. Then, the upstream side pipe 55 is removed from the forward side pipe 15, and the downstream side pipe 56 is removed from the return side pipe 18. Then, the on-off valve 20 of the outgoing side pipe 15 and the on-off valve 26 of the return side pipe 18 are opened, and the cooling water of the heat source equipment 12 is circulated and supplied to the heat exchanger 11.

一方、熱源設備12から熱交換器11に循環供給される冷却水の流量の二乗を差圧V1で割った値が、熱交換器11の使用開始時の値から実質的に低下した場合は、熱交換器11の内部が汚れていると判断する。   On the other hand, when the value obtained by dividing the square of the flow rate of the cooling water circulated and supplied from the heat source equipment 12 to the heat exchanger 11 by the differential pressure V1 is substantially reduced from the value at the start of use of the heat exchanger 11, It is determined that the inside of the heat exchanger 11 is dirty.

熱交換器11の内部が汚れていると判断された場合は、熱交換器11の内部を洗浄する。この場合、図5に示すように、メンテナンス装置2のタンク51内に洗浄液を入れる。なお、往き側配管15の開閉弁20と還り側配管18の開閉弁26は閉じ、熱交換器11への冷却水の循環供給を停止した状態とする。また、上流側配管55の開閉弁61、62と下流側配管56の開閉弁71、72を開く。そして、ポンプ60を運転し、上流側配管55と下流側配管56を通じて、タンク51内の洗浄液を熱交換器11へ循環供給させる。   When it is determined that the inside of the heat exchanger 11 is dirty, the inside of the heat exchanger 11 is washed. In this case, as shown in FIG. 5, the cleaning liquid is put into the tank 51 of the maintenance device 2. In addition, the on-off valve 20 of the return side pipe 15 and the on-off valve 26 of the return side pipe 18 are closed, and the circulation supply of the cooling water to the heat exchanger 11 is stopped. Further, the on-off valves 61 and 62 of the upstream pipe 55 and the on-off valves 71 and 72 of the downstream pipe 56 are opened. Then, the pump 60 is operated, and the cleaning liquid in the tank 51 is circulated and supplied to the heat exchanger 11 through the upstream pipe 55 and the downstream pipe 56.

このように熱交換器11を洗浄する場合は、洗浄効果が大きくなるように、熱交換器11へ循環供給させる洗浄液の流量が最大となるように三方弁65によって調節する。この場合、ポンプ60によって送液される洗浄液の全部を上流側配管55から熱交換器11へ供給することとなるので、バイパス回路68には洗浄液が送液されない。   When the heat exchanger 11 is cleaned in this way, the three-way valve 65 is adjusted so that the flow rate of the cleaning liquid to be circulated and supplied to the heat exchanger 11 is maximized so that the cleaning effect is increased. In this case, since all of the cleaning liquid fed by the pump 60 is supplied from the upstream pipe 55 to the heat exchanger 11, no cleaning liquid is fed to the bypass circuit 68.

そして、例えば洗浄液のpHをpH計などで定期的にチェックするなどし、洗浄液の洗浄効果がなくなるまでポンプ60を運転して、熱交換器11へ洗浄液を循環供給させる。その後、洗浄液を追加または新しい洗浄液に交換し、洗浄液の洗浄効果が変化しなくなるまで繰り返す。   Then, for example, the pH of the cleaning liquid is periodically checked with a pH meter or the like, and the pump 60 is operated until the cleaning effect of the cleaning liquid is lost, and the cleaning liquid is circulated and supplied to the heat exchanger 11. Thereafter, the cleaning liquid is added or replaced with a new cleaning liquid, and the process is repeated until the cleaning effect of the cleaning liquid does not change.

次に、循環水量を電磁流量計67で測定し、測定される循環水量が、熱源設備12から熱交換器11に循環供給される冷却水の流量に等しくなるように、熱交換器11へ循環供給させる洗浄液の流量を三方弁65によって調節する。この場合、三方弁65によって流量調節した際に生じた余剰の洗浄液は、バイパス回路68から下流側配管56の他端を経てタンク51に戻される。   Next, the amount of circulating water is measured by the electromagnetic flow meter 67 and circulated to the heat exchanger 11 so that the measured amount of circulating water is equal to the flow rate of the cooling water circulated and supplied from the heat source facility 12 to the heat exchanger 11. The flow rate of the cleaning liquid to be supplied is adjusted by the three-way valve 65. In this case, excess cleaning liquid generated when the flow rate is adjusted by the three-way valve 65 is returned from the bypass circuit 68 to the tank 51 through the other end of the downstream pipe 56.

こうして、タンク51内から熱交換器11へ循環供給させる洗浄液の流量を、熱源設備12の冷却水を熱交換器11に循環供給させているときと同じ流量にする。そして、差圧計75によって上流側配管55中の水と下流側配管56中の水の差圧V3を測定する。そして、例えば、循環水量の二乗を差圧V3で割った値が、熱交換器11の使用開始時の値から、実質的に低下しなくなったならば、熱交換器11の内部が汚れていない状態になった(洗浄が終了した)と判断することができる。   Thus, the flow rate of the cleaning liquid to be circulated and supplied from the tank 51 to the heat exchanger 11 is set to the same flow rate as when the cooling water of the heat source facility 12 is circulated and supplied to the heat exchanger 11. And the differential pressure V3 of the water in the upstream piping 55 and the water in the downstream piping 56 is measured by the differential pressure gauge 75. For example, if the value obtained by dividing the square of the circulating water amount by the differential pressure V3 does not substantially decrease from the value at the start of use of the heat exchanger 11, the inside of the heat exchanger 11 is not dirty. It can be determined that the state has been reached (cleaning has been completed).

循環水量の二乗を差圧V3で割った値が、熱交換器11の使用開始時の値から実質的に低下していて、熱交換器11の内部がまだ汚れている(洗浄が終了していない)と判断された場合は、タンク51内の洗浄液を新しい洗浄液に交換し、更に熱交換器11の内部に洗浄液を循環供給して洗浄を継続する。   The value obtained by dividing the square of the circulating water amount by the differential pressure V3 is substantially lower than the value at the start of use of the heat exchanger 11, and the inside of the heat exchanger 11 is still dirty (washing is finished). If it is determined that the cleaning liquid in the tank 51 is not replaced, the cleaning liquid in the tank 51 is replaced with a new cleaning liquid, and the cleaning liquid is circulated and supplied into the heat exchanger 11 to continue cleaning.

こうして、熱交換器11の内部を洗浄液で洗浄して、熱交換器11の内部が汚れていない状態になった(洗浄が終了した)と判断した場合は、タンク51に中和剤や水を入れて熱交換器11に循環させ、熱交換器11内部の洗浄液を完全に排出させて洗浄作業を終了する。   In this way, when it is determined that the inside of the heat exchanger 11 has been cleaned with the cleaning liquid and the inside of the heat exchanger 11 has become clean (cleaning is complete), the tank 51 is filled with neutralizing agent and water. It is inserted and circulated through the heat exchanger 11, the cleaning liquid inside the heat exchanger 11 is completely discharged, and the cleaning operation is completed.

その後、空調システム1からメンテナンス装置2を取り外し、空調システム1の冷房運転を再開する。なお、空調システム1からメンテナンス装置2を取り外す場合、ポンプ60の運転を停止し、上流側配管55の開閉弁61、62と下流側配管56の開閉弁71、72を閉じる。そして、上流側配管55を往き側配管15から取り外し、下流側配管56を還り側配管18から取り外す。そして、往き側配管15の開閉弁20と還り側配管18の開閉弁26を開き、熱源設備12の冷却水を熱交換器11に循環供給する。   Thereafter, the maintenance device 2 is removed from the air conditioning system 1 and the cooling operation of the air conditioning system 1 is resumed. In addition, when removing the maintenance apparatus 2 from the air conditioning system 1, the driving | operation of the pump 60 is stopped and the on-off valves 61 and 62 of the upstream piping 55 and the on-off valves 71 and 72 of the downstream piping 56 are closed. Then, the upstream side pipe 55 is removed from the forward side pipe 15, and the downstream side pipe 56 is removed from the return side pipe 18. Then, the on-off valve 20 of the outgoing side pipe 15 and the on-off valve 26 of the return side pipe 18 are opened, and the cooling water of the heat source equipment 12 is circulated and supplied to the heat exchanger 11.

このメンテナンス装置2によれば、空調システム1に設けられた複数の熱交換器11に流量計や圧力計を個別に設置することはせずに、メンテナンス装置2に備えられた差圧計75および電磁流量計67を用いて、各熱交換器11の差圧および循環流量を測定するので、換言すれば、メンテナンス装置2を複数の管路や複数の建物に使いまわすことができるので、経済的である。また、微差圧計75や電磁流量計67を用いれば、圧力計やクランプオン式超音波流量計などに比べて、熱交換器11の差圧および循環流量を高い精度で測定できる。このため、熱交換器11の内部の汚れ具合を精度良く測定できる。なお、循環流量の測定とあわせて熱交換器11の上下流における水温も測定すれば、熱交換器11の熱交換量も測定できる。この場合は、メンテナンス装置2を、建築設備や生産設備の試運転や性能検証のために使用することができる。また、熱交換器11を洗浄する場合、洗浄の効果を洗浄作業の途中で確認できるので、洗浄液の無駄や洗浄時間の過不足が無く、効率的な洗浄作業を行うことができる。   According to the maintenance device 2, the differential pressure gauge 75 and the electromagnetic wave provided in the maintenance device 2 are not installed in the plurality of heat exchangers 11 provided in the air conditioning system 1, without separately installing flow meters and pressure gauges. Since the differential pressure and the circulation flow rate of each heat exchanger 11 are measured using the flow meter 67, in other words, the maintenance device 2 can be reused in a plurality of pipes and a plurality of buildings, so that it is economical. is there. Moreover, if the differential pressure gauge 75 or the electromagnetic flow meter 67 is used, the differential pressure and the circulating flow rate of the heat exchanger 11 can be measured with higher accuracy than a pressure gauge or a clamp-on type ultrasonic flow meter. For this reason, it is possible to accurately measure the degree of contamination inside the heat exchanger 11. In addition, if the water temperature in the upstream and downstream of the heat exchanger 11 is also measured together with the measurement of the circulation flow rate, the heat exchange amount of the heat exchanger 11 can also be measured. In this case, the maintenance device 2 can be used for trial operation and performance verification of building facilities and production facilities. Further, when the heat exchanger 11 is cleaned, the cleaning effect can be confirmed in the middle of the cleaning operation. Therefore, there is no waste of cleaning liquid and excessive or insufficient cleaning time, and an efficient cleaning operation can be performed.

以上、本発明の好ましい実施の形態の一例を説明したが、本発明は図示の形態に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に相到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。図1〜3、5では、熱交換器11に循環させる水または洗浄液の流量を調節するために流量調節弁(三方弁65)を用いた形態を示した。これに対して、図6に示す実施の形態では、流量調節弁を省略し、代わりに、水または洗浄液を熱交換器11に循環させるポンプとして、流量可変のポンプ60’を用いている。   As mentioned above, although an example of preferable embodiment of this invention was demonstrated, this invention is not limited to the form of illustration. It will be apparent to those skilled in the art that various changes or modifications can be made within the scope of the ideas described in the claims, and these are naturally within the technical scope of the present invention. It is understood that it belongs. 1 to 3 and 5 show a form in which a flow rate adjusting valve (three-way valve 65) is used to adjust the flow rate of water or cleaning liquid circulated in the heat exchanger 11. On the other hand, in the embodiment shown in FIG. 6, the flow rate adjustment valve is omitted, and instead, a variable flow rate pump 60 ′ is used as a pump for circulating water or cleaning liquid to the heat exchanger 11.

この図6に示す形態では、熱交換器11に循環させる水または洗浄液の流量を、ポンプ60’を例えばインバータ制御することにより調節することができる。こうして、電磁流量計67によって熱交換器11に送液される水または洗浄液の流量を同様に測定することができる。   In the form shown in FIG. 6, the flow rate of the water or the cleaning liquid circulated in the heat exchanger 11 can be adjusted by controlling the pump 60 ′, for example, with an inverter. In this way, the flow rate of water or cleaning liquid fed to the heat exchanger 11 by the electromagnetic flow meter 67 can be measured in the same manner.

また、以上では、熱源設備12から熱交換器11に冷却水を循環供給して空調設備10の冷房運転を行う場合を例にして説明したが、熱源設備12から熱交換器11に循環供給する熱源水は、冷却水に限らず、暖房運転を行うための温熱源水であっても良い。また、ビル用マルチ方式の空調設備10を説明したが、その他の形式の空調設備や、空調設備以外の生産設備などに備えられた熱交換器のメンテナンスにも本発明は適用可能である。また、熱交換器の形式も、ブレージングプレート式熱交換器に限らず、他の形式の熱交換器にも本発明は適用可能である。   Moreover, although the case where the cooling water was circulated and supplied from the heat source facility 12 to the heat exchanger 11 to perform the cooling operation of the air conditioning facility 10 was described above as an example, the heat source facility 12 circulated and supplied to the heat exchanger 11. The heat source water is not limited to cooling water, and may be hot heat source water for performing a heating operation. Moreover, although the multi-type air conditioning equipment 10 for buildings has been described, the present invention can also be applied to maintenance of heat exchangers provided in other types of air conditioning equipment, production equipment other than air conditioning equipment, and the like. Further, the type of the heat exchanger is not limited to the brazing plate type heat exchanger, and the present invention can be applied to other types of heat exchangers.

熱交換器を有する建築設備や生産設備のメンテナンスに適用できる。   It can be applied to the maintenance of building equipment and production equipment with heat exchangers.

本発明の実施の形態にかかるメンテナンス装置を取り付けた状態の空調システムの説明図である。It is explanatory drawing of the air conditioning system of the state which attached the maintenance apparatus concerning embodiment of this invention. 熱交換器の圧損を測定する場合のメンテナンス装置の説明図である。It is explanatory drawing of the maintenance apparatus in the case of measuring the pressure loss of a heat exchanger. 熱交換器における冷却水の流量を測定する場合のメンテナンス装置の説明図である。It is explanatory drawing of the maintenance apparatus in the case of measuring the flow volume of the cooling water in a heat exchanger. 上流側配管と下流側配管(ホース)における圧損と循環水量(流量)の関係を示すグラフである。It is a graph which shows the relationship between the pressure loss in an upstream piping and downstream piping (hose), and the amount of circulating water (flow volume). 熱交換器の内部を洗浄する場合のメンテナンス装置の説明図である。It is explanatory drawing of the maintenance apparatus in the case of wash | cleaning the inside of a heat exchanger. 本発明の別の実施の形態にかかるメンテナンス装置を取り付けた状態の空調システムの説明図である。It is explanatory drawing of the air conditioning system of the state which attached the maintenance apparatus concerning another embodiment of this invention.

符号の説明Explanation of symbols

1 空調システム
2 メンテナンス装置
10 空調設備
11 熱交換器
12 熱源設備
15 往き側配管
18 還り側配管
20 開閉弁
26 開閉弁
50 台車
51 タンク
55 上流側配管
56 下流側配管
60 ポンプ
61、62 開閉弁
65 三方弁(流量調節弁)
67 電磁流量計
71、71 開閉弁
75 差圧計
DESCRIPTION OF SYMBOLS 1 Air conditioning system 2 Maintenance apparatus 10 Air conditioning equipment 11 Heat exchanger 12 Heat source equipment 15 Outgoing side piping 18 Return side piping 20 On-off valve 26 On-off valve 50 Carriage 51 Tank 55 Upstream side piping 56 Downstream side piping 60 Pumps 61, 62 On-off valve 65 Three-way valve (flow control valve)
67 Electromagnetic flow meter 71, 71 On-off valve 75 Differential pressure gauge

Claims (3)

熱源水と被熱交換流体とを熱交換させる熱交換器のメンテナンス装置であって、
水または洗浄液を貯めるタンクと、
前記熱交換器に熱源水を供給する往き側配管に接続される上流側配管と、
前記熱交換器から熱源水を排出する還り側配管に接続される下流側配管と、
前記上流側配管および前記下流側配管を通じて水または洗浄液を前記熱交換器に循環させるポンプと、
前記熱交換器に循環させる水または洗浄液の流量を調節するための流量調節弁と、
前記熱交換器に循環させる水または洗浄液の流量を測定する流量計と、
前記熱交換器の上下流間における熱源水および水または洗浄液の差圧を測定する差圧計とを有することを特徴とする、メンテナンス装置。
A heat exchanger maintenance device that exchanges heat between heat source water and a heat exchange fluid,
A tank for storing water or cleaning liquid;
An upstream pipe connected to an outgoing pipe for supplying heat source water to the heat exchanger;
A downstream pipe connected to a return pipe for discharging heat source water from the heat exchanger;
A pump for circulating water or cleaning liquid through the heat exchanger through the upstream pipe and the downstream pipe;
A flow control valve for adjusting the flow rate of water or cleaning liquid to be circulated in the heat exchanger;
A flow meter for measuring a flow rate of water or cleaning liquid to be circulated in the heat exchanger;
A maintenance apparatus comprising: a heat source water between the upstream and downstream of the heat exchanger and a differential pressure gauge for measuring a differential pressure of water or cleaning liquid.
熱源水と被熱交換流体とを熱交換させる熱交換器のメンテナンス装置であって、
水または洗浄液を貯めるタンクと、
前記熱交換器に熱源水を供給する往き側配管に接続される上流側配管と、
前記熱交換器から熱源水を排出する還り側配管に接続される下流側配管と、
前記上流側配管および前記下流側配管を通じて水または洗浄液を前記熱交換器に循環させる流量可変のポンプと、
前記熱交換器に循環させる水または洗浄液の流量を測定する流量計と、
前記熱交換器の上下流間における熱源水および水または洗浄液の差圧を測定する差圧計とを有することを特徴とする、メンテナンス装置。
A heat exchanger maintenance device that exchanges heat between heat source water and a heat exchange fluid,
A tank for storing water or cleaning liquid;
An upstream pipe connected to an outgoing pipe for supplying heat source water to the heat exchanger;
A downstream pipe connected to a return pipe for discharging heat source water from the heat exchanger;
A variable flow rate pump that circulates water or cleaning liquid to the heat exchanger through the upstream pipe and the downstream pipe;
A flow meter for measuring a flow rate of water or cleaning liquid to be circulated in the heat exchanger;
A maintenance apparatus comprising: a heat source water between the upstream and downstream of the heat exchanger and a differential pressure gauge for measuring a differential pressure of water or cleaning liquid.
前記熱交換器は、ブレージングプレート式熱交換器であることを特徴とする、請求項1または2に記載のメンテナンス装置。 The maintenance apparatus according to claim 1, wherein the heat exchanger is a brazing plate heat exchanger.
JP2007025902A 2007-02-05 2007-02-05 Heat exchanger maintenance equipment Active JP4879770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007025902A JP4879770B2 (en) 2007-02-05 2007-02-05 Heat exchanger maintenance equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007025902A JP4879770B2 (en) 2007-02-05 2007-02-05 Heat exchanger maintenance equipment

Publications (2)

Publication Number Publication Date
JP2008190788A true JP2008190788A (en) 2008-08-21
JP4879770B2 JP4879770B2 (en) 2012-02-22

Family

ID=39751052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007025902A Active JP4879770B2 (en) 2007-02-05 2007-02-05 Heat exchanger maintenance equipment

Country Status (1)

Country Link
JP (1) JP4879770B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101767431A (en) * 2008-12-30 2010-07-07 上海金发科技发展有限公司 Dredging device for screw cylinder cooling water pipe of plastic extruder
JP2014105897A (en) * 2012-11-26 2014-06-09 Mitsubishi Electric Corp Washing apparatus for plate type heat exchanger of air conditioner
JP2014145494A (en) * 2013-01-28 2014-08-14 Mitsubishi Heavy Ind Ltd Release guide of plate-type heat exchanger
CN107128990A (en) * 2017-06-30 2017-09-05 华南理工大学 The method and apparatus that a kind of MVR evaporators plate steam channel downflow type string is washed
WO2019198368A1 (en) * 2018-04-09 2019-10-17 株式会社デンソー Heat exchanger
JP2019186367A (en) * 2018-04-09 2019-10-24 株式会社Soken Heat transfer equipment
KR102444826B1 (en) * 2021-12-17 2022-09-21 장한기술 주식회사 Fouling removing system for heat exchangers
US11692752B2 (en) 2018-10-05 2023-07-04 S. A. Armstrong Limited Feed forward flow control of heat transfer system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0245384A (en) * 1988-07-23 1990-02-15 Amusetsuku:Kk Damper feeder
JPH02149333A (en) * 1988-11-30 1990-06-07 Snow Brand Milk Prod Co Ltd Apparatus for manufacturing spherical granules of oil material using organic solution as refrigerant
JP2000161806A (en) * 1998-11-25 2000-06-16 Ebara Corp Heat pump apparatus
JP2005172264A (en) * 2003-12-08 2005-06-30 Kimura Kohki Co Ltd Water heat source heat pump type air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0245384A (en) * 1988-07-23 1990-02-15 Amusetsuku:Kk Damper feeder
JPH02149333A (en) * 1988-11-30 1990-06-07 Snow Brand Milk Prod Co Ltd Apparatus for manufacturing spherical granules of oil material using organic solution as refrigerant
JP2000161806A (en) * 1998-11-25 2000-06-16 Ebara Corp Heat pump apparatus
JP2005172264A (en) * 2003-12-08 2005-06-30 Kimura Kohki Co Ltd Water heat source heat pump type air conditioner

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101767431A (en) * 2008-12-30 2010-07-07 上海金发科技发展有限公司 Dredging device for screw cylinder cooling water pipe of plastic extruder
JP2014105897A (en) * 2012-11-26 2014-06-09 Mitsubishi Electric Corp Washing apparatus for plate type heat exchanger of air conditioner
JP2014145494A (en) * 2013-01-28 2014-08-14 Mitsubishi Heavy Ind Ltd Release guide of plate-type heat exchanger
CN107128990A (en) * 2017-06-30 2017-09-05 华南理工大学 The method and apparatus that a kind of MVR evaporators plate steam channel downflow type string is washed
WO2019198368A1 (en) * 2018-04-09 2019-10-17 株式会社デンソー Heat exchanger
JP2019186367A (en) * 2018-04-09 2019-10-24 株式会社Soken Heat transfer equipment
JP7067217B2 (en) 2018-04-09 2022-05-16 株式会社Soken Heat exchanger
US11692752B2 (en) 2018-10-05 2023-07-04 S. A. Armstrong Limited Feed forward flow control of heat transfer system
KR102444826B1 (en) * 2021-12-17 2022-09-21 장한기술 주식회사 Fouling removing system for heat exchangers

Also Published As

Publication number Publication date
JP4879770B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
JP4879770B2 (en) Heat exchanger maintenance equipment
EP2904297B1 (en) Advanced valve actuator with remote location flow reset
JP2004144445A (en) Heat pump water heater
CN102313471B (en) The function of cooling system monitors and/or control method and corresponding cooling system
CN107606975A (en) A kind of pipe heat exchanger
CN111398526A (en) Recirculated cooling water monitoring heat transfer system
JP3760862B2 (en) Heat pump hot water supply system
JP6168958B2 (en) Hot water apparatus and abnormality notification method in hot water apparatus
JP6064166B2 (en) Heat exchange system
CN105588304B (en) A kind of indoor unit and its control method
CN207866096U (en) A kind of full-automatic tube brush condenser on-line cleaning system
JP2014153003A5 (en)
JP4925885B2 (en) Flow rate measurement method for piping system equipment
JP2008111619A (en) Inner surface cleaning method for heat transfer tube of heat exchanger
JP2013015046A (en) Cooling device and method for detecting leakage of cooling water
CN207300003U (en) A kind of pipe heat exchanger
JP5975956B2 (en) Abnormality notification method in water heater and water heater
JP3157938U (en) Bubble generator and pipe washer
JP2009243798A (en) Heater for water for hot-water supply system, and hot-water supply system
JP2010133600A (en) Heat pump water heater
CN114111430A (en) Method for forming protective surface treatment on heat exchanger in situ
CN207632896U (en) The heating system of strip pickling acid
KR20200002789U (en) Washing device for plate heat exchanger
JP7283348B2 (en) HEAT EXCHANGER CLEANING MANAGEMENT METHOD AND DEVICE
RU174133U1 (en) CIRCULATING FLOW INSTALLATION OF CLEANING WATER HEATING SYSTEMS FROM DEPOSITS ON THE INTERNAL SURFACE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110401

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111004

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111130

R150 Certificate of patent or registration of utility model

Ref document number: 4879770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3