JP2008190769A - Ejector type refrigerating cycle - Google Patents

Ejector type refrigerating cycle Download PDF

Info

Publication number
JP2008190769A
JP2008190769A JP2007025354A JP2007025354A JP2008190769A JP 2008190769 A JP2008190769 A JP 2008190769A JP 2007025354 A JP2007025354 A JP 2007025354A JP 2007025354 A JP2007025354 A JP 2007025354A JP 2008190769 A JP2008190769 A JP 2008190769A
Authority
JP
Japan
Prior art keywords
refrigerant
radiator
flow
ejector
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007025354A
Other languages
Japanese (ja)
Other versions
JP5021326B2 (en
Inventor
Makoto Ikegami
真 池上
Hirotsugu Takeuchi
裕嗣 武内
Haruyuki Nishijima
春幸 西嶋
Shigeki Ito
繁樹 伊藤
Ryoko Fujiwara
良子 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007025354A priority Critical patent/JP5021326B2/en
Publication of JP2008190769A publication Critical patent/JP2008190769A/en
Application granted granted Critical
Publication of JP5021326B2 publication Critical patent/JP5021326B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3286Constructional features
    • B60H2001/3298Ejector-type refrigerant circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ejector type refrigerating cycle which simultaneously achieves both of improvement effect of nozzle efficiency and refrigerating capacity expansion effect of a suction-side evaporator, even when an operating condition is changed. <P>SOLUTION: The distributed-air amount of a first cooling fan 12a is controlled to adjust a degree of supercooling of an outlet refrigerant of a first radiator 12 for cooling a discharged refrigerant of a compressor 11 to be 3K or less. Further the flow of the outlet refrigerant of the first radiator 12 is branched, one of the branched refrigerants is allowed to flow into a nozzle portion 14a of the ejector 14, and the other is allowed to flow into a second radiator 16. Further the distributed-air amount of a second cooling fan 16a is controlled to adjust a degree of supercooling of an outlet refrigerant of the second radiator 16 to be 10K or more, and the refrigerant is allowed to flow into a suction-side evaporator 19. Thus both of the improvement effect of nozzle efficiency of the nozzle portion 14a and the refrigerating capacity expansion effect of the suction-side evaporator 19 are simultaneously achieved even when the operating condition is changed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、エジェクタを有するエジェクタ式冷凍サイクルに関する。   The present invention relates to an ejector-type refrigeration cycle having an ejector.

従来、特許文献1に、圧縮機吐出冷媒を放熱させる放熱器の下流側かつエジェクタのノズル部上流側に配置された分岐部で冷媒の流れを分岐し、分岐された一方の冷媒をノズル部側へ流入させ、他方の冷媒をエジェクタの冷媒吸引口側へ流入させるエジェクタ式冷凍サイクルが開示されている。   Conventionally, in Patent Document 1, the flow of the refrigerant is branched at a branch portion arranged on the downstream side of the radiator that dissipates the refrigerant discharged from the compressor and on the upstream side of the nozzle portion of the ejector, and one of the branched refrigerants is arranged on the nozzle portion side. An ejector refrigeration cycle is disclosed in which the other refrigerant flows into the refrigerant suction port side of the ejector.

この特許文献1のエジェクタ式冷凍サイクルでは、エジェクタのディフューザ部下流側に下流側蒸発器を配置し、さらに分岐部とエジェクタの冷媒吸引口の間に、冷媒を減圧膨張させる絞り機構および吸引側蒸発器を配置して、双方の蒸発器において冷媒が吸熱作用を発揮できるようにしている。   In the ejector refrigeration cycle of Patent Document 1, a downstream evaporator is disposed downstream of the diffuser portion of the ejector, and a throttle mechanism for decompressing and expanding the refrigerant between the branch portion and the refrigerant suction port of the ejector and suction side evaporation. An evaporator is arranged so that the refrigerant can exert an endothermic effect in both evaporators.

さらに、下流側蒸発器の出口側を圧縮機の吸入側に接続し、ディフューザ部の昇圧作用によって昇圧された冷媒を圧縮機に吸入させることで、圧縮機の駆動動力を低減させてサイクル効率(COP)の向上を図っている。
特開2005−308380号公報
Further, the outlet side of the downstream evaporator is connected to the suction side of the compressor, and the refrigerant boosted by the boosting action of the diffuser section is sucked into the compressor, thereby reducing the driving power of the compressor and reducing the cycle efficiency ( COP) is being improved.
JP 2005-308380 A

ところで、この種のエジェクタでは、ノズル部に飽和液相冷媒あるいは気液二相状態の冷媒を流入させることで、ノズル部における冷媒の沸騰を促進して、ノズル効率を向上させることができる。なお、ノズル効率とは、冷媒の圧力エネルギーを運動エネルギーに変換させる際のエネルギー変換効率である。   By the way, in this type of ejector, by allowing a saturated liquid phase refrigerant or a gas-liquid two-phase refrigerant to flow into the nozzle portion, boiling of the refrigerant in the nozzle portion can be promoted, and the nozzle efficiency can be improved. The nozzle efficiency is energy conversion efficiency when converting the pressure energy of the refrigerant into kinetic energy.

そして、このノズル効率を向上させることで、ノズル部から噴射する冷媒流の流速を増加させてエジェクタの回収エネルギー量を増加できるので、より一層、サイクル効率を向上できる。   And by improving this nozzle efficiency, since the flow velocity of the refrigerant | coolant flow injected from a nozzle part can be increased and the recovery energy amount of an ejector can be increased, cycle efficiency can be improved further.

そこで、本発明者らは、先に特願2006−219770号(以下、先願例という。)にて、特許文献1のサイクルにおいて、放熱器として過冷却器一体型凝縮器を採用したエジェクタ式冷凍サイクルを提案している。   Therefore, the present inventors have previously disclosed an ejector type in which a supercooler integrated condenser is employed as a radiator in the cycle of Patent Document 1 in Japanese Patent Application No. 2006-219770 (hereinafter referred to as the prior application example). A refrigeration cycle is proposed.

なお、過冷却器一体型凝縮器とは、圧縮機吐出冷媒を放熱させて凝縮させる凝縮部、凝縮部下流側の冷媒の気液を分離して液相冷媒を蓄えるレシーバ部、および、レシーバ部で分離された液相冷媒をさらに放熱させる過冷却部を有して構成される、いわゆるサブクールタイプの凝縮器である。   Note that the subcooler-integrated condenser is a condenser that radiates and condenses the refrigerant discharged from the compressor, a receiver that separates the gas-liquid of the refrigerant on the downstream side of the condenser and stores the liquid-phase refrigerant, and a receiver. It is what is called a subcool type condenser comprised including the supercooling part which further thermally radiates the liquid phase refrigerant | coolant isolate | separated by (4).

さらに、先願例のサイクルでは、レシーバ部の液相冷媒出口部に分岐部を構成し、分岐された一方の飽和液相冷媒をエジェクタのノズル部へ流入させ、他方の飽和液相冷媒を過冷却部に流入させている。   Furthermore, in the cycle of the prior application example, a branch portion is formed at the liquid-phase refrigerant outlet portion of the receiver portion, one branched saturated liquid-phase refrigerant is allowed to flow into the nozzle portion of the ejector, and the other saturated liquid-phase refrigerant is passed through. It flows into the cooling part.

これにより、ノズル効率を向上させるとともに、過冷却部にてエンタルピが減少した過冷却状態の冷媒を減圧手段を介して吸引側蒸発器へ流入させて、吸引側蒸発器の冷凍能力の拡大を図っている。すなわち、先願例のサイクルでは、ノズル効率向上効果および吸引側蒸発器の冷凍能力拡大効果によって、特許文献1のサイクルに対して、サイクル効率を向上させている。   As a result, the nozzle efficiency is improved, and the supercooled refrigerant whose enthalpy has been reduced in the supercooling section is caused to flow into the suction side evaporator via the decompression means, thereby expanding the refrigeration capacity of the suction side evaporator. ing. That is, in the cycle of the prior application example, the cycle efficiency is improved with respect to the cycle of Patent Document 1 by the effect of improving the nozzle efficiency and the effect of expanding the refrigerating capacity of the suction side evaporator.

しかしながら、実際に先願例のエジェクタ式冷凍サイクルを作動させると、サイクルの運転条件によって、上記のサイクル効率向上効果が充分に得られないことがある。   However, when the ejector refrigeration cycle of the prior application example is actually operated, the above cycle efficiency improvement effect may not be sufficiently obtained depending on the operation conditions of the cycle.

そこで、本発明者らがその原因について調査したところ、サイクルの運転条件によって過冷却部出口冷媒の過冷却度が変化してしまうことが原因であると判った。その理由は、過冷却部出口冷媒の過冷却度が変化すると、減圧手段を通過する冷媒流量が変化してしまうからである。   Then, when the present inventors investigated the cause, it turned out that it is a cause that the supercooling degree of a supercooling part exit refrigerant | coolant changes with the driving | running conditions of a cycle. The reason is that when the degree of supercooling of the refrigerant at the outlet of the supercooling portion changes, the flow rate of the refrigerant passing through the decompression means changes.

このことをより詳細に説明すると、例えば、先願例のエジェクタ式冷凍サイクルを空調装置に適用した場合に、過冷却器一体型凝縮器において冷媒と熱交換する室外空気温度が高くなると、過冷却器一体型凝縮器における冷媒の放熱量が減少して、過冷却部出口冷媒の過冷却度が低下する。   To explain this in more detail, for example, when the ejector-type refrigeration cycle of the prior application example is applied to an air conditioner, if the outdoor air temperature for heat exchange with the refrigerant in the supercooler integrated condenser increases, The amount of heat dissipated by the refrigerant in the condenser integrated condenser is reduced, and the degree of supercooling of the refrigerant at the outlet of the supercooling section is lowered.

そして、過冷却部出口冷媒の過冷却度が低下すると、減圧手段へ流入する冷媒の密度が低下するので、減圧手段を通過する冷媒流量が低下する。さらに、本発明者らは、減圧手段入口冷媒の過冷却度と減圧手段を通過する冷媒流量との関係の詳細について調査し、図5に示す調査結果を得ている。   And when the supercooling degree of a supercooling part exit refrigerant | coolant falls, since the density of the refrigerant | coolant which flows in into a pressure reduction means falls, the refrigerant | coolant flow rate which passes a pressure reduction means falls. Furthermore, the present inventors investigated the details of the relationship between the degree of supercooling of the refrigerant at the inlet of the decompression means and the flow rate of the refrigerant passing through the decompression means, and obtained the investigation results shown in FIG.

図5の横軸は、減圧手段入口冷媒の過冷却度を示している。なお、過冷却度とは、冷媒の凝縮圧力に相当する飽和温度からの温度低下量の絶対値を示すものであるから、過冷却度の増加に伴って、冷媒の絶対温度は低下する。また、過冷却度0(K)は飽和液相状態を意味する。図5の縦軸は、減圧手段入口圧力および出口圧力を所定の値として、減圧手段入口、出口間の差圧を一定とした際の減圧手段を通過する冷媒流量を示している。   5 represents the degree of supercooling of the refrigerant at the inlet of the decompression means. Note that the degree of supercooling indicates the absolute value of the amount of temperature decrease from the saturation temperature corresponding to the condensation pressure of the refrigerant. Therefore, the absolute temperature of the refrigerant decreases as the degree of supercooling increases. Further, the degree of supercooling 0 (K) means a saturated liquid phase state. The vertical axis in FIG. 5 indicates the flow rate of the refrigerant passing through the pressure reducing means when the pressure reducing means inlet pressure and the outlet pressure are set to predetermined values and the pressure difference between the pressure reducing means inlet and outlet is constant.

さらに、図5では、過冷却度10(K)における質量流量を100として、過冷却度の変化に対する冷媒流量の変化を無次元化して●でプロットしている。なお、参考として、気液二相状態の冷媒流量を○でプロットしている。また、この調査では、減圧手段として固定絞りであるキャピラリチューブを採用している。   Further, in FIG. 5, assuming that the mass flow rate at the degree of supercooling 10 (K) is 100, the change in the refrigerant flow rate with respect to the change in the degree of supercooling is rendered dimensionless and plotted with ●. For reference, the refrigerant flow rate in the gas-liquid two-phase state is plotted with ◯. In this investigation, a capillary tube, which is a fixed throttle, is used as the pressure reducing means.

図5に示すように、過冷却度の低下に伴って、減圧手段を通過する冷媒流量が低下し、特に、飽和液相状態に近づくと大幅に流量低下することが判る。つまり、先願例のサイクルにおいて、冷媒の過冷却度が低下して飽和液相状態に近づくと、減圧手段を通過する冷媒流量が大幅に低下して、吸引側蒸発器へ流入する冷媒流量も低下してしまう。   As shown in FIG. 5, it can be seen that the flow rate of the refrigerant passing through the decompression means decreases as the degree of supercooling decreases, and in particular, the flow rate decreases significantly when approaching a saturated liquid phase state. In other words, in the cycle of the prior application example, when the degree of supercooling of the refrigerant decreases and approaches the saturated liquid phase state, the flow rate of the refrigerant passing through the decompression means is greatly reduced, and the flow rate of the refrigerant flowing into the suction side evaporator is also reduced. It will decline.

そのため、サイクルの運転条件によって過冷却部出口冷媒の過冷却度が減少すると、吸引側蒸発器の冷凍能力も低下してしまい、上述の吸引側蒸発器の冷凍能力拡大によるサイクル効率向上効果が得られなくなる。   For this reason, if the degree of supercooling of the refrigerant at the outlet of the supercooling section decreases due to the operating conditions of the cycle, the refrigerating capacity of the suction side evaporator also decreases, and the effect of improving cycle efficiency due to the expansion of the refrigerating capacity of the suction side evaporator described above is obtained. It becomes impossible.

また、例えば、高負荷運転条件において室外空気温度が高くなると、レシーバ部に蓄えられる余剰冷媒量が減少して、過冷却部に飽和液相状態の冷媒を充分に供給できなくなる。このため、過冷却部へ流入する冷媒の状態も変化してしまう。そして、このような過冷却部流入冷媒の状態の変化も、過冷却部出口冷媒の過冷却度を変化させる原因となる。   Further, for example, when the outdoor air temperature becomes high under high load operation conditions, the amount of surplus refrigerant stored in the receiver unit decreases, and the saturated liquid phase refrigerant cannot be sufficiently supplied to the supercooling unit. For this reason, the state of the refrigerant flowing into the supercooling section also changes. Such a change in the state of the refrigerant flowing into the supercooling section also causes a change in the degree of supercooling of the refrigerant at the outlet of the supercooling section.

本発明は、上記点に鑑み、運転条件が変化しても、ノズル効率の向上効果および吸引側蒸発器の冷凍能力拡大効果を同時に得ることができるエジェクタ式冷凍サイクルを提供することを目的とする。   In view of the above points, an object of the present invention is to provide an ejector-type refrigeration cycle that can simultaneously obtain the effect of improving nozzle efficiency and the effect of expanding the refrigeration capacity of the suction-side evaporator even when operating conditions change. .

上記の目的を達成するため、本発明では、冷媒を圧縮して吐出する圧縮機(11)と、圧縮機(11)にて圧縮された高圧冷媒を放熱させる第1、第2放熱器(12、16)と、第1放熱器(12)下流側冷媒を減圧膨張させるノズル部(14a)から噴射する高速度の冷媒流によって冷媒を冷媒吸引口(14b)から吸引するエジェクタ(14)と、第2放熱器(16)下流側冷媒を減圧膨張させる減圧手段(18)と、減圧手段(18)下流側冷媒を蒸発させて冷媒吸引口(14b)上流側に流出する吸引側蒸発器(19)とを備え、第2放熱器(16)の放熱能力は、第1放熱器(12)の放熱能力に対して、独立して調整可能になっており、第1放熱器(12)の放熱能力は、ノズル部(14a)へ流入する冷媒の状態が飽和液相状態あるいは気液二相状態となるように調整され、第2放熱器(16)の放熱能力は、減圧手段(18)へ流入する冷媒の状態が過冷却状態となるように調整されているエジェクタ式冷凍サイクルを特徴とする。   In order to achieve the above object, in the present invention, the compressor (11) that compresses and discharges the refrigerant, and the first and second radiators (12) that release heat from the high-pressure refrigerant compressed by the compressor (11). 16), and an ejector (14) for sucking the refrigerant from the refrigerant suction port (14b) by a high-speed refrigerant flow injected from the nozzle part (14a) for decompressing and expanding the refrigerant on the downstream side of the first radiator (12), The second radiator (16) decompression means (18) for decompressing and expanding the downstream-side refrigerant, and the suction-side evaporator (19) for evaporating the downstream-side refrigerant and outflowing to the upstream side of the refrigerant suction port (14b) ), And the heat dissipation capability of the second radiator (16) can be adjusted independently of the heat dissipation capability of the first radiator (12), and the heat dissipation capability of the first radiator (12) The capacity of the refrigerant flowing into the nozzle part (14a) is saturated liquid phase Or the ejector type which is adjusted so that it may become a gas-liquid two phase state, and the heat dissipation capability of the 2nd radiator (16) is adjusted so that the state of the refrigerant which flows into decompression means (18) may be in a supercooled state. Features a refrigeration cycle.

これによれば、第2放熱器(16)の放熱能力が、第1放熱器(12)の放熱能力に対して、独立して調整可能になっており、ノズル部(14a)へ流入する冷媒の状態が飽和液相状態あるいは気液二相状態となるように調整されているので、運転条件が変化しても、上述のノズル効率の向上効果を得ることができる。   According to this, the heat dissipation capability of the second radiator (16) can be independently adjusted with respect to the heat dissipation capability of the first radiator (12), and the refrigerant flows into the nozzle portion (14a). Since the state is adjusted so as to be a saturated liquid phase state or a gas-liquid two phase state, the above-described effect of improving the nozzle efficiency can be obtained even if the operating conditions change.

さらに、減圧手段(18)へ流入する冷媒の状態が過冷却状態となるように、第2放熱器(16)の放熱能力が調整されるので、減圧手段(18)を通過する冷媒流量が低下してしまうことを抑制できる。その結果、運転条件が変化しても吸引側蒸発器(19)の冷凍能力拡大効果を得ることができる。   Furthermore, since the heat radiation capability of the second radiator (16) is adjusted so that the state of the refrigerant flowing into the decompression means (18) becomes a supercooled state, the flow rate of the refrigerant passing through the decompression means (18) decreases. Can be suppressed. As a result, it is possible to obtain the effect of expanding the refrigerating capacity of the suction side evaporator (19) even if the operating conditions change.

従って、運転条件が変化しても、ノズル部(14a)のノズル効率の向上効果および吸引側蒸発器(19)の冷凍能力拡大効果を同時に得ることができる。   Therefore, even if the operating conditions change, it is possible to simultaneously obtain the effect of improving the nozzle efficiency of the nozzle section (14a) and the effect of expanding the refrigeration capacity of the suction side evaporator (19).

また、上記特徴のエジェクタ式冷凍サイクルにおいて、高圧冷媒の流れを分岐する分岐部(A)を備え、分岐部(A)は、第1放熱器(12)から流出した高圧冷媒の流れを分岐して、分岐された一方の冷媒をノズル部(14a)へ流入させ、他方の冷媒を第2放熱器(16)へ流入させるようになっていてもよい。   The ejector-type refrigeration cycle having the above-described characteristics includes a branch portion (A) that branches the flow of the high-pressure refrigerant, and the branch portion (A) branches the flow of the high-pressure refrigerant that has flowed out of the first radiator (12). Then, one of the branched refrigerants may flow into the nozzle part (14a), and the other refrigerant may flow into the second radiator (16).

これによれば、圧縮機(11)→第1放熱器(12)→分岐部(A)→ノズル部(14a)→圧縮機(11)の順で冷媒が流れる冷媒流路および圧縮機(11)→第1放熱器(12)→分岐部(A)→第2放熱器(16)→減圧手段(18)→吸引側蒸発器(19)→冷媒吸引口(14b)の順で冷媒が流れる冷媒流路を構成できる。   According to this, the refrigerant flow path through which the refrigerant flows and the compressor (11) in the order of the compressor (11) → the first radiator (12) → the branching portion (A) → the nozzle portion (14a) → the compressor (11). ) → first radiator (12) → branch (A) → second radiator (16) → pressure reducing means (18) → suction side evaporator (19) → refrigerant suction port (14b) in this order A refrigerant flow path can be configured.

従って、第2放熱器(16)では、第1放熱器(12)下流側の飽和液相状態あるいは気液二相状態の冷媒を放熱させるので、圧縮機(11)吐出冷媒を直接流入させて放熱させる場合に対して、第2放熱器(16)の熱交換能力を小さくできる。これにより、第2放熱器(16)の小型化効果を得ることもできる。   Therefore, in the second radiator (16), the refrigerant in the saturated liquid phase state or the gas-liquid two-phase state on the downstream side of the first radiator (12) is radiated, so that the refrigerant discharged from the compressor (11) is directly introduced. Compared with the case where heat is radiated, the heat exchange capacity of the second radiator (16) can be reduced. Thereby, the size reduction effect of a 2nd heat radiator (16) can also be acquired.

また、上記特徴のエジェクタ式冷凍サイクルにおいて、高圧冷媒の流れを分岐する分岐部(B)を備え、分岐部(B)は、圧縮機(11)から吐出された高圧冷媒の流れを分岐して、分岐された一方の冷媒を第1放熱器(12)へ流入させ、他方の冷媒を第2放熱器(16)へ流入させるようになっていてもよい。   The ejector-type refrigeration cycle having the above-described characteristics includes a branching section (B) that branches the flow of the high-pressure refrigerant, and the branching section (B) branches the flow of the high-pressure refrigerant discharged from the compressor (11). One of the branched refrigerants may flow into the first radiator (12), and the other refrigerant may flow into the second radiator (16).

これによれば、圧縮機(11)→分岐部(B)→第1放熱器(12)→ノズル部(14a)→圧縮機(11)の順で冷媒が流れる冷媒流路および圧縮機(11)→分岐部(B)→第2放熱器(16)→減圧手段(18)→吸引側蒸発器(19)→冷媒吸引口(14b)→圧縮機(11)の順で冷媒が流れる冷媒流路を構成できる。   According to this, the refrigerant flow path through which the refrigerant flows and the compressor (11) in the order of the compressor (11) → the branching portion (B) → the first radiator (12) → the nozzle portion (14a) → the compressor (11). ) → Branch (B) → Second radiator (16) → Depressurization means (18) → Suction side evaporator (19) → Refrigerant suction port (14b) → Compressor (11) A road can be constructed.

従って、第2放熱器(16)の放熱能力は、第1放熱器(12)の放熱能力に対して、完全に独立して調整可能なサイクルを容易に構成できる。   Therefore, the heat dissipation capability of the second radiator (16) can be easily configured with a cycle that can be adjusted completely independently of the heat dissipation capability of the first radiator (12).

また、上述の特徴のエジェクタ式冷凍サイクルにおいて、エジェクタ(14)下流側冷媒を蒸発させる流出側蒸発器(15a)を備えていてもよい。これによれば、流出側蒸発器(15a)および吸引側蒸発器(19)の双方で冷凍能力を発揮できる。   Further, the ejector refrigeration cycle having the above-described characteristics may include an outflow side evaporator (15a) for evaporating the refrigerant on the downstream side of the ejector (14). According to this, refrigerating capacity can be exhibited in both the outflow side evaporator (15a) and the suction side evaporator (19).

また、上述の特徴のエジェクタ式冷凍サイクルにおいて、第1放熱器(12)の放熱能力を調整する第1放熱能力調整手段(12a)と、第1放熱器(12)出口冷媒の第1過冷却度を検出する第1過冷却度検出手段(21、22)と、第1放熱能力調整手段(12a)の作動を制御する第1制御手段(20a)とを備え、第1制御手段(20a)は、第1過冷却度が予め定めた第1設定値以下になるように、第1放熱能力調整手段(12a)の作動を制御するようになっていてもよい。   Moreover, in the ejector-type refrigeration cycle having the above-described features, the first heat dissipation capacity adjusting means (12a) for adjusting the heat dissipation capacity of the first radiator (12) and the first subcooling of the refrigerant discharged from the first radiator (12). First subcooling degree detecting means (21, 22) for detecting the degree of temperature, and first control means (20a) for controlling the operation of the first heat radiation capacity adjusting means (12a), the first control means (20a) May be configured to control the operation of the first heat radiation capacity adjusting means (12a) so that the first degree of subcooling is equal to or lower than a predetermined first set value.

これによれば、第1放熱器(12)出口側からエジェクタ(14)のノズル部(14a)へ至る冷媒通路の圧力損失によってノズル部(14a)へ流入する冷媒が飽和液相状態となるように、第1設定値を設定できるので、ノズル部(14a)へ流入する冷媒の状態を確実に飽和液相状態あるいは気液二相状態とすることができる。   According to this, the refrigerant flowing into the nozzle part (14a) is in a saturated liquid phase state due to the pressure loss of the refrigerant passage from the outlet side of the first radiator (12) to the nozzle part (14a) of the ejector (14). In addition, since the first set value can be set, the state of the refrigerant flowing into the nozzle portion (14a) can be surely set to the saturated liquid phase state or the gas-liquid two phase state.

また、上述の特徴のエジェクタ式冷凍サイクルにおいて、第2放熱器(16)の放熱能力を調整する第2放熱能力調整手段(16a)と、第2放熱器(16)出口冷媒の第2過冷却度を検出する第2過冷却度検出手段(23、24)と、第2放熱能力調整手段(16a)の作動を制御する第2制御手段(20b)とを備え、第2制御手段(20b)は、第2過冷却度が予め定めた第2設定値以上になるように、第2放熱能力調整手段(16a)の作動を制御するようになっていてもよい。   Further, in the ejector-type refrigeration cycle having the above-described characteristics, the second heat dissipating capacity adjusting means (16a) for adjusting the heat dissipating capacity of the second heat dissipator (16) and the second subcooling of the refrigerant discharged from the second heat dissipator (16). A second supercooling degree detecting means (23, 24) for detecting the degree of heat and a second control means (20b) for controlling the operation of the second heat radiation capacity adjusting means (16a), and the second control means (20b). May be configured to control the operation of the second heat radiation capacity adjusting means (16a) so that the second subcooling degree is equal to or higher than a predetermined second set value.

これによれば、過冷却度によって減圧手段(18)を通過する冷媒流量の変化する度合が少なくなるように第2設定値を設定することができるので、減圧手段(18)を通過する冷媒流量の変化を効果的に抑制できる。   According to this, since the second set value can be set so that the degree of change in the refrigerant flow rate passing through the pressure reducing means (18) is reduced due to the degree of supercooling, the refrigerant flow rate passing through the pressure reducing means (18). Can be effectively suppressed.

また、上述の特徴のエジェクタ式冷凍サイクルにおいて、具体的に、第1放熱能力調整手段は、第1放熱器(12)にて冷媒と熱交換する空気を送風する第1送風機(12a)であってもよい。さらに、第2放熱能力調整手段は、第2放熱器(16)にて冷媒と熱交換する空気を送風する第2送風機(16a)であってもよい。   Further, in the ejector-type refrigeration cycle having the above-described features, specifically, the first heat dissipation capacity adjusting means is a first blower (12a) that blows air that exchanges heat with the refrigerant in the first radiator (12). May be. Further, the second heat radiation capacity adjusting means may be a second blower (16a) that blows air that exchanges heat with the refrigerant in the second heat radiator (16).

なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each means described in this column and the claim shows the correspondence with the specific means as described in embodiment mentioned later.

(第1実施形態)
図1は、本発明の第1実施形態によるエジェクタ式冷凍サイクル10を車両用空調装置に適用した例を示す。本実施形態のエジェクタ式冷凍サイクル10において、冷媒を吸入し、圧縮して吐出する圧縮機11は、プーリ、ベルトを介して図示しない車両走行用エンジンにより回転駆動される。
(First embodiment)
FIG. 1 shows an example in which an ejector refrigeration cycle 10 according to a first embodiment of the present invention is applied to a vehicle air conditioner. In the ejector refrigeration cycle 10 of the present embodiment, a compressor 11 that sucks in refrigerant, compresses and discharges the refrigerant is rotated by a vehicle travel engine (not shown) via a pulley and a belt.

この圧縮機11としては、吐出容量の変化により冷媒吐出能力を調整できる可変容量型圧縮機、あるいは電磁クラッチの断続により圧縮機作動の稼働率を変化させて冷媒吐出能力を調整する固定容量型圧縮機のいずれを使用してもよい。また、圧縮機11として電動圧縮機を使用すれば、電動モータの回転数調整により冷媒吐出能力を調整できる。   The compressor 11 may be a variable capacity compressor that can adjust the refrigerant discharge capacity by changing the discharge capacity, or a fixed capacity type compressor that adjusts the refrigerant discharge capacity by changing the operating rate of the compressor operation by switching the electromagnetic clutch. Any of the machines may be used. Further, if an electric compressor is used as the compressor 11, the refrigerant discharge capacity can be adjusted by adjusting the rotation speed of the electric motor.

圧縮機11の吐出側には第1放熱器12が接続されている。この第1放熱器12は圧縮機11から吐出された高温高圧冷媒と第1冷却ファン12aにより送風される外気(車室外空気)とを熱交換させて、高温高圧冷媒を放熱させる放熱用熱交換器である。   A first radiator 12 is connected to the discharge side of the compressor 11. The first radiator 12 exchanges heat between the high-temperature and high-pressure refrigerant discharged from the compressor 11 and the outside air (air outside the passenger compartment) blown by the first cooling fan 12a to dissipate the high-temperature and high-pressure refrigerant. It is a vessel.

第1冷却ファン12aは、後述する空調制御装置20から出力される制御電圧によって回転数(送風空気量)が制御される電動式送風機である。そして、この第1冷却ファン12aの送風空気量によって第1放熱器12の放熱能力が調整される。従って、第1冷却ファン12aは本実施形態の第1放熱能力調整手段を構成する。   The first cooling fan 12a is an electric blower in which the rotation speed (the amount of blown air) is controlled by a control voltage output from the air conditioning control device 20 described later. And the heat dissipation capability of the 1st heat radiator 12 is adjusted with the amount of blowing air of this 1st cooling fan 12a. Therefore, the 1st cooling fan 12a comprises the 1st thermal radiation capability adjustment means of this embodiment.

なお、本実施形態のエジェクタ式冷凍サイクルでは、冷媒としてフロン系冷媒を採用しており、高圧冷媒が超臨界圧力以上に上昇しない亜臨界サイクルを構成している。そして、第1放熱器12が冷媒を凝縮させる凝縮器として機能するように、第1冷却ファン12aの送風空気量が制御される。   In the ejector refrigeration cycle of the present embodiment, a chlorofluorocarbon refrigerant is employed as the refrigerant, and a subcritical cycle in which the high-pressure refrigerant does not rise above the supercritical pressure is configured. And the amount of blowing air of the 1st cooling fan 12a is controlled so that the 1st radiator 12 may function as a condenser which condenses a refrigerant.

より具体的には、第1放熱器12出口冷媒の過冷却度が予め定めた第1設定値(具体的には3K)以下になるように第1放熱器12の放熱能力が調整される。なお、この第1設定値の詳細については後述する。   More specifically, the heat dissipation capability of the first radiator 12 is adjusted so that the degree of supercooling of the refrigerant at the outlet of the first radiator 12 is equal to or less than a predetermined first set value (specifically, 3K). Details of the first set value will be described later.

第1放熱器12の出口側には、冷媒の流れを分岐する分岐部Aが接続される。この分岐部Aは三方継手等によって容易に構成できる。さらに、分岐部Aで分岐された一方の冷媒は分岐部Aとエジェクタ14のノズル部14aとを接続するノズル部側配管13aへ流入し、他方の冷媒は分岐部Aとエジェクタ14の冷媒吸引口14bとを接続する吸引口側配管13bへ流入する。   A branch portion A that branches the flow of the refrigerant is connected to the outlet side of the first radiator 12. The branch portion A can be easily configured by a three-way joint or the like. Furthermore, one of the refrigerants branched at the branching part A flows into the nozzle part side pipe 13a connecting the branching part A and the nozzle part 14a of the ejector 14, and the other refrigerant is a refrigerant suction port of the branching part A and the ejector 14. It flows into the suction port side piping 13b connecting 14b.

エジェクタ14は、冷媒を減圧する減圧手段であるとともに、高速で噴射する冷媒流の吸引作用によって冷媒の循環を行う冷媒循環手段である。   The ejector 14 is a depressurizing unit that depressurizes the refrigerant, and is a refrigerant circulating unit that circulates the refrigerant by a suction action of a refrigerant flow injected at a high speed.

このエジェクタ14は、ノズル部側配管13aを介して流入する冷媒の通路面積を小さく絞って、冷媒を等エントロピ的に減圧膨張させるノズル部14aと、ノズル部14aの冷媒噴射口と連通するように配置されて後述する吸引側蒸発器19から流出した気相冷媒を吸引する冷媒吸引口14bを有している。   The ejector 14 is configured to reduce the passage area of the refrigerant flowing in through the nozzle portion side pipe 13a and communicate with the nozzle portion 14a that decompresses and expands the refrigerant in an isentropic manner and the refrigerant injection port of the nozzle portion 14a. It has the refrigerant | coolant suction port 14b which attracts | sucks the gaseous-phase refrigerant | coolant which has been arrange | positioned and flowed out from the suction side evaporator 19 mentioned later.

さらに、ノズル部14aおよび冷媒吸引口14bの下流側に配置されてノズル部14aからの高速度の冷媒流と冷媒吸引口14bからの吸引冷媒とを混合する混合部14c、および、混合部14cの下流側に配置されて冷媒流れを減速して冷媒圧力を上昇させる昇圧部をなすディフューザ部14dを有している。   Furthermore, a mixing unit 14c that is disposed downstream of the nozzle unit 14a and the refrigerant suction port 14b and mixes the high-speed refrigerant flow from the nozzle unit 14a and the suction refrigerant from the refrigerant suction port 14b, and the mixing unit 14c It has a diffuser portion 14d that is disposed on the downstream side and forms a pressure increasing portion that decelerates the refrigerant flow and increases the refrigerant pressure.

ディフューザ部14dは、冷媒の通路面積を徐々に大きくする形状に形成されており、冷媒流れを減速して冷媒圧力を上昇させる作用、つまり、冷媒の速度エネルギーを圧力エネルギーに変換する機能を有する。   The diffuser portion 14d is formed in a shape that gradually increases the passage area of the refrigerant, and has the function of decelerating the refrigerant flow to increase the refrigerant pressure, that is, the function of converting the velocity energy of the refrigerant into pressure energy.

エジェクタ14のディフューザ部14dの出口側には、流出側蒸発器15が接続されている。流出側蒸発器15は、エジェクタ14のノズル部14aで減圧された低圧冷媒と送風ファン15aから送風された送風空気とを熱交換させて、低圧冷媒に吸熱させることで送風空気を冷却する吸熱用熱交換器である。   An outlet-side evaporator 15 is connected to the outlet side of the diffuser portion 14 d of the ejector 14. The outflow side evaporator 15 performs heat exchange between the low-pressure refrigerant decompressed by the nozzle portion 14a of the ejector 14 and the blown air blown from the blower fan 15a, and cools the blown air by causing the low-pressure refrigerant to absorb heat. It is a heat exchanger.

送風ファン15aは、空調制御装置20から出力される制御電圧によって回転数制御される電動式送風機である。さらに、流出側蒸発器15の出口側には、流出側蒸発器15から流出した冷媒の気液を分離して余剰冷媒を蓄えるアキュムレータ15bが接続されている。さらに、アキュムレータ15bの気相冷媒出口には、後述する内部熱交換器17の低圧側冷媒流路17bを介して、圧縮機11の吸入側が接続されている。   The blower fan 15 a is an electric blower whose rotational speed is controlled by a control voltage output from the air conditioning controller 20. Furthermore, an accumulator 15 b that separates the gas-liquid of the refrigerant flowing out from the outflow side evaporator 15 and stores excess refrigerant is connected to the outlet side of the outflow side evaporator 15. Furthermore, the suction side of the compressor 11 is connected to the gas-phase refrigerant outlet of the accumulator 15b via a low-pressure side refrigerant flow path 17b of the internal heat exchanger 17 described later.

一方、分岐部Aで分岐された他方の冷媒が流入する吸引口側配管13bには、第2放熱器16、内部熱交換器17の高圧側冷媒流路17a、固定絞り18、吸引側蒸発器19が設けられている。まず、第2放熱器16は、分岐部Aから吸引口側配管13bへ流入した冷媒と、第2冷却ファン16aにより送風される外気(車室外空気)とを熱交換させて、冷媒を放熱させる放熱用熱交換器である。   On the other hand, in the suction port side pipe 13b into which the other refrigerant branched at the branching section A flows, the second radiator 16, the high-pressure side refrigerant flow path 17a of the internal heat exchanger 17, the fixed throttle 18, the suction side evaporator 19 is provided. First, the second radiator 16 causes the refrigerant to radiate heat by exchanging heat between the refrigerant flowing into the suction port side pipe 13b from the branch portion A and the outside air (air outside the vehicle compartment) blown by the second cooling fan 16a. It is a heat exchanger for heat dissipation.

第2冷却ファン16aは、空調制御装置20から出力される制御電圧によって回転数(送風空気量)が制御される電動式送風機である。そして、この第2冷却ファン16aの送風空気量によって第2放熱器16の放熱能力が調整される。従って、第2冷却ファン16aは本実施形態の第2放熱能力調整手段を構成する。これにより、第2放熱器16の放熱能力は、第1放熱器12の放熱能力に対して、独立して調整可能に構成される。   The second cooling fan 16 a is an electric blower whose rotation speed (amount of blown air) is controlled by a control voltage output from the air conditioning control device 20. And the heat dissipation capability of the 2nd heat radiator 16 is adjusted with the amount of blowing air of this 2nd cooling fan 16a. Therefore, the 2nd cooling fan 16a comprises the 2nd heat dissipation capability adjustment means of this embodiment. Thereby, the heat dissipation capability of the second radiator 16 is configured to be independently adjustable with respect to the heat dissipation capability of the first radiator 12.

上述の如く、本実施形態では、第1放熱器12出口冷媒の過冷却度が、第1設定値以下になるように調整されているので、第2放熱器16は冷媒を過冷却する過冷却器として機能する。より具体的には、第2放熱器16出口冷媒の過冷却度が予め定めた第2設定値(具体的には、10K)以上になるように第2放熱器16の放熱能力を調整する。なお、この第2設定値の詳細については後述する。   As described above, in the present embodiment, since the degree of supercooling of the refrigerant at the outlet of the first radiator 12 is adjusted to be equal to or lower than the first set value, the second radiator 16 performs supercooling to supercool the refrigerant. It functions as a vessel. More specifically, the heat dissipation capability of the second radiator 16 is adjusted so that the degree of supercooling of the refrigerant at the outlet of the second radiator 16 is equal to or higher than a predetermined second set value (specifically, 10K). Details of the second set value will be described later.

第2放熱器16の下流側には、内部熱交換器17の高圧側冷媒流路17aが配置されている。内部熱交換器17は、高圧側冷媒流路17aを通過する高温高圧冷媒と低圧側冷媒流路17bを通過する低温低圧冷媒との熱交換を行うものである。この冷媒相互間の熱交換により、吸引側蒸発器19へ流入する冷媒が冷却されるので、吸引側蒸発器19における冷媒入口・出口間の冷媒のエンタルピ差(冷凍能力)を増大させることができる。   A high-pressure side refrigerant flow path 17 a of the internal heat exchanger 17 is disposed on the downstream side of the second radiator 16. The internal heat exchanger 17 performs heat exchange between the high-temperature and high-pressure refrigerant passing through the high-pressure side refrigerant flow path 17a and the low-temperature and low-pressure refrigerant passing through the low-pressure side refrigerant flow path 17b. The refrigerant flowing into the suction-side evaporator 19 is cooled by heat exchange between the refrigerants, so that the enthalpy difference (refrigeration capacity) of the refrigerant between the refrigerant inlet and outlet in the suction-side evaporator 19 can be increased. .

なお、内部熱交換器17の具体的構成としては種々の構成を採用できる。具体的には、高圧側冷媒流路17aと低圧側冷媒流路17bとを形成する冷媒配管同士をろう付け接合して熱交換させる構成や、高圧側冷媒流路17aを形成する外側管の内側に低圧側冷媒流路17bを配置する2重管方式の熱交換器構成を採用できる。   Various configurations can be adopted as the specific configuration of the internal heat exchanger 17. Specifically, a configuration in which the refrigerant pipes that form the high-pressure side refrigerant flow path 17a and the low-pressure side refrigerant flow path 17b are brazed and joined together to exchange heat, or the inside of the outer pipe that forms the high-pressure side refrigerant flow path 17a. It is possible to adopt a double-pipe heat exchanger configuration in which the low-pressure side refrigerant flow path 17b is disposed.

内部熱交換器17の高圧側冷媒流路17aの下流側には、固定絞り18が配置されている。固定絞り18は、冷媒を減圧膨張させる減圧手段であるとともに、吸引側蒸発器19へ流入する冷媒流量を調整する流量調整手段でもある。さらに、本実施形態では、固定絞り18としてキャピラリチューブを採用している。もちろん、他の形式の固定絞り(例えば、オリフィス)を採用してもよい。   A fixed throttle 18 is disposed on the downstream side of the high-pressure refrigerant passage 17a of the internal heat exchanger 17. The fixed throttle 18 is a pressure reducing unit that decompresses and expands the refrigerant, and also a flow rate adjusting unit that adjusts the flow rate of the refrigerant flowing into the suction side evaporator 19. Furthermore, in this embodiment, a capillary tube is employed as the fixed throttle 18. Of course, other types of fixed throttles (eg, orifices) may be employed.

固定絞り18の下流側には、吸引側蒸発器19が配置されている。吸引側蒸発器19は固定絞り18で減圧された低圧冷媒と送風ファン15aから送風された送風空気とを熱交換させて、低圧冷媒に吸熱させることで送風空気を冷却する吸熱用熱交換器である。さらに、吸引側蒸発器19の出口側は冷媒吸引口14bに接続される。   A suction side evaporator 19 is disposed downstream of the fixed throttle 18. The suction-side evaporator 19 is a heat-absorbing heat exchanger that cools the blown air by heat-exchanging the low-pressure refrigerant decompressed by the fixed throttle 18 and the blown air blown from the blower fan 15a and absorbing heat to the low-pressure refrigerant. is there. Further, the outlet side of the suction side evaporator 19 is connected to the refrigerant suction port 14b.

なお、本実施形態の流出側蒸発器15および吸引側蒸発器19は一体構造に組み付けられている。従って、送風ファン15aにより送風された送風空気は矢印Z方向に流れ、まず、流出側蒸発器15で冷却され、次に、吸引側蒸発器19で冷却されて冷却対象空間(車室内)に流れ込む。従って、本実施形態では、流出側蒸発器15および吸引側蒸発器19にて同一の冷却対象空間を冷却できるようになっている。   In addition, the outflow side evaporator 15 and the suction side evaporator 19 of this embodiment are assembled | attached to the integral structure. Accordingly, the blown air blown by the blower fan 15a flows in the direction of the arrow Z, and is first cooled by the outflow side evaporator 15 and then cooled by the suction side evaporator 19 and flows into the space to be cooled (vehicle interior). . Therefore, in the present embodiment, the same cooling target space can be cooled by the outflow side evaporator 15 and the suction side evaporator 19.

次に、本実施形態の電気制御部の概要を説明する。空調制御装置20は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成される。空調制御装置20は、そのROM内に記憶された制御プログラムに基づいて各種演算、処理を行って、上記した各種の電気式のアクチュエータ12a、15a、16a等の作動を制御する。   Next, an outline of the electric control unit of the present embodiment will be described. The air conditioning control device 20 includes a known microcomputer including a CPU, a ROM, a RAM, and the like and peripheral circuits thereof. The air conditioning control device 20 performs various calculations and processes based on the control program stored in the ROM, and controls the operations of the various electric actuators 12a, 15a, 16a and the like described above.

なお、本実施形態の空調制御装置20は、第1冷却ファン12aおよび第2冷却ファン16aの双方を制御する制御手段を構成しているが、空調制御装置20のうち、第1冷却ファン12aを制御するハードウェアおよびソフトウェアを第1制御手段20aとし、第2冷却ファン16aを制御するハードウェアおよびソフトウェアを第2制御手段20bとする。もちろん、第1制御手段20aおよび第2制御手段20bを別々の制御装置によって構成してもよい。   In addition, although the air-conditioning control apparatus 20 of this embodiment comprises the control means which controls both the 1st cooling fan 12a and the 2nd cooling fan 16a, among the air-conditioning control apparatuses 20, the 1st cooling fan 12a is comprised. The hardware and software to be controlled are referred to as first control means 20a, and the hardware and software for controlling the second cooling fan 16a are referred to as second control means 20b. Of course, you may comprise the 1st control means 20a and the 2nd control means 20b by a separate control apparatus.

また、空調制御装置20には、第1放熱器12出口冷媒温度Tr1を検出する第1温度センサ21、第1放熱器12出口冷媒圧力Pr1を検出する第1圧力センサ22、第2放熱器16出口冷媒温度Tr2を検出する第2温度センサ23、第1放熱器12出口媒圧力Pr2を検出する第2圧力センサ24等の検出信号が入力される。   Further, the air conditioning control device 20 includes a first temperature sensor 21 that detects the outlet refrigerant temperature Tr1 of the first radiator 12, a first pressure sensor 22 that detects the outlet refrigerant pressure Pr1 of the first radiator 12, and a second radiator 16. Detection signals such as a second temperature sensor 23 for detecting the outlet refrigerant temperature Tr2 and a second pressure sensor 24 for detecting the first radiator 12 outlet medium pressure Pr2 are input.

さらに、空調制御装置20には、各センサの検出信号他に、図示しない操作パネルからの各種操作信号が入力される。操作パネルには、車両用冷凍装置を作動させる作動スイッチ、冷却対象空間の冷却温度を設定する温度設定スイッチ等が設けられる。   In addition to the detection signals of the sensors, various operation signals from an operation panel (not shown) are input to the air conditioning control device 20. The operation panel is provided with an operation switch for operating the vehicle refrigeration apparatus, a temperature setting switch for setting the cooling temperature of the space to be cooled, and the like.

次に、図2により、上述の構成における本実施形態の作動について説明する。図2は、本実施形態のエジェクタ式冷凍サイクル10の冷媒の状態を概略的に示したモリエル線図である。まず、操作パネルの作動スイッチが投入されて、圧縮機11に車両走行用エンジンの回転駆動力が伝達されると、圧縮機11が作動する。   Next, the operation of the present embodiment in the above-described configuration will be described with reference to FIG. FIG. 2 is a Mollier diagram schematically showing the state of the refrigerant in the ejector refrigeration cycle 10 of the present embodiment. First, when the operation switch of the operation panel is turned on and the rotational driving force of the vehicle running engine is transmitted to the compressor 11, the compressor 11 is activated.

圧縮機11から吐出された高温高圧冷媒(図2のa点)は、第1放熱器12に流入して、第1冷却ファン12aによって送風された外気により冷却されて凝縮する(図2のa点→b点)。この際、第1制御手段20aは、第1放熱器12出口冷媒温度Tr1および圧力Pr1に基づいて、第1放熱器12出口冷媒の過冷却度を算出し、算出値が第1設定値(3K)以下となるように、第1冷却ファン12aの回転数(送風空気量)を制御する。   The high-temperature and high-pressure refrigerant (point a in FIG. 2) discharged from the compressor 11 flows into the first radiator 12 and is cooled and condensed by the outside air blown by the first cooling fan 12a (a in FIG. 2). Point → b). At this time, the first control means 20a calculates the degree of supercooling of the first radiator 12 outlet refrigerant based on the first radiator 12 outlet refrigerant temperature Tr1 and the pressure Pr1, and the calculated value is the first set value (3K). ) The rotational speed (the amount of blown air) of the first cooling fan 12a is controlled so as to be as follows.

従って、本実施形態では、第1温度センサ21および第1圧力センサ22によって、第1放熱器12出口冷媒の第1過冷却度を検出する第1過冷却度検出手段が構成される。   Therefore, in the present embodiment, the first temperature sensor 21 and the first pressure sensor 22 constitute a first supercooling degree detection means for detecting the first supercooling degree of the refrigerant at the outlet of the first radiator 12.

ここで、第1設定値の詳細について説明する。第1設定値は、第1放熱器12出口側からエジェクタ14のノズル部14aへ至る冷媒通路の圧力損失によって、ノズル部14aへ流入する冷媒が飽和液相状態となるように設定された値である。従って、第1放熱器12出口冷媒の過冷却度が第1設定値以下になっていれば、ノズル部14aへ流入する冷媒は確実に飽和液相状態あるいは気液二相状態になる。   Here, details of the first set value will be described. The first set value is a value set so that the refrigerant flowing into the nozzle portion 14a is in a saturated liquid phase state due to the pressure loss in the refrigerant passage from the outlet side of the first radiator 12 to the nozzle portion 14a of the ejector 14. is there. Therefore, if the degree of supercooling of the refrigerant at the outlet of the first radiator 12 is equal to or lower than the first set value, the refrigerant flowing into the nozzle portion 14a is surely in a saturated liquid phase state or a gas-liquid two phase state.

なお、ノズル部14aへ流入する冷媒を、より確実に飽和液相状態あるいは気液二相状態とするために、第1制御手段20aが温度Tr1および圧力Pr1に基づいて検出可能な最小過冷却度を第1設定値としてもよい。そして、この最小過冷却度において、ノズル部14aへ流入する冷媒が飽和液相冷媒となるように、第1放熱器12出口側からエジェクタ14のノズル部14aへ至る冷媒通路に絞り機構を追加すればよい。   In addition, in order to make the refrigerant flowing into the nozzle part 14a into the saturated liquid phase state or the gas-liquid two phase state more reliably, the first control means 20a can detect the minimum supercooling degree based on the temperature Tr1 and the pressure Pr1. May be the first set value. In addition, a throttle mechanism is added to the refrigerant path from the outlet side of the first radiator 12 to the nozzle portion 14a of the ejector 14 so that the refrigerant flowing into the nozzle portion 14a becomes a saturated liquid phase refrigerant at this minimum supercooling degree. That's fine.

次に、第1放熱器12から流出した過冷却状態の冷媒の流れは、分岐部Aにてノズル部側配管13a側へ流入する冷媒流れと、吸引口側配管13b側へ流入する冷媒流れとに分岐される。   Next, the flow of the supercooled refrigerant that has flowed out of the first radiator 12 includes a refrigerant flow that flows into the nozzle portion side pipe 13a side at the branch portion A, and a refrigerant flow that flows into the suction port side pipe 13b side. Fork.

分岐部Aからノズル部側配管13aへ流入した冷媒は、エジェクタ14のノズル部14aへ流入する。この際、前述の如く、ノズル部14aに流入する冷媒は飽和液相状態あるいは気液二相状態になっている(図2のb点→c点)。   The refrigerant that has flowed from the branch portion A into the nozzle portion side pipe 13 a flows into the nozzle portion 14 a of the ejector 14. At this time, as described above, the refrigerant flowing into the nozzle portion 14a is in a saturated liquid phase state or a gas-liquid two phase state (point b → point c in FIG. 2).

ノズル部14aへ流入した冷媒は等エントロピ的に減圧膨張する(図2のc点→d点)。そして、この減圧膨張時に冷媒の圧力エネルギーが速度エネルギーに変換されて、冷媒噴射口から冷媒が高速度となって噴射される。この際の冷媒圧力低下により、冷媒吸引口14bから吸引側蒸発器19通過後の冷媒(気相冷媒)が吸引される。   The refrigerant flowing into the nozzle portion 14a is decompressed and expanded in an isentropic manner (point c → point d in FIG. 2). And the pressure energy of a refrigerant | coolant is converted into speed energy at the time of this decompression | expansion expansion, and a refrigerant | coolant is injected at high speed from a refrigerant | coolant injection port. Due to the refrigerant pressure drop at this time, the refrigerant (gas phase refrigerant) after passing through the suction side evaporator 19 is sucked from the refrigerant suction port 14b.

ノズル部14aから噴射された冷媒と冷媒吸引口14bに吸引された冷媒は、ノズル部14a下流側の混合部14cで混合され(図2のd点→e点)、ディフューザ部14dに流入する。ディフューザ部14dでは、通路面積の拡大により、冷媒の速度(膨張)エネルギーが圧力エネルギーに変換されるため、冷媒の圧力が上昇する(図2のe点→f点)。   The refrigerant injected from the nozzle portion 14a and the refrigerant sucked into the refrigerant suction port 14b are mixed in the mixing portion 14c on the downstream side of the nozzle portion 14a (point d → point e in FIG. 2) and flow into the diffuser portion 14d. In the diffuser part 14d, the refrigerant velocity (expansion) energy is converted into pressure energy due to expansion of the passage area, so that the pressure of the refrigerant rises (point e → point f in FIG. 2).

エジェクタ14のディフューザ部14dから流出した冷媒は、流出側蒸発器15に流入する。流出側蒸発器15では、低圧冷媒が送風ファン15aの送風空気(矢印Z)から吸熱して蒸発する。流出側蒸発器15から流出した冷媒は、アキュムレータ15bにて気液分離される(図2のf点→g点)。   The refrigerant that has flowed out of the diffuser portion 14 d of the ejector 14 flows into the outflow side evaporator 15. In the outflow side evaporator 15, the low-pressure refrigerant absorbs heat from the blown air (arrow Z) of the blower fan 15a and evaporates. The refrigerant that has flowed out of the outflow side evaporator 15 is separated into gas and liquid by the accumulator 15b (point f → point g in FIG. 2).

アキュムレータ15bの気相冷媒出口から流出した気相冷媒は、内部熱交換器17の低圧側冷媒流路17bへ流入し、内部熱交換器17の高圧側冷媒流路17aへ流入した高温高圧冷媒と熱交換を行う(図2のg点→h点)。そして、低圧側冷媒流路17bから流出した気相冷媒は、圧縮機11に吸入されて再び圧縮される(図2のh点→a点)。   The gas-phase refrigerant flowing out from the gas-phase refrigerant outlet of the accumulator 15b flows into the low-pressure side refrigerant flow path 17b of the internal heat exchanger 17, and the high-temperature high-pressure refrigerant flowing into the high-pressure side refrigerant flow path 17a of the internal heat exchanger 17 and Heat exchange is performed (point g → point h in FIG. 2). And the gaseous-phase refrigerant | coolant which flowed out out of the low voltage | pressure side refrigerant | coolant flow path 17b is suck | inhaled by the compressor 11, and is compressed again (the h point-> a point of FIG. 2).

一方、分岐部Aから吸引口側配管13bへ流入した冷媒流れは、第2放熱器16に流入して、第2冷却ファン16aによって送風された外気により冷却される(図2のb点→i点)。この際、空調制御装置20の第2制御手段20bは、第2放熱器16出口冷媒の温度Tr2および圧力Pr2に基づいて、第2放熱器16出口冷媒の過冷却度が第2設定値(10K)以上となるように、第2冷却ファン16aの回転数(送風空気量)を制御する。   On the other hand, the refrigerant flow flowing into the suction port side pipe 13b from the branch part A flows into the second radiator 16 and is cooled by the outside air blown by the second cooling fan 16a (point b in FIG. 2 → i). point). At this time, the second control means 20b of the air conditioning control device 20 determines that the degree of subcooling of the second radiator 16 outlet refrigerant is the second set value (10K) based on the temperature Tr2 and the pressure Pr2 of the second radiator 16 outlet refrigerant. ) The rotational speed (amount of blown air) of the second cooling fan 16a is controlled so as to be above.

従って、本実施形態では、第2温度センサ23および第2圧力センサ24によって、第2放熱器16出口冷媒の第2過冷却度を検出する第2過冷却度検出手段が構成される。   Therefore, in the present embodiment, the second temperature sensor 23 and the second pressure sensor 24 constitute second supercooling degree detection means for detecting the second supercooling degree of the refrigerant at the outlet of the second radiator 16.

ここで、第2設定値の詳細について説明する。前述した図5に示すように、固定絞り18に流入する冷媒の過冷却度の増加に伴って、固定絞り18を通過する流量の過冷却度に対する変化度合が小さくなる。   Here, details of the second set value will be described. As shown in FIG. 5 described above, as the degree of supercooling of the refrigerant flowing into the fixed throttle 18 increases, the degree of change of the flow rate passing through the fixed throttle 18 with respect to the degree of supercooling decreases.

そこで、第2設定値は、第2放熱器16出口冷媒の過冷却度が変化しても、第2放熱器16の下流側に接続される固定絞り18を通過する冷媒流量が大きく変化しないように設定された値である。従って、第2放熱器16出口冷媒の過冷却度が第2設定値以上になっていれば、サイクル効率の大幅な低下を招くことはない。   Therefore, the second set value is set so that the flow rate of the refrigerant passing through the fixed throttle 18 connected to the downstream side of the second radiator 16 does not change greatly even if the degree of supercooling of the refrigerant at the outlet of the second radiator 16 changes. Is the value set to. Therefore, if the degree of supercooling of the refrigerant at the outlet of the second radiator 16 is equal to or higher than the second set value, the cycle efficiency is not significantly reduced.

そして、第2放熱器16から流出した過冷却状態の冷媒の流れは、内部熱交換器17の高圧側冷媒流路17aにて、さらに冷却されてエンタルピを減少させる(図2のi点→j点)。高圧側冷媒流路17aから流出した過冷却状態の冷媒は、固定絞り18にて減圧膨張されて低圧冷媒となり(図2のj点→k点)、この低圧冷媒が吸引側蒸発器19に流入する。   Then, the flow of the supercooled refrigerant flowing out of the second radiator 16 is further cooled in the high-pressure side refrigerant flow path 17a of the internal heat exchanger 17 to reduce enthalpy (point i in FIG. 2 → j point). The supercooled refrigerant that has flowed out of the high-pressure side refrigerant passage 17a is decompressed and expanded by the fixed throttle 18 to become a low-pressure refrigerant (point j to point k in FIG. 2), and this low-pressure refrigerant flows into the suction-side evaporator 19. To do.

吸引側蒸発器19では、低圧冷媒が流出側蒸発器15通過後の送風ファン15aの送風空気(矢印Z)から吸熱して蒸発する(図2のk点→l点)。吸引側蒸発器19で蒸発した気相冷媒は冷媒吸引口14bからエジェクタ14内部へ吸引される(図2のl点→e点)。   In the suction side evaporator 19, the low-pressure refrigerant absorbs heat from the blown air (arrow Z) of the blower fan 15 a after passing through the outflow side evaporator 15 and evaporates (point k → l in FIG. 2). The gas-phase refrigerant evaporated in the suction side evaporator 19 is sucked into the ejector 14 from the refrigerant suction port 14b (point l → point e in FIG. 2).

本実施形態のエジェクタ式冷凍サイクル10は、以上の如く作動するので、エジェクタ14のディフューザ部14d下流側冷媒を流出側蒸発器15に供給するとともに、固定絞り18下流側冷媒を吸引側蒸発器19に供給できるので、流出側蒸発器15および吸引側蒸発器19で同時に冷却作用を発揮できる。   Since the ejector refrigeration cycle 10 of the present embodiment operates as described above, the refrigerant downstream of the diffuser portion 14d of the ejector 14 is supplied to the outflow evaporator 15, and the downstream refrigerant of the fixed throttle 18 is supplied to the suction side evaporator 19. Therefore, the cooling function can be exhibited at the outflow side evaporator 15 and the suction side evaporator 19 at the same time.

その際、流出側蒸発器15の冷媒蒸発圧力はディフューザ部14dで昇圧した後の圧力となり、一方、吸引側蒸発器19の冷媒蒸発圧力はノズル部14aでの減圧直後の最も低い圧力を作用させることができる。これにより、流出側蒸発器15の冷媒蒸発圧力(冷媒蒸発温度)よりも吸引側蒸発器19の冷媒蒸発圧力(冷媒蒸発温度)を低くすることができる。   At that time, the refrigerant evaporation pressure of the outflow side evaporator 15 becomes the pressure after being increased by the diffuser portion 14d, while the refrigerant evaporation pressure of the suction side evaporator 19 is the lowest pressure immediately after the pressure reduction in the nozzle portion 14a. be able to. Thereby, the refrigerant evaporation pressure (refrigerant evaporation temperature) of the suction side evaporator 19 can be made lower than the refrigerant evaporation pressure (refrigerant evaporation temperature) of the outflow side evaporator 15.

従って、送風ファン15aの送風空気の流れ方向Zに対して、冷媒蒸発温度が高い流出側蒸発器15を上流側に配置し、冷媒蒸発温度が低い吸引側蒸発器19を下流側に配置することで、流出側蒸発器15における冷媒蒸発温度と送風空気との温度差および吸引側蒸発器19における冷媒蒸発温度と送風空気との温度差を確保できる。   Therefore, with respect to the flow direction Z of the blown air of the blower fan 15a, the outflow side evaporator 15 having a high refrigerant evaporation temperature is arranged on the upstream side, and the suction side evaporator 19 having a low refrigerant evaporation temperature is arranged on the downstream side. Thus, a temperature difference between the refrigerant evaporation temperature and the blown air in the outflow side evaporator 15 and a temperature difference between the refrigerant evaporation temperature and the blown air in the suction side evaporator 19 can be secured.

その結果、流出側蒸発器15および吸引側蒸発器19の冷却性能を両方とも有効に発揮できるので、冷却対象空間(車室内)に対する冷却性能を流出側蒸発器15および吸引側蒸発器19の組み合わせにて効果的に向上できる。また、ディフューザ部14dでの昇圧作用によって圧縮機11の吸入圧を上昇できるので、昇圧作用相当分だけ、圧縮機11の圧縮仕事量を低減でき、省動力効果を発揮できる。   As a result, since the cooling performance of both the outflow side evaporator 15 and the suction side evaporator 19 can be effectively exhibited, the cooling performance for the cooling target space (vehicle interior) is combined with the outflow side evaporator 15 and the suction side evaporator 19. Can effectively improve. Further, since the suction pressure of the compressor 11 can be increased by the boosting action in the diffuser portion 14d, the amount of compression work of the compressor 11 can be reduced by an amount corresponding to the boosting action, and a power saving effect can be exhibited.

さらに、本実施形態では、エジェクタ14のノズル部14aへ流入する冷媒の状態が飽和液相状態あるいは気液二相状態となるように、第1放熱器12の放熱能力が調整されるので、外気温の上昇等の運転条件の変化が生じても、ノズル部14aのノズル効率の低下を招くことがない。   Furthermore, in this embodiment, since the heat dissipation capability of the first radiator 12 is adjusted so that the state of the refrigerant flowing into the nozzle portion 14a of the ejector 14 becomes a saturated liquid phase state or a gas-liquid two-phase state, Even if a change in operating conditions such as an increase in temperature occurs, the nozzle efficiency of the nozzle portion 14a is not reduced.

また、固定絞り18へ流入する冷媒の状態が過冷却状態となるように、第2放熱器16の放熱能力が調整されるので、固定絞り18を通過する冷媒流量の低下を回避できる。その結果、運転条件が変化しても吸引側蒸発器19の冷凍能力が低減してしまうことがない。すなわち、本実施形態によれば、運転条件が変化しても、ノズル部14aのノズル効率の向上効果および吸引側蒸発器19の冷凍能力拡大効果を同時に得ることができる。   Moreover, since the heat dissipation capability of the second radiator 16 is adjusted so that the state of the refrigerant flowing into the fixed throttle 18 becomes a supercooled state, a decrease in the flow rate of the refrigerant passing through the fixed throttle 18 can be avoided. As a result, the refrigerating capacity of the suction side evaporator 19 does not decrease even if the operating conditions change. That is, according to the present embodiment, the effect of improving the nozzle efficiency of the nozzle portion 14a and the effect of expanding the refrigerating capacity of the suction side evaporator 19 can be obtained at the same time even if the operating conditions change.

さらに、本実施形態では、第1放熱器12の下流側に分岐部Aを配置しているので、圧縮機11→第1放熱器12→分岐部A→ノズル部14a→圧縮機11の順で循環する冷媒流路と、圧縮機11→第1放熱器12→分岐部A→第2放熱器16→減圧手段18→吸引側蒸発器19→冷媒吸引口14b→圧縮機11の順で循環する冷媒流路とを構成できる。   Furthermore, in this embodiment, since the branch part A is arrange | positioned in the downstream of the 1st heat radiator 12, in order of the compressor 11-> 1st heat radiator 12-> branch part A-> nozzle part 14a-> compressor 11. Circulating refrigerant flow path and compressor 11 → first radiator 12 → branch portion A → second radiator 16 → pressure reducing means 18 → suction side evaporator 19 → refrigerant suction port 14b → compressor 11 are circulated in this order. A refrigerant flow path can be configured.

従って、吸引側蒸発器19へ流入する冷媒を第1、第2放熱器12、16の双方で冷却できる。つまり、第2放熱器16では、第1放熱器12下流側の飽和液相状態の冷媒を放熱させるので、圧縮機11吐出冷媒を直接流入させて放熱させる場合に対して、第2放熱器16の熱交換能力および放熱能力を小さくできる。その結果、第2放熱器16および第2冷却ファン12aの小型化を図ることもできる。   Therefore, the refrigerant flowing into the suction side evaporator 19 can be cooled by both the first and second radiators 12 and 16. That is, since the second radiator 16 radiates the refrigerant in the saturated liquid phase downstream of the first radiator 12, the second radiator 16, compared with the case where the refrigerant discharged from the compressor 11 is directly introduced to radiate heat. The heat exchange capacity and heat dissipation capacity can be reduced. As a result, the second radiator 16 and the second cooling fan 12a can be reduced in size.

(第2実施形態)
第1実施形態では、第1放熱器12下流側冷媒の流れを分岐する分岐部Aを設けたが、本実施形態では、図3の全体構成図に示すように圧縮機11吐出冷媒の流れを分岐する分岐部Bを設けている。つまり、第1放熱器12および第2放熱器16は、圧縮機11吐出冷媒の流れに対して、並列に接続される。その他の構成は第1実施形態と同様である。
(Second Embodiment)
In the first embodiment, the branch section A that branches the flow of the refrigerant on the downstream side of the first radiator 12 is provided, but in this embodiment, the flow of the refrigerant discharged from the compressor 11 is changed as shown in the overall configuration diagram of FIG. A branching section B that branches off is provided. That is, the first radiator 12 and the second radiator 16 are connected in parallel to the flow of the refrigerant discharged from the compressor 11. Other configurations are the same as those of the first embodiment.

そのため、本実施形態では、圧縮機11→分岐部B→第1放熱器12→ノズル部14a→圧縮機11の順で冷媒が流れる冷媒流路および圧縮機11→分岐部B→第2放熱器16→減圧手段18→吸引側蒸発器19→冷媒吸引口14bの順で冷媒が流れる冷媒流路が構成される。   Therefore, in this embodiment, the refrigerant flow path in which the refrigerant flows in the order of the compressor 11 → the branch portion B → the first radiator 12 → the nozzle portion 14a → the compressor 11 and the compressor 11 → the branch portion B → the second radiator. The refrigerant flow path through which the refrigerant flows is configured in the order of 16 → pressure reducing means 18 → suction side evaporator 19 → refrigerant suction port 14b.

そして、本実施形態のエジェクタ式冷凍サイクル10を作動させると、第1実施形態と同様に冷媒の状態が変化する。つまり、分岐部Bからエジェクタ14のノズル14a側へ流入する冷媒は、図2のモリエル線図のa点→b点→c点→d点→e点→f点→g点→h点→a点の順に循環する。一方、分岐部Bから第2放熱器16側へ流入した冷媒は、図2のa点→i点→j点→k点→l点→e点の順に流れる。   And if the ejector type refrigerating cycle 10 of this embodiment is operated, the state of a refrigerant | coolant will change like 1st Embodiment. That is, the refrigerant flowing from the branching section B to the nozzle 14a side of the ejector 14 is point a → b point → c point → d point → e point → f point → g point → h point → a in the Mollier diagram of FIG. Cycles in the order of the points. On the other hand, the refrigerant flowing into the second radiator 16 side from the branch portion B flows in the order of point a → i point → j point → k point → l point → e point in FIG.

従って、第1実施形態と同様に、流出側蒸発器15および吸引側蒸発器19で同時に冷却作用を発揮でき、ディフューザ部14dの昇圧作用によって圧縮機11の省動化を図ることができ、さらに、運転条件が変化しても、ノズル部14aのノズル効率の向上効果および吸引側蒸発器19の冷凍能力拡大効果を同時に得ることができる。   Accordingly, similarly to the first embodiment, the cooling function can be exhibited simultaneously in the outflow side evaporator 15 and the suction side evaporator 19, and the compressor 11 can be saved by the pressure increasing action of the diffuser portion 14d. Even if the operating conditions change, the effect of improving the nozzle efficiency of the nozzle portion 14a and the effect of expanding the refrigerating capacity of the suction side evaporator 19 can be obtained at the same time.

さらに、本実施形態では、分岐部Bにおいて圧縮機11吐出冷媒の流れを分岐しているので、第1放熱器12下流側冷媒の過冷却度を第1冷却ファン12aの回転数(送風空気量)制御のみによって調整でき、第2放熱器16下流側冷媒の過冷却度を第2冷却ファン16aの回転数(送風空気量)制御のみによって調整できる。   Furthermore, in this embodiment, since the flow of the refrigerant discharged from the compressor 11 is branched at the branching section B, the degree of supercooling of the refrigerant on the downstream side of the first radiator 12 is determined by the rotational speed of the first cooling fan 12a (the amount of blown air). ) Can be adjusted only by control, and the degree of supercooling of the refrigerant on the downstream side of the second radiator 16 can be adjusted only by controlling the number of rotations (the amount of blown air) of the second cooling fan 16a.

従って、第1、第2冷却ファン12a、16aは、互いに独立して、第1、第2放熱器12、16の放熱能力を調整でき、第1、第2冷却ファン12a、16aの制御が容易となる。   Therefore, the first and second cooling fans 12a and 16a can independently adjust the heat dissipation capabilities of the first and second radiators 12 and 16, and the first and second cooling fans 12a and 16a can be easily controlled. It becomes.

(第3実施形態)
本実施形態では、本発明のエジェクタ式冷凍サイクル10を業務用冷蔵冷凍装置に適用した例を説明する。本実施形態は、図4の全体構成図に示すように、第1実施形態に対して第1冷却ファン12a、第1制御手段20a、第1温度センサ21および第1圧力センサ22を廃止している。
(Third embodiment)
In the present embodiment, an example in which the ejector refrigeration cycle 10 of the present invention is applied to a commercial refrigeration system will be described. In the present embodiment, as shown in the overall configuration diagram of FIG. 4, the first cooling fan 12a, the first control means 20a, the first temperature sensor 21 and the first pressure sensor 22 are eliminated from the first embodiment. Yes.

この業務用冷蔵冷凍装置は据置状態で使用されるため、装置が設置される環境の温度変化に伴う第1放熱器12の放熱能力の変化が、車両用空調装置等に対して少ない。そこで、本実施形態では、業務要冷蔵冷凍装置が設置される環境に想定される温度範囲において、第1放熱器12出口冷媒が過冷却状態となるように、第1放熱器12の放熱面積が設定されている。   Since this commercial refrigeration apparatus is used in a stationary state, the change in the heat radiation capacity of the first radiator 12 due to the temperature change in the environment in which the apparatus is installed is less with respect to the vehicle air conditioner and the like. Therefore, in the present embodiment, the heat radiation area of the first radiator 12 is set so that the refrigerant at the outlet of the first radiator 12 is in a supercooled state in the temperature range assumed in the environment where the business refrigeration refrigerator is installed. Is set.

従って、本実施形態のエジェクタ式冷凍サイクル10を作動させても、第1放熱器12出口冷媒は過冷却状態となるが、サイクルの運転状態の変化によって、分岐部Aから第2放熱器16へ流入する冷媒の過冷却度は変化しうる。   Therefore, even if the ejector refrigeration cycle 10 of the present embodiment is operated, the refrigerant at the outlet of the first radiator 12 is in a supercooled state, but from the branch portion A to the second radiator 16 due to a change in the operation state of the cycle. The degree of supercooling of the incoming refrigerant can vary.

これに対して、本実施形態では、第2冷却ファン16aの作用によって、第2放熱器16の放熱能力を、第1放熱器の放熱能力に対して、独立して調整できるので、第2放熱器出口冷媒の過冷却度を第2過冷却度(10K)以上に調整できる。その結果、第1実施形態と同様の効果を得ることができる。   On the other hand, in this embodiment, since the heat dissipation capability of the second radiator 16 can be adjusted independently of the heat dissipation capability of the first radiator by the action of the second cooling fan 16a, the second heat dissipation. The supercooling degree of the outlet refrigerant can be adjusted to the second supercooling degree (10K) or more. As a result, the same effect as that of the first embodiment can be obtained.

(他の実施形態)
本発明は上述の実施形態に限定されることなく、以下のように種々変形可能である。
(Other embodiments)
The present invention is not limited to the above-described embodiment, and can be variously modified as follows.

(1)上述の実施形態では、第1温度センサ21および第1圧力センサ22によって第1過冷却度検出手段が構成し、第2温度センサ23および第2圧力センサ24によって第2過冷却度検出手段が構成しているが、過熱度検出手段は以下のように構成することができる。   (1) In the above-described embodiment, the first temperature sensor 21 and the first pressure sensor 22 constitute the first supercooling degree detection means, and the second temperature sensor 23 and the second pressure sensor 24 detect the second supercooling degree. Although the means is configured, the superheat degree detecting means can be configured as follows.

例えば、第1過冷却度検出手段を、圧縮機11吐出冷媒温度を検出する温度センサと第1温度センサ21とによって構成してもよい。これにより、第1過冷却度検出手段を温度センサのみによって構成できるので、圧力センサを使用する場合に対して、エジェクタ式冷凍サイクル10の製造コストを低減できる。   For example, the first supercooling degree detection means may be constituted by a temperature sensor that detects the refrigerant discharge refrigerant temperature and the first temperature sensor 21. Thereby, since a 1st supercooling degree detection means can be comprised only with a temperature sensor, the manufacturing cost of the ejector-type refrigeration cycle 10 can be reduced with respect to the case where a pressure sensor is used.

同様に、第2過冷却度検出手段を、第2放熱器16入口冷媒温度を検出する温度センサおよび第2放熱器16出口冷媒温度を検出する温度センサによって構成してもよい。もちろん、第1温度センサ21を第2放熱器16入口冷媒温度を検出する温度センサとして用いてもよい。また、第1温度センサ21を、室外空気温度(第1冷却ファン12a送風空気温度)を検出する温度センサとしてもよい。   Similarly, the second supercooling degree detection means may be constituted by a temperature sensor that detects the refrigerant temperature at the inlet of the second radiator 16 and a temperature sensor that detects the refrigerant temperature at the outlet of the second radiator 16. Of course, the first temperature sensor 21 may be used as a temperature sensor for detecting the refrigerant temperature at the inlet of the second radiator 16. The first temperature sensor 21 may be a temperature sensor that detects outdoor air temperature (first cooling fan 12a blown air temperature).

さらに、第1放熱器12出口冷媒圧力Pr1と第2放熱器16出口冷媒圧力Pr2との差は、分岐部A、B、および第1、第2放熱器12、16における圧力損失等によるものなので、Pr1およびPr2がほぼ同等となるサイクルでは、いずれか一方の圧力センサを廃止してもよい。   Furthermore, the difference between the first radiator 12 outlet refrigerant pressure Pr1 and the second radiator 16 outlet refrigerant pressure Pr2 is due to the pressure loss in the branch portions A and B and the first and second radiators 12 and 16. In a cycle in which Pr1 and Pr2 are substantially equal, any one of the pressure sensors may be eliminated.

また、Pr1およびPr2がほぼ同等となるサイクルでは、圧縮機11吐出冷媒圧力をPr1およびPR2としてもよい。この場合、圧縮機11吐出冷媒圧力を検出する圧力センサを用いて、第1、2過冷却度検出手段を構成できる。さらに、圧縮機11吸引冷媒温度を検出する温度センサの検出値と圧縮機11の回転数を検出する回転数センサの検出値から圧縮機11吐出冷媒圧力を算出してもよい。   Further, in a cycle in which Pr1 and Pr2 are substantially equal, the compressor 11 discharge refrigerant pressure may be set to Pr1 and PR2. In this case, the first and second supercooling degree detection means can be configured using a pressure sensor that detects the compressor 11 discharge refrigerant pressure. Furthermore, the refrigerant discharge pressure of the compressor 11 may be calculated from the detection value of the temperature sensor that detects the refrigerant suction temperature of the compressor 11 and the detection value of the rotation speed sensor that detects the rotation speed of the compressor 11.

(2)上述の実施形態では、第1、第2放熱能力調整手段を第1、第2冷却ファン12a、16aによって構成しているが、放熱能力調整手段はこれに限定されない。   (2) In the above-described embodiment, the first and second heat radiation capacity adjusting means are constituted by the first and second cooling fans 12a and 16a, but the heat radiation capacity adjusting means is not limited to this.

例えば、第1、第2放熱能力調整手段として、第1、第2放熱器12、16通過途中の冷媒を第1、第2放熱器下流側へバイパスさせるバイパス通路を設けて放熱能力を調整してもよい。さらに、第1、第2冷却ファン12a、16aの送風空気の流れを遮断する遮断機構を設けて放熱能力を調整してもよい。   For example, as the first and second heat radiation capacity adjusting means, a bypass passage is provided to bypass the refrigerant passing through the first and second heat radiators 12 and 16 downstream of the first and second heat radiators, thereby adjusting the heat radiation capacity. May be. Furthermore, you may adjust the thermal radiation capability by providing the interruption | blocking mechanism which interrupts | blocks the flow of the ventilation air of the 1st, 2nd cooling fans 12a and 16a.

(3)上述の実施形態では、冷媒通路面積が固定されたエジェクタ14および固定絞り18を採用しているが、エジェクタ14として、ノズル部14aの冷媒通路面積を調整可能な可変エジェクタを採用してもよい。この可変ノズル部の具体例としては、可変ノズル部の通路内にニードルを挿入し、このニードルの位置を電気的アクチュエータにより制御して冷媒通路面積調整する機構とすればよい。さらに、減圧手段として、固定絞り18に代えて、冷媒通路面積を調整可能な可変絞り機構を採用してもよい。   (3) In the above-described embodiment, the ejector 14 and the fixed throttle 18 in which the refrigerant passage area is fixed are employed. However, as the ejector 14, a variable ejector capable of adjusting the refrigerant passage area of the nozzle portion 14a is employed. Also good. As a specific example of this variable nozzle portion, a mechanism may be used in which a needle is inserted into the passage of the variable nozzle portion and the position of the needle is controlled by an electric actuator to adjust the refrigerant passage area. Furthermore, instead of the fixed throttle 18, a variable throttle mechanism capable of adjusting the refrigerant passage area may be adopted as the pressure reducing means.

(4)上述の実施形態では、内部熱交換器17および固定絞り18とを別体に構成した例を説明したが、内部熱交換器17および固定絞り18を一体に構成してもよい。具体的には、内部熱交換器17の高圧側冷媒流路17aを固定絞り18(キャピラリチューブ)で構成すればよい。   (4) In the above-described embodiment, the example in which the internal heat exchanger 17 and the fixed throttle 18 are configured separately has been described, but the internal heat exchanger 17 and the fixed throttle 18 may be configured integrally. Specifically, the high-pressure side refrigerant flow path 17a of the internal heat exchanger 17 may be configured with a fixed throttle 18 (capillary tube).

(5)上述の第1、第2実施形態では、流出側蒸発器15の下流側にアキュムレータ15bを配置しているが、アキュムレータ15bを廃止して、第1放熱器12の下流側に過冷却状態の液相冷媒を貯めるレシーバを設けてもよい。さらに、レシーバの液相冷媒貯留部に分岐部Aを形成してもよい。   (5) In the first and second embodiments described above, the accumulator 15b is disposed on the downstream side of the outflow side evaporator 15. However, the accumulator 15b is abolished and the subcooling is performed on the downstream side of the first radiator 12. A receiver that stores the liquid refrigerant in the state may be provided. Furthermore, you may form the branch part A in the liquid phase refrigerant | coolant storage part of a receiver.

この場合、例えば、ノズル部側通路13aに周知の温度式膨張弁を配置して、この温度式膨張弁によって圧縮機11吸入冷媒の過熱度が予め定めた値となるようにしてもよい。さらに、ノズル部側通路13aに電気式膨張弁を配置して、圧縮機11吸入側に配置した圧力センサおよび温度センサの検出値によって過熱度を算出し、電気式膨張弁によって圧縮機11吸入冷媒の過熱度が予め定めた値となるようにしてもよい。   In this case, for example, a known temperature type expansion valve may be arranged in the nozzle part side passage 13a, and the superheat degree of the refrigerant sucked in the compressor 11 may be set to a predetermined value by the temperature type expansion valve. Further, an electric expansion valve is arranged in the nozzle section side passage 13a, the degree of superheat is calculated from the detected values of the pressure sensor and the temperature sensor arranged on the suction side of the compressor 11, and the refrigerant sucked into the compressor 11 by the electric expansion valve. The degree of superheat may be a predetermined value.

(6)上述の実施形態では、流出側蒸発器15および吸引側蒸発器19を一体構造に組み付けているが、その具体的手段として、例えば、流出側蒸発器15および吸引側蒸発器19の構成部品をアルミニウムで構成して、ろう付けにより一体構造に接合してもよい。   (6) In the above-described embodiment, the outflow side evaporator 15 and the suction side evaporator 19 are assembled in an integrated structure. As specific means, for example, the configuration of the outflow side evaporator 15 and the suction side evaporator 19 The parts may be made of aluminum and joined to the unitary structure by brazing.

さらに、ボルト締め等の機械的係合手段によって10mm以下の間隔を開けて一体的に結合する構成でもよい。また、流出側蒸発器15および吸引側蒸発器19として、フィンアンドチューブタイプの熱交換器を採用し、流出側蒸発器15と吸引側蒸発器19のフィンを共通化し、フィンと接触するチューブ構成で分割する構成として一体化してもよい。   Furthermore, it may be configured to be integrally coupled with an interval of 10 mm or less by mechanical engagement means such as bolt tightening. Further, a fin-and-tube type heat exchanger is adopted as the outflow side evaporator 15 and the suction side evaporator 19, and the fins of the outflow side evaporator 15 and the suction side evaporator 19 are made common and are in contact with the fins. You may integrate as a structure divided | segmented by.

(7)上述の実施形態では、流出側蒸発器15および吸引側蒸発器19によって同一の冷却対象空間を冷却しているが、双方の蒸発器15、19によって異なる冷却対象空間を冷却してもよい。また、流出側蒸発器15を廃止して吸引側蒸発器19のみで冷却するようにしてもよい。   (7) In the above-described embodiment, the same cooling target space is cooled by the outflow side evaporator 15 and the suction side evaporator 19, but different cooling target spaces may be cooled by both the evaporators 15 and 19. Good. Alternatively, the outflow side evaporator 15 may be eliminated and the suction side evaporator 19 alone may be used for cooling.

さらに、第1放熱器12または第2放熱器16の下流側から圧縮機11吸入側を接続する分岐配管を設け、この分岐配管に絞り機構および分岐通路蒸発器を配置してもよい。これによれば、流出側蒸発器15および吸引側蒸発器19に加えて、分岐通路蒸発器によっても冷凍能力を発揮できる。   Furthermore, a branch pipe that connects the suction side of the compressor 11 from the downstream side of the first radiator 12 or the second radiator 16 may be provided, and a throttle mechanism and a branch passage evaporator may be arranged in the branch pipe. According to this, in addition to the outflow side evaporator 15 and the suction side evaporator 19, the refrigerating capacity can be exhibited also by the branch passage evaporator.

(8)上述の実施形態では、本発明のエジェクタ式冷凍サイクル10を車両用空調装置および業務用冷蔵冷凍装置に適用した例を説明しているが、本発明の適用はこれに限定されない。例えば、家庭用冷蔵庫、自動販売機用冷却装置、冷蔵機能付きショーケース等に適用してもよい。また、冷媒としてHC系冷媒を採用してもよい。   (8) In the above-described embodiment, an example in which the ejector refrigeration cycle 10 of the present invention is applied to a vehicle air conditioner and a commercial refrigeration refrigerator is described, but the application of the present invention is not limited to this. For example, the present invention may be applied to a household refrigerator, a vending machine cooling device, a showcase with a refrigeration function, and the like. Further, an HC refrigerant may be adopted as the refrigerant.

(9)上述の実施形態では、第1、第2放熱器12、16を冷媒と外気とを熱交換させる室外側熱交換器とし、流出側蒸発器15、吸引側蒸発器19を室内側熱交換器として車室内の冷却用に適用しているが、流出側蒸発器15、吸引側蒸発器19を外気等の熱源から吸熱する室外側熱交換器として構成し、第1、第2放熱器12、16を空気あるいは水等の被加熱流体を加熱する室内側熱交換器として構成するヒートポンプサイクルに本発明を適用してもよい。   (9) In the above-described embodiment, the first and second radiators 12 and 16 are outdoor heat exchangers that exchange heat between the refrigerant and the outside air, and the outflow side evaporator 15 and the suction side evaporator 19 are indoor side heat. Although applied as an exchanger for cooling the vehicle interior, the outflow side evaporator 15 and the suction side evaporator 19 are configured as outdoor heat exchangers that absorb heat from a heat source such as outside air, and the first and second radiators You may apply this invention to the heat pump cycle which comprises 12 and 16 as an indoor side heat exchanger which heats to-be-heated fluids, such as air or water.

第1実施形態のエジェクタ式冷凍サイクルの全体構成図である。It is a whole block diagram of the ejector-type refrigerating cycle of 1st Embodiment. 第1実施形態の冷媒の状態を示すモリエル線図である。It is a Mollier diagram which shows the state of the refrigerant | coolant of 1st Embodiment. 第2実施形態のエジェクタ式冷凍サイクルの全体構成図である。It is a whole block diagram of the ejector type refrigerating cycle of 2nd Embodiment. 第3実施形態のエジェクタ式冷凍サイクルの全体構成図である。It is a whole block diagram of the ejector-type refrigerating cycle of 3rd Embodiment. 減圧手段入口冷媒の過冷却度と減圧手段通過冷媒流量との関係を示すグラフである。It is a graph which shows the relationship between the supercooling degree of a decompression means inlet_port | entrance refrigerant | coolant, and a decompression means passage refrigerant | coolant flow rate.

符号の説明Explanation of symbols

11…圧縮機、12…第1放熱器、12a…第1冷却ファン、
14…エジェクタ、14a…ノズル部、14b…冷媒吸引口、
15…流出側蒸発器、16…第2放熱器、16a…第2冷却ファン、
18…固定絞り、19…吸引側蒸発器、20…空調制御装置、
20a…第1制御手段、20b…第2制御手段、21…第1温度センサ、
22…第1圧力センサ、23…第2温度センサ、24…第2圧力センサ、
A、B…分岐部
DESCRIPTION OF SYMBOLS 11 ... Compressor, 12 ... 1st heat radiator, 12a ... 1st cooling fan,
14 ... Ejector, 14a ... Nozzle part, 14b ... Refrigerant suction port,
15 ... Outflow side evaporator, 16 ... Second radiator, 16a ... Second cooling fan,
18 ... fixed throttle, 19 ... suction side evaporator, 20 ... air conditioning controller,
20a ... 1st control means, 20b ... 2nd control means, 21 ... 1st temperature sensor,
22 ... 1st pressure sensor, 23 ... 2nd temperature sensor, 24 ... 2nd pressure sensor,
A, B ... Branch

Claims (8)

冷媒を圧縮して吐出する圧縮機(11)と、
前記圧縮機(11)にて圧縮された高圧冷媒を放熱させる第1、第2放熱器(12、16)と、
前記第1放熱器(12)下流側冷媒を減圧膨張させるノズル部(14a)から噴射する高速度の冷媒流によって冷媒を冷媒吸引口(14b)から吸引するエジェクタ(14)と、
前記第2放熱器(16)下流側冷媒を減圧膨張させる減圧手段(18)と、
前記減圧手段(18)下流側冷媒を蒸発させて前記冷媒吸引口(14b)上流側に流出する吸引側蒸発器(19)とを備え、
前記第2放熱器(16)の放熱能力は、前記第1放熱器(12)の放熱能力に対して、独立して調整可能になっており、
前記第1放熱器(12)の放熱能力は、前記ノズル部(14a)へ流入する冷媒の状態が飽和液相状態あるいは気液二相状態となるように調整され、
前記第2放熱器(16)の放熱能力は、前記減圧手段(18)へ流入する冷媒の状態が過冷却状態となるように調整されていることを特徴とするエジェクタ式冷凍サイクル。
A compressor (11) for compressing and discharging the refrigerant;
First and second radiators (12, 16) for radiating high-pressure refrigerant compressed by the compressor (11);
An ejector (14) for sucking the refrigerant from the refrigerant suction port (14b) by a high-speed refrigerant flow injected from the nozzle part (14a) for decompressing and expanding the refrigerant on the downstream side of the first radiator (12);
Decompression means (18) for decompressing and expanding the second radiator (16) downstream refrigerant;
A suction side evaporator (19) for evaporating the refrigerant on the downstream side of the pressure reducing means (18) and flowing out to the upstream side of the refrigerant suction port (14b);
The heat dissipation capability of the second radiator (16) can be independently adjusted with respect to the heat dissipation capability of the first radiator (12),
The heat dissipation capability of the first radiator (12) is adjusted so that the state of the refrigerant flowing into the nozzle portion (14a) becomes a saturated liquid phase state or a gas-liquid two phase state,
The ejector refrigeration cycle is characterized in that the heat radiation capacity of the second radiator (16) is adjusted so that the state of the refrigerant flowing into the decompression means (18) becomes a supercooled state.
前記高圧冷媒の流れを分岐する分岐部(A)を備え、
前記分岐部(A)は、前記第1放熱器(12)から流出した高圧冷媒の流れを分岐して、分岐された一方の冷媒を前記ノズル部(14a)へ流入させ、他方の冷媒を前記第2放熱器(16)へ流入させるようになっていることを特徴とする請求項1に記載のエジェクタ式冷凍サイクル。
A branch part (A) for branching the flow of the high-pressure refrigerant,
The branch part (A) branches the flow of the high-pressure refrigerant that has flowed out of the first radiator (12), allows one of the branched refrigerants to flow into the nozzle part (14a), and allows the other refrigerant to flow into the nozzle part (14a). The ejector refrigeration cycle according to claim 1, wherein the ejector refrigeration cycle is adapted to flow into the second radiator (16).
前記高圧冷媒の流れを分岐する分岐部(B)を備え、
前記分岐部(B)は、前記圧縮機(11)から吐出された高圧冷媒の流れを分岐して、分岐された一方の冷媒を前記第1放熱器(12)へ流入させ、他方の冷媒を前記第2放熱器(16)へ流入させるようになっていることを特徴とする請求項1に記載のエジェクタ式冷凍サイクル。
A branch part (B) for branching the flow of the high-pressure refrigerant,
The branch section (B) branches the flow of the high-pressure refrigerant discharged from the compressor (11), causes one of the branched refrigerant to flow into the first radiator (12), and the other refrigerant to flow. The ejector refrigeration cycle according to claim 1, wherein the ejector refrigeration cycle is adapted to flow into the second radiator (16).
前記エジェクタ(14)下流側冷媒を蒸発させる流出側蒸発器(15a)を備えることを特徴とする請求項1ないし3のいずれか1つに記載のエジェクタ式冷凍サイクル。 The ejector refrigeration cycle according to any one of claims 1 to 3, further comprising an outflow side evaporator (15a) for evaporating the downstream side refrigerant of the ejector (14). 前記第1放熱器(12)の放熱能力を調整する第1放熱能力調整手段(12a)と、
前記第1放熱器(12)出口冷媒の第1過冷却度を検出する第1過冷却度検出手段(21、22)と、
前記第1放熱能力調整手段(12a)の作動を制御する第1制御手段(20a)とを備え、
前記第1制御手段(20a)は、前記第1過冷却度が予め定めた第1設定値以下になるように、前記第1放熱能力調整手段(12a)の作動を制御するようになっていることを特徴とする請求項1ないし4のいずれか1つに記載のエジェクタ式冷凍サイクル。
First heat radiation capacity adjusting means (12a) for adjusting the heat radiation capacity of the first heat radiator (12);
First supercooling degree detection means (21, 22) for detecting the first supercooling degree of the refrigerant at the outlet of the first radiator (12);
First control means (20a) for controlling the operation of the first heat radiation capacity adjustment means (12a),
The first control means (20a) controls the operation of the first heat radiation capacity adjusting means (12a) so that the first subcooling degree is equal to or less than a predetermined first set value. The ejector refrigeration cycle according to any one of claims 1 to 4, wherein
前記第2放熱器(16)の放熱能力を調整する第2放熱能力調整手段(16a)と、
前記第2放熱器(16)出口冷媒の第2過冷却度を検出する第2過冷却度検出手段(23、24)と、
前記第2放熱能力調整手段(16a)の作動を制御する第2制御手段(20b)とを備え、
前記第2制御手段(20b)は、前記第2過冷却度が予め定めた第2設定値以上になるように、前記第2放熱能力調整手段(16a)の作動を制御するようになっていることを特徴とする請求項1ないし5のいずれか1つに記載のエジェクタ式冷凍サイクル。
Second heat radiation capacity adjusting means (16a) for adjusting the heat radiation capacity of the second heat radiator (16);
Second supercooling degree detection means (23, 24) for detecting the second supercooling degree of the refrigerant at the outlet of the second radiator (16);
Second control means (20b) for controlling the operation of the second heat radiation capacity adjusting means (16a),
The second control means (20b) controls the operation of the second heat radiation capacity adjusting means (16a) so that the second subcooling degree is equal to or higher than a predetermined second set value. The ejector refrigeration cycle according to any one of claims 1 to 5, wherein
前記第1放熱能力調整手段は、前記第1放熱器(12)にて冷媒と熱交換する空気を送風する第1送風機(12a)であることを特徴とする請求項1ないし6のいずれか1つに記載のエジェクタ式冷凍サイクル。 The said 1st heat radiation capability adjustment means is a 1st air blower (12a) which blows the air which heat-exchanges with a refrigerant | coolant in the said 1st heat radiator (12), The any one of Claim 1 thru | or 6 characterized by the above-mentioned. Ejector type refrigeration cycle described in 1. 前記第2放熱能力調整手段は、前記第2放熱器(16)にて冷媒と熱交換する空気を送風する第2送風機(16a)であることを特徴とする請求項1ないし7のいずれか1つに記載のエジェクタ式冷凍サイクル。 The said 2nd heat dissipation capability adjustment means is a 2nd air blower (16a) which ventilates the air which heat-exchanges with a refrigerant | coolant in the said 2nd heat radiator (16), The any one of Claim 1 thru | or 7 characterized by the above-mentioned. Ejector type refrigeration cycle described in 1.
JP2007025354A 2007-02-05 2007-02-05 Ejector refrigeration cycle Expired - Fee Related JP5021326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007025354A JP5021326B2 (en) 2007-02-05 2007-02-05 Ejector refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007025354A JP5021326B2 (en) 2007-02-05 2007-02-05 Ejector refrigeration cycle

Publications (2)

Publication Number Publication Date
JP2008190769A true JP2008190769A (en) 2008-08-21
JP5021326B2 JP5021326B2 (en) 2012-09-05

Family

ID=39751033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007025354A Expired - Fee Related JP5021326B2 (en) 2007-02-05 2007-02-05 Ejector refrigeration cycle

Country Status (1)

Country Link
JP (1) JP5021326B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133605A (en) * 2008-12-03 2010-06-17 Denso Corp Ejector type refrigerating cycle
JP2010133606A (en) * 2008-12-03 2010-06-17 Denso Corp Ejector type refrigerating cycle
WO2015052881A1 (en) * 2013-10-08 2015-04-16 株式会社デンソー Refrigeration cycle device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51126550A (en) * 1975-04-28 1976-11-04 Iwaya Reitouki Seisakusho:Kk Cooling device
JPH11304262A (en) * 1998-04-22 1999-11-05 Denso Corp Condenser
JP2001012810A (en) * 1999-07-01 2001-01-19 Bosch Automotive Systems Corp Cooler
JP2001147052A (en) * 1999-11-19 2001-05-29 Fujitsu General Ltd Air conditioner
JP2001280729A (en) * 2000-03-31 2001-10-10 Daikin Ind Ltd Refrigerating device
JP2003214743A (en) * 2002-01-24 2003-07-30 Sanyo Electric Co Ltd Refrigerator
JP2005271906A (en) * 2004-02-27 2005-10-06 Denso Corp Air conditioner for vehicle
JP2005337577A (en) * 2004-05-26 2005-12-08 Mitsubishi Electric Corp Refrigerating device
JP2006029714A (en) * 2004-07-20 2006-02-02 Denso Corp Ejector cycle
JP2006097978A (en) * 2004-09-29 2006-04-13 Denso Corp Refrigerating cycle
JP2007003171A (en) * 2005-05-24 2007-01-11 Denso Corp Ejector operated cycle
JP2007024338A (en) * 2005-07-12 2007-02-01 Denso Corp Condenser cooling device for refrigerating cycle

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51126550A (en) * 1975-04-28 1976-11-04 Iwaya Reitouki Seisakusho:Kk Cooling device
JPH11304262A (en) * 1998-04-22 1999-11-05 Denso Corp Condenser
JP2001012810A (en) * 1999-07-01 2001-01-19 Bosch Automotive Systems Corp Cooler
JP2001147052A (en) * 1999-11-19 2001-05-29 Fujitsu General Ltd Air conditioner
JP2001280729A (en) * 2000-03-31 2001-10-10 Daikin Ind Ltd Refrigerating device
JP2003214743A (en) * 2002-01-24 2003-07-30 Sanyo Electric Co Ltd Refrigerator
JP2005271906A (en) * 2004-02-27 2005-10-06 Denso Corp Air conditioner for vehicle
JP2005337577A (en) * 2004-05-26 2005-12-08 Mitsubishi Electric Corp Refrigerating device
JP2006029714A (en) * 2004-07-20 2006-02-02 Denso Corp Ejector cycle
JP2006097978A (en) * 2004-09-29 2006-04-13 Denso Corp Refrigerating cycle
JP2007003171A (en) * 2005-05-24 2007-01-11 Denso Corp Ejector operated cycle
JP2007024338A (en) * 2005-07-12 2007-02-01 Denso Corp Condenser cooling device for refrigerating cycle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133605A (en) * 2008-12-03 2010-06-17 Denso Corp Ejector type refrigerating cycle
JP2010133606A (en) * 2008-12-03 2010-06-17 Denso Corp Ejector type refrigerating cycle
WO2015052881A1 (en) * 2013-10-08 2015-04-16 株式会社デンソー Refrigeration cycle device
JP2015075268A (en) * 2013-10-08 2015-04-20 株式会社デンソー Refrigeration cycle device
CN105556218A (en) * 2013-10-08 2016-05-04 株式会社电装 Refrigeration cycle device
CN105556218B (en) * 2013-10-08 2017-06-20 株式会社电装 Refrigerating circulatory device
US10131203B2 (en) 2013-10-08 2018-11-20 Denso Corporation Refrigeration cycle device

Also Published As

Publication number Publication date
JP5021326B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
JP4622960B2 (en) Ejector refrigeration cycle
JP4779928B2 (en) Ejector refrigeration cycle
JP4737001B2 (en) Ejector refrigeration cycle
JP4626531B2 (en) Ejector refrigeration cycle
JP4984453B2 (en) Ejector refrigeration cycle
JP4600200B2 (en) Ejector refrigeration cycle
JP6547781B2 (en) Refrigeration cycle device
US10132526B2 (en) Ejector refrigeration cycle
JP4765828B2 (en) Ejector refrigeration cycle
JP2010133606A (en) Ejector type refrigerating cycle
JP5018724B2 (en) Ejector refrigeration cycle
JP5217121B2 (en) Ejector refrigeration cycle
JP5359231B2 (en) Ejector refrigeration cycle
JP4915250B2 (en) Ejector refrigeration cycle
JP2007040612A (en) Vapor compression type cycle
JP4952830B2 (en) Ejector refrigeration cycle
JP4715797B2 (en) Ejector refrigeration cycle
JP2009222255A (en) Vapor compression refrigerating cycle
JP4661710B2 (en) Vapor compression refrigeration cycle
JP4992819B2 (en) Ejector refrigeration cycle
JP5021326B2 (en) Ejector refrigeration cycle
JP4400533B2 (en) Ejector refrigeration cycle
JP4725449B2 (en) Ejector refrigeration cycle
JP2008261512A (en) Ejector type refrigerating cycle
JP2009204183A (en) Refrigerating cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120614

R151 Written notification of patent or utility model registration

Ref document number: 5021326

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees