JP2008190755A - Cogeneration system - Google Patents

Cogeneration system Download PDF

Info

Publication number
JP2008190755A
JP2008190755A JP2007024469A JP2007024469A JP2008190755A JP 2008190755 A JP2008190755 A JP 2008190755A JP 2007024469 A JP2007024469 A JP 2007024469A JP 2007024469 A JP2007024469 A JP 2007024469A JP 2008190755 A JP2008190755 A JP 2008190755A
Authority
JP
Japan
Prior art keywords
predicted
load
period
power
stop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007024469A
Other languages
Japanese (ja)
Other versions
JP5048354B2 (en
Inventor
Yukitsugu Masumoto
幸嗣 桝本
Kazushige Maeda
和茂 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2007024469A priority Critical patent/JP5048354B2/en
Publication of JP2008190755A publication Critical patent/JP2008190755A/en
Application granted granted Critical
Publication of JP5048354B2 publication Critical patent/JP5048354B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To operate a cogeneration device to improve operation merits while stopping the cogeneration device for maintenance or for preventing detection of gas leakage by a microcomputer meter although no gas leaks. <P>SOLUTION: An operation control means controls a time-series estimated power load and a time-series estimated thermal load by dividing them into operation periods arranged in time-series, and controls which of operation periods arranged in time-series is pertinent to a stopping period for scheduling the stopping of the cogeneration device 1. The operation control means operates the cogeneration device 1 by setting the operation condition of the operation periods based on the time-series estimated power load and time-series estimated thermal load with respect to starting time of operation periods. When the operation period following the operation period to set the operation condition is the stopping period, the operation control means operates the cogeneration device 1 by setting the operation condition of the operation period based on the time-series estimated power load and time-series estimated thermal load in the operation period to set the operation condition and the estimated thermal load in the stopping period. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電力と熱とを併せて発生する熱電併給装置と、その熱電併給装置にて発生する熱にて貯湯槽に貯湯する貯湯手段と、前記熱電併給装置を運転する運転制御手段とが設けられたコージェネレーションシステムに関する。   The present invention includes a combined heat and power device that generates both electric power and heat, hot water storage means for storing hot water in a hot water storage tank using heat generated by the combined heat and power supply device, and operation control means for operating the combined heat and power supply device. It relates to the cogeneration system provided.

かかるコージェネレーションシステムは、一般家庭等に設置して、熱電併給装置の発電電力を電気機器等にて消費し、熱電併給装置から発生する熱にて貯湯槽に貯湯して、その貯湯槽に貯湯されている湯水を台所や風呂等にて消費するものである。ちなみに、熱電併給装置は、燃料電池やエンジン駆動式の発電機等にて構成される。   Such a cogeneration system is installed in a general household, etc., consumes the electric power generated by the combined heat and power supply equipment with electrical equipment, etc., stores hot water in the hot water storage tank with the heat generated from the combined heat and power supply apparatus, and stores the hot water in the hot water storage tank. Consumed hot water is consumed in the kitchen or bath. Incidentally, the combined heat and power device is composed of a fuel cell, an engine-driven generator, and the like.

このようなコージェネレーションシステムにおいて、従来は、運転制御手段により、時系列的な予測電力負荷及び時系列的な予測熱負荷を時系列で並ぶ運転周期毎に区分けして管理して、運転周期の開始時点において、時系列的な予測電力負荷及び時系列的な予測熱負荷に基づいて、その運転周期の運転条件を定めて熱電併給装置を運転するようになっていた。   In such a cogeneration system, conventionally, the operation control means divides and manages the time-series predicted power load and the time-series predicted heat load for each operation cycle arranged in time series. At the start time, based on the time-series predicted power load and the time-series predicted heat load, the operation condition of the operation cycle is determined and the cogeneration apparatus is operated.

説明を加えると、熱電併給装置の運転形態として、運転条件を定める運転周期の全時間帯にわたって熱電併給装置の発電出力を予測電力負荷に追従させる運転形態であって、運転条件を定める運転周期の予測電力負荷及び予測熱負荷に基づいて運転メリットを求める連続運転形態、運転条件を定める運転周期における一部の運転時間帯において熱電併給装置の発電出力を予測電力負荷に追従させ且つ残りの時間帯において熱電併給装置を停止させ、且つ、前記運転時間帯を、前記運転条件を定める運転周期の予測電力負荷及び予測熱負荷に基づいて求められる運転メリットが最も高くなる時間帯に定める単周期対応型の断続運転形態、運転条件を定める運転周期における一部の運転時間帯において熱電併給装置の発電出力を予測電力負荷に追従させ且つ残りの時間帯において熱電併給装置を停止させ、且つ、前記運転時間帯を、前記運転条件を定める運転周期の予測電力負荷及び予測熱負荷並びにその運転条件を定める運転周期に後続する運転周期の予測熱負荷に基づいて求められる運転メリットが最も高くなる時間帯を定める複数周期対応型の断続運転形態の複数種の運転形態が備えられていた。
そして、運転制御手段により、運転周期の開始時点において、連続運転形態、単周期対応型の断続運転形態及び複数周期対応型の断続運転形態の夫々について運転メリットを求めて、その運転周期の運転条件として、それら連続運転形態、単周期対応型の断続運転形態及び複数周期対応型の断続運転形態のうちで運転メリットが最も高くなる運転形態にて熱電併給装置を運転する条件に定めるようになっていた(例えば、特許文献1参照。)。
When the explanation is added, the operation mode of the cogeneration device is an operation mode in which the power generation output of the cogeneration device follows the predicted power load over the entire time period of the operation cycle that determines the operation condition. Continuous operation mode to obtain operation merit based on the predicted power load and predicted heat load, the power generation output of the combined heat and power unit follows the predicted power load in the part of the operation time period in the operation cycle that determines the operation conditions, and the remaining time period The combined heat and power unit is stopped at the same time, and the operation time zone is determined to be the time zone in which the operation merit required based on the predicted power load and the predicted heat load of the operation cycle that determines the operation conditions is the highest. The power generation output of the combined heat and power unit is added to the predicted power load during some operating hours in the operation cycle that determines the intermittent operation mode and operating conditions. And the cogeneration device is stopped in the remaining time zone, and the operation time zone is changed to the predicted power load and the predicted heat load of the operation cycle that determines the operation condition and the operation cycle that follows the operation cycle that determines the operation condition. There are provided a plurality of types of operation modes such as an intermittent operation mode corresponding to a plurality of cycles for determining a time zone in which the operation merit obtained based on the predicted heat load is the highest.
Then, at the start of the operation cycle, the operation control means obtains the operation merit for each of the continuous operation mode, the single cycle compatible intermittent operation mode and the multiple cycle compatible intermittent operation mode, and the operation conditions of the operation cycle As described above, the conditions for operating the combined heat and power device in the operation mode in which the operation merit is the highest among the continuous operation mode, the single cycle compatible type intermittent operation mode and the multiple cycle compatible type intermittent operation mode are determined. (For example, refer to Patent Document 1).

ちなみに、運転メリットとしては、熱電併給装置を運転することによるエネルギ削減量等にて示される省エネルギ性、熱電併給装置を運転することによるエネルギコスト削減費等にて示される経済性、又は、熱電併給装置を運転することによる二酸化炭素削減量等にて示される環境性等がある。   By the way, as operation merits, energy savings shown by the energy reduction amount by operating the combined heat and power unit, economic efficiency shown by energy cost reduction cost by operating the combined heat and power unit, etc. There are environmental characteristics indicated by the amount of carbon dioxide reduction by operating the co-feeding device.

ところで、このようなコージェネレーションシステムでは、熱電併給装置を停止することを予定する停止用期間を設定して、その停止用期間では、その全時間帯にわたって熱電併給装置を停止するように構成される場合がある。
この停止用期間としては、例えば、コージェネレーションシステムのメンテナンスを行うために設定する停止用期間や、ガス燃料消費量を計測するガスメータとしてマイクロコンピュータを内蔵した所謂マイコンメータが使用される場合に、熱電併給装置の長時間にわたる運転に伴って、ガス漏洩が生じていないにも拘らずマイコンメータがガス漏洩を検知するのを防止するために設定する停止用期間がある。
By the way, such a cogeneration system is configured to set a stop period in which the combined heat and power supply apparatus is scheduled to be stopped, and to stop the combined heat and power supply apparatus over the entire time period in the stop period. There is a case.
The stop period is, for example, a stop period set for maintenance of the cogeneration system, or a so-called microcomputer meter with a built-in microcomputer as a gas meter for measuring gas fuel consumption. There is a stop period set to prevent the microcomputer meter from detecting a gas leak in spite of the fact that no gas leak has occurred with the operation of the cooperating device for a long time.

つまり、コージェネレーションシステムにおいて、運転を停止してメンテナンスを行う必要がある場合は、そのメンテナンスを行うための停止用期間を設定する。
マイコンメータには、所定のガス漏洩判定用期間(例えば30日間)にわたってガス燃料の流量の計測値が無通流状態判定用流量以下にならなかった場合に、ガス漏洩であると検知して、ガス燃料消費箇所へのガス燃料の供給を断続する遮断弁を閉じたり警報を発するガス漏洩時処理を実行する機能が備えられている。
そこで、ガス燃料を消費する熱電併給装置を長期間にわたって連続して運転することにより、マイコンメータによりガス漏洩が検知されて、前述のガス漏洩時処理が実行されるのを防止するために、前記ガス漏洩判定用期間よりも短い間隔を隔てて停止用期間を設定するように構成されている。
That is, in the cogeneration system, when it is necessary to stop operation and perform maintenance, a stop period for performing the maintenance is set.
The microcomputer meter detects a gas leak when the measured value of the flow rate of the gas fuel is not less than or equal to the no-flow state determination flow rate over a predetermined gas leak determination period (for example, 30 days), A function of executing a gas leakage process that closes a shut-off valve that intermittently supplies gas fuel to a gas fuel consumption point or issues an alarm is provided.
Therefore, by continuously operating the combined heat and power device that consumes gas fuel for a long period of time, in order to prevent gas leakage from being detected by the microcomputer meter and to perform the above-described processing at the time of gas leakage, The stop period is set at an interval shorter than the gas leakage determination period.

前記特許文献1には明確に記載されていないが、従来では、運転制御手段により、熱電併給装置を停止することを予定する停止用期間が時系列で並ぶ運転周期のうちのいずれであるかについて管理して、停止用期間として管理している運転周期においては熱電併給装置を停止するが、各運転周期の運転条件は、その運転条件を定める運転周期に停止用期間とする運転周期が後続しているか否かに関係なく同様に、連続運転形態、単周期対応型の断続運転形態及び複数周期対応型の断続運転形態のうちで運転メリットが最も高くなる運転形態にて熱電併給装置を運転する条件に定めていた。
つまり、各運転周期の運転条件を、時系列に並ぶ運転周期のうちに停止用期間とする運転周期が定められていることを鑑みることなく定めていた。
Although it is not clearly described in the above-mentioned Patent Document 1, conventionally, the operation control means is one of the operation cycles in which the period for stopping in which the cogeneration apparatus is scheduled to be stopped is arranged in time series. In the operation cycle managed and managed as the stop period, the combined heat and power unit is stopped, but the operation condition of each operation cycle is followed by the operation period that is the stop period followed by the operation period that defines the operation condition. Regardless of whether or not it is operated, the combined heat and power unit is operated in the operation mode in which the operation merit is the highest among the continuous operation mode, the intermittent operation mode corresponding to the single cycle and the intermittent operation mode corresponding to the multiple cycles. It was stipulated in the conditions.
In other words, the operating conditions of each operating cycle are determined without considering that the operating cycle is set as the stop period among the operating cycles arranged in time series.

特開2006−127867号公報JP 2006-127867 A

しかしながら、従来のコージェネレーションシステムでは、各運転周期の運転条件は、時系列に並ぶ運転周期のうちに停止用期間とする運転周期が定められていることを鑑みることなく定められるものであることから、以下に説明するように、運転メリットを向上するように熱電併給装置を運転することができなかった。   However, in the conventional cogeneration system, the operation condition of each operation cycle is determined without considering that the operation cycle as the stop period is determined among the operation cycles arranged in time series. As explained below, the combined heat and power supply device could not be operated so as to improve the operation merit.

つまり、停止用期間とする運転周期が後続している運転周期の運転条件としては、停止用期間の熱負荷を賄えるように貯湯槽に貯湯すべく運転する条件、即ち、複数周期対応型の断続運転形態にて熱電併給装置を運転する条件に定めるのが、運転メリットを向上する上で好ましいものである。   In other words, the operation condition of the operation cycle that is followed by the operation cycle as the stop period is a condition of operating to store hot water in the hot water tank so as to cover the thermal load of the stop period, that is, intermittent operation corresponding to a plurality of cycles It is preferable to determine the conditions for operating the combined heat and power supply device in the operation mode in order to improve the operation merit.

しかしながら、停止用期間とする運転周期においても熱電併給装置を運転するものとして、その停止用期間とする運転周期が後続している運転周期の運転条件を定めるものであることから、その停止用期間とする運転周期が後続している運転周期の予測電力負荷及び予測熱負荷の状態によっては、連続運転形態の運転メリットが最も高くなって、その運転周期の運転条件として連続運転形態にて熱電併給装置を運転する条件に定められる場合や、単周期対応型の断続運転形態の運転メリットが最も高くなって、その運転周期の運転条件として単周期対応型の断続運転形態にて熱電併給装置を運転する条件に定められる場合がある。
そして、それら連続運転形態や単周期対応型の断続運転形態の運転メリットは、停止用期間の予測熱負荷を鑑みることなく求められるものであるので、熱電併給装置が連続運転形態や単周期対応型の断続運転形態にて運転されると、停止用期間の熱負荷を十分に賄えるように貯湯槽に貯湯することができないこととなり、運転メリットを向上するように熱電併給装置を運転することができないのである。
However, since the combined heat and power device is operated even in the operation period to be the stop period, the operation period of the operation cycle that is followed by the operation period to be the stop period is determined. Depending on the predicted power load and predicted heat load status of the operation cycle that is followed by the operation cycle, the operation merit of the continuous operation mode is the highest, and the combined heat and power supply in the continuous operation mode as the operation condition of the operation cycle The operation merit of the single cycle compatible intermittent operation mode is the highest when the conditions for operating the device are set, and the combined operation of the heat and power unit is operated in the single cycle compatible intermittent operation mode as the operation condition of the operation cycle May be stipulated in the conditions.
And, since the operation merit of the continuous operation mode and the intermittent operation mode corresponding to the single cycle is obtained without considering the predicted heat load of the stop period, the combined heat and power supply device is the continuous operation mode or the single cycle response type. If it is operated in the intermittent operation mode, it will not be possible to store hot water in the hot water storage tank so as to sufficiently cover the heat load during the stop period, and it is not possible to operate the combined heat and power supply device so as to improve the operation merit It is.

ちなみに、運転周期の運転条件を定める形態としては、上述した如き、連続運転形態、単周期対応型の断続運転形態及び複数周期対応型の断続運転形態のうちで運転メリットが最も高くなる運転形態にて熱電併給装置を運転する条件に定める形態の他に、1つの運転形態にて熱電併給装置を運転するとして、運転条件を定める運転周期の予測電力負荷及び予測熱負荷に基づいて求められる運転メリットが最も高くなるように、熱電併給装置を運転する運転時間帯又は熱電併給装置の電力の出力形態を定める形態も考えられる。
しかしながら、この場合も、各運転周期の運転条件は、時系列に並ぶ運転周期のうちに停止用期間とする運転周期が定められていることを鑑みることなく定められるものであることから、運転メリットを向上するように熱電併給装置を運転することができない。
By the way, as a form for determining the operation condition of the operation cycle, as described above, in the operation mode in which the operation merit is the highest among the continuous operation mode, the single cycle compatible type intermittent operation mode and the multiple cycle compatible type intermittent operation mode. In addition to the mode defined in the conditions for operating the combined heat and power unit, the operational merits required based on the predicted power load and the predicted thermal load of the operation cycle for determining the operating conditions as operating the combined heat and power unit in one mode of operation. The mode which determines the output time form of the operation time zone which operates a cogeneration apparatus, or the cogeneration apparatus so that it may become the highest is also considered.
However, in this case as well, the operation condition of each operation cycle is determined without considering that the operation cycle as the stop period is determined among the operation cycles arranged in chronological order. The combined heat and power unit cannot be operated to improve the power consumption.

例えば、単周期対応型の断続運転形態にて運転するとして、運転条件を定める運転周期の予測電力負荷及び予測熱負荷に基づいて求められる運転メリットが最も高くなるように、運転周期内に運転時間帯を定める場合、その運転時間帯は、停止用期間の予測熱負荷を鑑みることなく定められるものであるので、運転メリットを向上するように熱電併給装置を運転することができないのである。   For example, assuming that the operation is performed in a single cycle type intermittent operation mode, the operation time within the operation cycle is such that the operation merit obtained based on the predicted power load and the predicted heat load of the operation cycle that defines the operation condition is the highest. When the band is determined, the operating time period is determined without considering the predicted heat load during the stop period, and therefore, the combined heat and power supply apparatus cannot be operated to improve the operation merit.

本発明は、かかる実情に鑑みてなされたものであり、その目的は、メンテナンスのためや、ガス漏洩が生じていないにも拘らずマイコンメータによりガス漏洩が検知されるのを防止するために熱電併給装置を停止しながらも、運転メリットを向上するように熱電併給装置を運転し得るコージェネレーションシステムを提供することにある。   The present invention has been made in view of such circumstances, and its purpose is to prevent thermoelectricity from being detected by a micrometer for maintenance or even when no gas leakage has occurred. An object of the present invention is to provide a cogeneration system capable of operating a combined heat and power supply device so as to improve operation merit while stopping the combined supply device.

本発明のコージェネレーションシステムの第1特徴構成は、電力と熱とを併せて発生する熱電併給装置と、その熱電併給装置にて発生する熱にて貯湯槽に貯湯する貯湯手段と、前記熱電併給装置を運転する運転制御手段とが設けられたコージェネレーションシステムであって、
前記運転制御手段が、
時系列的な予測電力負荷及び時系列的な予測熱負荷を時系列で並ぶ運転周期毎に区分けして管理し、且つ、前記熱電併給装置を停止することを予定する停止用期間が時系列で並ぶ運転周期のうちのいずれであるかについて管理して、
運転周期の開始時点毎に、時系列的な予測電力負荷及び時系列的な予測熱負荷に基づいて、その運転周期の運転条件を定めて前記熱電併給装置を運転し、且つ、前記運転条件を定める運転周期に続く運転周期が前記停止用期間である場合には、前記運転条件を定める運転周期における予測電力負荷及び予測熱負荷並びに前記停止用期間の予測熱負荷に基づいて、その運転周期の運転条件を定めて前記熱電併給装置を運転するように構成されている点を特徴とする。
A first characteristic configuration of the cogeneration system according to the present invention is a combined heat and power device that generates both electric power and heat, hot water storage means for storing hot water in a hot water tank using heat generated by the combined heat and power device, and the combined heat and power supply. A cogeneration system provided with operation control means for operating the device,
The operation control means is
The time-series predicted power load and the time-series predicted heat load are managed separately for each operation cycle arranged in time series, and the stop period in which the cogeneration device is scheduled to be stopped is time-series. Manage which of the operating cycles are in line,
For each starting point of the operation cycle, based on the time-series predicted power load and the time-series predicted heat load, the operation condition of the operation cycle is determined to operate the cogeneration device, and the operation condition is When the operation cycle following the determined operation cycle is the stop period, the operation cycle is determined based on the predicted power load and the predicted heat load in the operation cycle for determining the operation condition and the predicted heat load in the stop period. The present invention is characterized in that it is configured to operate the combined heat and power supply device by defining operating conditions.

即ち、運転制御手段は、時系列的な予測電力負荷及び時系列的な予測熱負荷を時系列で並ぶ運転周期毎に区分けして管理し、熱電併給装置を停止することを予定する停止用期間が時系列で並ぶ運転周期のうちのいずれであるかについて管理する。
そして、運転制御手段は、運転周期の開始時点毎に、時系列的な予測電力負荷及び時系列的な予測熱負荷に基づいて、その運転周期の運転条件を定めて熱電併給装置を運転し、運転条件を定める運転周期に続く運転周期が停止用期間である場合には、その運転条件を定める運転周期の予測電力負荷及び予測熱負荷並びに停止用期間の予測熱負荷に基づいて運転条件を定めて熱電併給装置を運転する。
In other words, the operation control means manages the time-series predicted power load and the time-series predicted heat load separately for each operation cycle arranged in time series, and a period for stop that schedules to stop the cogeneration device Is one of the operation cycles arranged in time series.
And the operation control means determines the operation condition of the operation cycle based on the time-series predicted power load and the time-series predicted heat load for each start time of the operation cycle, and operates the cogeneration device, When the operation cycle following the operation cycle that defines the operation condition is a stop period, the operation condition is determined based on the predicted power load and predicted heat load of the operation cycle that defines the operation condition and the predicted heat load of the stop period. Operate the combined heat and power unit.

つまり、運転条件を定める運転周期に続く運転周期が停止用期間である場合には、その運転条件を定める運転周期の予測電力負荷及び予測熱負荷並びに停止用期間の予測熱負荷に基づいて、その運転周期の運転条件を定めるので、その運転条件を運転メリットを向上するように定めることが可能となる。
例えば、運転条件を、その運転条件を定める運転周期の終了時点での貯湯槽の貯湯熱量が停止用期間の予測熱負荷に対して過剰となるのを回避しながら、その貯湯熱量にて停止用期間の予測熱負荷の極力多くを賄うことができる条件に定めることが可能となり、運転メリットを向上することが可能となる。
従って、メンテナンスのためや、ガス漏洩が生じていないにも拘らずマイコンメータによりガス漏洩が検知されるのを防止するために熱電併給装置を停止しながらも、運転メリットを向上するように熱電併給装置を運転し得るコージェネレーションシステムを提供することができるようになった。
That is, when the operation cycle following the operation cycle that defines the operation condition is a stop period, the predicted power load and the predicted heat load of the operation cycle that defines the operation condition, and the predicted heat load of the stop period, Since the operation condition of the operation cycle is determined, it is possible to determine the operation condition so as to improve the operation merit.
For example, the operation condition is set to stop at the amount of stored hot water while avoiding that the amount of stored heat in the hot water tank at the end of the operation cycle that defines the operation condition is excessive with respect to the predicted heat load during the stop period. It becomes possible to determine the conditions that can cover as much of the predicted thermal load of the period as possible, and it is possible to improve the operating merit.
Therefore, in order to prevent the gas leak from being detected by the microcomputer meter for maintenance or no gas leak has occurred, the combined heat and power supply is improved so as to improve the operation merit while stopping the cogeneration device. It has become possible to provide a cogeneration system that can operate the device.

第2特徴構成は、上記第1特徴構成に加えて、
前記運転制御手段が、
前記運転条件を定める運転周期に続く運転周期が前記停止用期間である場合における前記運転条件として、前記熱電併給装置の異なる運転形態である複数種の停止前用の運転形態のうちで、前記運転条件を定める運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間の予測熱負荷に基づいて求められる運転メリットにて定める停止前用の運転形態にて前記熱電併給装置を運転する条件に定めるように構成されている点を特徴とする。
In addition to the first feature configuration, the second feature configuration is
The operation control means is
As the operation condition in the case where the operation cycle following the operation cycle that defines the operation condition is the stop period, among the plurality of types of pre-stop operation modes that are different operation modes of the cogeneration device, the operation The conditions for operating the combined heat and power unit in the pre-stop operation mode determined by the operation merit obtained based on the predicted power load and the predicted heat load of the operation cycle and the predicted heat load of the stop period are set. It is characterized by being configured as described above.

即ち、運転制御手段は、運転条件を定める運転周期に続く運転周期が停止用期間である場合における運転条件として、複数種の停止前用の運転形態のうちで、運転条件を定める運転周期の予測電力負荷及び予測熱負荷並びに停止用期間の予測熱負荷に基づいて求められる運転メリットにて定める停止前用の運転形態にて熱電併給装置を運転する条件に定める。   That is, the operation control means predicts the operation cycle for determining the operation condition among the plural types of operation modes for before stop as the operation condition when the operation cycle following the operation cycle for determining the operation condition is the stop period. It is determined as a condition for operating the combined heat and power device in the operation mode for pre-stop determined by the operation merit obtained based on the power load, the predicted heat load, and the predicted heat load of the stop period.

つまり、複数種の停止前用の運転形態として、運転周期における時間経過に伴う予測電力負荷及び予測熱負荷の分布状態や運転周期の予測熱負荷の大きさに応じて、運転メリットを高くすることが可能な複数種の停止前用の運転形態を備える。
そして、複数種の停止前用の運転形態のうちで、運転条件を定める運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間の予測熱負荷に基づいて求められる運転メリットにて1つの停止前用の運転形態(例えば、運転メリットが最も高い又は2番目に高い停止前用の運転形態)を定めて、その定めた停止前用の運転形態にて熱電併給装置を運転するので、運転条件を定める運転周期の予測電力負荷及び予測熱負荷の分布状態並びに停止用期間の予測熱負荷の大きさに適応して、運転メリットをより一層向上することが可能な停止前用の運転形態にて熱電併給装置を運転することが可能となる。
従って、停止用期間の直前の運転周期の予測電力負荷及び予測熱負荷の分布状態並びに停止用期間の予測熱負荷の大きさに拘わらず、運転メリットを向上するように熱電併給装置を運転することができるようになった。
In other words, as the operation mode for multiple types of pre-stop operation, increase the operating merit according to the predicted power load and the predicted thermal load distribution over time in the operating cycle and the predicted thermal load size of the operating cycle. A plurality of types of operation modes for pre-stop are possible.
And among a plurality of types of operation modes for pre-stop, one stop is performed with the operation merit obtained based on the predicted power load and the predicted heat load of the operation cycle that determines the operation condition and the predicted heat load of the stop period. Since the operation mode for the previous operation (for example, the operation mode for the stop operation with the highest or the second highest operation advantage) is determined and the combined heat and power device is operated in the determined operation mode for the stop operation, the operation conditions In the operation mode for before stop that can further improve the operation merit by adapting to the predicted power load and predicted heat load distribution state of the operation cycle and the predicted heat load size of the stop period It becomes possible to operate the cogeneration apparatus.
Therefore, regardless of the predicted power load and predicted heat load distribution state in the operation cycle immediately before the stop period and the predicted heat load in the stop period, the combined heat and power device is operated to improve the operation merit. Can now.

第3特徴構成は、上記第2特徴構成に加えて、
前記運転制御手段が、
前記運転条件を定める運転周期に続く運転周期が前記停止用期間である場合における前記運転条件として、前記運転条件を定める運転周期の全時間帯において前記熱電併給装置を停止させると仮定したときに、その運転条件を定める運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間の予測熱負荷に基づいて求められる運転メリットが、前記複数種の停止前用の運転形態夫々について求められる前記運転メリットとの対比により停止用条件を満たすときには、前記運転条件を定める運転周期の全時間帯にわたって前記熱電併給装置を停止させる条件に定めるように構成されている点を特徴とする。
The third feature configuration is in addition to the second feature configuration,
The operation control means is
Assuming that the combined heat and power unit is stopped in the entire time period of the operation cycle for determining the operation condition as the operation condition when the operation cycle following the operation cycle for determining the operation condition is the period for stopping, The operation merit obtained based on the predicted power load and the predicted heat load of the operation cycle that defines the operation conditions and the predicted heat load of the stop period is obtained for each of the plurality of types of operation modes before stop. When the conditions for stopping are satisfied by comparison with the above, it is configured to be set to a condition for stopping the combined heat and power device over the entire time period of the operating cycle for determining the operating conditions.

即ち、停止用期間の直前の運転周期の予測電力負荷及び予測熱負荷並びに停止用期間の予測熱負荷が小さい場合は、熱電併給装置を運転しなくても、停止用期間の直前の運転周期の開始時点における貯湯槽の貯湯熱量にて、その停止用期間の直前の運転周期の予測熱負荷を賄うことができたり、その停止用期間の直前の運転周期の予測熱負荷に加えて停止用期間の熱負荷をも賄うことができたりして、停止用期間の直前の運転周期において熱電併給装置を停止した方が運転するよりも運転メリットを高くすることが可能な場合がある。   That is, when the predicted power load and predicted heat load of the operation cycle immediately before the stop period and the predicted heat load of the stop period are small, the operation cycle immediately before the stop period is not required even if the cogeneration device is not operated. The amount of hot water stored in the hot water storage tank at the start time can cover the predicted heat load of the operation cycle immediately before the stop period, or the stop period in addition to the predicted heat load of the operation cycle immediately before the stop period In some cases, the operating merit can be made higher than when the combined heat and power device is stopped in the operation cycle immediately before the stop period.

そこで、運転条件を定める運転周期に続く運転周期が停止用期間である場合における運転条件として、運転条件を定める運転周期の全時間帯において熱電併給装置を停止させると仮定したときに、その運転条件を定める運転周期の予測電力負荷及び予測熱負荷並びに停止用期間の予測熱負荷に基づいて求められる運転メリットが、複数種の停止前用の運転形態夫々について求められる運転メリットとの対比により停止用条件を満たすときには、運転条件を定める運転周期の全時間帯にわたって熱電併給装置を停止させる条件に定めるようにすることにより、停止用期間の直前の予測電力負荷及び予測熱負荷並びに停止用期間の予測熱負荷が小さい場合でも、運転メリットを向上することが可能となるのである。
ちなみに、前記停止用条件としては、運転条件を定める運転周期の全時間帯において熱電併給装置を停止させると仮定したときの運転メリットが、複数種の停止前用の運転形態夫々について求められる運転メリットのうちで高いもの(例えば、最も高い又は2番目に高い運転メリット)よりも高くなる条件に定める。
従って、停止用期間の直前の予測電力負荷及び予測熱負荷並びに停止用期間の予測熱負荷が小さい場合でも、運転メリットを向上するように熱電併給装置を運転することができるようになった。
Therefore, when it is assumed that the combined heat and power unit is stopped in all time periods of the operation cycle for determining the operation condition as an operation condition in the case where the operation cycle following the operation cycle for determining the operation condition is a period for stop, the operation condition The operation merit required based on the predicted power load and predicted heat load of the operation cycle and the predicted heat load of the stop period is compared with the operation merit required for each of the types of operation types for before stoppage. When the condition is satisfied, the prediction of the predicted power load, the predicted heat load, and the stop period immediately before the stop period is made by setting the condition to stop the combined heat and power unit over the entire time period of the operation cycle that determines the operation condition. Even when the heat load is small, the operation merit can be improved.
By the way, as the condition for stopping, the operating merit when it is assumed that the cogeneration device is stopped in the entire time zone of the operating cycle that defines the operating condition is the operating merit required for each of the plural types of driving modes before stopping. Is set to be higher than the highest one (for example, the highest or second highest driving merit).
Therefore, even when the predicted power load and the predicted heat load immediately before the stop period and the predicted heat load during the stop period are small, the combined heat and power supply apparatus can be operated so as to improve the operation merit.

第4特徴構成は、上記第2又は第3特徴構成に加えて、
前記複数種の停止前用の運転形態が、
前記運転条件を定める運転周期の全時間帯において前記熱電併給装置を運転する停止前用の連続運転形態、及び、前記運転条件を定める運転周期のうちに、その運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間の予測熱負荷に基づいて求められる運転メリットが高くなる運転時間帯を定めて前記熱電併給装置を運転する停止前用の断続運転形態である点を特徴とする。
In addition to the second or third feature configuration, the fourth feature configuration is
The plurality of types of operation modes before stopping are as follows:
Of the continuous operation mode for stopping the cogeneration apparatus that operates the combined heat and power device in the entire time period of the operation cycle that defines the operation condition, and the operation cycle that defines the operation condition, the predicted power load and the predicted heat of the operation cycle The present invention is characterized in that it is an intermittent operation mode before stopping in which the operation time zone in which the operation merit obtained based on the load and the predicted thermal load in the stop period is high is determined.

即ち、運転制御手段は、運転条件を定める運転周期に続く運転周期が停止用期間である場合における運転条件として、熱電併給装置を停止前用の連続運転形態にて運転する条件に定めたときは、停止用期間の直前の運転周期では、その全時間帯において熱電併給装置を運転する。
つまり、この停止前用の連続運転形態は、停止用期間の直前の運転周期の予測熱負荷がその運転周期のより広い範囲にわたって分布し且つ停止用期間の直前の運転周期及び停止用期間の予測熱負荷が大きい場合に適応して、運転メリットを高くすることが可能な運転形態である。
That is, when the operation control means determines the condition for operating the combined heat and power device in the continuous operation mode before stop as the operation condition when the operation cycle following the operation cycle for determining the operation condition is a stop period, In the operation cycle immediately before the stop period, the cogeneration apparatus is operated in the entire time zone.
That is, in this continuous operation mode for stoppage, the predicted thermal load of the operation cycle immediately before the stop period is distributed over a wider range of the operation cycle, and the operation cycle and stop period immediately before the stop period are predicted. This is an operation mode that can increase the operation merit by adapting to the case where the heat load is large.

運転制御手段は、運転条件を定める運転周期内に運転時間帯として部分的に設定する時間帯を異ならせながら、その運転時間帯において熱電併給装置を運転すると仮定したときの運転メリットを、運転条件を定める運転周期の予測電力負荷及び予測熱負荷並びに停止用期間の予測熱負荷に基づいて求めて、運転メリットが高くなる(例えば、最も高くなる又は2番目に高くなる)時間帯を停止前用の断続運転形態の運転時間帯として抽出する。
そして、運転条件を定める運転周期に続く運転周期が停止用期間である場合における運転条件として、熱電併給装置を停止前用の断続運転形態にて運転する条件に定めたときは、停止用期間の直前の運転周期では、前述のように抽出した運転時間帯において熱電併給装置を運転し、残りの時間帯において熱電併給装置を停止させる。
つまり、この停止前用の断続運転形態は、停止用期間の直前の運転周期における大きい予測電力負荷及び予測熱負荷がその運転周期の一部の時間帯に偏って分布し且つ停止用期間の直前の運転周期の予測熱負荷及び停止用期間の予測熱負荷が小さい場合に適応して、運転メリットを高くすることが可能な運転形態である。
The operation control means uses the operating merits when it is assumed that the combined heat and power unit is operated in the operating time zone while changing the time zone partially set as the operating time zone within the operating cycle for determining the operating conditions. Is determined based on the predicted power load and predicted heat load of the operation cycle and the predicted heat load of the stop period, and the time zone in which the operation merit is high (for example, the highest or second highest) is used for before stop It is extracted as the operation time zone of the intermittent operation mode.
And, when the operation condition following the operation period that defines the operation condition is the period for stoppage, when the condition for operating the combined heat and power device in the intermittent operation mode before stoppage is determined, In the immediately preceding operation cycle, the combined heat and power device is operated in the operation time zone extracted as described above, and the combined heat and power device is stopped in the remaining time zone.
In other words, the intermittent operation mode before stop is such that a large predicted power load and predicted heat load in the operation cycle immediately before the stop period are distributed in a part of the time period of the operation cycle and immediately before the stop period. This is an operation mode capable of increasing the operation merit by adapting to the case where the predicted heat load of the operation cycle and the predicted heat load of the stop period are small.

そして、それら停止前用の連続運転形態及び停止前用の断続運転形態のうちで、運転条件を定める運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間の予測熱負荷に基づいて求められる運転メリットが高くなる運転形態を求めて、その求めた運転形態にて熱電併給装置を運転するので、停止用期間の直前の運転周期の予測電力負荷及び予測熱負荷の分布状態並びに停止用期間の直前の運転周期及び停止用期間の予測熱負荷の大きさに適応して、運転メリットをより一層向上することが可能な運転形態にて熱電併給装置を運転することが可能となる。
従って、停止用期間の直前の運転周期の予測電力負荷及び予測熱負荷の分布状態並びに停止用期間の直前の運転周期及び停止用期間の予測熱負荷の大きさに拘わらず、運転メリットをより一層向上するように熱電併給装置を運転することができるようになった。
And, among the continuous operation mode before stop and the intermittent operation mode before stop, it is obtained based on the predicted power load and predicted heat load of the operation cycle that determines the operation conditions and the predicted heat load of the stop period. Since an operation mode with higher operation merit is obtained and the combined heat and power unit is operated in the obtained operation mode, the predicted power load and predicted heat load distribution state of the operation cycle immediately before the stop period and the stop period It becomes possible to operate the combined heat and power supply device in an operation mode that can further improve the operation merit in accordance with the size of the predicted heat load of the immediately preceding operation cycle and stop period.
Therefore, the operating merit is further improved regardless of the distribution state of the predicted power load and predicted heat load in the operation cycle immediately before the stop period and the predicted heat load in the operation cycle and stop period immediately before the stop period. It is now possible to operate the combined heat and power unit to improve it.

第5特徴構成は、上記第2又は第3特徴構成に加えて、
前記複数種の停止前用の運転形態が、
前記運転条件を定める運転周期の全時間帯において前記熱電併給装置の発電出力を予測電力負荷に追従させる停止前用の負荷追従連続運転形態、
前記運転条件を定める運転周期における一部の時間帯において前記熱電併給装置の発電出力を予測電力負荷よりも小さい設定抑制出力に調節しかつ残りの時間帯において前記熱電併給装置の発電出力を予測電力負荷に追従させ、且つ、前記熱電併給装置の発電出力を前記設定抑制出力に調節する時間帯を、前記運転条件を定める運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間の予測熱負荷に基づいて求められる運転メリットが高くなる時間帯に定める停止前用の抑制連続運転形態、
前記運転条件を定める運転周期における一部の時間帯において前記熱電併給装置の発電出力を予測電力負荷よりも大きい設定増大出力に調節しかつ残りの時間帯において前記熱電併給装置の発電出力を予測電力負荷に追従させ、且つ、前記熱電併給装置の発電出力を前記設定増大出力に調節する時間帯を、前記運転条件を定める運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間の予測熱負荷に基づいて求められる運転メリットが高くなる時間帯に定める停止前用の強制連続運転形態、
前記運転条件を定める運転周期のうちの一部の運転時間帯において前記熱電併給装置の発電出力を予測電力負荷に追従させかつ残りの時間帯において前記熱電併給装置を停止させ、且つ、前記運転時間帯を、前記運転条件を定める運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間の予測熱負荷に基づいて求められる運転メリットが高くなる時間帯に定める停止前用の負荷追従断続運転形態、
前記運転条件を定める運転周期のうちの一部の運転時間帯において前記熱電併給装置の発電出力を予測電力負荷よりも小さい設定抑制出力に調節しかつ残りの時間帯において前記熱電併給装置を停止させ、且つ、前記運転時間帯を、前記運転条件を定める運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間の予測熱負荷に基づいて求められる運転メリットが高くなる時間帯に定める停止前用の抑制断続運転形態、及び、
前記運転条件を定める運転周期のうちの一部の運転時間帯において前記熱電併給装置の発電出力を予測電力負荷よりも大きい設定増大出力に調節しかつ残りの時間帯において前記熱電併給装置を停止させ、且つ、前記運転時間帯を、前記運転条件を定める運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間の予測熱負荷に基づいて求められる運転メリットが高くなる時間帯に定める停止前用の強制断続運転形態のうちの少なくとも2つの運転形態である点を特徴とする。
In addition to the second or third feature configuration, the fifth feature configuration includes:
The plurality of types of operation modes before stopping are as follows:
Load follow-up continuous operation mode for stop before causing the power generation output of the cogeneration device to follow the predicted power load in all time periods of the operation cycle that determines the operation conditions,
The power generation output of the combined heat and power unit is adjusted to a setting suppression output smaller than the predicted power load in a part of the time period in the operation cycle that defines the operation condition, and the power generation output of the combined heat and power unit is predicted power in the remaining time period. The time period for following the load and adjusting the power generation output of the cogeneration device to the set suppression output is the predicted power load and predicted heat load of the operation cycle that defines the operating conditions, and the predicted heat load of the stop period. Suppressed continuous operation mode for pre-stop set in the time zone when the driving merit required based on
The power generation output of the combined heat and power unit is adjusted to a setting increase output larger than the predicted power load in a part of the time period in the operation cycle that defines the operation condition, and the power generation output of the combined heat and power unit is predicted power in the remaining time period. The time period during which the power generation output of the combined heat and power supply device is adjusted to the set increase output is adjusted to follow the load, and the predicted power load and predicted heat load of the operation cycle that defines the operating conditions, and the predicted heat load of the stop period Forced continuous operation mode for pre-stop set in the time zone when the driving merit required based on
The power generation output of the combined heat and power device is made to follow the predicted power load in a part of the operation period of the operation cycle that defines the operation condition, and the combined heat and power unit is stopped in the remaining time period, and the operation time Load follow-up intermittent operation mode for pre-stop where the belt is defined as a time zone during which the operation merit required based on the predicted power load and predicted heat load of the operation cycle that determines the operation conditions and the predicted heat load of the stop period is high ,
The power generation output of the combined heat and power unit is adjusted to a setting suppression output smaller than the predicted power load in a part of the operation period of the operation cycle that defines the operation condition, and the combined heat and power unit is stopped in the remaining time period. In addition, the operation time zone is defined as a time zone during which the operation merit required based on the predicted power load and the predicted heat load of the operation cycle that defines the operation condition and the predicted heat load of the stop period is high. Suppressed intermittent operation mode, and
Adjusting the power generation output of the combined heat and power device to a set increased output larger than the predicted power load in a part of the operation period of the operation cycle that defines the operation condition, and stopping the combined heat and power unit in the remaining time period In addition, the operation time zone is defined as a time zone during which the operation merit required based on the predicted power load and the predicted heat load of the operation cycle that defines the operation condition and the predicted heat load of the stop period is high. This is characterized in that it is at least two of the forced intermittent operation modes.

即ち、運転制御手段は、運転条件を定める運転周期に続く運転周期が停止用期間である場合における運転条件として、熱電併給装置を停止前用の負荷追従連続運転形態にて運転する条件に定めたときは、停止用期間の直前の運転周期では、その全時間帯において熱電併給装置の発電出力を電力負荷に追従させる。
つまり、この停止前用の負荷追従連続運転形態は、停止用期間の直前の運転周期の予測熱負荷がその運転周期のより広い範囲にわたって分布し且つ停止用期間の直前の運転周期の予測熱負荷及び停止用期間の予測熱負荷が大きい場合に適応して、運転メリットを高くすることが可能な運転形態である。
In other words, the operation control means determines the condition for operating the combined heat and power device in the load following continuous operation mode before the stop as the operation condition when the operation cycle following the operation cycle for determining the operation condition is the stop period. Sometimes, in the operation cycle immediately before the stop period, the power generation output of the combined heat and power supply device is made to follow the power load in the entire time period.
In other words, the load follow-up continuous operation mode for the stop is that the predicted heat load of the operation cycle immediately before the stop period is distributed over a wider range of the operation cycle and the predicted heat load of the operation cycle immediately before the stop period. And it is an operation mode that can increase the operation merit by adapting to the case where the predicted heat load during the stop period is large.

運転制御手段は、運転条件を定める運転周期内において熱電併給装置の発電出力を設定抑制出力に調節するものとして部分的に設定する時間帯を異ならせながら、その運転周期における一部の時間帯において熱電併給装置の発電出力を設定抑制出力に調節しかつ残りの時間帯において熱電併給装置の発電出力を予測電力負荷に追従させると仮定したときの運転メリットを、その運転周期の予測電力負荷及び予測熱負荷並びに停止用期間の予測熱負荷に基づいて求めて、運転メリットが高くなる(例えば、最も高くなる又は2番目に高くなる)時間帯を、停止前用の抑制連続運転形態における熱電併給装置の発電出力を設定抑制出力に調節する時間帯として抽出する。
そして、運転条件を定める運転周期に続く運転周期が停止用期間である場合における運転条件として、熱電併給装置を停止前用の抑制連続運転形態にて運転する条件に定めたときは、停止用期間の直前の運転周期では、前述のように抽出した時間帯において熱電併給装置の発電出力を設定抑制出力に調節し、残りの時間帯において熱電併給装置の発電出力を電力負荷に追従させる。
つまり、この停止前用の抑制連続運転形態は、停止用期間の直前の運転周期の予測熱負荷がその運転周期のより広い範囲にわたって分布し且つ停止用期間の直前の運転周期の予測熱負荷及び停止用期間の予測熱負荷が大きい場合に適応し、しかも、前記停止前用の負荷追従連続運転形態に比べると、停止用期間の直前の運転周期の運転周期の予測熱負荷及び停止用期間の予測熱負荷が小さい場合に適応する運転形態である。
The operation control means is configured to adjust the power generation output of the combined heat and power device to the setting suppression output within the operation cycle that determines the operation condition, while partially changing the time zone to be set, in a part of the time cycle in the operation cycle. Adjusting the power generation output of the combined heat and power unit to the set suppression output and assuming that the power generation output of the combined heat and power unit follows the predicted power load in the remaining time zone, the operation merit of the predicted power load and prediction of the operation cycle The heat and power cogeneration apparatus in the suppressed continuous operation mode before stoppage during a time period when the operation merit is high (for example, the highest or second highest) is obtained based on the heat load and the predicted heat load during the stop period. The power generation output is extracted as a time zone for adjusting the set output to the set suppression output.
And, when the operation condition when the operation cycle following the operation cycle for determining the operation condition is the stop period is set to the condition for operating the combined heat and power device in the suppression continuous operation mode before stop, the stop period In the operation cycle immediately before, the power generation output of the cogeneration device is adjusted to the set suppression output in the time period extracted as described above, and the power generation output of the cogeneration apparatus is made to follow the power load in the remaining time period.
In other words, this suppression continuous operation mode for stop is such that the predicted heat load of the operation cycle immediately before the stop period is distributed over a wider range of the operation cycle and the predicted heat load of the operation cycle immediately before the stop period and Applicable when the predicted thermal load of the stop period is large, and compared with the load following continuous operation mode before stop, the predicted thermal load and the stop period of the operation cycle of the operation period immediately before the stop period This operation mode is adapted when the predicted heat load is small.

運転制御手段は、運転条件を定める運転周期内において熱電併給装置の発電出力を設定増大出力に調節するものとして部分的に設定する時間帯を異ならせながら、その運転周期における一部の時間帯において熱電併給装置の発電出力を設定増大出力に調節しかつ残りの時間帯において熱電併給装置の発電出力を予測電力負荷に追従させると仮定したときの運転メリットを、その運転周期の予測電力負荷及び予測熱負荷並びに停止用期間の予測熱負荷に基づいて求めて、運転メリットが高くなる(例えば、最も高くなる又は2番目に高くなる)時間帯を、停止前用の強制連続運転形態における熱電併給装置の発電出力を設定増大出力に調節する時間帯として抽出する。
そして、運転条件を定める運転周期に続く運転周期が停止用期間である場合における運転条件として、熱電併給装置を停止前用の強制連続運転形態にて運転する条件に定めたときは、停止用期間の直前の運転周期では、前述のように抽出した時間帯において熱電併給装置の発電出力を設定増大出力に調節し、残りの時間帯において熱電併給装置の発電出力を電力負荷に追従させる。
つまり、この停止前用の強制連続運転形態は、停止用期間の直前の運転周期の予測熱負荷がその運転周期のより広い範囲にわたって分布し且つ停止用期間の直前の運転周期の予測熱負荷及び停止用期間の予測熱負荷が大きい場合に適応し、しかも、前記停止前用の負荷追従連続運転形態に比べると、停止用期間の直前の運転周期の予測熱負荷及び停止用期間の予測熱負荷が更に大きい場合に適応する運転形態である。
The operation control means changes the time zone that is partially set to adjust the power generation output of the combined heat and power supply device to the set increase output within the operation cycle that determines the operation conditions, and in a part of the time cycle of the operation cycle. Adjusting the power generation output of the combined heat and power unit to the set increase output and assuming that the power generation output of the combined heat and power unit follows the predicted power load in the remaining time zone, the operation merit of the predicted power load and prediction of the operation cycle The heat and power co-generation device in the forced continuous operation mode before stoppage during the time when the operation merit is high (for example, the highest or second highest) is obtained based on the heat load and the predicted heat load during the stop period. The power generation output is extracted as a time zone during which the power generation output is adjusted to the set increase output.
And, when the operation condition when the operation cycle following the operation cycle for determining the operation condition is the stop period is set to the condition for operating the combined heat and power device in the forced continuous operation mode before the stop, the stop period In the operation cycle immediately before, the power generation output of the cogeneration device is adjusted to the set increase output in the time zone extracted as described above, and the power generation output of the cogeneration device is made to follow the power load in the remaining time zone.
In other words, the forced continuous operation mode for before stop is such that the predicted heat load of the operation cycle immediately before the stop period is distributed over a wider range of the operation cycle and the predicted heat load of the operation cycle immediately before the stop period and Applicable when the predicted thermal load in the stop period is large, and compared with the load following continuous operation mode before stop, the predicted thermal load in the operation cycle immediately before the stop period and the predicted thermal load in the stop period This is an operation mode that is adapted to the case where is larger.

運転制御手段は、運転条件を定める運転周期内に運転時間帯として部分的に設定する時間帯を異ならせながら、その運転時間帯において熱電併給装置の発電出力を予測電力負荷に追従させると仮定したときの運転メリットを、運転条件を定める運転周期の予測電力負荷及び予測熱負荷並びに停止用期間の予測熱負荷に基づいて求めて、運転メリットが高くなる(例えば、最も高くなる又は2番目に高くなる)時間帯を停止前用の負荷追従断続運転形態における運転時間帯として抽出する。
そして、運転条件を定める運転周期に続く運転周期が停止用期間である場合における運転条件として、熱電併給装置を停止前用の負荷追従断続運転形態にて運転する条件に定めたときは、停止用期間の直前の運転周期では、前述のように抽出した運転時間帯において熱電併給装置の発電出力を電力負荷に追従させ、残りの時間帯において熱電併給装置を停止させる。
つまり、この停止前用の負荷追従断続運転形態は、停止用期間の直前の運転周期における大きい予測電力負荷及び予測熱負荷がその運転周期の一部の時間帯に偏って分布し且つ停止用期間の直前の運転周期の予測熱負荷及び停止用期間の予測熱負荷が小さい場合に適応して、運転メリットを高くすることが可能な運転形態である。
It is assumed that the operation control means causes the power generation output of the combined heat and power device to follow the predicted power load in the operation time zone while varying the time zone that is partially set as the operation time zone within the operation cycle that defines the operation conditions. When the operation merit is obtained based on the predicted power load and the predicted heat load of the operation cycle that defines the operation condition and the predicted heat load of the stop period, the operation merit is increased (for example, the highest or the second highest) The time zone is extracted as the operation time zone in the load following intermittent operation mode for before stopping.
And when the operation cycle following the operation cycle that defines the operation condition is a period for stopping, when the condition for operating the combined heat and power device in the load following intermittent operation mode before stopping is set as the operating condition, In the operation cycle immediately before the period, the power generation output of the combined heat and power supply device follows the power load in the operation time period extracted as described above, and the combined heat and power supply apparatus is stopped in the remaining time period.
In other words, the load follow intermittent operation mode for before stop is such that the large predicted power load and the predicted heat load in the operation cycle immediately before the stop period are unevenly distributed in a part of the time period of the operation cycle and the stop period This is an operation mode capable of increasing the operation merit by adapting to the case where the predicted heat load of the operation cycle immediately before and the predicted heat load of the stop period are small.

運転制御手段は、運転条件を定める運転周期内に運転時間帯として部分的に設定する時間帯を異ならせながら、その運転時間帯において熱電併給装置の発電出力を設定抑制出力に調節すると仮定したときの運転メリットを、運転条件を定める運転周期の予測電力負荷及び予測熱負荷並びに停止用期間の予測熱負荷に基づいて求めて、運転メリットが高くなる(例えば、最も高くなる又は2番目に高くなる)時間帯を停止前用の抑制断続運転形態における運転時間帯として抽出する。
そして、運転条件を定める運転周期に続く運転周期が停止用期間である場合における運転条件として、熱電併給装置を停止前用の抑制断続運転形態にて運転する条件に定めたときは、停止用期間の直前の運転周期では、前述のように抽出した運転時間帯において熱電併給装置の発電出力を設定抑制出力に調節し、残りの時間帯において熱電併給装置を停止させる。
つまり、この停止前用の抑制断続運転形態は、停止用期間の直前の運転周期における大きい予測電力負荷及び予測熱負荷がその運転周期の一部の時間帯に偏って分布し且つ停止用期間の直前の運転周期の予測熱負荷及び停止用期間の予測熱負荷が小さい場合に適応し、しかも、前記停止前用の負荷追従断続運転形態に比べると、停止用期間の直前の運転周期の予測熱負荷及び停止用期間の予測熱負荷が更に小さい場合に適応する運転形態である。
When it is assumed that the operation control means adjusts the power generation output of the combined heat and power system to the set suppression output in the operation time zone while varying the time zone partially set as the operation time zone within the operation cycle that defines the operation conditions The operation merit is calculated based on the predicted power load and predicted heat load of the operation cycle that defines the operation conditions and the predicted heat load of the stop period, and the operation merit is increased (for example, the highest or the second highest) ) The time zone is extracted as the operation time zone in the controlled intermittent operation mode before stopping.
When the operation cycle following the operation cycle that defines the operation condition is the stop period, the operation period is set to the condition for operating the combined heat and power device in the controlled intermittent operation mode before stop. In the operation cycle immediately before, the power generation output of the cogeneration device is adjusted to the set suppression output in the operation time zone extracted as described above, and the cogeneration device is stopped in the remaining time zone.
In other words, in this suppression intermittent operation mode for stop, the large predicted power load and the predicted heat load in the operation cycle immediately before the stop period are distributed in a part of the time period of the operation cycle and the stop period Applicable when the predicted heat load of the immediately preceding operation cycle and the predicted heat load of the stop period are small, and compared to the load following intermittent operation mode before stop, the predicted heat of the operation period immediately before the stop period This is an operation mode adapted to the case where the predicted heat load during the load and stop periods is smaller.

運転制御手段は、運転条件を定める運転周期内に運転時間帯として部分的に設定する時間帯を異ならせながら、その運転時間帯において熱電併給装置の発電出力を設定増大出力に調節すると仮定したときの運転メリットを、運転条件を定める運転周期の予測電力負荷及び予測熱負荷並びに停止用期間の予測熱負荷に基づいて求めて、運転メリットが高くなる(例えば、最も高くなる又は2番目に高くなる)時間帯を停止前用の強制断続運転形態における運転時間帯として抽出する。
そして、運転条件を定める運転周期に続く運転周期が停止用期間である場合における運転条件として、熱電併給装置を停止前用の強制断続運転形態にて運転する条件に定めたときは、停止用期間の直前の運転周期では、前述のように抽出した運転時間帯において熱電併給装置の発電出力を設定増大出力に調節し、残りの時間帯において熱電併給装置を停止させる。
つまり、この停止前用の強制断続運転形態は、停止用期間の直前の運転周期における大きい予測電力負荷及び予測熱負荷がその運転周期の一部の時間帯に偏って分布し且つ停止用期間の直前の運転周期の予測熱負荷及び停止用期間の予測熱負荷が小さい場合に適応し、しかも、前記停止前用の負荷追従断続運転形態に比べると、停止用期間の直前の運転周期の予測熱負荷及び停止用期間の予測熱負荷が大きい場合に適応する運転形態である。
When it is assumed that the operation control means adjusts the power generation output of the combined heat and power system to the set increase output in the operation time zone while changing the time zone partially set as the operation time zone within the operation cycle that defines the operation conditions The operation merit is calculated based on the predicted power load and the predicted heat load of the operation cycle that defines the operation conditions, and the predicted heat load of the stop period, and the operation merit is increased (for example, the highest or the second highest) ) The time zone is extracted as the operation time zone in the forced intermittent operation mode for the stop.
When the operation cycle following the operation cycle for determining the operation condition is the stop period, the operation period is set to the condition for operating the combined heat and power device in the forced intermittent operation mode before stop. In the operation cycle immediately before, the power generation output of the combined heat and power device is adjusted to the set increase output in the operation time zone extracted as described above, and the combined heat and power device is stopped in the remaining time zone.
In other words, this forced intermittent operation mode before stop is such that the large predicted power load and predicted heat load in the operation cycle immediately before the stop period are unevenly distributed in a part of the time period of the operation cycle and the stop period Applicable when the predicted heat load of the immediately preceding operation cycle and the predicted heat load of the stop period are small, and compared to the load following intermittent operation mode before stop, the predicted heat of the operation cycle immediately before the stop period This is an operation mode that is adapted when the predicted heat load during the load and stop periods is large.

そして、それら停止前用の負荷追従連続運転形態、停止前用の抑制連続運転形態、停止前用の強制連続運転形態、停止前用の負荷追従断続運転形態、停止前用の抑制断続運転形態及び停止前用の強制断続運転形態のうちで、運転条件を定める運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間の予測熱負荷に基づいて求められる運転メリットが高くなる運転形態を求めて、その求めた運転形態にて熱電併給装置を運転するので、停止用期間の直前の運転周期の予測電力負荷や予測熱負荷の分布状態並びに停止用期間の直前の運転周期及び停止用期間の予測熱負荷の大きさに適応して、運転メリットをより一層向上することが可能な運転形態にて熱電併給装置を運転することが可能となる。
従って、停止用期間の直前の運転周期の予測電力負荷や予測熱負荷の分布状態並びに停止用期間の直前の運転周期及び停止用期間の予測熱負荷の大きさに拘わらず、運転メリットをより一層向上するように熱電併給装置を運転することができるようになった。
And before the stop load follow continuous operation mode, before the stop suppression continuous operation mode, before the forced forced continuous operation mode, before the stop load follow intermittent operation mode, before the stop suppression intermittent operation mode and Among the forced intermittent operation modes for the stop, seeking an operation mode in which the operation merit obtained based on the predicted power load and the predicted heat load of the operation cycle that defines the operation condition and the predicted heat load of the stop period is increased. Because the combined heat and power unit is operated in the determined operation mode, the predicted power load and predicted heat load distribution state immediately before the stop period and the predicted operation cycle and stop period immediately before the stop period It becomes possible to operate the combined heat and power supply apparatus in an operation mode that can further improve the operation merit according to the size of the heat load.
Therefore, regardless of the predicted power load or predicted heat load distribution state in the operation cycle immediately before the stop period, and the predicted heat load in the operation cycle and stop period immediately before the stop period, the operation merit is further improved. It is now possible to operate the combined heat and power unit to improve it.

第6特徴構成は、上記第1特徴構成に加えて、
前記運転条件を定める運転周期に続く運転周期が前記停止用期間である場合における前記運転条件が、
前記運転条件を定める運転周期における一部の時間帯において前記熱電併給装置の発電出力を予測電力負荷よりも小さい設定抑制出力に調節しかつ残りの時間帯において前記熱電併給装置の発電出力を予測電力負荷に追従させ、且つ、前記熱電併給装置の発電出力を前記設定抑制出力に調節する時間帯を、前記運転条件を定める運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間の予測熱負荷に基づいて求められる運転メリットが高くなる時間帯に定める停止前用の抑制連続運転形態にて運転する条件、
前記運転条件を定める運転周期における一部の時間帯において前記熱電併給装置の発電出力を予測電力負荷よりも大きい設定増大出力に調節しかつ残りの時間帯において前記熱電併給装置の発電出力を予測電力負荷に追従させ、且つ、前記熱電併給装置の発電出力を前記設定増大出力に調節する時間帯を、前記運転条件を定める運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間の予測熱負荷に基づいて求められる運転メリットが高くなる時間帯に定める停止前用の強制連続運転形態にて運転する条件、
前記運転条件を定める運転周期のうちの一部の運転時間帯において前記熱電併給装置の発電出力を予測電力負荷に追従させかつ残りの時間帯において前記熱電併給装置を停止させ、且つ、前記運転時間帯を、前記運転条件を定める運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間の予測熱負荷に基づいて求められる運転メリットが高くなる時間帯に定める停止前用の負荷追従断続運転形態にて運転する条件、
前記運転条件を定める運転周期のうちの一部の運転時間帯において前記熱電併給装置の発電出力を予測電力負荷よりも小さい設定抑制出力に調節しかつ残りの時間帯において前記熱電併給装置を停止させ、且つ、前記運転時間帯を、前記運転条件を定める運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間の予測熱負荷に基づいて求められる運転メリットが高くなる時間帯に定める停止前用の抑制断続運転形態にて運転する条件、及び、
前記運転条件を定める運転周期のうちの一部の運転時間帯において前記熱電併給装置の発電出力を予測電力負荷よりも大きい設定増大出力に調節しかつ残りの時間帯において前記熱電併給装置を停止させ、且つ、前記運転時間帯を、前記運転条件を定める運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間の予測熱負荷に基づいて求められる運転メリットが高くなる時間帯に定める停止前用の強制断続運転形態にて運転する条件のうちの予め定められた1つである点を特徴とする。
In addition to the first feature configuration, the sixth feature configuration is
The operation condition in the case where the operation cycle following the operation cycle that defines the operation condition is the period for stopping,
The power generation output of the combined heat and power unit is adjusted to a setting suppression output smaller than the predicted power load in a part of the time period in the operation cycle that defines the operation condition, and the power generation output of the combined heat and power unit is predicted power in the remaining time period. The time period for following the load and adjusting the power generation output of the cogeneration device to the set suppression output is the predicted power load and predicted heat load of the operation cycle that defines the operating conditions, and the predicted heat load of the stop period. The conditions for driving in the restrained continuous driving mode for pre-stop set in the time zone when the driving merit required based on
The power generation output of the combined heat and power unit is adjusted to a setting increase output larger than the predicted power load in a part of the time period in the operation cycle that defines the operation condition, and the power generation output of the combined heat and power unit is predicted power in the remaining time period. The time period during which the power generation output of the combined heat and power supply device is adjusted to the set increase output is adjusted to follow the load, and the predicted power load and predicted heat load of the operation cycle that defines the operating conditions, and the predicted heat load of the stop period Conditions for driving in the forced continuous operation mode for pre-stop set in the time zone when the driving merit required based on
The power generation output of the combined heat and power device is made to follow the predicted power load in a part of the operation period of the operation cycle that defines the operation condition, and the combined heat and power unit is stopped in the remaining time period, and the operation time Load follow-up intermittent operation mode for pre-stop where the belt is defined as a time zone during which the operation merit required based on the predicted power load and predicted heat load of the operation cycle that determines the operation conditions and the predicted heat load of the stop period is high Conditions for driving at
The power generation output of the combined heat and power unit is adjusted to a setting suppression output smaller than the predicted power load in a part of the operation period of the operation cycle that defines the operation condition, and the combined heat and power unit is stopped in the remaining time period. In addition, the operation time zone is defined as a time zone during which the operation merit required based on the predicted power load and the predicted heat load of the operation cycle that defines the operation condition and the predicted heat load of the stop period is high. Conditions for driving in the controlled intermittent operation mode, and
Adjusting the power generation output of the combined heat and power device to a set increased output larger than the predicted power load in a part of the operation period of the operation cycle that defines the operation condition, and stopping the combined heat and power unit in the remaining time period In addition, the operation time zone is defined as a time zone during which the operation merit required based on the predicted power load and the predicted heat load of the operation cycle that defines the operation condition and the predicted heat load of the stop period is high. This is characterized in that it is one of the conditions for driving in the forced intermittent operation mode.

即ち、停止前用の抑制連続運転形態、停止前用の強制連続運転形態、停止前用の負荷追従断続運転形態、停止前用の抑制断続運転形態及び停止前用の強制断続運転形態の夫々は、上記の第5特徴構成について説明したのと同様に、停止用期間の直前の運転周期の予測電力負荷や予測熱負荷の分布状態並びに停止用期間の直前の運転周期及び停止用期間の予測熱負荷の大きさに応じて、運転メリットを高くすることが可能な運転形態である。
そして、停止前用の熱電併給装置の運転形態を、コージェネレーションシステムの設置箇所における予測電力負荷及び予測熱負荷の状態に応じて、予め、停止前用の抑制連続運転形態、停止前用の強制連続運転形態、停止前用の負荷追従断続運転形態、停止前用の抑制断続運転形態及び停止前用の強制断続運転形態のうちで、運転メリットを高くすることが可能な1つに定めておくことにより、運転条件を定める運転周期に続く運転周期が停止用期間である場合における運転条件を定めるための構成を簡略化することができて、コージェネレーションシステムの低廉化を図ることができる。
従って、コージェネレーションシステムの低廉化を図りながら、運転メリットを向上するように熱電併給装置を運転することができるようになった。
That is, each of the suppression continuous operation form before stop, the forced continuous operation form before stop, the load following intermittent operation form before stop, the suppressed intermittent operation form before stop, and the forced intermittent operation form before stop In the same manner as described for the fifth characteristic configuration above, the predicted power load and predicted heat load in the operation cycle immediately before the stop period and the predicted heat in the operation cycle and stop period immediately before the stop period This is a driving mode in which driving merit can be increased according to the size of the load.
And according to the state of the predicted power load and the predicted heat load at the location where the cogeneration system is installed, the operation mode of the combined heat and power supply device for before stop is pre-suppressed continuous operation mode for stop, forced for stop The continuous operation mode, the load following intermittent operation mode before stop, the restrained intermittent operation mode before stop, and the forced intermittent operation mode before stop are set to one that can increase the operation merit. Thus, it is possible to simplify the configuration for determining the operation condition when the operation cycle subsequent to the operation cycle for determining the operation condition is a stop period, and to reduce the cost of the cogeneration system.
Accordingly, the cogeneration system can be operated so as to improve the operation merit while reducing the cost of the cogeneration system.

第7特徴構成は、電力と熱とを併せて発生する熱電併給装置と、その熱電併給装置にて発生する熱にて貯湯槽に貯湯する貯湯手段と、前記熱電併給装置を運転する運転制御手段とが設けられたものであって、
前記運転制御手段が、
時系列的な予測電力負荷及び時系列的な予測熱負荷を時系列で並ぶ運転周期毎に区分けして管理し、且つ、前記熱電併給装置を停止することを予定する停止用期間が時系列で並ぶ運転周期のうちのいずれであるかについて管理して、
前記停止用期間を管理している運転周期とする場合及び前記停止用期間を管理している運転周期よりも前又は後の運転周期とする場合のうちで、前記停止用期間とする運転周期の予測熱負荷並びにその運転周期よりも前の運転周期における予測電力負荷及び予測熱負荷に基づいて求める運転メリットが高くなる場合を求め、その場合に対応させて前記停止用期間とする運転周期を定めるように構成されている点を特徴とする。
The seventh characteristic configuration is a combined heat and power device that generates both electric power and heat, hot water storage means for storing hot water in a hot water storage tank using heat generated by the combined heat and power supply device, and operation control means for operating the combined heat and power supply device. Are provided, and
The operation control means is
The time-series predicted power load and the time-series predicted heat load are managed separately for each operation cycle arranged in time series, and the stop period in which the cogeneration device is scheduled to be stopped is time-series. Manage which of the operating cycles are in line,
Of the operation cycle to be the stop period, in the case of the operation cycle managing the stop period and the operation cycle before or after the operation cycle managing the stop period A case where the operation merit obtained based on the predicted heat load and the predicted power load and the predicted heat load in the operation cycle prior to the operation cycle is increased is determined, and the operation cycle used as the stop period is determined in accordance with the case. It is characterized by being configured as described above.

即ち、運転制御手段は、時系列的な予測電力負荷及び時系列的な予測熱負荷を時系列で並ぶ運転周期毎に区分けして管理し、熱電併給装置を停止することを予定する停止用期間が時系列で並ぶ運転周期のうちのいずれであるかについて管理する。
そして、運転制御手段は、停止用期間を管理している運転周期とする場合及び停止用期間を管理している運転周期よりも前又は後の運転周期とする場合のうちで、停止用期間とする運転周期の予測熱負荷並びにその運転周期よりも前の運転周期における予測電力負荷及び予測熱負荷に基づいて求める運転メリットが高くなる(例えば、最も高くなる又は2番目に高くなる)場合を求め、その場合に対応させて停止用期間とする運転周期を定める。
In other words, the operation control means manages the time-series predicted power load and the time-series predicted heat load separately for each operation cycle arranged in time series, and a period for stop that schedules to stop the cogeneration device Is one of the operation cycles arranged in time series.
The operation control means includes a period for stopping and a period for stopping in the case of setting the operating period for managing the period for stopping and the period for operating before or after the operating period for managing the period for stopping. The operation merit obtained based on the predicted heat load of the operation cycle to be performed and the predicted power load and the predicted heat load in the operation cycle prior to the operation cycle is increased (for example, highest or second highest). Then, an operation cycle to be used as the stop period is determined corresponding to the case.

つまり、停止用期間を管理している運転周期とする場合及び停止用期間を管理している運転周期よりも前又は後の運転周期とする場合の夫々について、停止用期間とする運転周期の前の運転周期において熱電併給装置を運転すると仮定して、停止用期間とする運転周期の予測熱負荷並びにその運転周期よりも前の運転周期における予測電力負荷及び予測熱負荷に基づいて運転メリットを求める。
そして、停止用期間を管理している運転周期とする場合及び停止用期間を管理している運転周期よりも前又は後の運転周期とする場合のうちで、運転メリットが高い場合を求めて、その場合に対応させて停止用期間とする運転周期を定めることから、停止用期間とする運転周期を時系列に並ぶ運転周期のうちで運転メリットが高くなる運転周期に定めることが可能となる。
例えば、停止用期間とする運転周期の予測熱負荷をその停止用期間とする運転周期の前の運転周期での熱電併給装置の運転により貯湯槽に貯湯される貯湯熱量にて賄うとして、運転メリットが高くなるように、停止用期間とする運転周期を時系列に並ぶ運転周期のうちのいずれかに定めることが可能となる。
従って、メンテナンスのためや、ガス漏洩が生じていないにも拘らずマイコンメータによりガス漏洩が検知されるのを防止するために熱電併給装置を停止しながらも、運転メリットを向上するように熱電併給装置を運転し得るコージェネレーションシステムを提供することができるようになった。
That is, before the operation cycle that is the stop period, the operation cycle that manages the stop period and the operation cycle that is before or after the operation cycle that manages the stop period Assuming that the combined heat and power unit is operated in the operation cycle, the operation merit is obtained based on the predicted heat load of the operation cycle as the stop period and the predicted power load and predicted heat load in the operation cycle prior to the operation cycle. .
And in the case where the operation period managing the stop period and the operation period before or after the operation period managing the stop period, seeking a case where the driving merit is high, Since the operation cycle to be the stop period is determined in correspondence with the case, the operation cycle to be the stop period can be set to the operation cycle in which the operation merit is high among the operation cycles arranged in time series.
For example, the operating merit is that the predicted heat load of the operation cycle to be the stop period is covered by the amount of hot water stored in the hot water storage tank by the operation of the combined heat and power unit in the operation cycle before the operation period to be the stop period. It is possible to set the operation cycle as the stop period to any one of the operation cycles arranged in a time series so as to increase.
Therefore, in order to prevent the gas leak from being detected by the microcomputer meter for maintenance or no gas leak has occurred, the combined heat and power supply is improved so as to improve the operation merit while stopping the cogeneration device. It has become possible to provide a cogeneration system that can operate the device.

第8特徴構成は、上記第7特徴構成に加えて、
前記運転制御手段が、
前記停止用期間を管理している運転周期とする場合及び前記停止用期間を管理している運転周期よりも前又は後の運転周期とする場合の夫々を、前記熱電併給装置の異なる運転形態である複数種の停止前用の運転形態の夫々で運転する場合のうちで、前記停止用期間とする運転周期の予測熱負荷並びにその運転周期よりも前の運転周期における予測電力負荷及び予測熱負荷に基づいて求められる運転メリットが高くなる場合を求め、その求めた場合に対応させて前記停止用期間とする運転周期を定めるように構成されている点を特徴とする。
In addition to the seventh feature configuration, the eighth feature configuration is
The operation control means is
When the operation period managing the stop period and the operation period before or after the operation period managing the stop period are respectively different operation modes of the cogeneration device. Among the cases where the operation is performed in a plurality of types of operation modes before stoppage, the predicted heat load of the operation cycle as the stop period and the predicted power load and the predicted heat load in the operation cycle prior to the operation cycle It is characterized in that it is configured to obtain a case where the driving merit obtained on the basis of is increased, and to determine an operation cycle as the stop period corresponding to the obtained case.

即ち、運転制御手段は、停止用期間を管理している運転周期とする場合及び停止用期間を管理している運転周期よりも前又は後の運転周期とする場合の夫々を、複数種の停止前用の運転形態の夫々で運転する場合のうちで、停止用期間とする運転周期の予測熱負荷並びにその運転周期よりも前の運転周期における予測電力負荷及び予測熱負荷に基づいて求められる運転メリットが高くなる(例えば、最も高くなる又は2番目に高くなる)場合を求め、その求めた場合に対応させて停止用期間とする運転周期を定める。   In other words, the operation control means is configured to use a plurality of types of stoppages when the operation period for managing the stop period is set as the operation period before or after the operation period for managing the stop period. Among the cases of driving in each of the previous operation modes, the operation obtained based on the predicted heat load of the operation cycle as the stop period and the predicted power load and predicted heat load in the operation cycle prior to the operation cycle A case where the merit becomes high (for example, the highest or the second highest) is obtained, and an operation cycle for the stop period is determined in accordance with the obtained case.

つまり、複数種の停止前用の運転形態として、運転周期における時間経過に伴う予測電力負荷及び予測熱負荷の分布状態や運転周期の予測熱負荷の大きさに応じて、運転メリットを高くすることが可能な複数種の停止前用の運転形態を備える。
そして、停止用期間を管理している運転周期とする場合及び停止用期間を管理している運転周期よりも前又は後の運転周期とする場合の夫々を複数種の停止前用の運転形態の夫々で運転する場合について、停止用期間とする運転周期の予測熱負荷並びにその運転周期よりも前の運転周期における予測電力負荷及び予測熱負荷に基づいて運転メリットを求め、運転メリットが高くなる場合に対応させて、停止用期間とする運転周期を定める。
従って、時系列に並ぶ運転周期夫々の予測電力負荷及び予測熱負荷の分布状態や予測熱負荷の大きさに応じて、運転メリットがより一層高くなるように、停止用期間とする運転周期を時系列に並ぶ運転周期のいずれかに定めることが可能となる。
要するに、運転メリットをより一層向上するように熱電併給装置を運転することができるようになった。
In other words, as the operation mode for multiple types of pre-stop operation, increase the operating merit according to the predicted power load and the predicted thermal load distribution over time in the operating cycle and the predicted thermal load size of the operating cycle. A plurality of types of operation modes for pre-stop are possible.
And when it is set as the operation cycle which manages the period for stop, and when it makes it the operation cycle before or after the operation cycle which manages the period for stop, each of the operation modes for a plurality of types of stop For each operation, when the operation merit is calculated based on the predicted heat load of the operation cycle as the stop period and the predicted power load and predicted heat load in the operation cycle before that operation cycle, the operation merit increases Corresponding to the above, the operation cycle as the stop period is determined.
Therefore, according to the predicted power load and predicted heat load distribution state of each operation cycle arranged in time series and the size of the predicted heat load, the operation cycle as the stop period is set so that the operation merit is further enhanced. It becomes possible to determine any one of the operation cycles arranged in the series.
In short, the combined heat and power device can be operated so as to further improve the operation merit.

第9特徴構成は、上記第8特徴構成に加えて、
前記複数種の停止前用の運転形態が、
前記停止用期間とする運転周期の前の運転周期の全時間帯において前記熱電併給装置を運転する停止前用の連続運転形態、及び、前記停止用期間とする運転周期の前の運転周期のうちに、その運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間とする運転周期の予測熱負荷に基づいて求められる運転メリットが高くなる運転時間帯を定めて前記熱電併給装置を運転する停止前用の断続運転形態である点を特徴とする。
In addition to the eighth feature configuration, the ninth feature configuration is
The plurality of types of operation modes before stopping are as follows:
Of the continuous operation mode for before operating the combined heat and power unit in the entire time period of the operation cycle before the operation cycle for the stop period, and the operation cycle before the operation cycle for the stop period In addition, the operation of operating the combined heat and power supply apparatus is determined by setting an operation time period in which the operation merit obtained based on the predicted power load and the predicted heat load of the operation cycle and the predicted heat load of the operation cycle as the stop period is increased. It is characterized in that it is a previous intermittent operation mode.

即ち、運転制御手段は、停止用期間とする運転周期を、停止用期間とする運転周期の前の運転周期では熱電併給装置を停止前用の連続運転形態にて運転するとして定めたときは、その停止用期間とする運転周期の前の運転周期では、その全時間帯において熱電併給装置を運転する。
つまり、この停止前用の連続運転形態は、停止用期間とする運転周期の前の運転周期における予測熱負荷がその運転周期のより広い範囲にわたって分布し且つ停止用期間とする運転周期の前の運転周期の予測熱負荷及び停止用期間とする運転周期の予測熱負荷が大きい場合に適応して、運転メリットを高くすることが可能な運転形態である。
That is, when the operation control means determines that the operation cycle as the stop period is to operate the cogeneration device in the continuous operation mode before stop in the operation cycle before the operation period as the stop period, In the operation cycle before the operation cycle as the stop period, the cogeneration apparatus is operated in the entire time zone.
That is, in this continuous operation mode for stop, the predicted thermal load in the operation cycle before the operation cycle to be the stop period is distributed over a wider range of the operation cycle and before the operation cycle to be the stop period. This is an operation mode that can increase the operation merit by adapting to the case where the predicted heat load of the operation cycle and the predicted heat load of the operation cycle as the stop period are large.

運転制御手段は、停止用期間とする運転周期の前の運転周期内に運転時間帯として部分的に設定する時間帯を異ならせながら、その運転時間帯において熱電併給装置を運転すると仮定したときの運転メリットを、停止用期間とする運転周期の前の運転周期の予測電力負荷及び予測熱負荷並びに停止用期間とする運転周期の予測熱負荷に基づいて求めて、運転メリットが高くなる(例えば、最も高くなる又は2番目に高くなる)時間帯を停止前用の断続運転形態の運転時間帯として抽出する。
そして、停止用期間とする運転周期を、停止用期間とする運転周期の前の運転周期では熱電併給装置を停止前用の断続運転形態にて運転するとして定めたときは、その停止用期間とする運転周期の前の運転周期では、前述のように抽出した運転時間帯において熱電併給装置を運転し、残りの時間帯において熱電併給装置を停止させる。
つまり、この停止前用の断続運転形態は、停止用期間とする運転周期の前の運転周期における大きい予測電力負荷及び予測熱負荷がその運転周期の一部の時間帯に偏って分布し且つ停止用期間とする運転周期の前の運転周期の予測熱負荷及び停止用期間とする運転周期の予測熱負荷が小さい場合に適応して、運転メリットを高くすることが可能な運転形態である。
When the operation control means assumes that the cogeneration device is operated in the operation time zone while changing the time zone partially set as the operation time zone within the operation cycle before the operation cycle as the stop period. The operation merit is increased by obtaining the operation merit based on the predicted power load and the predicted heat load of the operation cycle before the operation cycle set as the stop period and the predicted heat load of the operation cycle set as the stop period (for example, The time zone that becomes the highest or the second highest) is extracted as the operation time zone of the intermittent operation mode for before stoppage.
And when it is determined that the operation cycle to be the stop period is to operate the combined heat and power device in the intermittent operation mode before stop in the operation cycle before the operation period to be the stop period, the stop period and In the operation cycle before the operation cycle to be performed, the cogeneration device is operated in the operation time zone extracted as described above, and the cogeneration device is stopped in the remaining time zone.
In other words, the intermittent operation mode for before stop is such that the large predicted power load and predicted heat load in the operation cycle before the operation cycle as the stop period are distributed in a partial time zone of the operation cycle and stop. This is an operation mode that can increase the operation merit by adapting to the case where the predicted heat load of the operation cycle before the operation cycle as the operation period and the predicted heat load of the operation cycle as the stop period are small.

そして、停止用期間を管理している運転周期とする場合及び停止用期間を管理している運転周期よりも前又は後の運転周期とする場合の夫々を、それら停止前用の連続運転形態及び停止前用の断続運転形態夫々で運転する場合のうちで、停止用期間とする運転周期の前の運転周期の予測電力負荷及び予測熱負荷並びに停止用期間とする運転周期の予測熱負荷に基づいて求められる運転メリットが高くなる場合に対応させて、停止用期間とする運転周期を定めるので、時系列に並ぶ運転周期夫々の予測電力負荷及び予測熱負荷の分布状態や予測熱負荷の大きさに応じて、運転メリットがより一層高くなるように、停止用期間とする運転周期を時系列に並ぶ運転周期のいずれかに定めることが可能となる。
従って、運転メリットを更に向上するように熱電併給装置を運転することができるようになった。
And each of the case where the operation period managing the stop period and the case where the operation period is set before or after the operation period managing the stop period are the continuous operation mode before stopping and Based on the predicted power load and the predicted heat load of the operation cycle before the operation cycle to be the stop period, and the predicted heat load of the operation cycle to be the stop period among the cases where the intermittent operation mode for the stop is operated. The operation cycle to be used as a stop period is determined in response to the increase in the required operation merit, so the predicted power load and the predicted heat load distribution state and the predicted heat load for each operation cycle arranged in time series Accordingly, it is possible to set the operation cycle as the stop period to any one of the operation cycles arranged in time series so that the operation merit is further enhanced.
Therefore, the cogeneration apparatus can be operated so as to further improve the operation merit.

第10特徴構成は、上記第8特徴構成に加えて、
前記複数種の停止前用の運転形態が、
前記停止用期間とする運転周期の前の運転周期の全時間帯において前記熱電併給装置の発電出力を予測電力負荷に追従させる停止前用の負荷追従連続運転形態、
前記停止用期間とする運転周期の前の運転周期における一部の時間帯において前記熱電併給装置の発電出力を予測電力負荷よりも小さい設定抑制出力に調節しかつ残りの時間帯において前記熱電併給装置の発電出力を予測電力負荷に追従させ、且つ、前記熱電併給装置の発電出力を前記設定抑制出力に調節する時間帯を、前記停止用期間とする運転周期の前の運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間とする運転周期の予測熱負荷に基づいて求められる運転メリットが高くなる時間帯に定める停止前用の抑制連続運転形態、
前記停止用期間とする運転周期の前の運転周期における一部の時間帯において前記熱電併給装置の発電出力を予測電力負荷よりも大きい設定増大出力に調節しかつ残りの時間帯において前記熱電併給装置の発電出力を予測電力負荷に追従させ、且つ、前記熱電併給装置の発電出力を前記設定増大出力に調節する時間帯を、前記停止用期間とする運転周期の前の運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間とする運転周期の予測熱負荷に基づいて求められる運転メリットが高くなる時間帯に定める停止前用の強制連続運転形態、
前記停止用期間とする運転周期の前の運転周期のうちの一部の運転時間帯において前記熱電併給装置の発電出力を予測電力負荷に追従させかつ残りの時間帯において前記熱電併給装置を停止させ、且つ、前記運転時間帯を、前記停止用期間とする運転周期の前の運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間とする運転周期の予測熱負荷に基づいて求められる運転メリットが高くなる時間帯に定める停止前用の負荷追従断続運転形態、
前記停止用期間とする運転周期の前の運転周期のうちの一部の運転時間帯において前記熱電併給装置の発電出力を予測電力負荷よりも小さい設定抑制出力に調節しかつ残りの時間帯において前記熱電併給装置を停止させ、且つ、前記運転時間帯を、前記停止用期間とする運転周期の前の運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間とする運転周期の予測熱負荷に基づいて求められる運転メリットが高くなる時間帯に定める停止前用の抑制断続運転形態、及び、
前記停止用期間とする運転周期の前の運転周期のうちの一部の運転時間帯において前記熱電併給装置の発電出力を予測電力負荷よりも大きい設定増大出力に調節しかつ残りの時間帯において前記熱電併給装置を停止させ、且つ、前記運転時間帯を、前記停止用期間とする運転周期の前の運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間とする運転周期の予測熱負荷に基づいて求められる運転メリットが高くなる時間帯に定める停止前用の強制断続運転形態のうちの少なくとも2つの運転形態である点を特徴とする。
In addition to the eighth feature configuration, the tenth feature configuration includes:
The plurality of types of operation modes before stopping are as follows:
Load follow-up continuous operation mode for stop before causing the power generation output of the combined heat and power supply device to follow the predicted power load in the entire time period of the operation cycle before the operation cycle as the stop period,
The power generation output of the combined heat and power device is adjusted to a setting suppression output smaller than the predicted power load in a part of the time period in the operation cycle before the operation cycle as the stop period, and the combined heat and power device in the remaining time period And the predicted power load of the operation cycle before the operation cycle with the time period during which the power generation output of the combined heat and power supply device is adjusted to the setting suppression output as the period for stop, Suppressed continuous operation mode for pre-stop set in a time zone in which the operation merit obtained based on the predicted heat load and the predicted heat load of the operation cycle as the stop period is high,
The power generation output of the combined heat and power device is adjusted to a set increase output larger than the predicted power load in a part of the time period in the operation cycle before the operation cycle as the stop period, and the combined heat and power device in the remaining time period And the predicted power load of the operation cycle before the operation cycle with the time period during which the power generation output of the combined heat and power supply device is adjusted to the set increased output as the period for stop, Forced continuous operation mode for pre-stop set in a time zone in which the operation merit obtained based on the predicted heat load and the predicted heat load of the operation cycle as the stop period is high,
The generated power output of the combined heat and power unit is made to follow the predicted power load in a part of the operation period before the operation period to be the stop period, and the combined heat and power unit is stopped in the remaining time period. And the operation merit obtained based on the predicted power load and the predicted heat load of the operation cycle before the operation cycle in which the operation time period is the stop period, and the predicted heat load of the operation cycle to be the stop period Load follow-up intermittent operation mode for pre-stop set in the time zone when
The power generation output of the combined heat and power unit is adjusted to a setting suppression output smaller than the predicted power load in a part of the operation period of the operation period before the operation period as the stop period, and the remaining period of time The combined heat and power supply device is stopped, and the predicted power load and the predicted heat load of the operation cycle before the operation cycle set as the stop period are set to the predicted heat load of the operation cycle set as the stop period. Suppressed intermittent operation mode for pre-stop set in the time zone when the driving merit required based on is high, and
The power generation output of the combined heat and power unit is adjusted to a set increase output larger than the predicted power load in a part of the operation period before the operation period to be the stop period, and in the remaining time period The combined heat and power supply device is stopped, and the predicted power load and the predicted heat load of the operation cycle before the operation cycle set as the stop period are set to the predicted heat load of the operation cycle set as the stop period. The present invention is characterized in that it is at least two driving modes among pre-stop forced intermittent driving modes determined in a time zone in which the driving merit obtained on the basis is high.

即ち、運転制御手段は、停止用期間とする運転周期を、停止用期間とする運転周期の前の運転周期では熱電併給装置を停止前用の負荷追従連続運転形態にて運転するとして定めたときは、その停止用期間とする運転周期の前の運転周期では、その全時間帯において熱電併給装置の発電出力を電力負荷に追従させる。
つまり、この停止前用の負荷追従連続運転形態は、停止用期間とする運転周期の前の運転周期の予測熱負荷がその運転周期のより広い範囲にわたって分布し且つ停止用期間とする運転周期の前の運転周期の予測熱負荷及び停止用期間とする運転周期の予測熱負荷が大きい場合に適応して、運転メリットを高くすることが可能な運転形態である。
That is, when the operation control means determines that the operation cycle to be the stop period is to operate the cogeneration device in the load following continuous operation mode before the stop in the operation cycle before the operation cycle to be the stop period. In the operation cycle before the operation cycle as the stop period, the power generation output of the cogeneration device is made to follow the power load in the entire time period.
In other words, the load following continuous operation mode for before stop is such that the predicted thermal load of the operation cycle before the operation cycle as the stop period is distributed over a wider range of the operation cycle and the operation cycle as the stop period. This is an operation mode that can increase the operation merit by adapting to the case where the predicted heat load of the previous operation cycle and the predicted heat load of the operation cycle as the stop period are large.

運転制御手段は、停止用期間とする運転周期の前の運転周期内において熱電併給装置の発電出力を設定抑制出力に調節するものとして部分的に設定する時間帯を異ならせながら、その運転周期における一部の時間帯において熱電併給装置の発電出力を設定抑制出力に調節しかつ残りの時間帯において熱電併給装置の発電出力を予測電力負荷に追従させると仮定したときの運転メリットを、その運転周期の予測電力負荷及び予測熱負荷並びに停止用期間とする運転周期の予測熱負荷に基づいて求めて、運転メリットが高くなる(例えば、最も高くなる又は2番目に高くなる)時間帯を、停止前用の抑制連続運転形態における熱電併給装置の発電出力を設定抑制出力に調節する時間帯として抽出する。
そして、停止用期間とする運転周期を、停止用期間とする運転周期の前の運転周期では熱電併給装置を停止前用の抑制連続運転形態にて運転するとして定めたときは、その停止用期間とする運転周期の前の運転周期では、前述のように抽出した時間帯において熱電併給装置の発電出力を設定抑制出力に調節し、残りの時間帯において熱電併給装置の発電出力を電力負荷に追従させる。
つまり、この停止前用の抑制連続運転形態は、停止用期間とする運転周期の前の運転周期の予測熱負荷がその運転周期のより広い範囲にわたって分布し且つ停止用期間とする運転周期の前の運転周期の予測熱負荷及び停止用期間とする運転周期の予測熱負荷が大きい場合に適応し、しかも、前記停止前用の負荷追従連続運転形態に比べると、停止用期間とする運転周期の前の運転周期の予測熱負荷及び停止用期間とする運転周期の予測熱負荷が小さい場合に適応する運転形態である。
The operation control means is configured to adjust the power generation output of the combined heat and power device to the set suppression output within the operation cycle before the operation cycle as the stop period, while partially changing the time zone to be set in the operation cycle. The operational merits when assuming that the power generation output of the cogeneration device is adjusted to the set suppression output in some time zones and the power generation output of the cogeneration device follows the predicted power load in the remaining time zones, The time period in which the operation merit is high (for example, the highest or the second highest) is obtained based on the predicted power load, the predicted heat load, and the predicted heat load of the operation cycle as the stop period. It extracts as a time slot | zone which adjusts the electric power generation output of the cogeneration apparatus in the suppression continuous operation form for adjustment to a setting suppression output.
And when it is determined that the operation cycle to be the stop period is to operate the combined heat and power device in the suppression continuous operation mode before stop in the operation cycle before the operation period to be the stop period, the stop period In the operation cycle before the operation cycle, the power generation output of the cogeneration device is adjusted to the set suppression output in the time zone extracted as described above, and the power generation output of the cogeneration device follows the power load in the remaining time zone. Let me.
In other words, this pre-stop restrained continuous operation mode is such that the predicted thermal load of the operation cycle before the operation cycle to be the stop period is distributed over a wider range of the operation cycle and before the operation cycle to be the stop period. This is applicable when the predicted thermal load of the operation cycle and the predicted thermal load of the operation cycle as the stop period are large, and compared with the load following continuous operation mode before stop, the operation cycle of the stop period This is an operation mode adapted when the predicted heat load of the previous operation cycle and the predicted heat load of the operation cycle as the stop period are small.

運転制御手段は、停止用期間とする運転周期の前の運転周期内において熱電併給装置の発電出力を設定増大出力に調節するものとして部分的に設定する時間帯を異ならせながら、その運転周期における一部の時間帯において熱電併給装置の発電出力を設定増大出力に調節しかつ残りの時間帯において熱電併給装置の発電出力を予測電力負荷に追従させると仮定したときの運転メリットを、その運転周期の予測電力負荷及び予測熱負荷並びに停止用期間とする運転周期の予測熱負荷に基づいて求めて、運転メリットが高くなる(例えば、最も高くなる又は2番目に高くなる)時間帯を、停止前用の強制連続運転形態における熱電併給装置の発電出力を設定増大出力に調節する時間帯として抽出する。
そして、停止用期間とする運転周期を、停止用期間とする運転周期の前の運転周期では熱電併給装置を停止前用の強制連続運転形態にて運転するとして定めたときは、その停止用期間とする運転周期の前の運転周期では、前述のように抽出した時間帯において熱電併給装置の発電出力を設定増大出力に調節し、残りの時間帯において熱電併給装置の発電出力を電力負荷に追従させる。
つまり、この停止前用の強制連続運転形態は、停止用期間とする運転周期の前の運転周期の予測熱負荷がその運転周期のより広い範囲にわたって分布し且つ停止用期間とする運転周期の前の運転周期の予測熱負荷及び停止用期間とする運転周期の予測熱負荷が大きい場合に適応し、しかも、前記停止前用の負荷追従連続運転形態に比べると、停止用期間とする運転周期の前の運転周期の予測熱負荷及び停止用期間とする運転周期の予測熱負荷が更に大きい場合に適応する運転形態である。
The operation control means is configured to adjust the power generation output of the combined heat and power device to the set increase output within the operation cycle before the operation cycle as the stop period, while partially changing the time zone to be set in the operation cycle. The operating merits when assuming that the power generation output of the combined heat and power unit is adjusted to the set increase output in some time zones and that the power generation output of the combined heat and power generation device follows the predicted power load in the remaining time zones, The time period in which the operation merit is high (for example, the highest or the second highest) is obtained based on the predicted power load, the predicted heat load, and the predicted heat load of the operation cycle as the stop period. This is extracted as a time zone in which the power generation output of the combined heat and power device in the forced continuous operation mode is adjusted to the set increase output.
And, when it is determined that the operation cycle to be the stop period is to operate the cogeneration device in the forced continuous operation mode before stop in the operation cycle before the operation period to be the stop period, the stop period In the operation cycle before the operation cycle, the power generation output of the cogeneration device is adjusted to the set increase output in the time period extracted as described above, and the power generation output of the cogeneration device follows the power load in the remaining time zone. Let me.
In other words, the forced continuous operation mode for before stop is in which the predicted thermal load of the operation cycle before the operation cycle as the stop period is distributed over a wider range of the operation cycle and before the operation cycle as the stop period. This is applicable when the predicted thermal load of the operation cycle and the predicted thermal load of the operation cycle as the stop period are large, and compared with the load following continuous operation mode before stop, the operation cycle of the stop period This is an operation mode adapted to the case where the predicted heat load of the previous operation cycle and the predicted heat load of the operation cycle as the stop period are larger.

運転制御手段は、停止用期間とする運転周期の前の運転周期内に運転時間帯として部分的に設定する時間帯を異ならせながら、その運転時間帯において熱電併給装置の発電出力を予測電力負荷に追従させると仮定したときの運転メリットを、停止用期間とする運転周期の前の運転周期の予測電力負荷及び予測熱負荷並びに停止用期間とする運転周期の予測熱負荷に基づいて求めて、運転メリットが高くなる(例えば、最も高くなる又は2番目に高くなる)時間帯を停止前用の負荷追従断続運転形態における運転時間帯として抽出する。
そして、停止用期間とする運転周期を、停止用期間とする運転周期の前の運転周期では熱電併給装置を停止前用の負荷追従断続運転形態にて運転するとして定めたときは、その停止用期間とする運転周期の前の運転周期では、前述のように抽出した運転時間帯において熱電併給装置の発電出力を電力負荷に追従させ、残りの時間帯において熱電併給装置を停止させる。
つまり、この停止前用の負荷追従断続運転形態は、停止用期間とする運転周期の前の運転周期における大きい予測電力負荷及び予測熱負荷がその運転周期の一部の時間帯に偏って分布し且つ停止用期間とする運転周期の前の運転周期の予測熱負荷及び停止用期間とする運転周期の予測熱負荷が小さい場合に適応して、運転メリットを高くすることが可能な運転形態である。
The operation control means uses the predicted power load for the power generation output of the combined heat and power unit in the operation time zone while varying the time zone partially set as the operation time zone within the operation cycle before the operation cycle as the stop period. The operation merit when it is assumed to follow is calculated based on the predicted power load and the predicted heat load of the operation cycle before the operation cycle to be the stop period, and the predicted heat load of the operation cycle to be the stop period, The time zone in which the driving merit is high (for example, the highest or second highest) is extracted as the driving time zone in the load following intermittent operation mode before stopping.
And when it is determined that the operation cycle to be the stop period is to operate the combined heat and power device in the load following intermittent operation mode before the stop in the operation cycle before the operation period to be the stop period, In the operation cycle before the operation cycle as the period, the power generation output of the cogeneration device follows the power load in the operation time zone extracted as described above, and the cogeneration device is stopped in the remaining time zone.
That is, in this load follow intermittent operation mode before stoppage, the large predicted power load and predicted heat load in the operation cycle before the operation cycle to be the stop period are distributed unevenly in a part of the time period of the operation cycle. In addition, it is an operation mode capable of increasing the operation merit by adapting to the case where the predicted thermal load of the operation cycle before the operation cycle to be the stop period and the predicted heat load of the operation cycle to be the stop period are small. .

運転制御手段は、停止用期間とする運転周期の前の運転周期内に運転時間帯として部分的に設定する時間帯を異ならせながら、その運転時間帯において熱電併給装置の発電出力を設定抑制出力に調節すると仮定したときの運転メリットを、停止用期間とする運転周期の前の運転周期の予測電力負荷及び予測熱負荷並びに停止用期間とする運転周期の予測熱負荷に基づいて求めて、運転メリットが高くなる(例えば、最も高くなる又は2番目に高くなる)時間帯を停止前用の抑制断続運転形態における運転時間帯として抽出する。
そして、停止用期間とする運転周期を、停止用期間とする運転周期の前の運転周期では熱電併給装置を停止前用の抑制断続運転形態にて運転するとして定めたときは、その停止用期間とする運転周期の前の運転周期では、前述のように抽出した運転時間帯において熱電併給装置の発電出力を設定抑制出力に調節し、残りの時間帯において熱電併給装置を停止させる。
つまり、この停止前用の抑制断続運転形態は、停止用期間とする運転周期の前の運転周期における大きい予測電力負荷及び予測熱負荷がその運転周期の一部の時間帯に偏って分布し且つ停止用期間とする運転周期の前の運転周期の予測熱負荷及び停止用期間とする運転周期の予測熱負荷が小さい場合に適応し、しかも、前記停止前用の負荷追従断続運転形態に比べると、停止用期間とする運転周期の前の運転周期の予測熱負荷及び停止用期間とする運転周期の予測熱負荷が更に小さい場合に適応する運転形態である。
The operation control means sets and outputs the power generation output of the combined heat and power unit in the operation time zone while changing the time zone partially set as the operation time zone within the operation cycle before the operation cycle as the stop period. The operation merit when assuming that it is adjusted to the operation period is obtained based on the predicted power load and the predicted heat load of the operation cycle before the operation period to be the stop period, and the predicted heat load of the operation period to be the stop period. The time zone in which the merit is high (for example, the highest time or the second highest time) is extracted as the operation time zone in the suppressed intermittent operation mode for the stop.
And when the operation cycle to be the stop period is determined to operate the combined heat and power device in the pre-stop suppression intermittent operation mode in the operation cycle before the stop operation period, the stop period In the operation cycle before the operation cycle, the power generation output of the cogeneration device is adjusted to the set suppression output in the operation time zone extracted as described above, and the cogeneration device is stopped in the remaining time zone.
That is, in this suppression intermittent operation mode for stop, the large predicted power load and the predicted heat load in the operation cycle before the operation cycle to be the stop period are distributed in a partial time zone of the operation cycle and Adapted to the case where the predicted thermal load of the operation cycle before the operation cycle as the stop period and the predicted heat load of the operation cycle as the stop period are small, and compared with the load following intermittent operation mode before the stop The operation mode is adapted to the case where the predicted heat load of the operation cycle before the operation cycle as the stop period and the predicted heat load of the operation cycle as the stop period are further smaller.

運転制御手段は、停止用期間とする運転周期の前の運転周期内に運転時間帯として部分的に設定する時間帯を異ならせながら、その運転時間帯において熱電併給装置の発電出力を設定増大出力に調節すると仮定したときの運転メリットを、停止用期間とする運転周期の前の運転周期の予測電力負荷及び予測熱負荷並びに停止用期間とする運転周期の予測熱負荷に基づいて求めて、運転メリットが高くなる(例えば、最も高くなる又は2番目に高くなる)時間帯を停止前用の強制断続運転形態における運転時間帯として抽出する。
そして、停止用期間とする運転周期を、停止用期間とする運転周期の前の運転周期では熱電併給装置を停止前用の強制断続運転形態にて運転するとして定めたときは、その停止用期間とする運転周期の前の運転周期では、前述のように抽出した運転時間帯において熱電併給装置の発電出力を設定増大出力に調節し、残りの時間帯において熱電併給装置を停止させる。
つまり、この停止前用の強制断続運転形態は、停止用期間とする運転周期の前の運転周期における大きい予測電力負荷及び予測熱負荷がその運転周期の一部の時間帯に偏って分布し且つ停止用期間とする運転周期の前の運転周期の予測熱負荷及び停止用期間とする運転周期の予測熱負荷が小さい場合に適応し、しかも、前記停止前用の負荷追従断続運転形態に比べると、停止用期間とする運転周期の前の運転周期の予測熱負荷及び停止用期間とする運転周期の予測熱負荷が大きい場合に適応する運転形態である。
The operation control means sets the power generation output of the combined heat and power unit to an increased output while changing the time zone partially set as the operation time zone within the operation cycle before the operation cycle as the stop period. The operation merit when assuming that it is adjusted to the operation period is obtained based on the predicted power load and the predicted heat load of the operation cycle before the operation period to be the stop period, and the predicted heat load of the operation period to be the stop period. A time zone in which the merit is high (for example, highest or second highest) is extracted as an operation time zone in the forced intermittent operation mode for before stop.
And when the operation cycle to be the stop period is determined to operate the combined heat and power device in the forced intermittent operation mode before the stop in the operation cycle before the operation cycle to be the stop period, the stop period In the operation cycle before the operation cycle, the power generation output of the combined heat and power device is adjusted to the set increase output in the operation time zone extracted as described above, and the combined heat and power device is stopped in the remaining time zone.
That is, in this forced intermittent operation mode before stop, the large predicted power load and predicted heat load in the operation cycle before the operation cycle as the stop period are distributed in a part of the time period of the operation cycle and Adapted to the case where the predicted thermal load of the operation cycle before the operation cycle as the stop period and the predicted heat load of the operation cycle as the stop period are small, and compared with the load following intermittent operation mode before the stop The operation mode is adapted to the case where the predicted heat load of the operation cycle before the operation cycle as the stop period and the predicted heat load of the operation cycle as the stop period are large.

そして、停止用期間を管理している運転周期とする場合及び停止用期間を管理している運転周期よりも前又は後の運転周期とする場合の夫々を、それら停止前用の負荷追従連続運転形態、停止前用の抑制連続運転形態、停止前用の強制連続運転形態、停止前用の負荷追従断続運転形態、停止前用の抑制断続運転形態及び停止前用の強制断続運転形態夫々で運転する場合のうちで、停止用期間とする運転周期の前の運転周期の予測電力負荷及び予測熱負荷並びに停止用期間とする運転周期の予測熱負荷に基づいて求められる運転メリットが高くなる場合に対応させて、停止用期間とする運転周期を定めるので、時系列に並ぶ運転周期夫々の予測電力負荷や予測熱負荷の分布状態や予測熱負荷の大きさに応じて、運転メリットがより一層高くなるように、停止用期間とする運転周期を時系列に並ぶ運転周期のいずれかに定めることが可能となる。
従って、運転メリットを更に向上するように熱電併給装置を運転することができるようになった。
Then, when the operation period for managing the stop period and the operation period before or after the operation period for managing the stop period, load follow continuous operation for those before stop, respectively. Operation, pre-stop restrained continuous operation form, pre-stop forced continuous operation form, pre-stop load follow-up intermittent operation form, pre-stop restrained intermittent operation form and pre-stop forced intermittent operation form When the operation merit required based on the predicted power load and predicted heat load of the operation cycle before the operation cycle to be the stop period and the predicted heat load of the operation cycle to be the stop period is high Correspondingly, the operation cycle for the stop period is determined, so that the operation merit is further enhanced according to the predicted power load, the predicted heat load distribution state and the predicted heat load of each operation cycle arranged in time series. Become Sea urchin, it is possible to determine in any operating period arranged in time series operation cycle to stop period.
Therefore, the cogeneration apparatus can be operated so as to further improve the operation merit.

第11特徴構成は、上記第7特徴構成に加えて、
前記運転制御手段が、
前記停止用期間とする運転周期の前の運転周期の全時間帯において前記熱電併給装置の発電出力を予測電力負荷に追従させる停止前用の負荷追従連続運転形態、
前記停止用期間とする運転周期の前の運転周期における一部の時間帯において前記熱電併給装置の発電出力を予測電力負荷よりも小さい設定抑制出力に調節しかつ残りの時間帯において前記熱電併給装置の発電出力を予測電力負荷に追従させ、且つ、前記熱電併給装置の発電出力を前記設定抑制出力に調節する時間帯を、前記停止用期間とする運転周期の前の運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間とする運転周期の予測熱負荷に基づいて求められる運転メリットが高くなる時間帯に定める停止前用の抑制連続運転形態、
前記停止用期間とする運転周期の前の運転周期における一部の時間帯において前記熱電併給装置の発電出力を予測電力負荷よりも大きい設定増大出力に調節しかつ残りの時間帯において前記熱電併給装置の発電出力を予測電力負荷に追従させ、且つ、前記熱電併給装置の発電出力を前記設定増大出力に調節する時間帯を、前記停止用期間とする運転周期の前の運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間とする運転周期の予測熱負荷に基づいて求められる運転メリットが高くなる時間帯に定める停止前用の強制連続運転形態、
前記停止用期間とする運転周期の前の運転周期のうちの一部の運転時間帯において前記熱電併給装置の発電出力を予測電力負荷に追従させかつ残りの時間帯において前記熱電併給装置を停止させ、且つ、前記運転時間帯を、前記停止用期間とする運転周期の前の運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間とする運転周期の予測熱負荷に基づいて求められる運転メリットが高くなる時間帯に定める停止前用の負荷追従断続運転形態、
前記停止用期間とする運転周期の前の運転周期のうちの一部の運転時間帯において前記熱電併給装置の発電出力を予測電力負荷よりも小さい設定抑制出力に調節しかつ残りの時間帯において前記熱電併給装置を停止させ、且つ、前記運転時間帯を、前記停止用期間とする運転周期の前の運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間とする運転周期の予測熱負荷に基づいて求められる運転メリットが高くなる時間帯に定める停止前用の抑制断続運転形態、及び、
前記停止用期間とする運転周期の前の運転周期のうちの一部の運転時間帯において前記熱電併給装置の発電出力を予測電力負荷よりも大きい設定増大出力に調節しかつ残りの時間帯において前記熱電併給装置を停止させ、且つ、前記運転時間帯を、前記停止用期間とする運転周期の前の運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間とする運転周期の予測熱負荷に基づいて求められる運転メリットが高くなる時間帯に定める停止前用の強制断続運転形態のうちの予め定められた1つの運転形態にて前記熱電併給装置を運転するとして、
前記停止用期間を管理している運転周期とする場合及び前記停止用期間を管理している運転周期よりも前又は後の運転周期とする場合のうちで、運転メリットが高くなる場合を求め、その求めた場合に対応させて前記停止用期間とする運転周期を定めるように構成されている点を特徴とする。
In addition to the seventh feature configuration, the eleventh feature configuration is
The operation control means is
Load follow-up continuous operation mode for stop before causing the power generation output of the combined heat and power supply device to follow the predicted power load in the entire time period of the operation cycle before the operation cycle as the stop period,
The power generation output of the combined heat and power device is adjusted to a setting suppression output smaller than the predicted power load in a part of the time period in the operation cycle before the operation cycle as the stop period, and the combined heat and power device in the remaining time period And the predicted power load of the operation cycle before the operation cycle with the time period during which the power generation output of the combined heat and power supply device is adjusted to the setting suppression output as the period for stop, Suppressed continuous operation mode for pre-stop set in a time zone in which the operation merit obtained based on the predicted heat load and the predicted heat load of the operation cycle as the stop period is high,
The power generation output of the combined heat and power device is adjusted to a set increase output larger than the predicted power load in a part of the time period in the operation cycle before the operation cycle as the stop period, and the combined heat and power device in the remaining time period And the predicted power load of the operation cycle before the operation cycle with the time period during which the power generation output of the combined heat and power supply device is adjusted to the set increased output as the period for stop, Forced continuous operation mode for pre-stop set in a time zone in which the operation merit obtained based on the predicted heat load and the predicted heat load of the operation cycle as the stop period is high,
The generated power output of the combined heat and power unit is made to follow the predicted power load in a part of the operation period before the operation period to be the stop period, and the combined heat and power unit is stopped in the remaining time period. And the operation merit obtained based on the predicted power load and the predicted heat load of the operation cycle before the operation cycle in which the operation time period is the stop period, and the predicted heat load of the operation cycle to be the stop period Load follow-up intermittent operation mode for pre-stop set in the time zone when
The power generation output of the combined heat and power unit is adjusted to a setting suppression output smaller than the predicted power load in a part of the operation period of the operation period before the operation period as the stop period, and the remaining period of time The combined heat and power supply device is stopped, and the predicted power load and the predicted heat load of the operation cycle before the operation cycle set as the stop period are set to the predicted heat load of the operation cycle set as the stop period. Suppressed intermittent operation mode for pre-stop set in the time zone when the driving merit required based on is high, and
The power generation output of the combined heat and power unit is adjusted to a set increase output larger than the predicted power load in a part of the operation period before the operation period to be the stop period, and in the remaining time period The combined heat and power supply device is stopped, and the predicted power load and the predicted heat load of the operation cycle before the operation cycle set as the stop period are set to the predicted heat load of the operation cycle set as the stop period. As the operation of the combined heat and power device in one of the predetermined operation modes of the forced intermittent operation mode for the stop before the stop determined in the time zone when the operation merit required based on becomes high,
In the case where the operation period is managed as the operation period managing the stop period and in the case where the operation period is set before or after the operation period managing the stop period, the case where the driving merit is increased is obtained. It is characterized in that it is configured so as to determine an operation cycle as the stop period corresponding to the obtained case.

即ち、停止前用の負荷追従連続運転形態、停止前用の抑制連続運転形態、停止前用の強制連続運転形態、停止前用の負荷追従断続運転形態、停止前用の抑制断続運転形態及び停止前用の強制断続運転形態の夫々は、上記の第10特徴構成について説明したのと同様に、時系列に並ぶ運転周期夫々の予測電力負荷や予測熱負荷の分布状態や予測熱負荷の大きさに応じて、運転メリットを高くすることが可能な運転形態である。
そして、停止前用の熱電併給装置の運転形態を、コージェネレーションシステムの設置箇所における予測電力負荷及び予測熱負荷の状態に応じて、予め、停止前用の負荷追従連続運転形態、停止前用の抑制連続運転形態、停止前用の強制連続運転形態、停止前用の負荷追従断続運転形態、停止前用の抑制断続運転形態及び停止前用の強制断続運転形態のうちで、運転メリットを高くすることが可能な1つに定めておくことにより、停止用期間とする運転周期を定めるための構成を簡略化することができて、コージェネレーションシステムの低廉化を図ることができる。
従って、コージェネレーションシステムの低廉化を図りながら、運転メリットを向上するように熱電併給装置を運転することができるようになった。
That is, before-stop load following continuous operation mode, before-stop controlled continuous operation mode, before-stop forced continuous operation mode, before-stop load-following intermittent operation mode, before-stop suppression intermittent operation mode and stop Each of the previous forced intermittent operation modes is the same as described for the tenth feature configuration described above, the predicted power load, the predicted heat load distribution state, and the predicted heat load for each operation cycle arranged in time series. This is a driving mode capable of increasing driving merit.
And, according to the state of the predicted power load and the predicted heat load at the location where the cogeneration system is installed, the operation mode of the combined heat and power device for before stop is pre-load-following continuous operation mode for stop, Increased operation merit among restraint continuous operation form, forced continuous operation form before stop, load follow intermittent operation form before stop, restrained intermittent operation form before stop, and forced intermittent operation form before stop By setting it to one that can be performed, the configuration for determining the operation cycle as the stop period can be simplified, and the cost of the cogeneration system can be reduced.
Accordingly, the cogeneration system can be operated so as to improve the operation merit while reducing the cost of the cogeneration system.

以下、図面に基づいて、本発明の実施の形態を説明する。
〔第1実施形態〕
コージェネレーションシステムは、図1及び図2に示すように、電力と熱とを発生する熱電併給装置としての燃料電池1と、その燃料電池1が発生する熱を冷却水にて回収し、その冷却水を利用して、貯湯槽2への貯湯及び熱消費端末3への熱媒供給を行う貯湯手段としての貯湯ユニット4と、燃料電池1及び貯湯ユニット4の運転を制御する運転制御手段としての運転制御部5などから構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[First Embodiment]
As shown in FIGS. 1 and 2, the cogeneration system recovers the heat generated by the fuel cell 1 as a combined heat and power generation apparatus that generates electric power and heat with cooling water, and cools the cooling. Hot water storage unit 4 as hot water storage means for storing hot water in hot water tank 2 and supplying heat medium to heat consuming terminal 3 using water, and operation control means for controlling the operation of fuel cell 1 and hot water storage unit 4 It is comprised from the operation control part 5 grade | etc.,.

前記燃料電池1は、周知であるので、詳細な説明及び図示を省略して簡単に説明すると、燃料電池1は、水素を含有する燃料ガス及び酸素含有ガスが供給されて発電するセルスタック、そのセルスタックに供給する燃料ガスを生成する燃料ガス生成部、前記セルスタックに酸素含有ガスとして空気を供給するブロア等を備えて構成されている。
前記燃料ガス生成部は、供給される都市ガス(例えば、天然ガスベースの都市ガス)等の炭化水素系の原燃料ガスを脱硫処理する脱硫器、その脱硫器から供給される脱硫原燃料ガスと別途供給される水蒸気とを改質反応させて水素を主成分とする改質ガスを生成する改質器、その改質器から供給される改質ガス中の一酸化炭素を水蒸気にて二酸化炭素に変成処理する変成器、その変成器から供給される改質ガス中の一酸化炭素を別途供給される選択酸化用空気にて選択酸化する一酸化炭素除去器等から構成され、一酸化炭素を変成処理及び選択酸化処理により低減した改質ガスを前記燃料ガスとして前記セルスタックに供給するように構成されている。
そして、前記燃料ガス生成部への原燃料ガスの供給量を調節することにより、前記燃料電池1の発電出力を調節するように構成されている。
Since the fuel cell 1 is well-known, a detailed description and illustration thereof will be omitted. Briefly, the fuel cell 1 includes a cell stack that generates power by being supplied with a fuel gas containing hydrogen and an oxygen-containing gas. A fuel gas generation unit that generates fuel gas to be supplied to the cell stack, a blower that supplies air as an oxygen-containing gas to the cell stack, and the like are provided.
The fuel gas generation unit includes a desulfurizer for desulfurizing a hydrocarbon-based raw fuel gas such as a supplied city gas (for example, a natural gas-based city gas), and a desulfurized raw fuel gas supplied from the desulfurizer. A reformer that generates a reformed gas mainly composed of hydrogen by reforming reaction with steam supplied separately, and carbon monoxide in the reformed gas supplied from the reformer with carbon dioxide. And a carbon monoxide remover that selectively oxidizes carbon monoxide in the reformed gas supplied from the transformer with a selective oxidation air supplied separately. The reformed gas reduced by the shift treatment and the selective oxidation treatment is supplied to the cell stack as the fuel gas.
And it is comprised so that the electric power generation output of the said fuel cell 1 may be adjusted by adjusting the supply amount of the raw fuel gas to the said fuel gas production | generation part.

このコージェネレーションシステムが設置される家庭等には、各ガス消費機器にガス燃料を供給するための内管51が配管され、その内管51は、都市ガス等のガス燃料が供給されるガス燃料供給源52にガスメータとしてのマイコンメータ53を介在させた状態で接続されている。そして、前記燃料ガス生成部には、この内管51を通してガス燃料が原燃料ガスとして供給される。ちなみに、前記ガス燃料供給源は、ガス供給事業者からガス燃料が供給される導管、プロパンガスボンベ等である。
前記マイコンメータ53には、所定のガス漏洩判定用期間にわたってガス燃料の流量の計測値が無通流状態判定用流量以下にならなかった場合に、ガス漏洩であると判定して、内蔵している遮断弁を閉じると共に警報ランプを点灯するガス漏洩時処理を実行する機能が備えられている。
前記マイコンメータ53は膜式流量計にて構成され、前記無通流状態判定用流量は、この膜式流量計が1時間の間に流量パルス信号を1回出力する状態に対応する流量、例えば、1.0L/hに設定され、前記ガス漏洩判定用期間は30日に設定されている。
つまり、1時間の間に流量パルス信号が1回以上出力される状態が30日間継続すると、ガス漏洩であると検知されて、ガス漏洩時処理が実行されることになる。
In homes where this cogeneration system is installed, an inner pipe 51 for supplying gas fuel to each gas consuming device is provided, and the inner pipe 51 is supplied with gas fuel such as city gas. The supply source 52 is connected with a microcomputer meter 53 as a gas meter interposed. The fuel gas generator is supplied with gas fuel as raw fuel gas through the inner pipe 51. Incidentally, the gas fuel supply source is a conduit, a propane gas cylinder, or the like to which gas fuel is supplied from a gas supplier.
If the measured value of the flow rate of the gas fuel does not fall below the flow rate for determining the no-passage state over the predetermined gas leak determination period, the microcomputer meter 53 determines that there is a gas leak and is built in. A function for executing a gas leakage process for closing a shut-off valve and turning on an alarm lamp is provided.
The microcomputer meter 53 is constituted by a membrane flow meter, and the flow rate for determining the no-flow state is a flow rate corresponding to a state in which the membrane flow meter outputs a flow pulse signal once in one hour, for example, 1.0 L / h, and the gas leakage determination period is set to 30 days.
That is, if the state in which the flow rate pulse signal is output once or more in one hour continues for 30 days, it is detected that the gas is leaking, and the process at the time of gas leak is executed.

前記燃料電池1の電力の出力側には、系統連系用のインバータ6が設けられ、そのインバータ6は、燃料電池1の発電電力を商用電源7から受電する受電電力と同じ電圧及び同じ周波数にするように構成されている。
前記商用電源7は、例えば、単相3線式100/200Vであり、受電電力供給ライン8を介して、テレビ、冷蔵庫、洗濯機などの電力負荷9に電気的に接続されている。
また、インバータ6は、発電電力供給ライン10を介して受電電力供給ライン8に電気的に接続され、燃料電池1からの発電電力がインバータ6及び発電電力供給ライン10を介して電力負荷9に供給するように構成されている。
A grid interconnection inverter 6 is provided on the power output side of the fuel cell 1, and the inverter 6 has the same voltage and the same frequency as the received power for receiving the generated power of the fuel cell 1 from the commercial power supply 7. It is configured to.
The commercial power source 7 is, for example, a single-phase three-wire system 100/200 V, and is electrically connected to a power load 9 such as a television, a refrigerator, or a washing machine via a received power supply line 8.
The inverter 6 is electrically connected to the received power supply line 8 via the generated power supply line 10, and the generated power from the fuel cell 1 is supplied to the power load 9 via the inverter 6 and the generated power supply line 10. Is configured to do.

前記受電電力供給ライン8には、電力負荷9の負荷電力を計測する電力負荷計測手段11が設けられ、この電力負荷計測手段11は、受電電力供給ライン8を通して流れる電流に逆潮流が発生するか否かをも検出するように構成されている。
そして、逆潮流が生じないように、インバータ6により燃料電池1から受電電力供給ライン8に供給される電力が制御され、発電出力の余剰電力は、その余剰電力を熱に代えて回収する電気ヒータ12に供給されるように構成されている。
The received power supply line 8 is provided with power load measuring means 11 for measuring the load power of the power load 9, and the power load measuring means 11 generates a reverse power flow in the current flowing through the received power supply line 8. It is also configured to detect whether or not.
The electric power supplied from the fuel cell 1 to the received power supply line 8 is controlled by the inverter 6 so that a reverse power flow does not occur, and the surplus power of the power generation output is recovered by replacing the surplus power with heat. 12 is configured to be supplied.

前記電気ヒータ12は、複数の電気ヒータから構成され、冷却水循環ポンプ15の作動により冷却水循環路13を通流する燃料電池1の冷却水を加熱するように設けられ、インバータ6の出力側に接続された作動スイッチ14によりON/OFFが切り換えられている。
また、作動スイッチ14は、余剰電力の大きさが大きくなるほど、電気ヒータ12の消費電力が大きくなるように、余剰電力の大きさに応じて電気ヒータ12の消費電力を調整するように構成されている。
尚、電気ヒータ12の消費電力を調整する構成については、上記のように複数の電気ヒータ12のON/OFFを切り換える構成以外に、その電気ヒータ12の出力を例えば位相制御等により調整する構成を採用しても構わない。
The electric heater 12 is composed of a plurality of electric heaters, and is provided so as to heat the cooling water of the fuel cell 1 flowing through the cooling water circulation path 13 by the operation of the cooling water circulation pump 15, and is connected to the output side of the inverter 6. ON / OFF is switched by the actuated switch 14.
The operation switch 14 is configured to adjust the power consumption of the electric heater 12 according to the amount of surplus power so that the power consumption of the electric heater 12 increases as the amount of surplus power increases. Yes.
The configuration for adjusting the power consumption of the electric heater 12 is a configuration for adjusting the output of the electric heater 12 by, for example, phase control or the like in addition to the configuration for switching ON / OFF of the plurality of electric heaters 12 as described above. You may adopt.

前記貯湯ユニット4は、温度成層を形成する状態で湯水を貯湯する前記貯湯槽2、湯水循環路16を通して貯湯槽2内の湯水を循環させる湯水循環ポンプ17、熱源用循環路20を通して熱源用湯水を循環させる熱源用循環ポンプ21、熱媒循環路22を通して熱媒を前記熱消費端末3に循環供給させる熱媒循環ポンプ23、前記湯水循環路16を通流する湯水を加熱させる貯湯用熱交換器24、前記熱源用循環路20を通流する熱源用湯水を加熱させる熱源用熱交換器25、前記熱媒循環路22を通流する熱媒を加熱させる熱媒加熱用熱交換器26、前記貯湯槽2から取り出されて給湯路27を通流する湯水及び前記熱源用循環路20を通流する熱源用湯水を加熱させる補助加熱器28などを備えて構成されている。   The hot water storage unit 4 is configured to store hot water in a state where temperature stratification is formed, the hot water circulating pump 17 that circulates hot water in the hot water tank 2 through the hot water circulation path 16, and the hot water for heat source through the heat source circulation path 20. The heat source circulation pump 21 for circulating the heat, the heat medium circulation pump 23 for circulating and supplying the heat medium to the heat consuming terminal 3 through the heat medium circulation path 22, and the heat exchange for hot water storage for heating the hot water flowing through the hot water circulation path 16 24, a heat source heat exchanger 25 for heating the hot water for heat source flowing through the heat source circulation path 20, a heat exchanger for heat medium heating for heating the heat medium flowing through the heat medium circulation path 22, An auxiliary heater 28 for heating the hot water taken out from the hot water storage tank 2 and flowing through the hot water supply passage 27 and the hot water for heat source flowing through the circulation passage 20 for the heat source is provided.

前記湯水循環路16は、前記貯湯槽2の底部と頂部とに接続されて、前記湯水循環ポンプ17により、貯湯槽2の底部から取り出した湯水を貯湯槽2の頂部に戻す形態で貯湯槽2の湯水を湯水循環路16を通して循環させ、そのように湯水循環路16を通して循環される湯水を前記貯湯用熱交換器24にて加熱することにより、貯湯槽2に温度成層を形成する状態で湯水が貯湯されるように構成されている。
前記湯水循環路16は、その一部が並列になるように分岐接続され、その接続箇所に三方弁18が設けられており、分岐された一方側の流路には、ラジエータ19が設けられている。そして、三方弁18を切り換えることにより、貯湯槽2の下部から取り出した湯水がラジエータ19を通過するように循環させる状態と、貯湯槽2の下部から取り出した湯水がラジエータ19をバイパスするように循環させる状態とに切り換えるように構成されている。
The hot water circulation path 16 is connected to the bottom and top of the hot water tank 2, and the hot water tank 2 is configured to return hot water taken from the bottom of the hot water tank 2 to the top of the hot water tank 2 by the hot water circulation pump 17. Hot water is circulated through the hot water circulation path 16 and the hot water circulated through the hot water circulation path 16 is heated by the heat exchanger 24 for hot water storage so that the hot water tank 2 forms a temperature stratification. Is configured to store hot water.
The hot water circulation path 16 is branched and connected so that a part thereof is in parallel, a three-way valve 18 is provided at the connection location, and a radiator 19 is provided in the branched flow path. Yes. Then, by switching the three-way valve 18, the hot water taken out from the lower part of the hot water tank 2 is circulated so as to pass through the radiator 19, and the hot water taken out from the lower part of the hot water tank 2 is circulated so as to bypass the radiator 19. It is comprised so that it may switch to the state to be made to.

前記給湯路27は、前記湯水循環路16における前記貯湯用熱交換器24よりも下流側の箇所を介して前記貯湯槽2に接続され、その給湯路27を通して前記貯湯槽2内の湯水が浴槽、給湯栓、シャワー等の給湯先に給湯され、そのように給湯されるのに伴って貯湯槽2に給水すべく、給水路29が貯湯槽2の底部に接続されている。   The hot water supply path 27 is connected to the hot water storage tank 2 through a location downstream of the hot water storage heat exchanger 24 in the hot water circulation path 16, and hot water in the hot water storage tank 2 is connected to the bathtub through the hot water supply path 27. A hot water supply path 29 is connected to the bottom of the hot water tank 2 so that the hot water is supplied to a hot water supply destination such as a hot water tap and a shower and the hot water tank 2 is supplied with the hot water.

前記熱源用循環路20は、前記給湯路27の一部を共用する状態で循環経路を形成するように設けられ、その熱源用循環路20には、熱源用湯水の通流を断続させる熱源用断続弁40が設けられている。   The heat source circulation path 20 is provided so as to form a circulation path in a state in which a part of the hot water supply path 27 is shared, and the heat source circulation path 20 is used for a heat source for interrupting the flow of hot water for the heat source. An intermittent valve 40 is provided.

前記補助加熱器28は、前記給湯路27における前記熱源用循環路20との共用部分に設けられた補助加熱用熱交換器28a、その補助加熱用熱交換器28aを加熱するバーナ28b、そのバーナ28bに燃焼用空気を供給するファン28c、補助加熱器28の運転を制御する燃焼制御部(図示省略)等を備えて構成され、その燃焼制御部により、補助加熱用熱交換器28aに供給される湯水を目標出湯温度に加熱して出湯すべく、バーナ28bへのガス燃料の供給量を調節するように構成されている。   The auxiliary heater 28 includes an auxiliary heating heat exchanger 28a provided in a shared portion of the hot water supply passage 27 with the heat source circulation path 20, a burner 28b for heating the auxiliary heating heat exchanger 28a, and the burner. 28b is configured to include a fan 28c for supplying combustion air, a combustion control unit (not shown) for controlling the operation of the auxiliary heater 28, and the like, and is supplied to the auxiliary heating heat exchanger 28a by the combustion control unit. The amount of gas fuel supplied to the burner 28b is adjusted so that the hot water is heated to the target hot water temperature and discharged.

前記冷却水循環路13は、貯湯用熱交換器24側と熱源用熱交換器25側とに分岐され、その分岐箇所に、貯湯用熱交換器24側に通流させる冷却水の流量と熱源用熱交換器25側に通流させる冷却水の流量との割合を調整する分流弁30が設けられている。
そして、分流弁30は、冷却水循環路13の冷却水の全量を貯湯用熱交換器24側に通流させたり、冷却水循環路13の冷却水の全量を熱源用熱交換器25側に通流させることもできるように構成されている。
The cooling water circulation path 13 is branched into a hot water storage heat exchanger 24 side and a heat source heat exchanger 25 side, and the flow rate of the cooling water to be passed to the hot water storage heat exchanger 24 side and the heat source use are branched at the branch points. A diversion valve 30 is provided for adjusting the ratio of the flow rate of the cooling water to be passed to the heat exchanger 25 side.
The diverter valve 30 allows the entire amount of cooling water in the cooling water circulation path 13 to flow to the hot water storage heat exchanger 24 side, or allows the entire amount of cooling water in the cooling water circulation path 13 to flow to the heat source heat exchanger 25 side. It is comprised so that it can also be made.

前記貯湯用熱交換器24においては、燃料電池1の発生熱を回収した冷却水循環路13の冷却水を通流させることにより、湯水循環路16を通流する湯水を加熱させるように構成されている。前記熱源用熱交換器25においては、燃料電池1の発生熱を回収した冷却水循環路13の冷却水を通流させることにより、熱源用循環路20を通流する熱源用湯水を加熱させるように構成されている。
前記熱媒加熱用熱交換器26においては、熱源用熱交換器25や補助加熱器28にて加熱された熱源用湯水を通流させることにより、熱媒循環路22を通流する熱媒を加熱させるように構成されている。前記熱消費端末3は、床暖房装置や浴室暖房装置などの暖房端末にて構成されている。
The hot water storage heat exchanger 24 is configured to heat the hot water flowing through the hot water circulation path 16 by passing the cooling water of the cooling water circulation path 13 that has recovered the heat generated by the fuel cell 1. Yes. In the heat source heat exchanger 25, the hot water for the heat source flowing through the heat source circulation path 20 is heated by passing the cooling water in the cooling water circulation path 13 that has recovered the heat generated by the fuel cell 1. It is configured.
In the heat exchanger 26 for heat medium heating, the heat medium flowing through the heat medium circulation path 22 is passed by flowing hot water for the heat source heated by the heat exchanger 25 for heat source or the auxiliary heater 28. It is configured to be heated. The said heat consumption terminal 3 is comprised by heating terminals, such as a floor heating apparatus and a bathroom heating apparatus.

前記給湯路27には、前記給湯先に湯水を給湯するときの給湯熱負荷を計測する給湯熱負荷計測手段31が設けられ、又、前記熱消費端末3での端末熱負荷を計測する端末熱負荷計測手段32も設けられている。尚、図示は省略するが、これら給湯熱負荷計測手段31及び端末熱負荷計測手段32は、通流する湯水や熱媒の温度を検出する温度センサと、湯水や熱媒の流量を検出する流量センサとを備えて構成され、温度センサの検出温度と流量センサの検出流量とに基づいて熱負荷を検出するように構成されている。   The hot water supply passage 27 is provided with hot water supply heat load measuring means 31 for measuring the hot water supply heat load when hot water is supplied to the hot water supply destination, and the terminal heat for measuring the terminal heat load at the heat consuming terminal 3. A load measuring means 32 is also provided. In addition, although illustration is abbreviate | omitted, these hot water supply thermal load measurement means 31 and the terminal thermal load measurement means 32 are the temperature sensor which detects the temperature of the flowing hot water and heat medium, and the flow volume which detects the flow volume of hot water and a heat medium. And a sensor, and configured to detect a thermal load based on a detected temperature of the temperature sensor and a detected flow rate of the flow sensor.

前記湯水循環路16における前記貯湯用熱交換器24よりも下流側の箇所に、前記貯湯用熱交換器24にて加熱されて貯湯槽2に供給される湯水の温度を検出する貯湯温度センサShが設けられている。
又、前記貯湯槽2には、その貯湯熱量の検出用として、貯湯槽2の上層部の上端位置の湯水の温度を検出する上端温度センサS1、貯湯槽2の上層部と中層部との境界位置の湯水の温度を検出する中間上位温度センサS2、貯湯槽2の中層部と下層部との境界位置の湯水の温度を検出する中間下位温度センサS3、及び、貯湯槽2の下層部の下端位置の湯水の温度を検出する下端温度センサS4が設けられ、更に、前記給水路29には、貯湯槽2に供給される水の給水温度を検出する給水温度センサSiが設けられている。
A hot water storage temperature sensor Sh that detects the temperature of hot water that is heated by the hot water storage heat exchanger 24 and supplied to the hot water tank 2 at a location downstream of the hot water storage heat exchanger 24 in the hot water circulation path 16. Is provided.
The hot water storage tank 2 includes an upper end temperature sensor S1 for detecting the temperature of hot water at the upper end of the upper layer portion of the hot water tank 2, and a boundary between the upper layer portion and the middle layer portion of the hot water tank 2 for detecting the amount of heat stored in the hot water tank. An intermediate upper temperature sensor S2 for detecting the temperature of hot water at the position, an intermediate lower temperature sensor S3 for detecting the temperature of hot water at the boundary between the middle layer and the lower layer of the hot water tank 2, and the lower end of the lower layer of the hot water tank 2 A lower end temperature sensor S4 for detecting the temperature of the hot water at the position is provided, and a water supply temperature sensor Si for detecting the temperature of the water supplied to the hot water tank 2 is further provided in the water supply passage 29.

前記運転制御部5による前記貯湯槽2の貯湯熱量の演算方法について、説明する。
前記上端温度センサS1、中間上位温度センサS2、中間下位温度センサS3、下端温度センサS4夫々にて検出される貯湯槽2の湯水の温度を、夫々、T1、T2、T3、T4とし、前記給水温度センサSiにて検出される給水温度をTiとし、上層部、中層部、下層部夫々の容量をV(リットル)とする。
又、前記上層部における重み係数をA1とし、前記中層部における重み係数をA2とし、前記下層部における重み係数をA3とすると、貯湯熱量(kcal)は、下記の(式1)にて演算することができる。
A method of calculating the amount of stored hot water in the hot water storage tank 2 by the operation control unit 5 will be described.
The temperatures of the hot water in the hot water tank 2 detected by the upper end temperature sensor S1, the intermediate upper temperature sensor S2, the intermediate lower temperature sensor S3, and the lower end temperature sensor S4 are T1, T2, T3, and T4, respectively. The water supply temperature detected by the temperature sensor Si is Ti, and the capacities of the upper layer portion, the middle layer portion, and the lower layer portion are V (liters).
Further, assuming that the weighting coefficient in the upper layer part is A1, the weighting coefficient in the middle layer part is A2, and the weighting coefficient in the lower layer part is A3, the stored hot water calorie (kcal) is calculated by the following (Equation 1). be able to.

貯湯熱量=(A1×T1+(1−A1)×T2−Ti)×V
+(A2×T2+(1−A2)×T3−Ti)×V
+(A3×T3+(1−A3)×T4−Ti)×V……………(式1)
Hot water storage heat amount = (A1 * T1 + (1-A1) * T2-Ti) * V
+ (A2 * T2 + (1-A2) * T3-Ti) * V
+ (A3 * T3 + (1-A3) * T4-Ti) * V (Equation 1)

重み係数A1、A2、A3は、貯湯槽2の各層における過去の温度分布データを考慮した経験値である。ここで、A1、A2、A3としては、例えば、A1=A2=0.2、A3=0.5である。A1=A2=0.2とは、上層部においては温度T2の影響が温度T1の影響よりも大きいことを示す。これは、上層部の8割の部分は温度T2に近く、2割の部分は温度T1に近いことを示す。これは、中層部においても同様である。下層部においては、温度T3とT4の影響が同じであることを示す。   The weighting factors A1, A2, A3 are empirical values considering past temperature distribution data in each layer of the hot water tank 2. Here, as A1, A2, A3, for example, A1 = A2 = 0.2 and A3 = 0.5. A1 = A2 = 0.2 indicates that the influence of the temperature T2 is larger than the influence of the temperature T1 in the upper layer portion. This indicates that 80% of the upper layer is close to the temperature T2, and 20% is close to the temperature T1. The same applies to the middle layer portion. In the lower layer part, it shows that the influence of temperature T3 and T4 is the same.

前記運転制御部5は、前記燃料電池1の運転中には前記冷却水循環ポンプ15を作動させる状態で、燃料電池1の運転を制御し、並びに、前記湯水循環ポンプ17、前記熱源用循環ポンプ21、前記熱媒循環ポンプ23、前記分流弁30及び前記熱源用断続弁40夫々の作動を制御することによって、貯湯槽2内に湯水を貯湯する貯湯運転や、熱消費端末3に熱媒を供給する熱媒供給運転を行うように構成されている。   The operation control unit 5 controls the operation of the fuel cell 1 in a state where the cooling water circulation pump 15 is operated during the operation of the fuel cell 1, and the hot water circulation pump 17 and the heat source circulation pump 21. The hot-medium storage pump 2 stores hot water in the hot-water tank 2 and supplies the heat medium to the heat-consuming terminal 3 by controlling the operation of the heat-medium circulation pump 23, the diversion valve 30 and the heat source intermittent valve 40. It is comprised so that the heat-medium supply operation to perform may be performed.

前記運転制御部5は、熱消費端末3用の端末用リモコン(図示省略)から運転の指令がされない状態では、前記貯湯運転を行い、その貯湯運転では、前記分流弁30を冷却水の全量を貯湯用熱交換器24側に通流させる状態に切り換え且つ熱源用断続弁40を閉弁した状態で、前記貯湯温度センサShの検出情報に基づいて、前記貯湯槽2に供給される湯水の温度が予め設定された目標貯湯温度(例えば60°C)になるように湯水循環量を調節すべく、前記湯水循環ポンプ17の作動を制御するように構成されている。そして、この貯湯運転により、目標貯湯温度の湯が貯湯槽2に貯湯されることになる。   The operation control unit 5 performs the hot water storage operation in a state where no operation command is given from a terminal remote controller (not shown) for the heat consuming terminal 3, and in the hot water storage operation, the diversion valve 30 is configured to reduce the total amount of cooling water. The temperature of the hot water supplied to the hot water storage tank 2 is switched to the state of flowing through the hot water storage heat exchanger 24 and the heat source intermittent valve 40 is closed based on the detection information of the hot water storage temperature sensor Sh. Is configured to control the operation of the hot water circulation pump 17 in order to adjust the hot water circulation amount so that the temperature becomes a preset target hot water storage temperature (for example, 60 ° C.). The hot water at the target hot water temperature is stored in the hot water tank 2 by this hot water storage operation.

又、前記運転制御部5は、前記端末用リモコンから運転が指令されると、前記熱媒供給運転を行い、その熱媒供給運転では、熱源用断続弁40を開弁し、熱源用循環ポンプ21を予め設定された設定回転速度で作動させる状態で、前記熱消費端末3での端末熱負荷に応じた量の冷却水を前記熱源用熱交換器25に通流させるように前記分流弁30を制御するように構成され、そのように熱媒供給運転を行う状態で、分流弁30が貯湯用熱交換器24側にも冷却水を通流させる状態に制御するときは、前述のように湯水循環ポンプ17の作動を制御して、熱媒供給運転に並行して貯湯運転を実行するように構成されている。
前記運転制御部5は、前記熱媒供給運転の実行中に前記端末用リモコンから運転の停止が指令されると、前記分流弁30を冷却水の全量を貯湯用熱交換器24側に通流させる状態に切り換え、前記熱源用断続弁40を閉弁し、前記熱源用循環ポンプ21を停止させて、前記湯水循環ポンプ17を作動させることにより、前記熱媒供給運転から前記貯湯運転に切り換えるように構成されている。
In addition, when the operation is instructed from the terminal remote controller, the operation control unit 5 performs the heat medium supply operation. In the heat medium supply operation, the heat source intermittent valve 40 is opened, and the heat source circulation pump is operated. In a state in which 21 is operated at a preset rotational speed, the flow dividing valve 30 is configured to allow an amount of cooling water corresponding to the terminal heat load at the heat consuming terminal 3 to flow to the heat source heat exchanger 25. As described above, when the diverter valve 30 is controlled to allow the cooling water to flow also to the hot water storage heat exchanger 24 side in such a state that the heat medium supply operation is performed as described above. The operation of the hot water circulation pump 17 is controlled, and the hot water storage operation is executed in parallel with the heat medium supply operation.
When the operation control unit 5 is instructed to stop the operation from the terminal remote controller during the heat medium supply operation, the operation control unit 5 causes the diverter valve 30 to pass the entire amount of cooling water to the hot water storage heat exchanger 24 side. The heat source intermittent pump 40 is closed, the heat source circulation pump 21 is stopped, and the hot water circulation pump 17 is operated to switch from the heat medium supply operation to the hot water storage operation. It is configured.

そして、前記給湯路27を通して前記貯湯槽2の湯水が給湯先に給湯されるとき、及び、前記熱媒供給運転の実行中は、前記補助加熱器28の前記燃焼制御部は、補助加熱用熱交換器28aに供給される湯水の温度が前記目標出湯温度よりも低いときは、補助加熱用熱交換器28aに供給される湯水を前記目標出湯温度に加熱して出湯すべく、前記バーナ28bへのガス燃料の供給量を調節することになる。   When the hot water in the hot water storage tank 2 is supplied to the hot water supply destination through the hot water supply passage 27 and during the execution of the heating medium supply operation, the combustion control unit of the auxiliary heater 28 generates heat for auxiliary heating. When the temperature of the hot water supplied to the exchanger 28a is lower than the target hot water temperature, the hot water supplied to the auxiliary heating heat exchanger 28a is heated to the target hot water temperature and discharged to the burner 28b. The amount of gas fuel supplied will be adjusted.

更に、前記運転制御部5は、前記貯湯運転の実行中に、前記下端温度センサS4の検出温度が予め設定した放熱作動用設定温度以上になると、貯湯槽2の底部にまで貯湯されて、貯湯槽2の貯湯量が満杯になったとして、貯湯槽2の下部から取り出した湯水がラジエータ19を通過するように循環させる状態に三方弁18を切り換えると共に、ラジエータ19を作動させて、貯湯槽2の下部から取り出した湯水をラジエータ19にて放熱させたのち、貯湯用熱交換器24を通過させて加熱して、貯湯槽2に供給するように構成されている。   Further, the operation control unit 5 stores hot water up to the bottom of the hot water tank 2 when the temperature detected by the lower end temperature sensor S4 is equal to or higher than a preset temperature for heat radiation operation during the hot water storage operation. Assuming that the amount of hot water stored in the tank 2 is full, the three-way valve 18 is switched to a state in which the hot water taken out from the lower part of the hot water tank 2 is circulated so as to pass through the radiator 19 and the radiator 19 is operated. After the hot water taken out from the lower part of the water is radiated by the radiator 19, the hot water is passed through the hot water storage heat exchanger 24, heated, and supplied to the hot water tank 2.

次に、運転制御部5による燃料電池1の運転の制御について説明する。
この運転制御部5は、時系列的な予測電力負荷及び時系列的な予測熱負荷を時系列で並ぶ運転周期毎に区分けして管理し、且つ、燃料電池1を停止することを予定する停止用期間が時系列で並ぶ運転周期のうちのいずれであるかについて管理するデータ管理処理を実行して、運転周期の開始時点毎に、そのデータ管理処理にて管理している時系列的な予測電力負荷及び時系列的な予測熱負荷に基づいて、その運転周期の運転条件を定めて燃料電池1を運転し、且つ、前記運転条件を定める運転周期に続く運転周期が前記停止用期間である場合には、前記運転条件を定める運転周期における予測電力負荷及び予測熱負荷並びに前記停止用期間の予測熱負荷に基づいて、その運転周期の運転条件を定めて燃料電池1を運転するように構成されている。
Next, control of the operation of the fuel cell 1 by the operation control unit 5 will be described.
The operation control unit 5 manages the time-series predicted power load and the time-series predicted heat load separately for each operation cycle arranged in time series, and stops the fuel cell 1 scheduled to be stopped. A data management process that manages whether the operation period is one of the operation cycles arranged in time series is performed, and for each start point of the operation cycle, a time-series prediction managed by the data management process Based on the power load and the time-series predicted thermal load, the operating condition of the operating cycle is determined to operate the fuel cell 1, and the operating cycle following the operating cycle that determines the operating condition is the stop period. In such a case, the fuel cell 1 is configured to operate based on the predicted power load and the predicted heat load in the operation cycle for determining the operation condition and the predicted heat load in the stop period. Has been .

ちなみに、前記運転周期が1日に設定され、前記停止用期間が1運転周期、即ち、1日に設定され、その停止用期間が前記ガス漏洩判定期間である30日よりも短い停止用期間設定間隔(例えば27日)毎に設定されている。   Incidentally, the operation cycle is set to one day, the stop period is set to one operation cycle, that is, one day, and the stop period is set to be shorter than 30 days which is the gas leakage determination period. It is set every interval (for example, 27 days).

説明を加えると、前記運転制御部5は、停止用期間が後続していない運転周期の開始時点では、時系列的な予測電力負荷及び時系列的な予測熱負荷に基づいて、燃料電池1を連続運転すると仮定したときの連続運転メリット、及び、燃料電池1を断続運転すると仮定したときの断続運転メリットを求めて、その求めた連続運転メリット及び断続運転メリット並びに運転形態選択条件に基づいて燃料電池1の運転形態を連続運転形態及び断続運転形態のいずれかに定めて、停止用期間が後続していない運転周期の運転条件として、その定めた運転形態にて燃料電池1を運転する条件に定めるように構成されている。
この第1実施形態では、前記運転形態選択条件が、連続運転メリット及び断続運転メリットのうち、運転メリットが高い方に対応する運転形態を燃料電池1の運転形態として定める条件に設定されている。
以下、上述のように停止用期間が後続していない運転周期の運転条件を定める処理を通常時運転条件設定処理と記載する。
In other words, the operation control unit 5 determines the fuel cell 1 based on the time-series predicted power load and the time-series predicted heat load at the start of the operation cycle where the stop period does not follow. Obtaining the continuous operation merit when assuming the continuous operation and the intermittent operation merit when assuming that the fuel cell 1 is operated intermittently, the fuel is obtained based on the obtained continuous operation merit, intermittent operation merit and operation mode selection condition. The operation mode of the battery 1 is determined as either the continuous operation mode or the intermittent operation mode, and the operation condition of the operation cycle in which the stop period does not follow is set as the condition for operating the fuel cell 1 in the determined operation mode. It is configured to determine.
In the first embodiment, the operation mode selection condition is set to a condition that determines the operation mode corresponding to the higher operation merit among the continuous operation merit and the intermittent operation merit as the operation mode of the fuel cell 1.
Hereinafter, the process for determining the operation condition of the operation cycle in which the stop period does not follow as described above is referred to as a normal operation condition setting process.

又、前記運転制御部5は、停止用期間が後続している運転周期の開始時点では、燃料電池1の異なる運転形態である複数種の停止前用の運転形態のうちで、運転条件を定める運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間の予測熱負荷に基づいて求められる運転メリットが最も高くなる停止前用の運転形態を燃料電池1の運転形態に定めて、停止用期間が後続している運転周期の運転条件として、その定めた停止前用の運転形態にて燃料電池1を運転する条件に定めるように構成されている。
つまり、停止用期間が後続している運転周期の運転条件は、運転条件を定める運転周期に続く運転周期が停止用期間である場合における運転条件に相当するものであるので、前記運転制御部5は、運転条件を定める運転周期に続く運転周期が停止用期間である場合における運転条件として、燃料電池1の異なる運転形態である複数種の停止前用の運転形態のうちで、前記運転条件を定める運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間の予測熱負荷に基づいて求められる運転メリットにて定める停止前用の運転形態にて燃料電池1を運転する条件に定めるように構成されていることになる。
Further, the operation control unit 5 determines an operation condition among a plurality of types of pre-stop operation modes that are different operation modes of the fuel cell 1 at the start of the operation cycle followed by the stop period. The operation mode for pre-stop where the operation merit obtained based on the predicted power load and predicted heat load of the operation cycle and the predicted heat load of the stop period is the highest is determined as the operation mode of the fuel cell 1, and the stop period As the operation condition of the operation cycle that follows, the fuel cell 1 is configured to operate under the determined operation mode before stopping.
That is, the operation condition of the operation cycle followed by the stop period corresponds to the operation condition in the case where the operation cycle following the operation cycle that determines the operation condition is the stop period. Is the operation condition when the operation cycle following the operation cycle that defines the operation condition is a stop period, and among the multiple types of pre-stop operation modes that are different operation modes of the fuel cell 1, the operation condition is The fuel cell 1 is configured to be operated in the pre-stop operation mode determined by the operation merit obtained based on the predicted power load and the predicted heat load of the determined operation cycle and the predicted heat load of the stop period. Will be.

更に、前記運転制御部5は、停止用期間が後続している運転周期の開始時点では、運転条件を定める運転周期の全時間帯において燃料電池1を停止させると仮定したときに、その運転条件を定める運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間の予測熱負荷に基づいて求められる運転メリットが、前記複数種の停止前用の運転形態夫々について求められる運転メリットのうちで最も高い運転メリットよりも高いときには、その停止用期間が後続している運転周期の運転条件として、その運転周期の全時間帯にわたって燃料電池1を停止させる条件に定めるように構成されている。
つまり、前記運転制御部5は、運転条件を定める運転周期に続く運転周期が前記停止用期間である場合における運転条件として、前記運転条件を定める運転周期の全時間帯において燃料電池1を停止させると仮定したときに、その運転条件を定める運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間の予測熱負荷に基づいて求められる運転メリットが、前記複数種の停止前用の運転形態夫々について求められる前記運転メリットとの対比により停止用条件を満たすときには、前記運転条件を定める運転周期の全時間帯にわたって燃料電池1を停止させる条件に定めるように構成されていることになる。ちなみに、前記停止用条件は、運転条件を定める運転周期の全時間帯において燃料電池1を停止させると仮定したときの運転メリットが、前記複数種の停止前用の運転形態夫々について求められる運転メリットのうちで最も高い運転メリットよりも高くなる条件に定められていることになる。
以下、上述のように停止用期間が後続している運転周期の運転条件を定める処理を、停止前運転条件設定処理と記載する。
Further, when the operation control unit 5 assumes that the fuel cell 1 is to be stopped at the start of the operation cycle followed by the stop period, in the entire time period of the operation cycle that determines the operation condition, the operation condition The operation merit calculated based on the predicted power load and the predicted heat load of the operation cycle and the predicted heat load of the stop period is the most among the operation merits required for each of the plurality of types of operation modes before stoppage. When it is higher than the high operation merit, the operation condition of the operation cycle followed by the stop period is set to the condition for stopping the fuel cell 1 over the entire time period of the operation cycle.
That is, the operation control unit 5 stops the fuel cell 1 in the entire time period of the operation cycle that determines the operation condition as the operation condition when the operation cycle that follows the operation cycle that determines the operation condition is the stop period. Assuming that the operation merits obtained based on the predicted power load and predicted heat load of the operation cycle that defines the operation conditions and the predicted heat load of the stop period are the operation modes for the plurality of types before the stop, respectively. When the stop condition is satisfied by comparison with the operation merit required for the above, the fuel cell 1 is configured to be stopped under the entire operation period that defines the operation condition. Incidentally, the operation merit when the stop condition is assumed that the fuel cell 1 is stopped in the entire time period of the operation cycle that defines the operation condition is required for each of the plurality of types of pre-stop operation modes. It is determined to be higher than the highest driving merit.
Hereinafter, the process for determining the operation condition of the operation cycle that is followed by the stop period as described above is referred to as a pre-stop operation condition setting process.

前記運転制御部5は、前記データ管理処理において、複数の単位時間からなる運転周期における時系列的な予測電力負荷及び時系列的な予測熱負荷を単位時間毎に区分けし、運転周期の開始時点毎に、その区分け管理している予測電力負荷及び予測熱負荷に基づいて、運転メリットを求めるように構成されている。
ちなみに、その運転周期を構成する単位時間は、1時間に設定されている。
In the data management process, the operation control unit 5 classifies a time-series predicted power load and a time-series predicted heat load in an operation cycle composed of a plurality of unit times for each unit time, and starts the operation cycle. Every time, the operation merit is obtained based on the predicted power load and the predicted heat load that are managed separately.
Incidentally, the unit time constituting the operation cycle is set to 1 hour.

以下、前記データ管理処理、前記通常時運転条件設定処理及び停止前運転条件設定処理について、説明を加える。
先ず、前記データ管理処理について説明を加える。
尚、熱負荷は、前記給湯先に湯水を給湯するときの給湯熱負荷と、前記熱消費端末3での端末熱負荷とからなる。
運転制御部5は、実電力負荷データ、実給湯熱負荷データ及び実端末熱負荷データを曜日に対応付けて単位時間毎に区分けして不揮発性のメモリ34に記憶することにより、過去の時系列的な電力負荷データ及び過去の時系列的な熱負荷データを、設定期間(例えば、運転日前の4週間)にわたって、曜日に対応付けて単位時間毎に区分けして管理するように構成されている。
Hereinafter, the data management process, the normal operation condition setting process, and the pre-stop operation condition setting process will be described.
First, the data management process will be described.
The heat load includes a hot water supply heat load when hot water is supplied to the hot water supply destination and a terminal heat load at the heat consuming terminal 3.
The operation control unit 5 stores the actual power load data, the actual hot water supply heat load data, and the actual terminal heat load data in association with the day of the week for each unit time and stores them in the non-volatile memory 34, so that the past time series The electric power load data and the past time-series heat load data are configured to be managed in a set period (for example, four weeks before the operation day) in association with the day of the week for each unit time. .

ちなみに、実電力負荷は、前記電力負荷計測手段11の計測値及び前記インバータ6の出力値に基づいて計測され、実給湯熱負荷は前記給湯熱負荷計測手段31にて計測され、実端末熱負荷は前記端末熱負荷計測手段32にて計測される。   Incidentally, the actual power load is measured based on the measured value of the power load measuring means 11 and the output value of the inverter 6, and the actual hot water supply heat load is measured by the hot water supply heat load measuring means 31, and the actual terminal heat load is measured. Is measured by the terminal thermal load measuring means 32.

そして、前記運転制御部5は、運転周期の開始時点(例えば午前3時)において、時系列的な過去電力負荷データ及び時系列的な過去熱負荷データの管理データに基づいて、連続する予測用設定回数の運転周期のうちの最初の運転周期の時系列的な予測熱負荷データ及び時系列的な予測電力負荷データ、並びに、予測用設定回数の運転周期のうちの最初の運転周期に後続する運転周期の時系列的な予測熱負荷データを夫々の運転周期の曜日を考慮した状態で求めるように構成されている。ちなみに、時系列的な予測熱負荷データは、時系列的な予測給湯熱負荷データと時系列的な予測端末熱負荷データとからなる。又、前記予測用設定回数は複数回数(例えば3回)に設定される。
尚、この第1実施形態においては、熱の負荷状態としては、前記熱消費端末3での端末熱負荷が発生しておらず、給湯熱負荷のみが発生する状態として、過去熱負荷データとしては過去給湯熱負荷データのみが含まれて、予測熱負荷データとして予測給湯熱負荷データのみが求められるとして説明する。
And the said operation control part 5 is for the continuous prediction based on the management data of the time series past electric power load data and the time series past heat load data in the start time (for example, 3:00 am) of an operation cycle. The time-series predicted thermal load data and time-series predicted power load data of the first operation cycle of the set number of operation cycles, and the first operation cycle of the set number of operation cycles for prediction follow. The time-series predicted heat load data of the operation cycle is obtained in a state where the day of each operation cycle is taken into consideration. Incidentally, the time-series predicted heat load data includes time-series predicted hot water supply heat load data and time-series predicted terminal heat load data. The set number of times for prediction is set to a plurality of times (for example, three times).
In the first embodiment, as the heat load state, the terminal heat load at the heat consuming terminal 3 is not generated, and only the hot water supply heat load is generated. It is assumed that only past hot water supply heat load data is included and only predicted hot water supply heat load data is obtained as predicted heat load data.

例えば、運転周期の開始時点において、図3や図4に示すように、予測用設定回数の運転周期のうちの最初の運転周期の予測電力負荷データ及び予測熱負荷データを単位時間毎に求め、図5に示すように、予測用設定回数の運転周期のうちの最初の運転周期に後続する運転周期(図5では、2回目の運転周期について図示)の予測熱負荷データを単位時間毎に求める。尚、図3は、運転周期の予測電力負荷及び予測熱負荷の負荷発生状態が、負荷追従連続運転形態にて燃料電池1を運転すると熱不足状態が発生する単位時間(以下、熱不足単位時間と記載する場合がある)が生じるような負荷発生状態を示す図であり、図4は、運転周期の予測電力負荷及び予測熱負荷の負荷発生状態が、負荷追従連続運転形態にて燃料電池1を運転すると熱余り状態が発生する単位時間(以下、熱余り単位時間と記載する場合がある)が生じるような負荷発生状態を示す図である。
ちなみに、予測電力負荷データの単位はkWhであり、予測給湯熱負荷データの単位はkcal/hである。尚、この実施形態では、熱量の単位をkcalにて示す場合があるが、1kWh=860kcalの関係に基づいて860に設定される係数αにて各値を除することにより、kWhの単位として求めることができる。
For example, at the start of the operation cycle, as shown in FIG. 3 and FIG. 4, the predicted power load data and the predicted heat load data of the first operation cycle among the operation cycles of the set number of predictions are obtained every unit time, As shown in FIG. 5, the predicted thermal load data of the operation cycle (shown for the second operation cycle in FIG. 5) following the first operation cycle among the operation cycles of the set number of times for prediction is obtained every unit time. . Note that FIG. 3 shows a unit time (hereinafter referred to as a heat shortage unit time) in which a shortage of heat occurs when the fuel cell 1 is operated in a load following continuous operation mode when the load generation state of the predicted power load and the predicted heat load in the operation cycle. FIG. 4 is a diagram illustrating a load generation state in which the predicted power load and the predicted heat load in the operation cycle are in the load following continuous operation mode. It is a figure which shows the load generation | occurrence | production state which the unit time (henceforth a heat excess unit time may generate | occur | produce as a heat surplus unit time) which will generate | occur | produce a surplus heat state will be produced.
Incidentally, the unit of predicted power load data is kWh, and the unit of predicted hot water supply heat load data is kcal / h. In this embodiment, the unit of heat quantity may be indicated by kcal, but it is obtained as a unit of kWh by dividing each value by a coefficient α set to 860 based on the relationship of 1 kWh = 860 kcal. be able to.

次に、前記通常時運転条件設定処理について、説明を加える。
前記連続運転形態として、予測電力負荷に対する燃料電池1の電力の出力形態を異ならせた複数種の運転形態が含まれ、前記断続運転形態として、予測電力負荷に対する燃料電池1の電力の出力形態又は燃料電池1を運転する運転時間帯を異ならせた複数種の運転形態が含まれている。
そして、前記運転制御部5が、前記連続運転メリットとして前記複数種の連続運転形態夫々についての運転メリットを求め、且つ、前記断続運転メリットとして前記複数種の断続運転形態夫々についての運転メリットを求めて、その求めた前記複数種の連続運転形態夫々についての運転メリット及び前記複数種の断続運転形態夫々についての運転メリット並びに前記運転形態選択条件に基づいて、燃料電池1の運転形態を前記複数種の連続運転形態及び前記複数種の断続運転形態のうちのいずれか1つに定めるように構成されている。
Next, the normal operation condition setting process will be described.
The continuous operation mode includes a plurality of types of operation modes in which the power output mode of the fuel cell 1 with respect to the predicted power load is different, and the intermittent operation mode includes the power output mode of the fuel cell 1 with respect to the predicted power load or A plurality of types of operation modes in which the operation time zones for operating the fuel cell 1 are different are included.
And the said operation control part 5 calculates | requires the driving merit about each of the said multiple types of continuous operation form as the said continuous driving merit, and calculates | requires the driving merit about each of the said several types of intermittent operation form as the said intermittent operation merit. Then, based on the obtained operation merit for each of the plurality of types of continuous operation modes, the operation merit for each of the plurality of types of intermittent operation modes, and the operation mode selection condition, the operation mode of the fuel cell 1 is changed to the plurality of types. It is comprised so that it may determine in any one of the continuous operation form of this, and the said multiple types of intermittent operation form.

前記連続運転形態としての複数種の運転形態が、前記運転周期の全時間帯において燃料電池1の発電出力を予測電力負荷に追従させる負荷追従連続運転形態、その負荷追従連続運転形態にて燃料電池1を運転するときに前記運転周期の複数の単位時間のうちに前記貯湯槽2の予測貯湯熱量が槽満杯貯湯熱量(設定上限量に相当する)以上になる熱余り状態が発生する単位時間が存在する場合において、前記熱余り状態の発生を抑制するように、燃料電池1の発電出力を前記予測電力負荷よりも小さな設定抑制出力とする単位時間を前記運転周期の複数の単位時間のうちに定める抑制連続運転形態、及び、前記負荷追従連続運転形態にて燃料電池1を運転するときに前記運転周期の複数の単位時間のうちに貯湯槽2の予測貯湯熱量が予測熱負荷に対して不足する熱不足状態が発生する単位時間が存在する場合において、前記熱不足状態の発生を抑制するように、燃料電池1の発電出力を前記予測電力負荷よりも大きな設定増大出力とする単位時間を前記運転周期の複数の単位時間のうちに定める強制連続運転形態である。   A plurality of types of operation modes as the continuous operation mode include a load following continuous operation mode for causing the power generation output of the fuel cell 1 to follow a predicted power load in all time periods of the operation cycle, and a fuel cell in the load following continuous operation mode. Unit time during which a heat surplus state occurs when the predicted hot water storage amount of the hot water storage tank 2 is greater than or equal to the tank full hot water storage heat amount (corresponding to the set upper limit amount) during a plurality of unit times of the operation cycle when operating 1 In the case where it exists, a unit time in which the power generation output of the fuel cell 1 is set to be a set suppression output smaller than the predicted power load is suppressed among the plurality of unit times of the operation cycle so as to suppress the occurrence of the excess heat state. When the fuel cell 1 is operated in the controlled continuous operation mode to be determined and the load following continuous operation mode, the predicted amount of stored hot water in the hot water tank 2 is predicted heat load within a plurality of unit times of the operation cycle. On the other hand, in the case where there is a unit time in which a shortage of heat shortage occurs, a unit that sets the power generation output of the fuel cell 1 to a set increase output larger than the predicted power load so as to suppress the occurrence of the heat shortage state. This is a forced continuous operation mode in which time is determined within a plurality of unit times of the operation cycle.

更に、前記抑制連続運転形態が、前記設定抑制出力とする単位時間を、前記熱余り状態が発生する単位時間よりも以前の単位時間のうちで、最も運転メリットが高くなる単位時間に定めるものであり、前記強制連続運転形態が、前記設定増大出力とする単位時間を、前記熱不足状態が発生する単位時間よりも以前の単位時間のうちで、最も運転メリットが高くなる単位時間に定めるものである。   Further, the suppression continuous operation mode determines the unit time to be the set suppression output as the unit time in which the operation merit is the highest among the unit times before the unit time in which the excess heat state occurs. Yes, the forced continuous operation mode determines the unit time for the set increase output as the unit time in which the operation merit is the highest among the unit times before the unit time when the heat shortage occurs. is there.

前記断続運転形態の複数種の運転形態が、燃料電池1の発電出力を前記予測電力負荷に追従させる単位時間を、前記運転時間帯として、前記運転周期の複数の単位時間のうちで最も運転メリットが高くなる単位時間に定める負荷追従断続運転形態、燃料電池1の発電出力を前記予測電力負荷よりも小さな設定抑制出力に調節する単位時間を、前記運転時間帯として、前記運転周期の複数の単位時間のうちで最も運転メリットが高くなる単位時間に定める抑制断続運転形態、及び、燃料電池1の発電出力を前記予測電力負荷よりも大きな設定増大出力に調節する単位時間を、前記運転時間帯として、前記運転周期の複数の単位時間のうちで最も運転メリットが高くなる単位時間に定める強制断続運転形態である。   The plurality of types of operation modes of the intermittent operation mode have the unit operation time following the predicted power load as the unit time for causing the power generation output of the fuel cell 1 to follow the operation time zone. Load follow-up intermittent operation mode that is set to a unit time in which the power becomes high, unit time for adjusting the power generation output of the fuel cell 1 to a setting suppression output smaller than the predicted power load, and a plurality of units of the operation cycle as the operation time zone The controlled intermittent operation mode that is set to the unit time in which the driving merit becomes the highest among the time, and the unit time for adjusting the power generation output of the fuel cell 1 to the set increase output that is larger than the predicted power load are set as the operation time zone. This is a forced intermittent operation mode determined at a unit time in which the driving merit is highest among a plurality of unit times of the operation cycle.

更に、前記負荷追従断続運転形態として、燃料電池1の発電出力を前記予測電力負荷に追従させる単位時間を、運転条件を定める前記運転周期における予測電力負荷及び予測熱負荷に基づく運転メリットが最も高くなる単位時間に定める単周期対応型の負荷追従断続運転形態と、燃料電池1の発電出力を前記予測電力負荷に追従させる単位時間を、運転条件を定める前記運転周期における予測電力負荷及び予測熱負荷並びに後続する運転周期における予測熱負荷に基づく運転メリットが最も高くなる単位時間に定める複数周期対応型の負荷追従断続運転形態とが含まれる。
前記抑制断続運転形態として、燃料電池1の発電出力を前記設定抑制出力に調節する単位時間を、運転条件を定める前記運転周期における予測電力負荷及び予測熱負荷に基づく運転メリットが最も高くなる単位時間に定める単周期対応型の抑制断続運転形態と、燃料電池1の発電出力を前記設定抑制出力に調節する単位時間を、運転条件を定める前記運転周期における予測電力負荷及び予測熱負荷並びに後続する運転周期における予測熱負荷に基づく運転メリットが最も高くなる単位時間に定める複数周期対応型の抑制断続運転形態とが含まれる。
前記強制断続運転形態として、燃料電池1の発電出力を前記設定増大出力に調節する単位時間を、運転条件を定める前記運転周期における予測電力負荷及び予測熱負荷に基づく運転メリットが最も高くなる単位時間に定める単周期対応型の強制断続運転形態と、燃料電池1の発電出力を前記設定増大出力に調節する単位時間を、運転条件を定める前記運転周期における予測電力負荷及び予測熱負荷並びに後続する運転周期における予測熱負荷に基づく運転メリットが最も高くなる単位時間に定める複数周期対応型の強制断続運転形態とが含まれる。
Further, as the load following intermittent operation mode, the operation merit based on the predicted power load and the predicted heat load in the operation cycle in which the unit time for causing the power generation output of the fuel cell 1 to follow the predicted power load is determined in the operation cycle is the highest. A single-cycle-compatible load following intermittent operation mode determined in unit time, and a unit time for causing the power generation output of the fuel cell 1 to follow the predicted power load. In addition, a load following intermittent operation mode corresponding to a plurality of cycles, which is defined as a unit time in which the operation merit based on the predicted thermal load in the subsequent operation cycle is the highest, is included.
As the suppression intermittent operation mode, the unit time for adjusting the power generation output of the fuel cell 1 to the set suppression output is the unit time in which the operation merit based on the predicted power load and the predicted heat load in the operation cycle that defines the operation conditions is the highest. The single cycle-compatible suppression intermittent operation mode and the unit time for adjusting the power generation output of the fuel cell 1 to the set suppression output, the predicted power load and the predicted heat load in the operation cycle that determines the operating conditions, and the subsequent operation And a multi-cycle compatible intermittent intermittent operation mode that is set to a unit time in which the operation merit based on the predicted heat load in the cycle is the highest.
As the forced intermittent operation mode, the unit time for adjusting the power generation output of the fuel cell 1 to the set increased output is the unit time in which the operation merit based on the predicted power load and the predicted heat load in the operation cycle that defines the operation conditions is the highest. The single cycle-compatible forced intermittent operation mode and the unit time for adjusting the power generation output of the fuel cell 1 to the set increased output, the predicted power load and the predicted heat load in the operation cycle for determining the operating conditions, and the subsequent operation And a forced cycle operation mode corresponding to a plurality of cycles defined in a unit time in which the operation merit based on the predicted heat load in the cycle is the highest.

この第1実施形態では、運転周期が1日に設定されるので、負荷追従断続運転形態、抑制断続運転形態及び強制断続運転形態夫々の単周期対応型を1日対応型と記載する。又、負荷追従断続運転形態、抑制断続運転形態及び強制断続運転形態夫々の複数周期対応型としては、後続する運転周期が1回の2日対応型のものと、後続する運転周期が2回の3日対応型のものとが含まれる。   In the first embodiment, since the operation cycle is set to one day, the single cycle correspondence type of each of the load following intermittent operation mode, the suppression intermittent operation mode, and the forced intermittent operation mode is described as a one-day correspondence type. In addition, the load following intermittent operation mode, the suppression intermittent operation mode, and the forced intermittent operation mode, each of which corresponds to a plurality of cycles, is a two-day response type in which the subsequent operation cycle is one time, and a subsequent operation cycle is two times. 3 day compatible type is included.

以下、前記通常時運転条件設定処理において、連続運転メリット及び断続運転メリットを求める運転メリット演算処理について説明する。
この第1実施形態では、前記運転メリットとして、燃料電池1を運転することにより得られると予測される予測エネルギ削減量を求める。
Hereinafter, an operation merit calculation process for obtaining a continuous operation merit and an intermittent operation merit in the normal operation condition setting process will be described.
In the first embodiment, as the operation merit, a predicted energy reduction amount predicted to be obtained by operating the fuel cell 1 is obtained.

図3及び図4に示すように、前記運転制御部5は、運転周期の開始時点において、その運転周期において負荷追従連続運転形態を行うと仮定して、運転周期の複数の単位時間夫々について、予測電力負荷に追従する燃料電池1の予測発電出力、燃料電池1の予測熱出力、貯湯槽2に湯により貯えられると予測される熱量(以下、予測貯湯熱量と記載する場合がある)、貯湯槽2の予測貯湯熱量が予測給湯熱負荷に対して不足する予測不足熱量、貯湯槽2の予測貯湯熱量が槽満杯貯湯熱量以上になってラジエータ19にて放熱される熱量(以下、予測余り熱量と記載する場合がある)、各単位時間から予測不足熱量が0よりも大きい単位時間(即ち、熱不足単位時間)まで又は予測余り熱量が0よりも大きい単位時間(即ち、熱余り単位時間)までの時間である放熱時間を求めるように構成されている。
尚、予測貯湯熱量、予測不足熱量、予測余り熱量は、夫々、各単位時間の終了時点での熱量を示す。又、この第1実施形態では、予測熱負荷は、各単位時間の開始時点に発生し、予測熱出力は予測熱負荷が発生した後に出力されるものとしている。
As shown in FIG. 3 and FIG. 4, the operation control unit 5 assumes that the load follow continuous operation mode is performed in the operation cycle at the start of the operation cycle, and for each of a plurality of unit times of the operation cycle, The predicted power output of the fuel cell 1 following the predicted power load, the predicted heat output of the fuel cell 1, the amount of heat predicted to be stored by hot water in the hot water tank 2 (hereinafter sometimes referred to as predicted hot water storage amount), hot water storage Predicted insufficient heat quantity that the predicted hot water storage capacity of the tank 2 is insufficient with respect to the predicted hot water supply heat load, and the amount of heat radiated by the radiator 19 when the predicted hot water storage capacity of the hot water storage tank 2 exceeds the full hot water storage heat capacity (hereinafter, the predicted excess heat quantity) From the unit time to the unit time when the predicted insufficient heat quantity is greater than 0 (ie, the heat insufficient unit time) or the unit time when the predicted residual heat quantity is greater than 0 (ie, the excess heat unit time) Is configured to determine the heat radiation time is the time at.
Note that the predicted hot water storage amount, the predicted insufficient heat amount, and the predicted surplus heat amount indicate the amount of heat at the end of each unit time, respectively. In the first embodiment, the predicted heat load is generated at the start time of each unit time, and the predicted heat output is output after the predicted heat load is generated.

そして、運転制御部5は、前記熱余り単位時間が存在する場合は、前記連続運転メリットとしての連続運転形態の予測エネルギ削減量として、負荷追従連続運転形態の予測エネルギ削減量、及び、抑制連続運転形態の予測エネルギ削減量を求め、前記熱不足単位時間が存在する場合は、前記連続運転メリットとしての連続運転形態の予測エネルギ削減量として、負荷追従連続運転形態の予測エネルギ削減量、及び、強制連続運転形態の予測エネルギ削減量を求める。
又、運転制御部5は、前記断続運転メリットとしての断続運転形態の予測エネルギ削減量として、負荷追従断続運転形態、抑制断続運転形態及び強制断続運転形態夫々について、1日対応型、2日対応型、3日対応型夫々の運転形態の予測エネルギ削減量を求める。
And when the said heat | fever surplus unit time exists, the driving | operation control part 5 is the predicted energy reduction amount of a load follow-up continuous driving | running mode as a predicted energy reduction amount of the continuous driving | running mode as said continuous driving | running advantage, Obtaining the predicted energy reduction amount of the operation mode, and when the heat shortage unit time exists, as the predicted energy reduction amount of the continuous operation mode as the continuous operation merit, the predicted energy reduction amount of the load following continuous operation mode, and The amount of predicted energy reduction in the forced continuous operation mode is obtained.
In addition, the operation control unit 5 uses a one-day response type, a two-day response type for each of the load following intermittent operation mode, the suppression intermittent operation mode, and the forced intermittent operation mode as the predicted energy reduction amount of the intermittent operation mode as the merit of the intermittent operation. The amount of predicted energy reduction for each type of driving mode is calculated.

先ず、前述の予測発電出力、予測熱出力、予測貯湯熱量、予測不足熱量及び予測余り熱量夫々の求め方について、説明を加える。
運転周期の複数の単位時間夫々の予測発電出力(kW)は、予測電力負荷が燃料電池1の最小出力(例えば0.3kW)以上且つ最大出力(例えば1.0kW)以下の範囲のときは予測電力負荷に設定され、予測電力負荷が燃料電池1の最小出力よりも小さいときはその最小出力に設定され、予測電力負荷が燃料電池1の最大出力よりも大きいときはその最大出力に設定される。
運転周期の複数の単位時間夫々の予測熱出力(kcal/h)は、下記の式2にて求められる。
First, a description will be given of how to obtain the predicted power generation output, predicted heat output, predicted hot water storage amount, predicted insufficient heat amount, and predicted residual heat amount.
The predicted power generation output (kW) for each of the plurality of unit times of the operation cycle is predicted when the predicted power load is in the range of the minimum output (eg, 0.3 kW) or more and the maximum output (eg, 1.0 kW) of the fuel cell 1. When the predicted power load is smaller than the minimum output of the fuel cell 1, the minimum output is set. When the predicted power load is larger than the maximum output of the fuel cell 1, the maximum output is set. .
The predicted heat output (kcal / h) for each of a plurality of unit times of the operation cycle is obtained by the following equation 2.

予測熱出力=α×{(予測発電出力÷電池発電効率)×電池熱効率}+余剰電力×α×β−ベース放熱量……………(式2)   Predicted heat output = α × {(predicted power output ÷ battery power generation efficiency) × battery heat efficiency} + surplus power × α × β−base heat dissipation amount (Equation 2)

但し、余剰電力は、予測発電出力が予測電力負荷よりも大きい場合に、予測発電出力から予測電力負荷を減じることにより求められる。
例えば、予測電力負荷が燃料電池1の最小出力よりも小さいときは、余剰電力は、燃料電池1の最小出力から予測電力負荷を減じることにより求められる。又、詳細は後述するが、燃料電池1の発電出力を予測電力負荷に追従する電主出力よりも大きい設定増大出力に設定するときは、余剰電力は、その設定増大出力から予測電力負荷を減じることにより求められる。
αは、上述したように860に設定される係数である。
βは、電気ヒータ12にて余剰電力(kWh)を熱(kWh)に変換するときの効率であるヒータ効率であり、例えば、0.9に設定される。
電池発電効率は、燃料電池1における単位エネルギ消費量(kWh)に対する発電出力(kWh)の比率を示し、電池熱効率は、燃料電池1における単位エネルギ消費量(kWh)に対する発生熱量(kWh)の比率を示し、これら電池発電効率及び電池熱効率は発電出力に応じて変動するものであり、予め、図6に示すように、発電出力に応じて設定されて前記メモリ34に記憶されている。そして、運転制御部5は、その電池発電効率及び電池熱効率の記憶情報から予測発電出力に応じた電池発電効率及び電池熱効率を求めるように構成されている。
ベース放熱量は、このコージェネレーションシステムにおいて、熱電併給装置1の発生熱量のうち、貯湯槽2への貯湯及び熱消費端末3による暖房に用いられることなく放熱される熱量であり、例えば50kcal/hに設定されて、メモリ34に記憶されている。
However, surplus power is obtained by subtracting the predicted power load from the predicted power output when the predicted power output is larger than the predicted power load.
For example, when the predicted power load is smaller than the minimum output of the fuel cell 1, the surplus power is obtained by subtracting the predicted power load from the minimum output of the fuel cell 1. Further, as will be described in detail later, when the power generation output of the fuel cell 1 is set to a setting increase output larger than the main output that follows the predicted power load, the surplus power subtracts the predicted power load from the set increase output. Is required.
α is a coefficient set to 860 as described above.
β is a heater efficiency that is an efficiency when the electric heater 12 converts surplus power (kWh) into heat (kWh), and is set to 0.9, for example.
The battery power generation efficiency indicates the ratio of the power generation output (kWh) to the unit energy consumption (kWh) in the fuel cell 1, and the battery thermal efficiency is the ratio of the generated heat amount (kWh) to the unit energy consumption (kWh) in the fuel cell 1. The battery power generation efficiency and the battery thermal efficiency fluctuate according to the power generation output, and are preset according to the power generation output and stored in the memory 34 as shown in FIG. And the operation control part 5 is comprised so that the battery power generation efficiency and battery thermal efficiency according to the prediction power generation output may be calculated | required from the memory | storage information of the battery power generation efficiency and battery thermal efficiency.
In this cogeneration system, the base heat release amount is the amount of heat radiated without being used for hot water storage in the hot water storage tank 2 and heating by the heat consuming terminal 3 among the generated heat amount of the combined heat and power supply device 1, for example, 50 kcal / h And stored in the memory 34.

各単位時間の予測貯湯熱量(kcal/h)、予測不足熱量(kcal/h)、予測余り熱量(kcal/h)は、それぞれ、下記の式3、式4、式5にて求められる。
但し、各式において、添え字「n」は、運転周期における単位時間の順序を示し、例えば、n=1のときは、運転周期の1番目の単位時間を示す。
ちなみに、予測貯湯熱量n-1は、n=1のときには予測貯湯熱量0となり、この予測貯湯熱量0は、運転周期の開始時点(即ち、初期)の予測貯湯熱量であり、前記上端温度センサS1、前記中間上位温度センサS2、前記中間下位温度センサS3、前記下端温度センサS4及び前記給水温度センサSi夫々の検出温度に基づいて、上記の式1により求められる。
The predicted hot water storage amount (kcal / h), predicted insufficient heat amount (kcal / h), and predicted excess heat amount (kcal / h) for each unit time are obtained by the following equations 3, 4, and 5, respectively.
However, in each equation, the subscript “n” indicates the order of unit times in the operation cycle. For example, when n = 1, it indicates the first unit time in the operation cycle.
By the way, the predicted hot water storage amount n-1 becomes 0 when the predicted hot water storage amount is n = 1, and this predicted hot water storage heat amount 0 is the predicted hot water storage amount at the start of the operation cycle (that is, the initial stage), and the upper end temperature sensor S1. Based on the detected temperatures of the intermediate upper temperature sensor S2, the intermediate lower temperature sensor S3, the lower end temperature sensor S4, and the feed water temperature sensor Si, the above equation 1 is used.

予測貯湯熱量n=(予測貯湯熱量n-1−予測熱負荷n+予測熱出力n)×(1−槽放熱率)……………(式3)
予測不足熱量=予測熱負荷n−予測貯湯熱量n-1……………(式4)
予測余り熱量=(予測貯湯熱量n-1−予測熱負荷n+予測熱出力n)×(1−槽放熱率)−槽満杯貯湯熱量……………(式5)
Predicted hot water storage amount n = (Predicted hot water storage amount n-1 -Predicted heat load n + Predicted heat output n ) x (1-tank heat dissipation rate) (Equation 3)
Predicted insufficient heat quantity = Predicted heat load n -Predicted hot water quantity of heat n-1 …………… (Formula 4)
Predicted excess heat amount = (Predicted hot water storage amount n-1 -Predicted heat load n + Predicted heat output n ) x (1-tank heat dissipation rate)-Full tank heat storage amount of heat ... (Equation 5)

但し、予測貯湯熱量nの最大値は、貯湯槽2の貯湯量が満杯になったときに貯湯槽2に蓄える熱量である槽満杯貯湯熱量以下に規制され、その槽満杯貯湯熱量は、例えば、貯湯槽2の貯湯温度、貯湯槽2への給水温度及び貯湯槽2の容量から求められる。ちなみに、前記貯湯温度は、上端温度センサS1、中間上位温度センサS2、中間下位温度センサS3及び下端温度センサS4夫々の検出温度のうち前記放熱作動用設定温度(例えば45°C)以上のものの平均値とされ、前記給水温度は、給水温度センサSiにて検出される給水温度の平均値とされる。
槽放熱率は、貯湯槽2からの放熱率であり、例えば、0.012に予め設定されて、前記メモリ34に記憶されている。
又、前記式4にて求められた予測不足熱量が負の値のときは、予測不足熱量を0とし、前記式5にて求められた予測余り熱量が負の値のときは、予測余り熱量を0とする。
However, the maximum value of the predicted hot water storage amount n is regulated to be equal to or less than the tank full hot water storage amount, which is the amount of heat stored in the hot water tank 2 when the hot water storage amount of the hot water storage tank 2 is full. It is obtained from the hot water storage temperature of the hot water tank 2, the temperature of the hot water supplied to the hot water tank 2, and the capacity of the hot water tank 2. Incidentally, the hot water storage temperature is an average of the detected temperatures of the upper end temperature sensor S1, the intermediate upper temperature sensor S2, the intermediate lower temperature sensor S3, and the lower end temperature sensor S4 that are equal to or higher than the set temperature for heat radiation operation (eg, 45 ° C.) The water supply temperature is an average value of the water supply temperatures detected by the water supply temperature sensor Si.
The tank heat dissipation rate is a heat dissipation rate from the hot water storage tank 2, and is preset to 0.012, for example, and stored in the memory 34.
Further, when the predicted insufficient heat amount obtained by the equation 4 is a negative value, the predicted insufficient heat amount is set to 0, and when the predicted residual heat amount obtained by the equation 5 is a negative value, the predicted residual heat amount. Is set to 0.

各運転形態の予測エネルギ削減量は、下記の式6に示すように、燃料電池1を運転しない場合のエネルギ消費量から、燃料電池1を各運転形態にて運転した場合のエネルギ消費量を減じることにより演算する。   The predicted energy reduction amount in each operation mode is obtained by subtracting the energy consumption amount when the fuel cell 1 is operated in each operation mode from the energy consumption amount when the fuel cell 1 is not operated as shown in Equation 6 below. To calculate.

予測エネルギ削減量P=燃料電池1を運転しない場合のエネルギ消費量E1−燃料電池1を運転した場合のエネルギ消費量E2……………(式6)   Predicted energy reduction amount P = energy consumption amount E1 when the fuel cell 1 is not operated E1-energy consumption amount E2 when the fuel cell 1 is operated (formula 6)

前記燃料電池1を運転しない場合のエネルギ消費量E1(kWh)は、下記の式7に示すように、最初の運転周期の予測電力負荷の全てを商用電源7からの受電電力で補う場合の商用電源7におけるエネルギ消費量と、最初の運転周期の予測熱負荷の全てを補助加熱器28の発生熱で補う場合のエネルギ消費量との和として求められる。
つまり、どの運転形態の予測エネルギ削減量を求める場合でも、燃料電池1を運転しない場合のエネルギ消費量E1は、同様に求められる。
The energy consumption E1 (kWh) when the fuel cell 1 is not operated is the commercial power when the predicted power load of the first operation cycle is supplemented with the received power from the commercial power supply 7 as shown in the following formula 7. It is obtained as the sum of the energy consumption amount at the power source 7 and the energy consumption amount when all of the predicted heat load of the first operation cycle is supplemented with the heat generated by the auxiliary heater 28.
In other words, the energy consumption E1 in the case where the fuel cell 1 is not operated is obtained in the same manner regardless of the expected energy reduction amount in any operation mode.

E1=予測電力負荷/商用電源発電効率+予測熱負荷/補助加熱器熱効率……………(式7)
但し、予測熱負荷はkWhに変換した値である。
E1 = predicted power load / commercial power generation efficiency + predicted heat load / auxiliary heater thermal efficiency (Equation 7)
However, the predicted heat load is a value converted into kWh.

一方、燃料電池1を運転した場合のエネルギ消費量E2(kWh)は、下記の式8に示すように、最初の運転周期の予測電力負荷及び予測熱負荷を燃料電池1の予測発電出力及び予測熱出力で補う場合の燃料電池1の消費エネルギである運転周期エネルギ消費量と、予測電力負荷から予測発電出力を差し引いた分に相当する予測不足電力量の全てを商用電源7からの受電電力で補う場合の商用電源7におけるエネルギ消費量と、予測不足熱量の全てを補助加熱器28の発生熱で補う場合のエネルギ消費量との和にて求められる。   On the other hand, the energy consumption E2 (kWh) when the fuel cell 1 is operated is calculated by using the predicted power load and the predicted heat load in the first operation cycle as the predicted power output and the predicted power output of the fuel cell 1, as shown in the following Equation 8. The operating cycle energy consumption, which is the energy consumed by the fuel cell 1 when supplemented with heat output, and the predicted shortage power corresponding to the predicted power load minus the predicted power output are all received power from the commercial power source 7. The amount of energy consumed in the commercial power source 7 when supplemented and the amount of energy consumed when all of the predicted insufficient heat amount is supplemented with the heat generated by the auxiliary heater 28 are obtained.

E2=運転周期エネルギ消費量+予測不足電力量/商用電源発電効率+予測不足熱量/補助加熱器熱効率……………(式8)
但し、予測不足熱量はkWhに変換した値である。
E2 = Operating cycle energy consumption + predicted insufficient energy / commercial power generation efficiency + predicted insufficient heat / auxiliary heater thermal efficiency (Equation 8)
However, the predicted insufficient heat quantity is a value converted into kWh.

但し、
商用電源発電効率:商用電源7における単位エネルギ消費量(kWh)に対する発電出力(kWh)の比率であり、例えば、0.366に設定される。
補助加熱器熱効率:補助加熱器28における単位エネルギ消費量(kWh又はkcal)に対する発生熱量(kWh又はkcal)の比率であり、例えば0.7に設定される。
However,
Commercial power generation efficiency: The ratio of the power generation output (kWh) to the unit energy consumption (kWh) in the commercial power supply 7, and is set to 0.366, for example.
Auxiliary heater thermal efficiency: the ratio of the generated heat quantity (kWh or kcal) to the unit energy consumption (kWh or kcal) in the auxiliary heater 28, for example, set to 0.7.

運転周期エネルギ消費量は、下記の式9にて、各運転形態において燃料電池1を運転する単位時間のエネルギ消費量を求めて、その求めた単位時間のエネルギ消費量を積算することにより求める。   The operation period energy consumption is obtained by calculating the energy consumption per unit time for operating the fuel cell 1 in each operation mode, and integrating the obtained unit time energy consumption using the following Equation 9.

エネルギ消費量=(発電出力÷電池発電効率)……………(式9)   Energy consumption = (power generation output ÷ battery power generation efficiency) ......... (Formula 9)

尚、燃料電池1を運転した場合のエネルギ消費量E2を求めるに当たって、運転周期内で燃料電池1を起動させるときは、その燃料電池1を起動させるときに消費する起動時消費エネルギを加え、運転周期内で燃料電池1を停止させる場合は、その燃料電池1を停止させるときに消費する停止時消費エネルギを加えることになる。
ちなみに、前記起動時消費エネルギは、前記燃料ガス生成部を構成する改質器、変成器等を夫々における処理が可能なように設定された温度にウオームアップするのに要するエネルギを含むものであり、又、停止時消費エネルギは、燃料電池1を停止させる際に燃料ガス生成部のガス通流経路にパージガス(原燃料ガス又は不活性ガス)をパージする際に要するエネルギ、具体的には、ファン、ポンプ、バルブ等を駆動するエネルギを含むものである。燃料電池1の起動時消費エネルギ及び停止時消費エネルギは、燃料電池1固有のものである。そして、それら起動時消費エネルギ及び停止時消費エネルギは、予め、実験等により求められてメモリ34に記憶されている。例えば、起動時消費エネルギは1900Whに、停止時消費エネルギは200Whに夫々設定されている。
In determining the energy consumption amount E2 when the fuel cell 1 is operated, when starting the fuel cell 1 within the operation cycle, the start-up energy consumption consumed when starting the fuel cell 1 is added to the operation. When the fuel cell 1 is stopped within the cycle, energy consumption at the time of stop consumed when the fuel cell 1 is stopped is added.
Incidentally, the startup energy consumption includes energy required to warm up the reformer, the transformer, and the like that constitute the fuel gas generation unit to a temperature set so that each of them can be processed. In addition, the energy consumption at the time of stop is the energy required when purging purge gas (raw fuel gas or inert gas) into the gas flow path of the fuel gas generator when the fuel cell 1 is stopped, specifically, It includes energy to drive fans, pumps, valves and the like. The start-up energy consumption and stop-time energy consumption of the fuel cell 1 are unique to the fuel cell 1. The start-up energy consumption and stop-time energy consumption are obtained in advance by experiments or the like and stored in the memory 34. For example, the starting energy consumption is set to 1900 Wh, and the stopping energy consumption is set to 200 Wh.

先ず、複数種の連続運転形態夫々の予測エネルギ削減量の求め方について説明する。
負荷追従連続運転形態の予測エネルギ削減量は、以下のようにして求める。
各単位時間のエネルギ消費量を前記式9により発電出力を電主出力として求め、求めた各単位時間のエネルギ消費量を積算することにより、運転周期エネルギ消費量を求め、その運転周期エネルギ消費量に基づいて、式8により、燃料電池1を運転した場合のエネルギ消費量E2を求める。
そして、そのように求めた燃料電池1を運転した場合のエネルギ消費量E2と式7により求めた燃料電池1を運転しない場合のエネルギ消費量E1とに基づいて、式6により、予測エネルギ削減量Pを求める。
First, how to obtain the predicted energy reduction amount for each of the multiple types of continuous operation modes will be described.
The predicted energy reduction amount in the load following continuous operation mode is obtained as follows.
The energy consumption amount of each unit time is obtained as the main output by the above formula 9, and the operation period energy consumption amount is obtained by integrating the obtained energy consumption amounts of each unit time. Based on the above, an energy consumption amount E2 when the fuel cell 1 is operated is obtained by Expression 8.
Then, based on the energy consumption amount E2 when the fuel cell 1 obtained as described above is operated and the energy consumption amount E1 obtained when the fuel cell 1 is not operated obtained by Equation 7, the predicted energy reduction amount is obtained by Equation 6. Find P.

強制連続運転形態の予測エネルギ削減量は、以下のようにして求める。
先ず、熱不足単位時間(熱不足単位時間が複数存在するときは、運転周期の開始時点に最も近いもの)よりも以前の各単位時間について、増大出力設定条件に基づいて、予測電力負荷よりも大きな設定増大出力を設定する。
そして、燃料電池1の発電出力を前記設定増大出力とする単位時間を、運転周期における前記熱不足単位時間よりも以前の単位時間のうちで、最も予測エネルギ削減量が大きくなる単位時間に定めたときの予測エネルギ削減量を強制連続運転形態の予測エネルギ削減量として求める。
The predicted energy reduction amount in the forced continuous operation mode is obtained as follows.
First, for each unit time prior to the heat shortage unit time (when there are multiple heat shortage unit times, the one closest to the start point of the operation cycle), the predicted power load is greater than the predicted power load. Set a large set increase output.
Then, the unit time in which the power generation output of the fuel cell 1 is the set increase output is set to the unit time in which the predicted energy reduction amount is the largest among the unit times before the heat shortage unit time in the operation cycle. Is calculated as the predicted energy reduction amount of the forced continuous operation mode.

この強制連続運転形態の予測エネルギ削減量の求め方について、説明を加える。
先ず、前記設定増大出力の設定の仕方について、説明を加える。
前記増大出力設定条件は、燃料電池1の発電出力を電主出力よりも大きくすることによるメリットを評価するための増大時メリット評価用指標がメリットが得られる値として求められる電力に設定増大出力を設定する条件としてある。
具体的には、図3に示すように、熱不足単位時間(17番目の単位時間)よりも以前の各単位時間について、電主出力よりも大きい仮設定増大出力を、段階的に(例えば、0.1kW間隔)で設定して、各仮設定増大出力について、下記の式10にて増大時メリット評価用指標を求める。そして、熱不足単位時間よりも以前の各単位時間について、増大時メリット評価用指標がメリットが得られる値として求められる仮設定増大出力のうちの電力が最大のものを設定増大出力に設定する。
A description will be given of how to obtain the predicted energy reduction amount in this forced continuous operation mode.
First, a description will be given of how to set the setting increase output.
The increased output setting condition is that an increased merit evaluation index for evaluating the merit of making the power generation output of the fuel cell 1 larger than the main output is a set increased output for the power required as a value that can obtain the merit. It is a condition to set.
Specifically, as shown in FIG. 3, for each unit time before the heat shortage unit time (17th unit time), a temporarily set increased output larger than the main output is gradually increased (for example, 0.1 kW interval), and for each temporarily set increase output, an increase merit evaluation index is obtained by the following formula 10. Then, for each unit time prior to the heat shortage unit time, the one with the largest power among the temporarily set increase outputs obtained as the value for obtaining the merit for the increase merit evaluation index is set as the set increase output.

増大時メリット評価用指標={(増大出力時有効貯湯熱量−電主出力時有効貯湯熱量)÷補助加熱器熱効率−(増大出力時エネルギ消費量−電主出力時エネルギ消費量)}÷(増大出力時有効貯湯熱量−電主出力時有効貯湯熱量)……………(式10)   Index for merit evaluation at the time of increase = {(Effective amount of hot water stored during increased output-Effective amount of stored hot water during main output) ÷ Auxiliary heater thermal efficiency-(Energy consumption during increased output-Energy consumption during main output)} ÷ (Increase Effective amount of stored hot water at output-Effective amount of stored hot water at main output) ………… (Formula 10)

増大出力時有効貯湯熱量は、単位時間において燃料電池1の発電出力を電主出力よりも大きくすることにより得られる熱量から熱不足単位時間までの貯湯槽2からの放熱量を減じた熱量であり、下記の式11にて、発電出力として仮設定増大出力を代入して求める。
又、電主出力時有効貯湯熱量は、単位時間において燃料電池1の発電出力を電主出力に調節することにより得られる熱量から熱不足単位時間までの貯湯槽2からの放熱量を減じた熱量であり、下記の式11にて、発電出力として電主出力を代入して求める。
The effective amount of stored hot water at the time of increased output is the amount of heat obtained by subtracting the amount of heat released from the hot water storage tank 2 from the amount of heat obtained by making the power generation output of the fuel cell 1 larger than the main output in unit time until the unit time when heat is insufficient. Then, the following equation 11 is used to obtain the temporarily set increased output as the power generation output.
Also, the effective hot water storage amount at the time of main output is the amount of heat obtained by adjusting the power generation output of the fuel cell 1 to the main output per unit time to the amount of heat released from the hot water storage tank 2 until the heat shortage unit time. It is obtained by substituting the main output as the power generation output by the following formula 11.

有効貯湯熱量=〔α×{(発電出力÷電池発電効率)×電池熱効率}+余剰電力×α×β−ベース放熱量〕×(1−槽放熱率)t……………(式11)
但し、tは放熱時間である。
Effective amount of stored hot water = [α × {(power generation output ÷ battery power generation efficiency) × battery heat efficiency} + surplus power × α × β−base heat dissipation amount) × (1−tank heat dissipation rate) t (Equation 11)
Where t is the heat dissipation time.

増大出力時エネルギ消費量は、燃料電池1の発電出力を仮設定増大出力に調節したときの燃料電池1のエネルギ消費量であり、前記式9にて、発電出力として仮設定増大出力を代入して求めた値をkcalに変換し、電主出力時エネルギ消費量は、燃料電池1の発電出力を電主出力に調節したときの燃料電池1のエネルギ消費量であり、前記式9にて、発電出力として電主出力を代入して求めた値をkcalに変換する。   The energy consumption amount at the time of increased output is the energy consumption amount of the fuel cell 1 when the power generation output of the fuel cell 1 is adjusted to the temporarily set increased output. The energy consumption amount at the time of main output is the energy consumption amount of the fuel cell 1 when the power generation output of the fuel cell 1 is adjusted to the main output. A value obtained by substituting the main output as the power generation output is converted into kcal.

前記式10の分子において、「(増大出力時有効貯湯熱量−電主出力時有効貯湯熱量)÷補助加熱器熱効率」は、燃料電池1の発電出力を電主出力よりも大きくすることにより増加する有効貯湯熱量を補助加熱器28の発生熱量で得るとすると必要となるエネルギ量を示すものであり、メリットとなるエネルギ量を示すものである。
又、前記式10の分子において、「(増大出力時エネルギ消費量−電主出力時エネルギ消費量)」は、燃料電池1の発電出力を電主出力よりも大きくすることにより増加する燃料電池1におけるエネルギ消費量を示すものであり、ディメリットとなるエネルギ量を示すものである。
つまり、前記式10の分子の「(増大出力時有効貯湯熱量−電主出力時有効貯湯熱量)÷補助加熱器熱効率−(増大出力時エネルギ消費量−電主出力時エネルギ消費量)」は、正の値として求められると、燃料電池1の発電出力を電主出力よりも大きくすることによりメリットが得られることを意味し、その値が大きくなるほどメリットが大きいことを意味する。
In the numerator of Equation 10, “(Effective hot water storage amount at increased output−Effective hot water storage amount at main output) ÷ Auxiliary heater thermal efficiency” increases by making the power generation output of the fuel cell 1 larger than the main output. If the effective amount of stored hot water is obtained by the amount of heat generated by the auxiliary heater 28, this indicates the amount of energy that is required, and the amount of energy that is a merit.
In addition, in the numerator of the equation 10, “(energy consumption at increased output−energy consumption at main output)” increases by making the power generation output of the fuel cell 1 larger than the main output. It shows the amount of energy consumed, and shows the amount of energy that is a demerit.
That is, “(Effective hot water storage amount at the time of increased output−Effective hot water storage amount at the time of main output) ÷ Auxiliary heater thermal efficiency− (Energy consumption at the time of increase output−Energy consumption at the time of main output)” of the numerator of the formula 10 is When obtained as a positive value, it means that a merit can be obtained by making the power generation output of the fuel cell 1 larger than the main output, and the greater the value, the greater the merit.

前記式10の分母の「増大出力時有効貯湯熱量−電主出力時有効貯湯熱量」は、燃料電池1の発電出力を電主出力よりも大きくすることにより増加する有効貯湯熱量を示すものであって、正の値として求められる。
つまり、前記式10にて求められる増大時メリット評価用指標が正の値のときは、燃料電池1の発電出力を電主出力よりも大きくすることによりメリットが得られることを意味し、その値が大きくなるほどメリットが大きいことを意味する。
"Effective hot water storage amount at the time of increased output-effective hot water storage amount at the time of main power output" in the denominator of the equation 10 indicates an effective hot water storage amount that is increased by making the power generation output of the fuel cell 1 larger than the main power output. Is obtained as a positive value.
That is, when the increase merit evaluation index obtained by Equation 10 is a positive value, it means that the merit can be obtained by making the power generation output of the fuel cell 1 larger than the main power output. The larger the value, the greater the merit.

図3では、17番目の単位時間が最も運転周期の開始時点に近い熱不足単位時間であるので、17番目の単位時間よりも以前の各単位時間について、設定増大出力を設定することになる。
例えば、1番目の単位時間については、電主出力が0.3kWであるので、仮設定増大出力として、0.4kW,0.5kW,0.6kW,0.7kW,0.8kW,0.9kW,1.0kWを設定し、夫々の仮設定増大出力について増大時メリット評価用指標を求める。
仮設定増大出力が0.4kW,0.5kW,0.6kW,0.7kW,0.8kWについては、増大時メリット評価用指標が正の値として求められ、仮設定増大出力が0.9kW,1.0kWについては、増大時メリット評価用指標が負の値として求められるので、設定増大出力としては、仮設定増大出力のうち、増大時メリット評価用指標が正の値で且つ電力が最大の仮設定増大出力、即ち、0.8kWに設定する。
In FIG. 3, since the 17th unit time is the heat shortage unit time closest to the start point of the operation cycle, the setting increase output is set for each unit time before the 17th unit time.
For example, for the first unit time, since the main output is 0.3 kW, the temporarily set increased output is 0.4 kW, 0.5 kW, 0.6 kW, 0.7 kW, 0.8 kW, 0.9 kW. , 1.0 kW, and an increase merit evaluation index for each temporarily set increase output.
For the temporary increase output of 0.4 kW, 0.5 kW, 0.6 kW, 0.7 kW, and 0.8 kW, the increase merit evaluation index is obtained as a positive value, and the temporary increase increase output is 0.9 kW, For 1.0 kW, the merit evaluation index at the time of increase is obtained as a negative value. Therefore, as the setting increase output, the merit evaluation index at the time of increase has a positive value and the power is the maximum among the temporarily increased output Temporary setting increase output, that is, 0.8 kW is set.

ちなみに、6番目の単位時間については、仮設定増大出力として0.9kW,1.0kWを設定するが、いずれの仮設定増大出力についても、増大時メリット評価用指標が負の値として求められるので、設定増大出力は設定しない。   By the way, for the sixth unit time, 0.9 kW and 1.0 kW are set as the temporary set increase output, but the increase merit evaluation index is obtained as a negative value for any temporarily set increase output. The setting increase output is not set.

続いて、熱不足単位時間よりも以前に1つ又は連続する複数の単位時間からなる時間帯を発電出力を設定増大出力に調節する強制運転用時間帯とする強制運転用の仮運転パターンを全て形成する。
つまり、運転周期における複数の単位時間のうちの熱不足単位時間よりも以前の複数の単位時間のうちで、選択した1つ又は連続する複数の単位時間を強制運転用時間帯とし且つ運転周期の残りの単位時間を発電出力を電主出力に調節する電主運転用時間帯とする形態で、前記強制運転用時間帯として選択する単位時間を異ならせることにより、強制運転用の仮運転パターンを全て形成する。ちなみに、強制運転用時間帯が設定増大出力の設定されていない単位時間のみで形成される仮運転パターンは、強制運転用の仮運転パターンから除外する。
Subsequently, all the temporary operation patterns for forced operation in which the time zone composed of one or a plurality of continuous unit times before the heat shortage unit time is set to the forced operation time zone for adjusting the power generation output to the set increased output Form.
That is, among the plurality of unit times before the heat shortage unit time among the plurality of unit times in the operation cycle, the selected one or a plurality of continuous unit times are set as the forced operation time zone and the operation cycle By changing the unit time to be selected as the forced operation time zone in the form of the main operation time zone for adjusting the power generation output to the main output as the remaining unit time, the temporary operation pattern for forced operation is changed. Form all. Incidentally, the temporary operation pattern formed only in the unit time in which the time zone for forced operation is not set to the increased setting output is excluded from the temporary operation pattern for forced operation.

例えば、図3に示すように、17番目の単位時間(単位時間17)が熱不足単位時間である場合、図7に示すように、単位時間1から強制運転用時間帯とするパターンとして、単位時間1を強制運転用時間帯とするパターン1や、単位時間1,2を強制運転用時間帯とするパターン2、単位時間1,2,3を強制運転用時間帯とするパターン3・・・単位時間1〜16を強制運転用時間帯とするパターン16の16種類がある。また、単位時間2から強制運転用時間帯とするパターンとして、この単位時間2を強制運転用時間帯とするパターン17、単位時間2,3を強制運転用時間帯とするパターン18・・・単位時間2〜16を強制運転用時間帯とするパターン31の15種類がある。このように、熱不足単位時間17の直前の単位時間16を強制運転用時間帯とするパターン136までの136種類のパターンのうち、強制運転用時間帯が設定増大出力の設定されていない単位時間のみで形成されるパターン、例えば、単位時間6,7を強制運転用時間帯とするパターン71等を除外したパターンを、強制運転用の仮運転パターンとする。   For example, as shown in FIG. 3, when the 17th unit time (unit time 17) is a heat shortage unit time, as shown in FIG. Pattern 1 with time 1 for forced operation, Pattern 2 with unit time 1, 2 for forced operation, Pattern 3 with unit time 1, 2, 3 for forced operation There are 16 types of patterns 16 in which the unit time 1 to 16 is a time zone for forced operation. Further, as a pattern from the unit time 2 to the forced operation time zone, a pattern 17 having the unit time 2 as the forced operation time zone, a pattern 18 having the unit times 2 and 3 as the forced operation time zone, 18 units. There are fifteen types of patterns 31 in which time 2 to 16 is a time zone for forced operation. As described above, among the 136 types of patterns up to the pattern 136 in which the unit time 16 immediately before the heat shortage unit time 17 is the forced operation time zone, the unit time in which the forced operation time zone is not set to the set increase output. A pattern formed only by the above, for example, a pattern excluding the pattern 71 in which the unit times 6 and 7 are the time zone for forced operation is excluded as a temporary operation pattern for forced operation.

そして、全ての強制運転用の仮運転パターン夫々について、前記式6〜式8に基づいて予測エネルギ削減量Pを求め、更に、運転周期の強制運転用時間帯の単位時間では発電出力を設定増大出力に調節し且つ電主運転用時間帯の単位時間では発電出力を電主出力に調節する状態で燃料電池1を運転すると仮定して、各単位時間について、予測熱出力、予測貯湯熱量、予測不足熱量、予測余り熱量を求める。
尚、強制運転用時間帯の単位時間のエネルギ消費量を前記式9により発電出力を設定増大出力として求め、電主運転用時間帯の単位時間のエネルギ消費量を前記式9により発電出力を電主出力として求めて、求めた各単位時間のエネルギ消費量を積算することにより、運転周期エネルギ消費量を求め、その運転周期エネルギ消費量に基づいて、式8により、燃料電池1を運転した場合のエネルギ消費量E2を求めることになる。
Then, for each of the temporary operation patterns for forced operation, the predicted energy reduction amount P is obtained based on the equations 6 to 8, and the power generation output is increased in the unit time of the forced operation time zone of the operation cycle. Assuming that the fuel cell 1 is operated in a state where the output is adjusted and the power generation output is adjusted to the main output in the unit time of the main operation time zone, the predicted heat output, the predicted hot water storage amount, the prediction for each unit time Find the amount of heat shortage and surplus heat.
It should be noted that the energy consumption per unit time in the forced operation time zone is obtained as a set power increase output by the above formula 9, and the power consumption output per unit time in the main operation time zone is calculated by the above formula 9. When the operating cycle energy consumption is obtained by accumulating the obtained energy consumption for each unit time as the main output, and the fuel cell 1 is operated according to Equation 8 based on the operating cycle energy consumption The energy consumption amount E2 is obtained.

続いて、全ての強制運転用の仮運転パターンのうちで熱余り単位時間が生ぜず且つ予測エネルギ削減量が最も高い強制運転用の仮運転パターンを求め、その求めた仮運転パターンにおいて熱不足単位時間が生じない場合は、その強制運転用の仮運転パターンを強制連続運転形態の運転パターンに定め、その強制運転用の仮運転パターンの予測エネルギ削減量を強制連続運転形態の予測エネルギ削減量として求める。   Subsequently, a temporary operation pattern for forced operation that has the highest predicted energy reduction amount and does not generate excess heat unit time among all the temporary operation patterns for forced operation is obtained. When time does not occur, the temporary operation pattern for forced operation is set as the operation pattern of the forced continuous operation mode, and the predicted energy reduction amount of the temporary operation pattern for forced operation is set as the predicted energy reduction amount of the forced continuous operation mode. Ask.

尚、熱余り単位時間が生ぜず且つ予測エネルギ削減量が最も高い強制運転用の仮運転パターンにおいて、未だ、熱不足単位時間が生じるときは、上述のように、熱不足単位時間よりも以前の各単位時間について設定増大出力を設定して、熱余り単位時間が生ぜず且つ最も予測エネルギ削減量が高い強制運転用の仮運転パターンを求めることにより、強制連続運転形態の運転パターンを設定すると共に強制連続運転形態の予測エネルギ削減量を求める処理を、熱不足単位時間が生じなくなるまで繰り返すことになる。
但し、既に発電出力を設定増大出力に調節すると定められている強制運転設定済みの単位時間については予測発電出力を設定増大出力とする状態で、強制運転設定済みの単位時間以外の単位時間について設定増大出力を設定して、上述の処理を実行する。つまり、強制運転用単位時間が強制運転設定済みの単位時間のみで形成される仮運転パターンは、強制運転用の仮運転パターンから除外することになる。
In addition, in the temporary operation pattern for forced operation in which the excess heat unit time does not occur and the predicted energy reduction amount is the highest, when the heat shortage unit time still occurs, as described above, the previous heat shortage unit time is reached. While setting the set increase output for each unit time, and determining the temporary operation pattern for forced operation with the highest predicted energy reduction amount without generating excess heat unit time, the operation pattern of forced continuous operation mode is set The process of obtaining the predicted energy reduction amount in the forced continuous operation mode is repeated until the heat shortage unit time does not occur.
However, for the unit time that has already been set to forced operation set to adjust the power generation output to the set increase output, set the unit time other than the unit time that has been set for forced operation with the predicted power generation output set to the set increase output. The increased output is set and the above process is executed. That is, the temporary operation pattern formed only by the unit time for which the forced operation unit time has been set as the forced operation is excluded from the temporary operation pattern for forced operation.

抑制連続運転形態の予測エネルギ削減量は、以下のようにして求める。
先ず、熱余り単位時間(熱余り単位時間が複数存在するときは、運転周期の開始時点に最も近いもの)よりも以前の各単位時間について、抑制出力設定条件に基づいて、予測電力負荷よりも小さな設定抑制出力を設定する。
そして、燃料電池1の発電出力を前記設定抑制出力とする単位時間を、運転周期における前記熱余り単位時間よりも以前の単位時間のうちで、最も予測エネルギ削減量が大きくなる単位時間に定めたときの予測エネルギ削減量を抑制連続運転形態の予測エネルギ削減量として求める。
The predicted energy reduction amount in the suppressed continuous operation mode is obtained as follows.
First, for each unit time before the heat surplus unit time (when there are multiple heat surplus unit times, the one closest to the start point of the operation cycle), based on the suppression output setting condition, Set a small setting suppression output.
The unit time for setting the power generation output of the fuel cell 1 as the setting suppression output is set to the unit time in which the predicted energy reduction amount is the largest among the unit times before the heat surplus unit time in the operation cycle. The predicted energy reduction amount at the time is obtained as the predicted energy reduction amount in the suppressed continuous operation mode.

この抑制連続運転形態の予測エネルギ削減量の求め方について、説明を加える。
先ず、前記設定抑制出力の設定の仕方について、説明を加える。
前記抑制出力設定条件は、燃料電池1の発電出力を電主出力よりも小さくすることによるメリットを評価するための抑制時メリット評価用指標がメリットが得られる値として求められる電力に設定抑制出力を設定する条件としてある。
具体的には、図4に示すように、熱余り単位時間(17番目の単位時間)よりも以前の各単位時間について、電主出力よりも小さい仮設定抑制出力を、段階的に(例えば、0.1kW間隔)で設定して、各仮設定抑制出力について、下記の式12にて抑制時メリット評価用指標を求める。そして、熱余り単位時間よりも以前の各単位時間について、抑制時メリット評価用指標がメリットが得られる値として求められる仮設定抑制出力のうちの電力が最小のものを設定抑制出力に設定する。
A description will be given of how to obtain the predicted energy reduction amount in this suppressed continuous operation mode.
First, how to set the setting suppression output will be described.
The suppression output setting condition is that the suppression output is set to the power required as a value for which the merit evaluation index for suppression for evaluating the merit by making the power generation output of the fuel cell 1 smaller than the main output is obtained as a merit. It is a condition to set.
Specifically, as shown in FIG. 4, for each unit time before the heat surplus unit time (17th unit time), a temporary setting suppression output smaller than the main output is gradually increased (for example, 0.1 kW interval), and for each temporary setting suppression output, the index for merit evaluation during suppression is obtained by the following formula 12. Then, for each unit time prior to the heat surplus unit time, the temporary setting suppression output that is obtained as a value at which the merit evaluation index during suppression is obtained as a merit is set to the setting suppression output.

抑制時メリット評価用指標={(電主出力時エネルギ消費量−抑制出力時エネルギ消費量)−α×(抑制出力時不足電力量−電主出力時不足電力量)÷商用電源発電効率}÷(抑制出力時有効貯湯熱量−電主出力時有効貯湯熱量)……………(式12)   Indicator for merit evaluation during suppression = {(energy consumption during main output-energy consumption during suppression output)-α x (shortage power during suppression output-shortage power during main output) ÷ commercial power generation efficiency} ÷ (Effective amount of stored hot water at the time of restraint output-Effective amount of stored hot water at the time of main output) ………… (Formula 12)

電主出力時エネルギ消費量は、上述した強制連続運転形態の予測エネルギ削減量を求める場合と同様に求め、抑制出力時エネルギ消費量は、燃料電池1の発電出力を仮設定抑制出力に調節したときの燃料電池1のエネルギ消費量であり、前記式9にて、発電出力として仮設定抑制出力を代入して求めた値をkcalに変換する。   The energy consumption at the time of main output is obtained in the same manner as the case of obtaining the predicted energy reduction amount in the forced continuous operation mode described above, and the energy consumption at the time of restraint output is adjusted to the power generation output of the fuel cell 1 to the temporarily set restraint output. The energy consumption amount of the fuel cell 1 at the time, and the value obtained by substituting the temporarily set suppression output as the power generation output in the above equation 9 is converted to kcal.

電主出力時不足電力量は、燃料電池1の発電出力を電主出力に調節したときに予測電力負荷に対して不足する電力量であり、下記の式13にて、発電出力として電主出力を代入して求め、抑制出力時不足電力量は、燃料電池1の発電出力を仮設定抑制出力に調節したときに予測電力負荷に対して不足する電力量であり、下記の式13にて、発電出力として仮設定抑制出力を代入して求める。但し、電主出力時不足電力量及び抑制出力時不足電力量は、いずれも、0よりも小さい値として求められたときは0とする。   The power shortage at the time of the main output is the amount of power that is insufficient with respect to the predicted power load when the power generation output of the fuel cell 1 is adjusted to the main power output. Substituting and determining, the insufficient power amount at the suppression output is the amount of power that is insufficient with respect to the predicted power load when the power generation output of the fuel cell 1 is adjusted to the temporarily set suppression output. This is obtained by substituting the temporarily set suppression output as the power generation output. However, the power shortage at the time of main output and the power shortage at the time of suppressed output are both 0 when determined as a value smaller than 0.

不足電力量=予測電力負荷−発電出力……………(式13)   Insufficient power amount = predicted power load-power generation output ...

電主出力時有効貯湯熱量は、上述した強制連続運転形態の予測エネルギ削減量を求める場合と同様に求め、抑制出力時有効貯湯熱量は、単位時間において燃料電池1の発電出力を電主出力よりも小さくすることにより得られる熱量から熱余り単位時間までの貯湯槽2からの放熱量を減じた熱量であり、前記式11にて、発電出力として仮設定抑制出力を代入して求める。   The effective hot water storage amount at the time of main power output is obtained in the same manner as the case of obtaining the predicted energy reduction amount in the above-described forced continuous operation mode. Is the amount of heat obtained by subtracting the amount of heat dissipated from the hot water tank 2 from the amount of heat obtained by reducing the heat amount to the unit time of excess heat.

前記式12の分子において、「(電主出力時エネルギ消費量−抑制出力時エネルギ消費量)」は、燃料電池1の発電出力を電主出力よりも小さくすることにより減少する燃料電池1におけるエネルギ消費量を示すものであり、メリットとなるエネルギ量を示すものである。
又、燃料電池1の発電出力を電主出力よりも小さくすることにより、その燃料電池1の発電出力が予測電力負荷に対して不足する不足電力量が増加することになり、前記式12の分子において、「(抑制出力時不足電力量−電主出力時不足電力量)×α÷商用電源発電効率」は、燃料電池1の発電出力を電主出力よりも小さくすることにより増加する不足電力量を商用電源7にて得るとすると必要となるエネルギ量を示すものであり、ディメリットとなるエネルギ量を示すものである。
つまり、前記式12の「(電主出力時エネルギ消費量−抑制出力時エネルギ消費量)−(抑制出力時不足電力量−電主出力時不足電力量)×α÷商用電源発電効率」は、正の値として求められると、燃料電池1の発電出力を電主出力よりも小さくすることによりメリットが得られることを意味し、その値が大きくなるほどメリットが大きいことを意味する。
In the numerator of Equation 12, “(energy consumption at power output−energy consumption at restraint output)” is energy in the fuel cell 1 that decreases by making the power generation output of the fuel cell 1 smaller than the power output. This indicates the amount of consumption, and the amount of energy that is a merit.
Further, by making the power generation output of the fuel cell 1 smaller than the main power output, the amount of power shortage that the power generation output of the fuel cell 1 is insufficient with respect to the predicted power load increases. "(Insufficient power at the time of suppression output-Insufficient power at the time of main output) x α ÷ Commercial power generation efficiency" Is obtained by the commercial power supply 7, and indicates the amount of energy required, which indicates a demerit.
That is, “(energy consumption amount at main output−energy consumption amount at suppression output) − (insufficient power amount at suppression output−insufficient power amount at main output) × α ÷ commercial power generation efficiency” When obtained as a positive value, it means that a merit can be obtained by making the power generation output of the fuel cell 1 smaller than the main output, and the greater the value, the greater the merit.

前記式12の分母の「抑制出力時有効貯湯熱量−電主出力時有効貯湯熱量」は、燃料電池1の発電出力を電主出力よりも小さくすることにより減少する有効貯湯熱量を示すものであって、負の値として求められる。
つまり、前記式12にて求められる抑制時メリット評価用指標が負の値のときは、燃料電池1の発電出力を電主出力よりも小さくすることによりメリットが得られることを意味し、その絶対値が大きくなるほどメリットが大きいことを意味する。
“Effective hot water storage amount during suppression output−effective hot water storage amount during main output” in the denominator of Equation 12 indicates the effective hot water storage amount that is reduced by making the power generation output of the fuel cell 1 smaller than the main output. Is obtained as a negative value.
In other words, when the suppression merit evaluation index obtained by Equation 12 is a negative value, it means that the merit can be obtained by making the power generation output of the fuel cell 1 smaller than the main output, and its absolute The larger the value, the greater the merit.

図4では、17番目の単位時間が最も運転周期の開始時点に近い熱余り単位時間であるので、17番目の単位時間よりも以前の各単位時間について、設定抑制出力を設定することになる。
例えば、3番目の単位時間については、電主出力が0.6kWであるので、仮設定抑制出力として、0.5kW,0.4kW,0.3kWを設定し、夫々の仮設定抑制出力について抑制時メリット評価用指標を求める。
仮設定抑制出力が0.5kW,0.4kW,0.3kWの全てについて、抑制時メリット評価用指標が負の値として求められるので、設定抑制出力としては、仮設定抑制出力のうち、抑制時メリット評価用指標が負の値で且つ電力が最小の仮抑制出力、即ち、0.3kWを設定する。
In FIG. 4, since the 17th unit time is the heat excess unit time closest to the start point of the operation cycle, the setting suppression output is set for each unit time before the 17th unit time.
For example, for the third unit time, since the main output is 0.6 kW, 0.5 kW, 0.4 kW, and 0.3 kW are set as temporary setting suppression outputs, and each temporary setting suppression output is suppressed. Find the time merit evaluation index.
Since the temporary merit evaluation output is calculated as a negative value for all of 0.5 kW, 0.4 kW, and 0.3 kW, the setting suppression output includes the temporary setting suppression output during suppression. A temporary suppression output having a negative merit evaluation index and a minimum power, that is, 0.3 kW is set.

ちなみに、2番目の単位時間については、仮設定抑制出力として0.4kW,0.3kWを設定するが、いずれの仮設定抑制出力についても、抑制時メリット評価用指標が正の値として求められるので、設定抑制出力は設定しない。   Incidentally, for the second unit time, 0.4 kW and 0.3 kW are set as temporary setting suppression outputs, but the suppression merit evaluation index is obtained as a positive value for any temporary setting suppression output. Setting suppression output is not set.

続いて、熱余り単位時間よりも以前に1つ又は連続する複数の単位時間からなる時間帯を発電出力を設定抑制出力に調節する抑制運転用時間帯とする抑制運転用の仮運転パターンを全て形成する。
つまり、運転周期における複数の単位時間のうちの熱余り単位時間よりも以前の複数の単位時間のうちで、選択した1つ又は連続する複数の単位時間を抑制運転用時間帯とし且つ運転周期の残りの単位時間を発電出力を電主出力に調節する電主運転用時間帯とする形態で、前記抑制運転用時間帯として選択する単位時間を異ならせることにより、抑制運転用の仮運転パターンを全て形成する。ちなみに、抑制運転用時間帯が設定抑制出力の設定されていない単位時間のみで形成される仮運転パターンは、抑制運転用の仮運転パターンから除外する。
Subsequently, all the temporary operation patterns for the suppression operation are set to the suppression operation time zone in which the power generation output is adjusted to the set suppression output in the time zone consisting of one or a plurality of continuous unit times before the heat surplus unit time. Form.
That is, among the plurality of unit times before the heat surplus unit time in the plurality of unit times in the operation cycle, the selected one or a plurality of continuous unit times are set as the suppression operation time zone and the operation cycle By setting the remaining unit time as the main operation time zone for adjusting the power generation output to the main output, the temporary operation pattern for the suppression operation can be changed by changing the unit time selected as the suppression operation time zone. Form all. Incidentally, the temporary operation pattern formed only by the unit time for which the set suppression output is not set in the suppression operation time zone is excluded from the temporary operation pattern for the suppression operation.

例えば、図4に示すように、17番目の単位時間(単位時間17)が熱余り単位時間である場合、上述した強制運転用の仮運転パターンを形成するのと同様に、図7に示す如き136種類のパターンのうち、抑制運転用時間帯が設定抑制出力の設定されていない単位時間のみで形成されるパターン、例えば、単位時間1,2を抑制運転用時間帯とするパターン2等を除外したパターンを、抑制運転用の仮運転パターンとする。   For example, as shown in FIG. 4, when the 17th unit time (unit time 17) is a surplus heat unit time, as shown in FIG. 7, the provisional operation pattern for forced operation is formed as described above. Of the 136 types of patterns, the pattern that is formed only by the unit time for which the suppression operation time zone is not set to the set suppression output, for example, the pattern 2 that uses the unit time 1 and 2 as the suppression operation time zone is excluded. This pattern is used as a temporary operation pattern for restraining operation.

そして、全ての抑制運転用の仮運転パターン夫々について、前記式6〜式8に基づいて予測エネルギ削減量Pを求め、更に、運転周期の抑制運転用時間帯の単位時間では発電出力を設定抑制出力に調節し且つ電主運転用時間帯の単位時間では発電出力を電主出力に調節する状態で燃料電池1を運転すると仮定して、各単位時間について、予測熱出力、予測貯湯熱量、予測不足熱量、予測余り熱量を求める。
尚、抑制運転用時間帯の単位時間のエネルギ消費量は前記式9により発電出力を設定抑制出力として求め、電主運転用時間帯の単位時間のエネルギ消費量は前記式9により発電出力を電主出力として求めて、求めた各単位時間のエネルギ消費量を積算することにより、運転周期エネルギ消費量を求め、その運転周期エネルギ消費量に基づいて、式8により、燃料電池1を運転した場合のエネルギ消費量E2を求めることになる。
Then, for each of the temporary operation patterns for the suppression operation, the predicted energy reduction amount P is obtained based on the above formulas 6 to 8, and further, the power generation output is set and suppressed in the unit time of the suppression operation time zone of the operation cycle. Assuming that the fuel cell 1 is operated with the power output adjusted to the main output during the unit time in the main operation time zone, the predicted heat output, the predicted hot water storage amount, the prediction for each unit time Find the amount of heat shortage and the amount of excess heat.
The energy consumption per unit time in the suppression operation time zone is obtained as a set suppression output by the above formula 9, and the energy consumption per unit time in the main operation time zone is calculated from the power generation output by the above formula 9. When the operating cycle energy consumption is obtained by calculating the main output and integrating the obtained energy consumption for each unit time, and the fuel cell 1 is operated according to Equation 8 based on the operating cycle energy consumption The energy consumption amount E2 is obtained.

続いて、全ての抑制運転用の仮運転パターンのうちで熱不足単位時間が生ぜず且つ予測エネルギ削減量が最も高い抑制運転用の仮運転パターンを求め、その求めた仮運転パターンにおいて熱余り単位時間が生じない場合は、その抑制運転用の仮運転パターンを抑制連続運転形態の運転パターンに定め、その抑制運転用の仮運転パターンの予測エネルギ削減量を抑制連続運転形態の予測エネルギ削減量として求める。   Subsequently, a temporary operation pattern for suppression operation that does not generate heat shortage unit time and has the highest predicted energy reduction amount among all temporary operation patterns for suppression operation is obtained, and a unit of heat surplus is obtained in the calculated temporary operation pattern. If time does not occur, the temporary operation pattern for the suppression operation is set as the operation pattern of the suppression continuous operation mode, and the predicted energy reduction amount of the temporary operation pattern for the suppression operation is set as the predicted energy reduction amount of the suppression continuous operation mode. Ask.

尚、熱不足単位時間が生ぜず且つ予測エネルギ削減量が最も高い抑制運転用の仮運転パターンにおいて、未だ、熱余り単位時間が生じるときは、上述のように、熱余り単位時間よりも以前の各単位時間について設定抑制出力を設定して、熱不足単位時間が生ぜず且つ最も予測エネルギ削減量が高い抑制運転用の仮運転パターンを求めることにより、抑制連続運転形態の運転パターンを設定すると共に抑制連続運転形態の予測エネルギ削減量を求める処理を、熱余り単位時間が生じなくなるまで繰り返すことになる。
但し、既に発電出力を設定抑制出力に調節すると定められている抑制運転設定済みの単位時間については予測発電出力を設定抑制出力とする状態で、抑制運転設定済みの単位時間以外の単位時間について設定抑制出力を設定して、上述の処理を実行する。つまり、抑制運転用単位時間が抑制運転設定済みの単位時間のみで形成される仮運転パターンは、抑制運転用の仮運転パターンから除外することになる。
In addition, in the temporary operation pattern for restraint operation in which the shortage of heat unit time does not occur and the predicted energy reduction amount is the highest, when the heat surplus unit time still occurs, as described above, the heat surplus unit time is earlier. While setting the set suppression output for each unit time, and determining the temporary operation pattern for the suppression operation that does not produce heat shortage unit time and has the highest predicted energy reduction amount, the operation pattern of the suppression continuous operation mode is set The process for obtaining the predicted energy reduction amount in the suppressed continuous operation mode is repeated until no unit time for heat generation occurs.
However, for the unit time that has already been set to suppress operation that is set to adjust the power generation output to the set suppression output, set the unit time other than the unit time that has been set for suppression operation in the state where the predicted power output is set to the set suppression output. The suppression output is set and the above-described processing is executed. That is, the temporary operation pattern formed only by the unit time for which the suppression operation unit time has been set for the suppression operation is excluded from the temporary operation pattern for the suppression operation.

以下、複数種の断続運転形態夫々の予測エネルギ削減量の求め方について説明する。
図8に示すように、1つ又は連続する複数の単位時間からなる運転時間帯を1つ設定する断続運転用の仮運転パターンの全てがメモリ34に記憶されている。
つまり、運転周期の複数の単位時間のうちで、選択した1つ又は連続する複数の単位時間を前記運転時間帯を構成する単位時間とし且つ運転周期の残りの単位時間を燃料電池1を停止する停止時間帯を構成する単位時間とする形態で、前記運転時間帯を構成する単位時間として選択する単位時間を異ならせることにより、全ての断続運転用の仮運転パターンが形成される。
Hereinafter, how to obtain the predicted energy reduction amount for each of the multiple types of intermittent operation modes will be described.
As shown in FIG. 8, all of the temporary operation patterns for intermittent operation for setting one operation time zone composed of one or a plurality of continuous unit times are stored in the memory 34.
That is, among the plurality of unit times of the operation cycle, the selected one or a plurality of continuous unit times are set as unit times constituting the operation time zone, and the remaining unit time of the operation cycle is stopped. By changing the unit time selected as the unit time constituting the operation time zone in the form of the unit time constituting the stop time zone, all the temporary operation patterns for intermittent operation are formed.

例えば、単位時間1から運転を開始させるパターンとして、単位時間1を運転時間帯とするパターン1や、単位時間1,2を運転時間帯とするパターン2、単位時間1,2,3を運転時間帯とするパターン3・・・単位時間1〜24を運転時間帯とするパターン24の24種類がある。また、単位時間2から運転開始させるパターンとして、この単位時間2を運転時間帯とするパターン25、単位時間2,3を運転時間帯とするパターン26・・・単位時間2〜24を運転時間帯とするパターン47の23種類がある。このように、運転周期の最後の単位時間24を運転時間帯とするパターン300まで、断続運転用の仮運転パターンは、パターン1からパターン300までの300種類のものがある。   For example, as a pattern for starting operation from unit time 1, pattern 1 with unit time 1 as the operation time zone, pattern 2 with unit time 1, 2 as the operation time zone, and unit times 1, 2, and 3 as the operation time There are 24 types of patterns 24 in which the unit time 1 to 24 is an operation time zone. Further, as a pattern for starting operation from unit time 2, pattern 25 using unit time 2 as an operation time zone, pattern 26 using unit times 2 and 3 as an operation time zone, and so on. There are 23 types of patterns 47. As described above, there are 300 types of temporary operation patterns for the intermittent operation from the pattern 1 to the pattern 300 up to the pattern 300 in which the last unit time 24 of the operation cycle is the operation time zone.

又、運転周期の複数の単位時間夫々について、増大出力設定条件に基づいて予測電力負荷よりも大きな設定増大出力を設定し、抑制出力設定条件に基づいて予測電力負荷よりも小さな設定抑制出力を設定する。
前記増大出力設定条件は、電主出力よりも大きい複数段階の仮設定出力、及び、前記燃料電池1の発電出力を仮設定出力に調節したときに燃料電池1から発生する出力増大時発生熱量に基づいて、出力増大時発生熱量が最大の仮設定出力を設定増大出力に設定する条件としてある。
又、前記抑制出力設定条件は、電主出力よりも小さい複数段階の仮設定出力、及び、仮設定出力を燃料電池1にて得る場合と商用電源7にて得る場合とのエネルギ消費量の差である出力抑制時発電用エネルギ量差に基づいて、出力抑制時発電用エネルギ量差が最小の仮設定出力を設定抑制出力に設定する条件としてある。
Also, for each of a plurality of unit times of the operation cycle, a setting increase output larger than the predicted power load is set based on the increase output setting condition, and a setting suppression output smaller than the prediction power load is set based on the suppression output setting condition To do.
The increased output setting condition includes a plurality of temporarily set outputs that are larger than the main output, and the amount of heat generated when the output is increased when the power generation output of the fuel cell 1 is adjusted to the temporarily set output. Based on this, the provisionally set output having the maximum generated heat amount at the time of increasing output is set as the set increased output.
The suppression output setting condition includes a plurality of temporary setting outputs smaller than the main output, and a difference in energy consumption between when the temporary setting output is obtained by the fuel cell 1 and when the commercial power supply 7 is obtained. This is a condition for setting the temporarily set output with the smallest power generation energy amount difference during output suppression as the setting suppression output based on the power generation energy amount difference during output suppression.

前記設定増大出力及び前記設定抑制出力の設定方法について、説明を加える。
図9に示すように、増大出力設定用又は抑制出力設定用の仮設定出力を段階的(例えば、0.05kW間隔)に設定し、各仮設定出力について、前記出力増大時発生熱量(kW)を下記の式17にて求め、前記出力抑制時発電用エネルギ量差(kW)を下記の式18にて求めて、それら出力増大時発生熱量及び出力抑制時発電用エネルギ量差を各仮設定出力に対応付けて、メモリ34に記憶させてある。
A method for setting the setting increase output and the setting suppression output will be described.
As shown in FIG. 9, the temporarily set output for increasing output setting or suppressing output setting is set stepwise (for example, at an interval of 0.05 kW), and for each temporarily set output, the amount of heat generated when the output is increased (kW) Is obtained by the following equation 17, the difference in energy amount for power generation when the output is suppressed (kW) is obtained by the following equation 18, and the generated heat amount when the output is increased and the difference between the energy amounts for power generation when the output is suppressed are temporarily set. The data is stored in the memory 34 in association with the output.

出力増大時発生熱量=(仮設定出力÷電池発電効率)×電池熱効率……………(式17)
出力抑制時発電用エネルギ量差=仮設定出力÷電池発電効率−仮設定出力÷商用電源発電効率……………(式18)
Amount of heat generated when output is increased = (temporary set output ÷ battery power generation efficiency) x battery thermal efficiency (Equation 17)
Difference in energy amount for power generation when output is suppressed = Temporary setting output ÷ Battery power generation efficiency-Temporary setting output ÷ Commercial power generation efficiency (Equation 18)

ちなみに、電池発電効率よりも商用電源発電効率の方が大きいため、出力抑制時発電用エネルギ量差が小さいほど、燃料電池1の発電出力を電主出力よりも小さくしたときに、エネルギ消費の面で有利となる。   Incidentally, since the commercial power generation efficiency is larger than the battery power generation efficiency, the smaller the difference in energy amount for power generation during output suppression, the lower the power generation output of the fuel cell 1 than the main power output. Is advantageous.

そして、運転制御部5は、運転周期の各単位時間について、電主出力よりも大きい仮設定出力のうち、出力増大時発生熱量が最大のものを設定増大出力として設定し、電主出力よりも小さい仮設定出力のうち、出力抑制時発電用エネルギ量差が最小のものを設定抑制出力として設定するように構成されている。
例えば、図3に示すように、1番目の単位時間については、電主出力が0.3kWであるので、その0.3kWよりも大きい仮設定出力のうち、1.0kWの仮設定出力が出力増大時発生熱量が最大であるので、その1.0kWの仮設定出力を設定増大出力として設定することになる。但し、電主出力が燃料電池1の最大出力の単位時間については、設定増大出力を設定しない。
又、例えば図4に示すように、3番目の単位時間については、電主出力が0.6kWであるので、その0.6kWよりも小さい仮設定出力のうち、0.5kWの仮設定出力が出力抑制時発電用エネルギ量差が最小であるので、その0.5kWの仮設定出力を設定抑制出力として設定することになる。但し、電主出力が燃料電池1の最小出力の単位時間については、設定抑制出力を設定しない。
And about each unit time of an operation cycle, the operation control part 5 sets a thing with the largest generated heat amount at the time of an output increase among temporary setting outputs larger than an electric main output as a setting increase output, and it is more than an electric main output. Among the small temporarily set outputs, the one having the smallest difference in power generation energy amount during output suppression is configured to be set as the set suppression output.
For example, as shown in FIG. 3, since the main output is 0.3 kW for the first unit time, 1.0 kW of the temporarily set output larger than 0.3 kW is output. Since the amount of heat generated at the time of increase is the maximum, the 1.0 kW temporarily set output is set as the set increase output. However, the setting increase output is not set for the unit time in which the main output is the maximum output of the fuel cell 1.
Also, for example, as shown in FIG. 4, for the third unit time, since the main output is 0.6 kW, among the temporary setting outputs smaller than 0.6 kW, the temporary setting output of 0.5 kW is Since the difference in energy amount for power generation at the time of output suppression is the smallest, the temporary setting output of 0.5 kW is set as the setting suppression output. However, the setting suppression output is not set for the unit time in which the main output is the minimum output of the fuel cell 1.

1日対応型の負荷追従断続運転形態の予測エネルギ削減量は、以下のようにして求める。
即ち、燃料電池1の発電出力を予測電力負荷に追従させる単位時間を、運転条件を定める前記運転周期における予測電力負荷及び予測熱負荷に基づく予測エネルギ削減量が最も大きくなる単位時間に定めたときの予測エネルギ削減量を、1日対応型の負荷追従断続運転形態の予測エネルギ削減量として求める。
The predicted energy reduction amount of the one-day type load following intermittent operation mode is obtained as follows.
That is, when the unit time for causing the power generation output of the fuel cell 1 to follow the predicted power load is set to the unit time in which the predicted energy reduction amount based on the predicted power load and the predicted heat load in the operation cycle that defines the operating conditions is the largest. Is calculated as the predicted energy reduction amount of the day-to-day load following intermittent operation mode.

説明を加えると、メモリ34に記憶されている全ての断続運転用の仮運転パターンの夫々について、各仮運転パターンにて設定されている運転時間帯において発電出力を電主出力に調節する状態で燃料電池1を運転すると仮定して、前記式6〜式8に基づいて予測エネルギ削減量Pを求め、更に、最初の運転周期の各単位時間について、予測熱出力、予測貯湯熱量を求める。
尚、運転時間帯に含まれる単位時間のエネルギ消費量は前記式9により発電出力を電主出力として求め、運転時間帯に含まれない単位時間のエネルギ消費量は0として、各単位時間のエネルギ消費量を積算することにより、運転周期エネルギ消費量を求め、その運転周期エネルギ消費量に基づいて、式8により、燃料電池1を運転した場合のエネルギ消費量E2を求めることになる。
又、運転時間帯に含まれない単位時間の予測熱出力は、0になり、運転時間帯に含まれない単位時間の予測貯湯熱量は、前記式3により、予測熱出力nを0として求める。
In addition, for each of all the intermittent operation patterns for intermittent operation stored in the memory 34, the power generation output is adjusted to the main output in the operation time zone set in each temporary operation pattern. Assuming that the fuel cell 1 is operated, a predicted energy reduction amount P is obtained based on the above equations 6 to 8, and further, a predicted heat output and a predicted hot water storage amount are determined for each unit time of the first operation cycle.
Note that the energy consumption per unit time included in the operation time zone is obtained by using the power generation output as the main output by the above formula 9, and the energy consumption per unit time not included in the operation time zone is set to 0. By integrating the consumption amount, the operation cycle energy consumption amount is obtained, and based on the operation cycle energy consumption amount, the energy consumption amount E2 when the fuel cell 1 is operated is obtained by Expression 8.
Moreover, the predicted heat output of the unit time not included in the operation time zone is 0, and the predicted hot water storage heat amount of the unit time not included in the operation time zone is obtained by the above equation 3 with the predicted heat output n being 0.

そして、全ての断続運転用の仮運転パターンのうちの運転周期の全時間帯を運転時間帯とするパターン24を除いた仮運転パターンのうちで、予測エネルギ削減量が最も高い断続運転用の仮運転パターンを求めて、その断続運転用の仮運転パターンを1日対応型の負荷追従断続運転形態の運転パターンに設定し、その断続運転用の仮運転パターンの予測エネルギ削減量を1日対応型の負荷追従断続運転形態の予測エネルギ削減量と求める。   Then, among the temporary operation patterns excluding the pattern 24 in which the entire operation period of all the intermittent operation patterns for the intermittent operation is the operation time period, the temporary operation for the intermittent operation with the highest predicted energy reduction amount is obtained. The operation pattern is obtained, the temporary operation pattern for the intermittent operation is set to the operation pattern of the load following intermittent operation mode corresponding to the daily operation type, and the predicted energy reduction amount of the temporary operation pattern for the intermittent operation is set to the daily operation type. The predicted energy reduction amount of the load following intermittent operation mode is obtained.

2日対応型の負荷追従断続運転形態の予測エネルギ削減量は、以下のようにして求める。
即ち、燃料電池1の発電出力を予測電力負荷に追従させる単位時間を、運転条件を定める前記運転周期における予測電力負荷及び予測熱負荷並びに2回目の運転周期における予測熱負荷に基づく予測エネルギ削減量が最も大きくなる単位時間に定めたときの予測エネルギ削減量を、2日対応型の負荷追従断続運転形態の予測エネルギ削減量として求める。
The predicted energy reduction amount of the two-day load following intermittent operation mode is obtained as follows.
In other words, the unit time for causing the power generation output of the fuel cell 1 to follow the predicted power load is the predicted energy reduction amount based on the predicted power load and the predicted heat load in the operation cycle that defines the operating conditions and the predicted heat load in the second operation cycle. Is determined as the predicted energy reduction amount of the two-day load following intermittent operation mode.

説明を加えると、全ての断続運転用の仮運転パターンのうち、上述のように運転時間帯において発電出力を電主出力に調節したときに最初の運転周期における最終の単位時間の予測貯湯熱量が0よりも大きい仮運転パターンを2日対応型の仮運転パターンとして選択する。
そして、2日対応型の仮運転パターンの全てについて、最初の運転周期の最終の単位時間の予測貯湯熱量が2回目の運転周期の予測熱負荷として利用されたとして、図5に示すように、2回目の運転周期の複数の単位時間夫々について、予測貯湯熱量(kcal)及び予測熱負荷として利用された予測利用熱量(kcal)とを求める。
In other words, out of all the intermittent operation patterns for intermittent operation, when the power generation output is adjusted to the main output in the operation time period as described above, the predicted hot water storage amount of the final unit time in the first operation cycle is A provisional operation pattern larger than 0 is selected as a two-day correspondence type provisional operation pattern.
And, as shown in FIG. 5, assuming that the predicted hot water storage amount of the last unit time of the first operation cycle is used as the predicted heat load of the second operation cycle for all the two-day provisional operation patterns, For each of a plurality of unit times in the second operation cycle, a predicted hot water storage amount (kcal) and a predicted use heat amount (kcal) used as a predicted heat load are obtained.

各単位時間の予測貯湯熱量は、前記式3により、予測熱出力nを0として求める。
又、各単位時間の予測利用熱量は、下記の式14〜式16により求める。
The predicted amount of stored hot water in each unit time is obtained by the above equation 3 with the predicted heat output n set to zero.
Further, the predicted amount of heat used for each unit time is obtained by the following equations 14 to 16.

予測貯湯熱量n-1≧予測熱負荷nのときは、
予測利用熱量n=予測熱負荷n……………(式14)
予測貯湯熱量n-1<予測熱負荷nのときは、
予測利用熱量n=予測貯湯熱量n-1……………(式15)
予測貯湯熱量n-1=0のときは、
予測利用熱量n=0……………(式16)
When predicted heat storage n-1 ≥ predicted heat load n ,
Predicted heat consumption n = Predictive heat load n ... (Equation 14)
Predicted hot water storage n-1 <predicted heat load n
Predicted heat consumption n = Predicted hot water storage amount n-1 (Equation 15)
When the predicted amount of stored hot water n-1 = 0,
Predicted heat consumption n = 0 ......... (Equation 16)

2日対応型の仮運転パターンの夫々について、夫々について上述のように求めた予測エネルギ削減量Pに、2回目の運転周期における予測利用熱量(kWhに変換したもの)の合計を補助加熱器28の発生熱で補う場合のエネルギ消費量(予測利用熱量の合計/補助加熱器熱効率)を加えることにより予測エネルギ削減量を求め、その求めた予測エネルギ削減量を2で割って1運転周期(1日)当たりのエネルギ削減量としたものを、2日対応型の仮運転パターンの予測エネルギ削減量とする。
そして、全ての2日対応型の仮運転パターンのうちで予測エネルギ削減量が最も高い2日対応型の仮運転パターンを求め、その2日対応型の仮運転パターンを2日対応型の負荷追従断続運転形態の運転パターンに設定し、その2日対応型の仮運転パターンの予測エネルギ削減量を2日対応型の負荷追従断続運転形態の予測エネルギ削減量として求める。
For each of the two-day provisional operation patterns, the predicted energy reduction amount P obtained as described above is added to the sum of the predicted heat consumption (converted to kWh) in the second operation cycle as the auxiliary heater 28. The predicted energy reduction amount is calculated by adding the energy consumption (total predicted usage heat amount / auxiliary heater thermal efficiency) when supplementing with the generated heat, and the calculated predicted energy reduction amount is divided by 2 to obtain one operation cycle (1 The amount of energy reduction per day) is set as the predicted energy reduction amount of the temporary operation pattern for the two-day type.
Then, a two-day provisional operation pattern having the highest predicted energy reduction amount is obtained from all the two-day provisional operation patterns, and the two-day correspondence provisional operation pattern is determined as a two-day correspondence load follow-up. The operation pattern of the intermittent operation mode is set, and the predicted energy reduction amount of the two-day correspondence type temporary operation pattern is obtained as the predicted energy reduction amount of the two-day type load follow-up intermittent operation mode.

3日対応型の負荷追従断続運転形態の予測エネルギ削減量は、以下のようにして求める。
即ち、燃料電池1の発電出力を予測電力負荷に追従させる単位時間を、運転条件を定める前記運転周期における予測電力負荷及び予測熱負荷並びに2回目及び3回目の運転周期における予測熱負荷に基づく予測エネルギ削減量が最も大きくなる単位時間に定めたときの予測エネルギ削減量を、3日対応型の負荷追従断続運転形態の予測エネルギ削減量として求める。
The predicted energy reduction amount of the three-day load following intermittent operation mode is obtained as follows.
That is, the unit time for causing the power generation output of the fuel cell 1 to follow the predicted power load is predicted based on the predicted power load and the predicted heat load in the operation cycle that defines the operation conditions, and the predicted heat load in the second and third operation cycles. The predicted energy reduction amount when the unit time when the energy reduction amount is the largest is determined as the predicted energy reduction amount of the three-day load following intermittent operation mode.

説明を加えると、全ての2日対応型の仮運転パターンのうち、2回目の運転周期における最終の単位時間の予測貯湯熱量が0よりも大きい仮運転パターンを3日対応型の仮運転パターンとして選択する。
そして、3日対応型の仮運転パターンの全てについて、2回目の運転周期の最終の単位時間の予測貯湯熱量が3回目の運転周期の予測熱負荷として利用されたとして、上述した2回目の運転周期におけるのと同様に、3回目の運転周期の複数の単位時間夫々について、予測貯湯熱量及び予測熱負荷として利用された予測利用熱量とを求める。
In addition, the temporary operation pattern in which the predicted amount of stored hot water in the final unit time in the second operation cycle is larger than 0 among all the two-day temporary operation patterns is set as the three-day temporary operation pattern. select.
Then, for all of the three-day provisional operation patterns, assuming that the predicted hot water storage amount of the last unit time of the second operation cycle is used as the predicted heat load of the third operation cycle, the second operation described above Similarly to the cycle, for each of a plurality of unit times in the third operation cycle, a predicted hot water storage amount and a predicted heat amount used as a predicted heat load are obtained.

3日対応型の仮運転パターンの夫々について、夫々について上述のように求めた予測エネルギ削減量Pに、2回目及び3回目の運転周期における予測利用熱量(kWhに変換したもの)の合計を補助加熱器28の発生熱で補う場合のエネルギ消費量(予測利用熱量の合計/補助加熱器熱効率)を加えることにより予測エネルギ削減量を求め、その求めた予測エネルギ削減量を3で割って1運転周期(1日)当たりのエネルギ削減量としたものを、3日対応型の仮運転パターンの予測エネルギ削減量とする。
そして、全ての3日対応型の仮運転パターンのうちで予測エネルギ削減量が最も高い3日対応型の仮運転パターンを求め、その3日対応型の仮運転パターンを3日対応型の負荷追従断続運転形態の運転パターンに設定し、その3日対応型の仮運転パターンの予測エネルギ削減量を3日対応型の負荷追従断続運転形態の予測エネルギ削減量として求める。
For each of the three-day tentative operation patterns, the predicted energy reduction amount P obtained as described above is supplemented with the sum of the predicted heat consumption (converted to kWh) in the second and third operation cycles. The predicted energy reduction amount is obtained by adding the energy consumption (total of predicted use heat amount / auxiliary heater heat efficiency) when supplementing with the generated heat of the heater 28, and the calculated predicted energy reduction amount is divided by 3 to perform one operation. The amount of energy reduction per cycle (one day) is set as the predicted energy reduction amount of the temporary operation pattern corresponding to the three days.
Then, a 3-day tentative operation pattern having the highest predicted energy reduction amount is obtained from all 3-day tentative operation patterns, and the 3-day responsive temporary operation pattern is determined as a 3-day responsive load follow-up. The operation pattern of the intermittent operation mode is set, and the predicted energy reduction amount of the 3-day correspondence type temporary operation pattern is obtained as the predicted energy reduction amount of the 3-day response type load following intermittent operation mode.

1日対応型の強制断続運転形態の予測エネルギ削減量は、以下のようにして求める。
即ち、燃料電池1の発電出力を前記設定増大出力に調節する単位時間を、運転条件を定める前記運転周期における予測電力負荷及び予測熱負荷に基づく予測エネルギ削減量が最も大きくなる単位時間に定めたときの予測エネルギ削減量を、1日対応型の強制断続運転形態の予測エネルギ削減量として求める。
The predicted energy reduction amount of the one-day type forced intermittent operation mode is obtained as follows.
That is, the unit time for adjusting the power generation output of the fuel cell 1 to the set increase output is set to the unit time in which the predicted energy reduction amount based on the predicted power load and the predicted heat load in the operation cycle that determines the operation conditions is the largest. Is calculated as the predicted energy reduction amount of the one-day type forced intermittent operation mode.

説明を加えると、メモリ34に記憶されている全ての断続運転用の仮運転パターンのうちで、運転時間帯が設定増大出力の設定されていない単位時間のみで形成されるパターンを除いた全ての仮運転パターンを強制断続運転用の仮運転パターンとして、その強制断続運転用の仮運転パターン夫々について、各仮運転パターンにて設定されている運転時間帯において発電出力を設定増大出力に調節する状態で燃料電池1を運転すると仮定して、前記式6〜式8に基づいて予測エネルギ削減量Pを求め、更に、最初の運転周期の各単位時間について、予測熱出力、予測貯湯熱量を求める。
尚、運転時間帯に含まれる単位時間のエネルギ消費量は前記式9により発電出力を設定増大出力として求め、運転時間帯に含まれない単位時間のエネルギ消費量は0として、各単位時間のエネルギ消費量を積算することにより、運転周期エネルギ消費量を求め、その運転周期エネルギ消費量に基づいて、式8により、燃料電池1を運転した場合のエネルギ消費量E2を求めることになる。
If explanation is added, all the temporary operation patterns for intermittent operation stored in the memory 34, except for the pattern that is formed only in the unit time in which the operation time zone is not set to the set increase output. The temporary operation pattern is a temporary operation pattern for forced intermittent operation, and for each temporary operation pattern for forced intermittent operation, the power generation output is adjusted to the set increase output in the operation time zone set in each temporary operation pattern Assuming that the fuel cell 1 is operated, the predicted energy reduction amount P is obtained based on the equations 6 to 8, and the predicted heat output and the predicted hot water storage amount are obtained for each unit time of the first operation cycle.
The energy consumption per unit time included in the operation time zone is obtained by setting the power generation output as a set increase output according to the above equation 9, and the energy consumption per unit time not included in the operation time zone is set to 0. By integrating the consumption amount, the operation cycle energy consumption amount is obtained, and based on the operation cycle energy consumption amount, the energy consumption amount E2 when the fuel cell 1 is operated is obtained by Expression 8.

そして、全ての強制断続運転用の仮運転パターンのうちの運転周期の全時間帯を運転時間帯とするパターン24を除いた仮運転パターンのうちで、予測エネルギ削減量が最も高い強制断続運転用の仮運転パターンを求めて、その強制断続運転用の仮運転パターンを1日対応型の強制断続運転形態の運転パターンに設定し、その強制断続運転用の仮運転パターンの予測エネルギ削減量を1日対応型の強制断続運転形態の予測エネルギ削減量と求める。   And among the temporary operation patterns excluding the pattern 24 in which the entire time period of the operation cycle among the temporary operation patterns for all the forced intermittent operation is the operation time zone, the predicted energy reduction amount is the highest for the forced intermittent operation. The temporary operation pattern for the forced intermittent operation is set to the operation pattern of the one-day type forced intermittent operation mode, and the predicted energy reduction amount of the temporary operation pattern for the forced intermittent operation is set to 1. Calculated as the predicted energy reduction amount in the day-to-day forced intermittent operation mode.

2日対応型の強制断続運転形態の予測エネルギ削減量は、以下のようにして求める。
即ち、燃料電池1の発電出力を前記設定増大出力に調節する単位時間を、運転条件を定める前記運転周期における予測電力負荷及び予測熱負荷並びに2回目の運転周期における予測熱負荷に基づく予測エネルギ削減量が最も大きくなる単位時間に定めたときの予測エネルギ削減量を、2日対応型の強制断続運転形態の予測エネルギ削減量として求める。
The predicted energy reduction amount of the two-day type forced intermittent operation mode is obtained as follows.
In other words, the unit time for adjusting the power generation output of the fuel cell 1 to the set increased output is predicted energy reduction based on the predicted power load and the predicted heat load in the operation cycle that defines the operation conditions and the predicted heat load in the second operation cycle. The predicted energy reduction amount when the amount is determined to be the largest unit time is obtained as the predicted energy reduction amount of the two-day type forced intermittent operation mode.

説明を加えると、全ての強制断続運転用の仮運転パターンのうち、上述のように運転時間帯において発電出力を設定増大出力に調節したときに最初の運転周期における最終の単位時間の予測貯湯熱量が0よりも大きい仮運転パターンを2日対応型の仮運転パターンとして選択する。
そして、2日対応型の仮運転パターンの全てについて、上記の2日対応型の負荷追従断続運転形態の予測エネルギ削減量を求める場合と同様に、2回目の運転周期の複数の単位時間夫々について、予測貯湯熱量及び予測熱負荷として利用された予測利用熱量とを求める。
In addition, out of all the temporary operation patterns for forced intermittent operation, when the power generation output is adjusted to the set increase output in the operation time period as described above, the predicted amount of stored hot water in the last unit time in the first operation cycle Is selected as the two-day provisional operation pattern.
As with the case of obtaining the predicted energy reduction amount of the two-day type load follow-up intermittent operation mode for all of the two-day type temporary operation patterns, each of the plurality of unit times of the second operation cycle is obtained. The predicted amount of stored hot water and the predicted amount of heat used as the predicted heat load are obtained.

2日対応型の仮運転パターンの夫々について、夫々について上述のように求めた予測エネルギ削減量Pに、2回目の運転周期における予測利用熱量(kWhに変換したもの)の合計を補助加熱器28の発生熱で補う場合のエネルギ消費量を加えることにより予測エネルギ削減量を求め、その求めた予測エネルギ削減量を2で割って1運転周期当たりのエネルギ削減量としたものを、2日対応型の仮運転パターンの予測エネルギ削減量とする。
そして、全ての2日対応型の仮運転パターンのうちで予測エネルギ削減量が最も高い2日対応型の仮運転パターンを求め、その2日対応型の仮運転パターンを2日対応型の強制断続運転形態の運転パターンに設定し、その2日対応型の仮運転パターンの予測エネルギ削減量を2日対応型の強制断続運転形態の予測エネルギ削減量として求める。
For each of the two-day provisional operation patterns, the predicted energy reduction amount P obtained as described above is added to the total of the predicted use heat amount (converted to kWh) in the second operation cycle as the auxiliary heater 28. The predicted energy reduction amount is obtained by adding the energy consumption when supplementing with the generated heat, and the calculated energy reduction amount per operation cycle is obtained by dividing the obtained predicted energy reduction amount by two. The estimated energy reduction amount of the temporary operation pattern of
Then, a 2-day correspondence temporary operation pattern having the highest predicted energy reduction amount is obtained from all the 2-day correspondence temporary operation patterns, and the 2-day correspondence temporary operation pattern is forcibly interrupted. The operation pattern of the operation mode is set, and the predicted energy reduction amount of the 2-day correspondence type temporary operation pattern is obtained as the predicted energy reduction amount of the 2-day response type forced intermittent operation mode.

3日対応型の強制断続運転形態の予測エネルギ削減量は、以下のようにして求める。
即ち、燃料電池1の発電出力を前記設定増大出力に調節する単位時間を、運転条件を定める前記運転周期における予測電力負荷及び予測熱負荷並びに2回目及び3回目の運転周期における予測熱負荷に基づく予測エネルギ削減量が最も大きくなる単位時間に定めたときの予測エネルギ削減量を、3日対応型の強制断続運転形態の予測エネルギ削減量として求める。
The predicted energy reduction amount of the three-day type forced intermittent operation mode is obtained as follows.
That is, the unit time for adjusting the power generation output of the fuel cell 1 to the set increase output is based on the predicted power load and the predicted heat load in the operation cycle that defines the operation conditions, and the predicted heat load in the second and third operation cycles. The predicted energy reduction amount when the predicted energy reduction amount is set to the unit time in which the predicted energy reduction amount is the largest is obtained as the predicted energy reduction amount of the three-day type forced intermittent operation mode.

説明を加えると、全ての2日対応型の仮運転パターンのうち、2回目の運転周期における最終の単位時間の予測貯湯熱量が0よりも大きい仮運転パターンを3日対応型の仮運転パターンとして選択する。
そして、3日対応型の仮運転パターンの全てについて、上記の3日対応型の負荷追従断続運転形態の予測エネルギ削減量を求める場合と同様に、3回目の運転周期の複数の単位時間夫々について、予測貯湯熱量及び予測熱負荷として利用された予測利用熱量とを求める。
In addition, the temporary operation pattern in which the predicted amount of stored hot water in the final unit time in the second operation cycle is larger than 0 among all the two-day temporary operation patterns is set as the three-day temporary operation pattern. select.
As with the case of obtaining the predicted energy reduction amount of the three-day correspondence type load follow-up intermittent operation mode for all the three-day provisional operation patterns, each of the plurality of unit times of the third operation cycle is obtained. The predicted amount of stored hot water and the predicted amount of heat used as the predicted heat load are obtained.

3日対応型の仮運転パターンの夫々について、夫々について上述のように求めた予測エネルギ削減量Pに、2回目及び3回目の運転周期における予測利用熱量(kWhに変換したもの)の合計を補助加熱器28の発生熱で補う場合のエネルギ消費量を加えることにより予測エネルギ削減量を求め、その求めた予測エネルギ削減量を3で割って1運転周期(1日)当たりのエネルギ削減量としたものを、3日対応型の仮運転パターンの予測エネルギ削減量とする。
そして、全ての3日対応型の仮運転パターンのうちで予測エネルギ削減量が最も高い3日対応型の仮運転パターンを求め、その3日対応型の仮運転パターンを3日対応型の強制断続運転形態の運転パターンに設定し、その3日対応型の仮運転パターンの予測エネルギ削減量を3日対応型の強制断続運転形態の予測エネルギ削減量として求める。
For each of the three-day tentative temporary operation patterns, the predicted energy reduction amount P obtained as described above is supplemented with the sum of the predicted heat consumption (converted to kWh) in the second and third operation cycles. The predicted energy reduction amount is obtained by adding the energy consumption amount to be supplemented with the heat generated by the heater 28, and the obtained predicted energy reduction amount is divided by 3 to obtain the energy reduction amount per one operation cycle (one day). This is the predicted energy reduction amount of the three-day tentative temporary operation pattern.
Then, a three-day tentative operation pattern having the highest predicted energy reduction amount is obtained from all three-day tentative temporary operation patterns, and the three-day responsive temporary operation pattern is forcibly intermittent. The operation pattern is set to the operation pattern, and the predicted energy reduction amount of the 3-day correspondence type temporary operation pattern is obtained as the predicted energy reduction amount of the 3-day response type forced intermittent operation mode.

1日対応型の抑制断続運転形態の予測エネルギ削減量は、以下のようにして求める。
即ち、燃料電池1の発電出力を前記設定抑制出力に調節する単位時間を、運転条件を定める前記運転周期における予測電力負荷及び予測熱負荷に基づく予測エネルギ削減量が最も大きくなる単位時間に定めたときの予測エネルギ削減量を、1日対応型の抑制断続運転形態の予測エネルギ削減量として求める。
The predicted energy reduction amount of the one day correspondence type suppression intermittent operation mode is obtained as follows.
That is, the unit time for adjusting the power generation output of the fuel cell 1 to the setting suppression output is set to the unit time in which the predicted energy reduction amount based on the predicted power load and the predicted heat load in the operation cycle that determines the operation conditions is the largest. Is calculated as the predicted energy reduction amount of the one day correspondence type suppression intermittent operation mode.

説明を加えると、メモリ34に記憶されている全ての断続運転用の仮運転パターンのうちで、運転時間帯が設定抑制出力の設定されていない単位時間のみで形成されるパターンを除いた全ての仮運転パターンを抑制断続運転用の仮運転パターンとして、その抑制断続運転用の仮運転パターン夫々について、各仮運転パターンにて設定されている運転時間帯において発電出力を設定抑制出力に調節する状態で燃料電池1を運転すると仮定して、前記式6〜式8に基づいて予測エネルギ削減量Pを求め、更に、最初の運転周期の各単位時間について、予測熱出力、予測貯湯熱量を求める。
尚、運転時間帯に含まれる単位時間のエネルギ消費量は前記式9により発電出力を設定抑制出力として求め、運転時間帯に含まれない単位時間のエネルギ消費量は0として、各単位時間のエネルギ消費量を積算することにより、運転周期エネルギ消費量を求め、その運転周期エネルギ消費量に基づいて、式8により、燃料電池1を運転した場合のエネルギ消費量E2を求めることになる。
In addition, all of the temporary operation patterns for intermittent operation stored in the memory 34, except for the pattern that is formed only in unit time in which the operation time zone is not set as the setting suppression output. A state in which the power generation output is adjusted to the set suppression output in the operation time zone set in each temporary operation pattern for each temporary operation pattern for the suppression intermittent operation as the temporary operation pattern for the suppression intermittent operation. Assuming that the fuel cell 1 is operated, the predicted energy reduction amount P is obtained based on the above equations 6 to 8, and the predicted heat output and the predicted hot water storage amount are obtained for each unit time of the first operation cycle.
The energy consumption per unit time included in the operation time zone is obtained by setting the power generation output as the setting suppression output by the above-mentioned formula 9, and the energy consumption per unit time not included in the operation time zone is set to 0. By integrating the consumption amount, the operation cycle energy consumption amount is obtained, and based on the operation cycle energy consumption amount, the energy consumption amount E2 when the fuel cell 1 is operated is obtained by Expression 8.

そして、全ての抑制断続運転用の仮運転パターンのうちの運転周期の全時間帯を運転時間帯とするパターン24を除いた仮運転パターンのうちで、予測エネルギ削減量が最も高い抑制断続運転用の仮運転パターンを求めて、その抑制断続運転用の仮運転パターンを1日対応型の抑制断続運転形態の運転パターンに設定し、その抑制断続運転用の仮運転パターンの予測エネルギ削減量を1日対応型の抑制断続運転形態の予測エネルギ削減量と求める。   And among the temporary operation patterns excluding the pattern 24 in which the entire time period of the operation cycle is the operation time zone among all the temporary operation patterns for the suppression intermittent operation, for the suppression intermittent operation with the highest predicted energy reduction amount. The temporary operation pattern for the suppression intermittent operation is set to the operation pattern of the one day correspondence type of the intermittent operation mode, and the predicted energy reduction amount of the temporary operation pattern for the suppression intermittent operation is 1 Calculated as the predicted energy reduction amount for the day-to-day controlled intermittent operation mode.

2日対応型の抑制断続運転形態の予測エネルギ削減量は、以下のようにして求める。
即ち、燃料電池1の発電出力を前記設定抑制出力に調節する単位時間を、運転条件を定める前記運転周期における予測電力負荷及び予測熱負荷並びに2回目の運転周期における予測熱負荷に基づく予測エネルギ削減量が最も大きくなる単位時間に定めたときの予測エネルギ削減量を、2日対応型の抑制断続運転形態の予測エネルギ削減量として求める。
The predicted energy reduction amount in the two-day-type suppressed intermittent operation mode is obtained as follows.
In other words, the unit time for adjusting the power generation output of the fuel cell 1 to the setting suppression output is predicted energy reduction based on the predicted power load and the predicted heat load in the operation cycle that defines the operation conditions and the predicted heat load in the second operation cycle. The predicted energy reduction amount when the amount is determined to be the largest unit time is obtained as the predicted energy reduction amount of the two-day-type restrained intermittent operation mode.

説明を加えると、全ての抑制断続運転用の仮運転パターンのうち、上述のように運転時間帯において発電出力を設定抑制出力に調節したときに最初の運転周期における最終の単位時間の予測貯湯熱量が0よりも大きい仮運転パターンを2日対応型の仮運転パターンとして選択する。
そして、2日対応型の仮運転パターンの全てについて、上記の2日対応型の負荷追従断続運転形態の予測エネルギ削減量を求める場合と同様に、2回目の運転周期の複数の単位時間夫々について、予測貯湯熱量及び予測熱負荷として利用された予測利用熱量とを求める。
In addition, among the temporary operation patterns for all suppression intermittent operation, when the power generation output is adjusted to the set suppression output in the operation time period as described above, the predicted amount of stored hot water in the last unit time in the first operation cycle Is selected as the two-day provisional operation pattern.
As with the case of obtaining the predicted energy reduction amount of the two-day type load follow-up intermittent operation mode for all of the two-day type temporary operation patterns, each of the plurality of unit times of the second operation cycle is obtained. The predicted amount of stored hot water and the predicted amount of heat used as the predicted heat load are obtained.

2日対応型の仮運転パターンの夫々について、夫々について上述のように求めた予測エネルギ削減量Pに、2回目の運転周期における予測利用熱量(kWhに変換したもの)の合計を補助加熱器28の発生熱で補う場合のエネルギ消費量を加えることにより予測エネルギ削減量を求め、その求めた予測エネルギ削減量を2で割って1運転周期当たりのエネルギ削減量としたものを、2日対応型の仮運転パターンの予測エネルギ削減量とする。
そして、全ての2日対応型の仮運転パターンのうちで予測エネルギ削減量が最も高い2日対応型の仮運転パターンを求め、その2日対応型の仮運転パターンを2日対応型の抑制断続運転形態の運転パターンに設定し、その2日対応型の仮運転パターンの予測エネルギ削減量を2日対応型の抑制断続運転形態の予測エネルギ削減量として求める。
For each of the two-day provisional operation patterns, the predicted energy reduction amount P obtained as described above is added to the total of the predicted use heat amount (converted to kWh) in the second operation cycle as the auxiliary heater 28. The predicted energy reduction amount is obtained by adding the energy consumption when supplementing with the generated heat, and the calculated energy reduction amount per operation cycle is obtained by dividing the obtained predicted energy reduction amount by two. The estimated energy reduction amount of the temporary operation pattern of
Then, a 2-day correspondence temporary operation pattern having the highest predicted energy reduction amount is obtained from all the 2-day correspondence temporary operation patterns, and the 2-day correspondence temporary operation pattern is intermittently suppressed. The operation pattern of the operation mode is set, and the predicted energy reduction amount of the two-day correspondence type temporary operation pattern is obtained as the predicted energy reduction amount of the two-day correspondence type suppression intermittent operation mode.

3日対応型の抑制断続運転形態の予測エネルギ削減量は、以下のようにして求める。
即ち、燃料電池1の発電出力を前記設定抑制出力に調節する単位時間を、運転条件を定める前記運転周期における予測電力負荷及び予測熱負荷並びに2回目及び3回目の運転周期における予測熱負荷に基づく予測エネルギ削減量が最も大きくなる単位時間に定めたときの予測エネルギ削減量を、3日対応型の抑制断続運転形態の予測エネルギ削減量として求める。
The predicted energy reduction amount of the 3-day response type intermittent intermittent operation mode is obtained as follows.
That is, the unit time for adjusting the power generation output of the fuel cell 1 to the setting suppression output is based on the predicted power load and the predicted heat load in the operation cycle that determines the operation conditions, and the predicted heat load in the second and third operation cycles. The predicted energy reduction amount when the predicted energy reduction amount is determined to be the largest unit time is obtained as the predicted energy reduction amount of the three-day compatible intermittent intermittent operation mode.

説明を加えると、全ての2日対応型の仮運転パターンのうち、2回目の運転周期における最終の単位時間の予測貯湯熱量が0よりも大きい仮運転パターンを3日対応型の仮運転パターンとして選択する。
そして、3日対応型の仮運転パターンの全てについて、上記の3日対応型の負荷追従断続運転形態の予測エネルギ削減量を求める場合と同様に、3回目の運転周期の複数の単位時間夫々について、予測貯湯熱量及び予測熱負荷として利用された予測利用熱量とを求める。
In addition, the temporary operation pattern in which the predicted amount of stored hot water in the final unit time in the second operation cycle is larger than 0 among all the two-day temporary operation patterns is set as the three-day temporary operation pattern. select.
As with the case of obtaining the predicted energy reduction amount of the three-day correspondence type load follow-up intermittent operation mode for all the three-day provisional operation patterns, each of the plurality of unit times of the third operation cycle is obtained. The predicted amount of stored hot water and the predicted amount of heat used as the predicted heat load are obtained.

3日対応型の仮運転パターンの夫々について、夫々について上述のように求めた予測エネルギ削減量Pに、2回目及び3回目の運転周期における予測利用熱量(kWhに変換したもの)の合計を補助加熱器28の発生熱で補う場合のエネルギ消費量を加えることにより予測エネルギ削減量を求め、その求めた予測エネルギ削減量を3で割って1運転周期(1日)当たりのエネルギ削減量としたものを、3日対応型の仮運転パターンの予測エネルギ削減量とする。
そして、全ての3日対応型の仮運転パターンのうちで予測エネルギ削減量が最も高い3日対応型の仮運転パターンを求め、その3日対応型の仮運転パターンを3日対応型の抑制断続運転形態の運転パターンに設定し、その3日対応型の仮運転パターンの予測エネルギ削減量を3日対応型の抑制断続運転形態の予測エネルギ削減量として求める。
For each of the three-day tentative temporary operation patterns, the predicted energy reduction amount P obtained as described above is supplemented with the sum of the predicted heat consumption (converted to kWh) in the second and third operation cycles. The predicted energy reduction amount is obtained by adding the energy consumption amount to be supplemented with the heat generated by the heater 28, and the obtained predicted energy reduction amount is divided by 3 to obtain the energy reduction amount per one operation cycle (one day). This is the predicted energy reduction amount of the three-day tentative temporary operation pattern.
Then, a 3-day tentative operation pattern having the highest predicted energy reduction amount is obtained from all the 3-day tentative operation patterns, and the 3-day tentative operation pattern is intermittently suppressed. It sets to the driving | operation pattern of a driving | running form, and calculates | requires the prediction energy reduction amount of the temporary driving | operation pattern of the 3 day correspondence type as a prediction energy reduction amount of the 3rd day correspondence type | mold suppression intermittent operation mode.

ところで、上述のように、各運転形態の予測エネルギ削減量を求めるに当たっては、予測不足熱量を変数としており、その予測不足熱量は、運転周期の開始時点における貯湯槽2の貯湯熱量に基づくものであるので、各運転形態の予測エネルギ削減量は、時系列的な予測電力負荷及び時系列的な予測熱負荷に加えて運転周期の開始時点における貯湯槽2の貯湯熱量に基づいて求めるように構成されている。   By the way, as described above, in obtaining the predicted energy reduction amount of each operation mode, the predicted insufficient heat amount is used as a variable, and the predicted insufficient heat amount is based on the hot water storage amount of the hot water tank 2 at the start of the operation cycle. Therefore, the predicted energy reduction amount of each operation mode is obtained based on the amount of hot water stored in the hot water tank 2 at the start of the operation cycle in addition to the time-series predicted power load and the time-series predicted heat load. Has been.

そして、前記運転制御部5は、前記熱余り単位時間が存在する場合は、上述のように、負荷追従連続運転形態の予測エネルギ削減量及び抑制連続運転形態の予測エネルギ削減量を求め、それらのうち大きい方を連続運転形態の予測エネルギ削減量に設定し、前記熱不足単位時間が存在する場合は、負荷追従連続運転形態の予測エネルギ削減量及び強制連続運転形態の予測エネルギ削減量を求め、それらのうち大きい方を連続運転形態の予測エネルギ削減量に設定する。
又、運転制御部5は、上述のように求めた1日対応型、2日対応型及び3日対応型夫々の負荷追従断続運転形態の予測エネルギ削減量、1日対応型、2日対応型及び3日対応型夫々の強制断続運転形態の予測エネルギ削減量、並びに、1日対応型、2日対応型及び3日対応型夫々の抑制断続運転形態の予測エネルギ削減量の9個の予測エネルギ削減量のうちで、最大のものを断続運転形態の予測エネルギ削減量として設定する。
更に、運転制御部5は、上述のように設定した連続運転形態の予測エネルギ削減量及び断続運転形態の予測エネルギ削減量並びに前記運転形態選択条件に基づいて、それら連続運転形態の予測エネルギ削減量及び断続運転形態の予測エネルギ削減量のうちの予測エネルギ削減量が大きい方に対応する運転形態に燃料電池1の運転形態を定めて、停止用期間が後続していない運転周期(以下、通常運転周期と記載する場合がある)の運転条件として、その定めた運転形態にて燃料電池1を運転する条件に定める。
And when the said heat surplus unit time exists, the said operation control part 5 calculates | requires the prediction energy reduction amount of a load follow-up continuous operation form, and the prediction energy reduction amount of a suppression continuous operation form as mentioned above, and those The larger one is set as the predicted energy reduction amount of the continuous operation mode, and when the heat shortage unit time exists, the predicted energy reduction amount of the load following continuous operation mode and the predicted energy reduction amount of the forced continuous operation mode are obtained, The larger of them is set as the predicted energy reduction amount in the continuous operation mode.
In addition, the operation control unit 5 calculates the predicted energy reduction amount of the load following intermittent operation mode for each of the one-day correspondence type, the two-day correspondence type and the three-day correspondence type obtained as described above, the one-day correspondence type, and the two-day correspondence type. And the predicted energy reduction amount of the forced intermittent operation mode of each of the 3-day response type and the predicted energy reduction amount of the suppression intermittent operation mode of each of the 1-day response type, the 2-day response type and the 3-day response type. Among the reduction amounts, the largest one is set as the predicted energy reduction amount in the intermittent operation mode.
Furthermore, the operation control unit 5 determines the predicted energy reduction amount of the continuous operation mode based on the predicted energy reduction amount of the continuous operation mode and the predicted energy reduction amount of the intermittent operation mode and the operation mode selection condition set as described above. The operation mode of the fuel cell 1 is determined as the operation mode corresponding to the larger predicted energy reduction amount of the predicted energy reduction amount of the intermittent operation mode, and the operation cycle in which the stop period is not followed (hereinafter, normal operation) The operation condition of the fuel cell 1 may be described as a cycle).

次に、前記停止前運転条件設定処理について、説明を加える。
この第1実施形態においては、前記複数種の停止前用の運転形態が、前記運転条件を定める運転周期の全時間帯において燃料電池1の発電出力を予測電力負荷に追従させる停止前用の負荷追従連続運転形態、前記運転条件を定める運転周期における一部の時間帯において燃料電池1の発電出力を予測電力負荷よりも小さい設定抑制出力に調節しかつ残りの時間帯において燃料電池1の発電出力を予測電力負荷に追従させ、且つ、燃料電池1の発電出力を前記設定抑制出力に調節する時間帯を、前記運転条件を定める運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間の予測熱負荷に基づいて求められる運転メリットが最も高くなる時間帯に定める停止前用の抑制連続運転形態、前記運転条件を定める運転周期における一部の時間帯において燃料電池1の発電出力を予測電力負荷よりも大きい設定増大出力に調節しかつ残りの時間帯において前記熱電併給装置の発電出力を予測電力負荷に追従させ、且つ、燃料電池1の発電出力を前記設定増大出力に調節する時間帯を、前記運転条件を定める運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間の予測熱負荷に基づいて求められる運転メリットが最も高くなる時間帯に定める停止前用の強制連続運転形態、前記運転条件を定める運転周期のうちの一部の運転時間帯において燃料電池1の発電出力を予測電力負荷に追従させかつ残りの時間帯において燃料電池1を停止させ、且つ、前記運転時間帯を、前記運転条件を定める運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間の予測熱負荷に基づいて求められる運転メリットが最も高くなる時間帯に定める停止前用の負荷追従断続運転形態、前記運転条件を定める運転周期のうちの一部の運転時間帯において燃料電池1の発電出力を予測電力負荷よりも小さい設定抑制出力に調節しかつ残りの時間帯において燃料電池1を停止させ、且つ、前記運転時間帯を、前記運転条件を定める運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間の予測熱負荷に基づいて求められる運転メリットが最も高くなる時間帯に定める停止前用の抑制断続運転形態、及び、前記運転条件を定める運転周期のうちの一部の運転時間帯において燃料電池1の発電出力を予測電力負荷よりも大きい設定増大出力に調節しかつ残りの時間帯において燃料電池1を停止させ、且つ、前記運転時間帯を、前記運転条件を定める運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間の予測熱負荷に基づいて求められる運転メリットが最も高くなる時間帯に定める停止前用の強制断続運転形態の6つの運転形態である。
Next, the operation condition setting process before stop will be described.
In the first embodiment, the plurality of types of pre-stop operation modes are loads for pre-stop that cause the power generation output of the fuel cell 1 to follow the predicted power load in the entire time period of the operation cycle that defines the operation conditions. Following continuous operation mode, the power generation output of the fuel cell 1 is adjusted to a set suppression output smaller than the predicted power load in a part of the time period in the operation cycle that defines the operation condition, and the power generation output of the fuel cell 1 in the remaining time period The time period during which the power generation output of the fuel cell 1 is adjusted to the set suppression output is adjusted to the predicted power load and the predicted heat load of the operation cycle that defines the operating conditions, and the prediction of the stop period. Suppressed continuous operation mode for stoppage determined in the time zone in which the operation merit obtained based on the heat load is the highest, a part of the time zone in the operation cycle for determining the operation condition Then, the power generation output of the fuel cell 1 is adjusted to a setting increase output larger than the predicted power load, and the power generation output of the combined heat and power supply device is made to follow the predicted power load in the remaining time zone, and the power generation output of the fuel cell 1 is Is adjusted to the set increase output in the time zone in which the operation merit obtained based on the predicted power load and predicted heat load of the operation cycle that defines the operation condition and the predicted heat load of the stop period is the highest. Forced continuous operation mode for stop before setting, the power generation output of the fuel cell 1 is made to follow the predicted power load in a part of the operation time period of the operation cycle for determining the operation condition, and the fuel cell 1 is set in the remaining time period. The operation time zone is determined based on the predicted power load and predicted heat load of the operation cycle that defines the operating conditions, and the predicted heat load of the stop period. The load following intermittent operation mode for stoppage determined in the time zone in which the driving merit is the highest, and the power generation output of the fuel cell 1 in the part of the operation time zone in the operation cycle for determining the operation condition is greater than the predicted power load. The fuel cell 1 is adjusted to a small set suppression output, and the fuel cell 1 is stopped in the remaining time period, and the operation time period is predicted as the predicted power load and predicted heat load of the operation cycle that defines the operation condition, and the stop period. Power generation of the fuel cell 1 in a part of the operation time period of the operation cycle for determining the operation condition for pre-stop and the operation cycle for determining the operation condition, which is determined in the time period when the operation merit obtained based on the heat load is the highest. The output is adjusted to a set increase output that is larger than the predicted power load, the fuel cell 1 is stopped in the remaining time zone, and the operation time range is set to the operating condition. In the six operation modes of the forced intermittent operation mode for stoppage determined in the time zone in which the operation merit calculated based on the predicted power load and predicted heat load of the operation cycle and the predicted heat load of the stop period is the highest. is there.

以下、停止前用の各運転形態の運転メリットを求める停止前運転メリット演算処理について説明する。
尚、この第1実施形態では、停止前用の各運転形態の運転メリットとして、前記通常時運転条件設定処理と同様に、燃料電池1を運転することにより得られると予測される予測エネルギ削減量を求める。
又、この停止前運転メリット演算処理においては、上述した通常時運転条件設定処理において強制断続運転形態及び抑制断続運転形態夫々の予測エネルギ削減量を求める場合と同様に、停止用期間が後続している運転周期(以下、停止前運転周期と記載する場合がある)の複数の単位時間の夫々について、設定増大出力および設定抑制出力を設定する。
Hereinafter, the pre-stop driving merit calculation process for obtaining the driving merit of each driving mode for pre-stop will be described.
In the first embodiment, as the operation merit of each operation mode before stopping, the predicted energy reduction amount predicted to be obtained by operating the fuel cell 1 as in the normal operation condition setting process. Ask for.
In addition, in this pre-stop operation merit calculation process, the stop period is followed in the same manner as when the predicted energy reduction amount of each of the forced intermittent operation mode and the suppressed intermittent operation mode is obtained in the normal operation condition setting process described above. A setting increase output and a setting suppression output are set for each of a plurality of unit times of the operating cycle (hereinafter, sometimes referred to as a pre-stop operation cycle).

停止前用の負荷追従連続運転形態の予測エネルギ削減量は、以下のようにして求める。
即ち、停止前運転周期の全時間帯において燃料電池1の発電出力を予測電力負荷に追従させると仮定して、その停止前運転周期における予測エネルギ削減量Pを前記式6〜式8に基づいて求めると共に、停止前運転周期の各単位時間について、予測熱出力、予測貯湯熱量を求める。
The predicted energy reduction amount in the load follow-up continuous operation mode before stopping is obtained as follows.
That is, assuming that the power generation output of the fuel cell 1 follows the predicted power load in the entire time period of the pre-stop operation cycle, the predicted energy reduction amount P in the pre-stop operation cycle is based on the equations 6 to 8. At the same time, the predicted heat output and the predicted amount of stored hot water are determined for each unit time of the pre-stop operation cycle.

又、図5に示すように、停止前運転周期における最終の単位時間の予測貯湯熱量が停止用期間とする運転周期(以下、停止用運転周期と記載する場合がある)の予測熱負荷として利用されたとして、停止用運転周期の複数の単位時間の夫々について、予測貯湯熱量及び予測熱負荷として利用された予測利用熱量を求める。
ちなみに、各単位時間の予測利用熱量は、前記式14〜式16により求める。
そして、上述のようにして求めた停止前運転周期の予測エネルギ削減量Pに、停止用運転周期における予測利用熱量の合計を補助加熱器28の発生熱で補う場合のエネルギ消費量(予測利用熱量の合計/補助加熱器熱効率)を加えることにより、停止前用の負荷追従連続運転形態の予測エネルギ削減量を求める。
Further, as shown in FIG. 5, it is used as a predicted heat load of an operation cycle (hereinafter sometimes referred to as a stop operation cycle) in which the predicted hot water storage amount in the final unit time in the pre-stop operation cycle is a stop period. Assuming that the predicted amount of stored hot water and the predicted amount of heat used as the predicted heat load are determined for each of the plurality of unit times of the stop operation cycle.
By the way, the predicted amount of heat used for each unit time is obtained by the above equations 14 to 16.
Then, the energy consumption (predicted use heat amount) in the case where the total predicted use heat amount in the stop operation cycle is supplemented with the heat generated by the auxiliary heater 28 to the predicted energy reduction amount P in the pre-stop operation cycle obtained as described above. (Total heating / auxiliary heater thermal efficiency) to obtain the predicted energy reduction amount of the load following continuous operation mode for before stoppage.

停止前用の強制連続運転形態の予測エネルギ削減量は、以下のようにして求める。
即ち、停止前運転周期における複数の単位時間のうちの一部の単位時間において燃料電池1の発電出力を設定増大出力に調節し且つ残りの単位時間において燃料電池1の発電出力を予測電力負荷に追従させるとして、燃料電池1の発電出力を設定増大出力に調節する単位時間を停止前運転周期における複数の単位時間のうちで、停止前運転周期の予測電力負荷及び予測熱負荷並びに停止用運転周期の予測熱負荷に基づく運転メリットが最も大きくなる単位時間に定めたときの予測エネルギ削減量を、停止前用の強制連続運転形態の予測エネルギ削減量として求める。
The predicted energy reduction amount in the forced continuous operation mode before stopping is obtained as follows.
That is, the power generation output of the fuel cell 1 is adjusted to the set increase output in a part of the plurality of unit times in the pre-stop operation cycle, and the power generation output of the fuel cell 1 is set to the predicted power load in the remaining unit time. As a follow-up, a unit time for adjusting the power generation output of the fuel cell 1 to a set increase output is a predicted power load, a predicted heat load, and a stop operation cycle in a pre-stop operation cycle among a plurality of unit times in the pre-stop operation cycle. The predicted energy reduction amount when the unit time in which the operation merit based on the predicted heat load is the largest is determined as the predicted energy reduction amount in the forced continuous operation mode for before stop.

説明を加えると、図8に示す如き仮運転パターンのうちで、運転周期の全単位時間を運転時間帯とするパターン24、及び、運転時間帯が設定増大出力の設定されていない単位時間のみで形成されるパターンを除いた全ての仮運転パターンを、各仮運転パターンにおける運転時間帯を燃料電池1の発電出力を設定増大出力に調節する強制運転用時間帯とし且つ残りの時間帯を燃料電池1の発電出力を電主出力に調節する電主運転用時間帯とする停止前用の強制連続運転用の仮運転パターンとする。   In addition, in the temporary operation pattern as shown in FIG. 8, only the pattern 24 in which the entire unit time of the operation cycle is the operation time zone and the unit time in which the operation increase time zone is not set to the set increase output. All the temporary operation patterns except the formed pattern are set as the operation time zone for adjusting the power generation output of the fuel cell 1 to the set increase output in the operation time zone in each temporary operation pattern, and the remaining time zone is the fuel cell. A temporary operation pattern for forced continuous operation for a stop is set as a main operation time zone in which the power generation output of 1 is adjusted to the main output.

そして、停止前用の強制連続運転用の仮運転パターンの夫々について、強制運転用時間帯では発電出力を設定増大出力に調節し且つ電主運転用時間帯では発電出力を電主出力に調節する状態で燃料電池1を運転すると仮定して、停止前運転周期について、前記式6〜式8に基づいて予測エネルギ削減量を求め、更に、停止前運転周期の各単位時間について、予測熱出力及び予測貯湯熱量を求める。   For each of the temporary operation patterns for forced continuous operation before stopping, the power generation output is adjusted to the set increase output in the forced operation time zone and the power generation output is adjusted to the main output in the main operation time zone. Assuming that the fuel cell 1 is operated in a state, the predicted energy reduction amount is obtained based on the above-described equations 6 to 8 for the operation cycle before stop, and further, the predicted heat output and the unit time of the operation cycle before stop are calculated. Find the predicted hot water storage.

尚、強制運転用時間帯の単位時間のエネルギ消費量を前記式9により発電出力を設定増大出力として求め、電主運転用時間帯の単位時間のエネルギ消費量を前記式9により発電出力を電主出力として求めて、求めた各単位時間のエネルギ消費量を積算することにより運転周期エネルギ消費量を求め、その運転周期エネルギ消費量に基づいて、式8により、燃料電池1を運転した場合のエネルギ消費量E2を求めることになる。   It should be noted that the energy consumption per unit time in the forced operation time zone is obtained as a set power increase output by the above formula 9, and the power consumption output per unit time in the main operation time zone is calculated by the above formula 9. When the fuel cell 1 is operated according to Equation 8 based on the operation cycle energy consumption, the operation cycle energy consumption is obtained by obtaining the main output and integrating the obtained energy consumption of each unit time. The energy consumption E2 is obtained.

全ての停止前用の強制連続運転用の仮運転パターンのうちで、停止前運転周期の最終の単位時間の予測貯湯熱量が0よりも大きい仮運転パターンについて、上記の停止前用の負荷追従連続運転形態の予測エネルギ削減量を求める場合と同様に、停止用運転周期の複数の単位時間夫々に対応して、予測貯湯熱量及び予測熱負荷として利用された予測利用熱量を求める。   Among the temporary operation patterns for forced continuous operation for all pre-stop operations, the load follow-up continuous for stop operation described above is performed for the temporary operation pattern in which the predicted hot water storage amount in the final unit time of the pre-stop operation cycle is greater than 0. As in the case of obtaining the predicted energy reduction amount of the operation mode, the predicted hot water amount used as the predicted hot water storage amount and the predicted heat load is obtained corresponding to each of the plurality of unit times of the stop operation cycle.

更に、停止前運転周期の最終の単位時間の予測貯湯熱量が0よりも大きい仮運転パターンの夫々について、夫々について上述のように求めた停止前運転周期の予測エネルギ削減量Pに、停止用運転周期における予測利用熱量(kWhに変換したもの)の合計を補助加熱器28の発生熱で補う場合のエネルギ消費量を加えることにより予測エネルギ削減量を求め、その求めた予測エネルギ削減量が最も高い仮運転パターンを停止前用の強制連続運転形態の運転パターンに設定し、その仮運転パターンの予測エネルギ削減量を停止前用の強制連続運転形態の予測エネルギ削減量として求める。   Further, for each of the temporary operation patterns in which the predicted hot water storage amount in the final unit time of the pre-stop operation cycle is greater than 0, the stop energy operation is set to the predicted energy reduction amount P of the pre-stop operation cycle obtained as described above. The predicted energy reduction amount is obtained by adding the energy consumption amount when the sum of the predicted use heat amount (converted to kWh) in the cycle is supplemented with the heat generated by the auxiliary heater 28, and the obtained predicted energy reduction amount is the highest. The temporary operation pattern is set to the operation pattern of the forced continuous operation mode before stopping, and the predicted energy reduction amount of the temporary operation pattern is obtained as the predicted energy reduction amount of the forced continuous operation mode before stopping.

停止前用の抑制連続運転形態の予測エネルギ削減量は、以下のようにして求める。
即ち、停止前運転周期における複数の単位時間のうちの一部の単位時間において燃料電池1の発電出力を設定抑制出力に調節し且つ残りの単位時間において燃料電池1の発電出力を予測電力負荷に追従させるとして、燃料電池1の発電出力を設定抑制出力に調節する単位時間を停止前運転周期における複数の単位時間のうちで、停止前運転周期の予測電力負荷及び予測熱負荷並びに停止用運転周期の予測熱負荷に基づく運転メリットが最も大きくなる単位時間に定めたときの予測エネルギ削減量を、停止前用の抑制連続運転形態の予測エネルギ削減量として求める。
The predicted energy reduction amount of the restraint continuous operation mode for before the stop is obtained as follows.
That is, the power generation output of the fuel cell 1 is adjusted to the set suppression output in a part of the plurality of unit times in the pre-stop operation cycle, and the power generation output of the fuel cell 1 is used as the predicted power load in the remaining unit time. As a follow-up, a unit time for adjusting the power generation output of the fuel cell 1 to the set suppression output is a plurality of unit times in the pre-stop operation cycle, and the predicted power load, the predicted heat load, and the stop operation cycle in the pre-stop operation cycle The predicted energy reduction amount when the unit time in which the operation merit based on the predicted heat load becomes the largest is determined as the predicted energy reduction amount of the suppression continuous operation mode for before stop.

説明を加えると、図8に示す如き仮運転パターンのうちで、運転周期の全単位時間を運転時間帯とするパターン24、及び、運転時間帯が設定抑制出力の設定されていない単位時間のみで形成されるパターンを除いた全ての仮運転パターンを、各仮運転パターンにおける運転時間帯を燃料電池1の発電出力を設定抑制出力に調節する抑制運転用時間帯とし且つ残りの時間帯を燃料電池1の発電出力を電主出力に調節する電主運転用時間帯とする停止前用の抑制連続運転用の仮運転パターンとする。   In addition, in the temporary operation pattern as shown in FIG. 8, only the pattern 24 in which the entire unit time of the operation cycle is the operation time zone and the unit time in which the operation suppression time zone is not set as the setting suppression output. All the temporary operation patterns except the formed pattern are set as the operation time zone for adjusting the power generation output of the fuel cell 1 to the set suppression output for the operation time zone in each temporary operation pattern, and the remaining time zone is the fuel cell. A temporary operation pattern for the suppression continuous operation for the stop is set as the main operation time period for adjusting the power generation output of 1 to the main output.

そして、停止前用の抑制連続運転用の仮運転パターンの夫々について、抑制運転用時間帯では発電出力を設定抑制出力に調節し且つ電主運転用時間帯では発電出力を電主出力に調節する状態で燃料電池1を運転すると仮定して、停止前運転周期について、前記式6〜式8に基づいて予測エネルギ削減量も求め、更に、停止用運転周期の各単位時間について、予測熱出力及び予測貯湯熱量を求める。   Then, for each of the temporary operation patterns for the suppression continuous operation before the stop, the power generation output is adjusted to the set suppression output in the suppression operation time zone, and the power generation output is adjusted to the main output in the main operation time zone. Assuming that the fuel cell 1 is operated in a state, a predicted energy reduction amount is also obtained for the operation cycle before stop based on the equations 6 to 8, and the predicted heat output and the unit time for the stop operation cycle are calculated. Find the predicted hot water storage.

尚、抑制運転用時間帯の単位時間のエネルギ消費量を前記式9により発電出力を設定抑制出力として求め、電主運転用時間帯の単位時間のエネルギ消費量を前記式9により発電出力を電主出力として求めて、求めた各単位時間のエネルギ消費量を積算することにより運転周期エネルギ消費量を求め、その運転周期エネルギ消費量に基づいて、式8により、燃料電池1を運転した場合のエネルギ消費量E2を求めることになる。   It should be noted that the energy consumption per unit time in the restraint operation time zone is obtained as the set restraint output by the above equation 9, and the energy consumption per unit time in the main operation time zone is obtained by the above formula 9. When the fuel cell 1 is operated according to Equation 8 based on the operation cycle energy consumption, the operation cycle energy consumption is obtained by obtaining the main output and integrating the obtained energy consumption of each unit time. The energy consumption E2 is obtained.

全ての停止前用の抑制連続運転用の仮運転パターンのうちで、停止前運転周期の最終の単位時間の予測貯湯熱量が0よりも大きい仮運転パターンについて、上記の停止前用の負荷追従連続運転形態の予測エネルギ削減量を求める場合と同様に、停止用運転周期の複数の単位時間夫々に対応して、予測貯湯熱量及び予測熱負荷として利用された予測利用熱量を求める。   Among all the temporary operation patterns for the suppression continuous operation for before the stop, the load follow-up continuous for the above-mentioned stop for the temporary operation pattern in which the predicted hot water storage amount in the final unit time of the operation cycle before the stop is larger than 0. As in the case of obtaining the predicted energy reduction amount of the operation mode, the predicted hot water amount used as the predicted hot water storage amount and the predicted heat load is obtained corresponding to each of the plurality of unit times of the stop operation cycle.

更に、停止前運転周期の最終の単位時間の予測貯湯熱量が0よりも大きい仮運転パターンの夫々について、夫々について上述のように求めた停止前運転周期の予測エネルギ削減量Pに、停止用運転周期における予測利用熱量(kWhに変換したもの)の合計を補助加熱器28の発生熱で補う場合のエネルギ消費量を加えることにより予測エネルギ削減量を求め、その求めた予測エネルギ削減量が最も高い仮運転パターンを停止前用の抑制連続運転形態の運転パターンに設定し、その仮運転パターンの予測エネルギ削減量を停止前用の抑制連続運転形態の予測エネルギ削減量として求める。   Further, for each of the temporary operation patterns in which the predicted hot water storage amount in the final unit time of the pre-stop operation cycle is greater than 0, the stop energy operation is set to the predicted energy reduction amount P of the pre-stop operation cycle obtained as described above. The predicted energy reduction amount is obtained by adding the energy consumption amount when the sum of the predicted use heat amount (converted to kWh) in the cycle is supplemented with the heat generated by the auxiliary heater 28, and the obtained predicted energy reduction amount is the highest. The temporary operation pattern is set to the operation pattern of the suppression continuous operation mode for before stop, and the predicted energy reduction amount of the temporary operation pattern is obtained as the predicted energy reduction amount of the suppression continuous operation mode for before stop.

停止前用の負荷追従断続運転形態の予測エネルギ削減量は、以下のようにして求める。
即ち、燃料電池1の発電出力を予測電力負荷に追従させる単位時間を、停止前運転周期における複数の単位時間のうちで、停止前運転周期の予測電力負荷及び予測熱負荷並びに停止用運転周期の予測熱負荷に基づく運転メリットが最も大きくなる単位時間に定めたときの予測エネルギ削減量を、停止前用の負荷追従断続運転形態の予測エネルギ削減量として求める。
The predicted energy reduction amount in the load following intermittent operation mode for before stop is obtained as follows.
That is, the unit time for causing the power generation output of the fuel cell 1 to follow the predicted power load is set to the predicted power load and predicted heat load of the pre-stop operation cycle and the stop operation cycle among the plurality of unit times in the pre-stop operation cycle. The predicted energy reduction amount when the unit time in which the operation merit based on the predicted heat load is maximized is determined as the predicted energy reduction amount of the load following intermittent operation mode for before stoppage.

説明を加えると、図8に示す如き仮運転パターンのうちで、運転周期の全時間帯を運転時間帯とするパターン24を除いた全ての仮運転パターンを、停止前用の負荷追従断続運転用の仮運転パターンとする。
そして、停止前用の負荷追従断続運転用の仮運転パターンの夫々について、各仮運転パターンにて設定されている運転時間帯において発電出力を電主出力に調節する状態で燃料電池1を運転すると仮定して、停止前運転周期について、前記式6〜式8に基づいて予測エネルギ削減量を求め、更に、停止前運転周期の各単位時間について、予測熱出力及び予測貯湯熱量を求める。
In addition, among the temporary operation patterns as shown in FIG. 8, all the temporary operation patterns except for the pattern 24 having the entire operation period as the operation time period are used for the load following intermittent operation before the stop. The temporary operation pattern of
When the fuel cell 1 is operated in a state in which the power generation output is adjusted to the main output in the operation time zone set in each temporary operation pattern for each of the temporary operation patterns for the load following intermittent operation before the stop. Assuming that the predicted energy reduction amount is obtained based on the above-described Equations 6 to 8 for the pre-stop operation cycle, and further, the predicted heat output and the predicted hot water storage amount are obtained for each unit time of the pre-stop operation cycle.

全ての停止前用の負荷追従断続運転用の仮運転パターンのうちで、停止前運転周期の最終の単位時間の予測貯湯熱量が0よりも大きい仮運転パターンについて、上記の停止前用の負荷追従連続運転形態の予測エネルギ削減量を求める場合と同様に、停止用運転周期の複数の単位時間夫々に対応して、予測貯湯熱量及び予測熱負荷として利用された予測利用熱量を求める。   Among the temporary operation patterns for the load follow intermittent operation before stop, the load follow for stop as described above for the temporary operation pattern in which the predicted hot water storage heat amount in the final unit time of the pre-stop operation cycle is larger than zero. As in the case of obtaining the predicted energy reduction amount in the continuous operation mode, the predicted hot water amount used as the predicted hot water storage amount and the predicted heat load is obtained corresponding to each of the plurality of unit times of the operation cycle for stopping.

更に、停止前運転周期の最終の単位時間の予測貯湯熱量が0よりも大きい仮運転パターンの夫々について、夫々について上述のように求めた停止前運転周期の予測エネルギ削減量Pに、停止用運転周期における予測利用熱量(kWhに変換したもの)の合計を補助加熱器28の発生熱で補う場合のエネルギ消費量を加えることにより予測エネルギ削減量を求め、その求めた予測エネルギ削減量が最も高い仮運転パターンを停止前用の負荷追従断続運転形態の運転パターンに設定し、その仮運転パターンの予測エネルギ削減量を停止前用の負荷追従断続運転形態の予測エネルギ削減量として求める。   Further, for each of the temporary operation patterns in which the predicted hot water storage amount in the final unit time of the pre-stop operation cycle is greater than 0, the stop energy operation is set to the predicted energy reduction amount P of the pre-stop operation cycle obtained as described above. The predicted energy reduction amount is obtained by adding the energy consumption amount when the sum of the predicted use heat amount (converted to kWh) in the cycle is supplemented with the heat generated by the auxiliary heater 28, and the obtained predicted energy reduction amount is the highest. The temporary operation pattern is set to the operation pattern of the load following intermittent operation mode before stopping, and the predicted energy reduction amount of the temporary operation pattern is obtained as the predicted energy reduction amount of the load following intermittent operation mode before stopping.

停止前用の強制断続運転形態の予測エネルギ削減量は、以下のようにして求める。
即ち、燃料電池1の発電出力を前記設定増大出力に調節する単位時間を、停止前運転周期における複数の単位時間のうちで、停止前運転周期の予測電力負荷及び予測熱負荷並びに停止用運転周期の予測熱負荷に基づく運転メリットが最も大きくなる単位時間に定めたときの予測エネルギ削減量を、停止前用の強制断続運転形態の予測エネルギ削減量として求める。
The predicted energy reduction amount in the forced intermittent operation mode before stopping is obtained as follows.
That is, the unit time for adjusting the power generation output of the fuel cell 1 to the set increase output is the predicted power load, the predicted heat load, and the stop operation cycle in the pre-stop operation cycle among the plurality of unit times in the pre-stop operation cycle. The predicted energy reduction amount when the unit time in which the operation merit based on the predicted heat load is the largest is determined as the predicted energy reduction amount of the forced intermittent operation mode for before stop.

説明を加えると、図8に示す如き仮運転パターンのうちで、運転周期の全時間帯を運転時間帯とするパターン24、及び、運転時間帯が設定増大出力の設定されていない単位時間のみで形成されるパターンを除いた全ての仮運転パターンを、停止前用の強制断続運転用の仮運転パターンとする。   In addition, among the temporary operation patterns as shown in FIG. 8, only the pattern 24 in which the entire operation period is the operation time period and the unit time in which the operation increase time period is not set to the set increase output. All the temporary operation patterns excluding the formed pattern are set as the temporary operation patterns for the forced intermittent operation before the stop.

そして、停止前用の強制断続運転用の仮運転パターンの夫々について、各仮運転パターンにて設定されている運転時間帯において発電出力を前記設定増大出力に調節する状態で燃料電池1を運転すると仮定して、停止前運転周期について、前記式6〜式8に基づいて予測エネルギ削減量を求め、更に、停止前運転周期の各単位時間について、予測熱出力及び予測貯湯熱量を求める。   When the fuel cell 1 is operated in a state in which the power generation output is adjusted to the set increase output in the operation time zone set in each temporary operation pattern for each of the temporary operation patterns for forced intermittent operation before stopping. Assuming that the predicted energy reduction amount is obtained based on the above-described Equations 6 to 8 for the pre-stop operation cycle, and further, the predicted heat output and the predicted hot water storage amount are obtained for each unit time of the pre-stop operation cycle.

全ての停止前用の強制断続運転用の仮運転パターンのうちで、停止前運転周期の最終の単位時間の予測貯湯熱量が0よりも大きい仮運転パターンについて、上記の停止前用の負荷追従連続運転形態の予測エネルギ削減量を求める場合と同様に、停止用運転周期の複数の単位時間夫々に対応して、予測貯湯熱量及び予測熱負荷として利用された予測利用熱量を求める。   Among the temporary operation patterns for forced intermittent operation for all pre-stop operations, the load follow-up continuous for the above-mentioned pre-stop operation is performed for the temporary operation pattern in which the predicted hot water storage amount in the final unit time of the pre-stop operation cycle is greater than zero. As in the case of obtaining the predicted energy reduction amount of the operation mode, the predicted hot water amount used as the predicted hot water storage amount and the predicted heat load is obtained corresponding to each of the plurality of unit times of the stop operation cycle.

更に、停止前運転周期の最終の単位時間の予測貯湯熱量が0よりも大きい仮運転パターンの夫々について、夫々について上述のように求めた停止前運転周期の予測エネルギ削減量Pに、停止用運転周期における予測利用熱量(kWhに変換したもの)の合計を補助加熱器28の発生熱で補う場合のエネルギ消費量を加えることにより予測エネルギ削減量を求め、その求めた予測エネルギ削減量が最も高い仮運転パターンを停止前用の強制断続運転形態の運転パターンに設定し、その仮運転パターンの予測エネルギ削減量を停止前用の強制断続運転形態の予測エネルギ削減量として求める。   Further, for each of the temporary operation patterns in which the predicted hot water storage amount in the final unit time of the pre-stop operation cycle is greater than 0, the stop energy operation is set to the predicted energy reduction amount P of the pre-stop operation cycle obtained as described above. The predicted energy reduction amount is obtained by adding the energy consumption amount when the sum of the predicted use heat amount (converted to kWh) in the cycle is supplemented with the heat generated by the auxiliary heater 28, and the obtained predicted energy reduction amount is the highest. The temporary operation pattern is set to the operation pattern of the forced intermittent operation mode before stopping, and the predicted energy reduction amount of the temporary operation pattern is obtained as the predicted energy reduction amount of the forced intermittent operation mode before stopping.

停止前用の抑制断続運転形態の予測エネルギ削減量は、以下のようにして求める。
即ち、燃料電池1の発電出力を前記設定抑制出力に調節する単位時間を、停止前運転周期における複数の単位時間のうちで、停止前運転周期の予測電力負荷及び予測熱負荷並びに停止用運転周期の予測熱負荷に基づく運転メリットが最も大きくなる単位時間に定めたときの予測エネルギ削減量を、停止前用の抑制断続運転形態の予測エネルギ削減量として求める。
The predicted energy reduction amount of the restrained intermittent operation mode before stopping is obtained as follows.
That is, the unit time for adjusting the power generation output of the fuel cell 1 to the setting suppression output is the predicted power load, the predicted heat load, and the stop operation cycle in the pre-stop operation cycle among the plurality of unit times in the pre-stop operation cycle. The amount of predicted energy reduction when the unit time in which the operation merit based on the predicted heat load is the largest is determined as the amount of predicted energy reduction in the pre-stop restrained intermittent operation mode.

説明を加えると、図8に示す如き仮運転パターンのうちで、運転周期の全時間帯を運転時間帯とするパターン24、及び、運転時間帯が設定抑制出力の設定されていない単位時間のみで形成されるパターンを除いた全ての仮運転パターンを、停止前用の抑制断続運転用の仮運転パターンとする。   In addition, among the temporary operation patterns as shown in FIG. 8, only the pattern 24 in which the entire time period of the operation cycle is the operation time period and the unit time in which the setting suppression output is not set are included in the operation time period. All the temporary operation patterns excluding the formed pattern are set as temporary operation patterns for the suppression intermittent operation before the stop.

そして、停止前用の抑制断続運転用の仮運転パターンの夫々について、各仮運転パターンにて設定されている運転時間帯において発電出力を前記設定抑制出力に調節する状態で燃料電池1を運転すると仮定して、停止前運転周期について、前記式6〜式8に基づいて予測エネルギ削減量も求め、更に、停止用運転周期の各単位時間について、予測熱出力及び予測貯湯熱量を求める。   When the fuel cell 1 is operated in a state where the power generation output is adjusted to the set suppression output in the operation time zone set in each temporary operation pattern for each of the temporary operation patterns for the suppression intermittent operation for the stop. Assuming that the predicted energy reduction amount is also obtained for the pre-stop operation cycle based on the equations 6 to 8, and the predicted heat output and the predicted hot water storage heat amount are obtained for each unit time of the stop operation cycle.

全ての停止前用の抑制断続運転用の仮運転パターンのうちで、停止前運転周期の最終の単位時間の予測貯湯熱量が0よりも大きい仮運転パターンについて、上記の停止前用の負荷追従連続運転形態の予測エネルギ削減量を求める場合と同様に、停止用運転周期の複数の単位時間夫々に対応して、予測貯湯熱量及び予測熱負荷として利用された予測利用熱量を求める。   Among the temporary operation patterns for all the pre-stop controlled intermittent operation, the load follow-up continuous before stop for the temporary operation pattern in which the predicted amount of stored hot water in the final unit time of the pre-stop operation cycle is greater than zero. As in the case of obtaining the predicted energy reduction amount of the operation mode, the predicted hot water amount used as the predicted hot water storage amount and the predicted heat load is obtained corresponding to each of the plurality of unit times of the stop operation cycle.

更に、停止前運転周期の最終の単位時間の予測貯湯熱量が0よりも大きい仮運転パターンの夫々について、夫々について上述のように求めた停止前運転周期の予測エネルギ削減量Pに、停止用運転周期における予測利用熱量(kWhに変換したもの)の合計を補助加熱器28の発生熱で補う場合のエネルギ消費量を加えることにより予測エネルギ削減量を求め、その求めた予測エネルギ削減量が最も高い仮運転パターンを停止前用の抑制断続運転形態の運転パターンに設定し、その仮運転パターンの予測エネルギ削減量を停止前用の抑制断続運転形態の予測エネルギ削減量として求める。   Further, for each of the temporary operation patterns in which the predicted hot water storage amount in the final unit time of the pre-stop operation cycle is greater than 0, the stop energy operation is set to the predicted energy reduction amount P of the pre-stop operation cycle obtained as described above. The predicted energy reduction amount is obtained by adding the energy consumption amount when the sum of the predicted use heat amount (converted to kWh) in the cycle is supplemented with the heat generated by the auxiliary heater 28, and the obtained predicted energy reduction amount is the highest. The temporary operation pattern is set to the operation pattern of the pre-stop suppression intermittent operation mode, and the predicted energy reduction amount of the temporary operation pattern is obtained as the predicted energy reduction amount of the pre-stop suppression intermittent operation mode.

停止前運転周期の全時間帯にわたって燃料電池1を停止させると仮定したときの停止時の予測エネルギ削減量は、以下のようにして求める。
即ち、停止前運転周期の開始時点における貯湯槽2の貯湯熱量が停止前運転周期の予測熱負荷として利用されるとして、前記式3及び式4に基づいて、停止前運転周期の各単位時間の予測貯湯熱量及び予測不足熱量を各単位時間の予測熱出力を0とする状態で求めて、その停止前運転周期の予測エネルギ削減量Pを前記式6〜式8に基づいて求める。
ちなみに、燃料電池1を停止させると仮定するから、燃料電池1を運転した場合のエネルギ消費量E2は、前記式8に基づいて、運転周期エネルギ消費量が0、予測不足電力量が停止前運転周期の予測電力負荷の合計であるとして求めることになる。
更に、停止前運転周期の最終の単位時間の予測貯湯熱量が0よりも大きいときは、その予測貯湯熱量が停止用運転周期の予測熱負荷として利用されたとして、停止用運転周期の複数の単位時間の夫々について、予測貯湯熱量及び予測熱負荷として利用された予測利用熱量を求める。
そして、停止時の予測エネルギ削減量は、停止前運転周期の最終の単位時間の予測貯湯熱量が0の場合は、上述のようにして求めた停止前運転周期の予測エネルギ削減量Pとなり、停止前運転周期の最終の単位時間の予測貯湯熱量が0よりも大きい場合は、上述のようにして求めた停止前運転周期の予測エネルギ削減量Pに停止用運転周期における予測利用熱量の合計を補助加熱器28の発生熱で補う場合のエネルギ消費量を加えたものとなる。
The predicted energy reduction amount at the time of stopping when it is assumed that the fuel cell 1 is stopped over the entire time period of the pre-stop operating cycle is obtained as follows.
That is, assuming that the amount of stored hot water in the hot water storage tank 2 at the start of the pre-stop operation cycle is used as the predicted heat load of the pre-stop operation cycle, the unit time of each pre-stop operation cycle is calculated based on the above Equation 3 and Equation 4. The predicted hot water storage amount and the predicted shortage heat amount are obtained in a state where the predicted heat output of each unit time is 0, and the predicted energy reduction amount P of the pre-stop operation cycle is obtained based on the equations 6 to 8.
Incidentally, since it is assumed that the fuel cell 1 is stopped, the energy consumption amount E2 when the fuel cell 1 is operated is based on the above equation 8, the operation period energy consumption amount is 0, and the predicted insufficient power amount is the operation before stoppage. It is calculated as the total of the predicted power load of the period.
Further, when the predicted hot water storage amount in the final unit time of the pre-stop operation cycle is larger than 0, the predicted hot water storage amount is used as the predicted heat load of the stop operation cycle, and a plurality of units of the stop operation cycle are used. For each time, a predicted hot water quantity used as a predicted hot water storage quantity and a predicted heat load are obtained.
The predicted energy reduction amount at the time of stop is the predicted energy reduction amount P of the pre-stop operation cycle obtained as described above when the predicted hot water storage amount of the last unit time of the pre-stop operation cycle is 0. If the predicted amount of stored hot water in the last unit time of the previous operation cycle is greater than 0, the predicted energy reduction amount P in the operation cycle before stop obtained as described above is supplemented with the total predicted heat usage in the stop operation cycle. The energy consumption when supplementing with the heat generated by the heater 28 is added.

ところで、上述のように、停止前用の各運転形態の予測エネルギ削減量及び停止時の予測エネルギ削減量を求めるに当たっては、予測不足熱量を変数としており、その予測不足熱量は、運転条件を定める運転周期の開始時点における貯湯槽2の貯湯熱量に基づくものであるので、停止前用の各運転形態の予測エネルギ削減量及び停止時の予測エネルギ削減量は、運転条件を定める運転周期の予測電力負荷及び予測熱負荷並びに停止用期間の予測熱負荷に加えて、運転条件を定める運転周期の開始時点における貯湯槽2の貯湯熱量に基づいて求めるように構成されている。   By the way, as described above, in obtaining the predicted energy reduction amount of each operation mode before stopping and the predicted energy reduction amount at the time of stopping, the predicted insufficient heat amount is used as a variable, and the predicted insufficient heat amount defines the operating condition. Since it is based on the amount of hot water stored in the hot water tank 2 at the start of the operation cycle, the predicted energy reduction amount of each operation mode for stoppage and the predicted energy reduction amount at the time of stoppage are the predicted power of the operation cycle that defines the operation conditions. In addition to the load, the predicted heat load, and the predicted heat load during the stop period, it is determined based on the amount of stored hot water in the hot water tank 2 at the start of the operation cycle that defines the operation conditions.

そして、前記運転制御部5は、停止前用の負荷追従連続運転形態、停止前用の強制連続運転形態、停止前用の抑制連続運転形態、停止前用の負荷追従断続運転形態、停止前用の強制断続運転形態、停止前用の抑制断続運転形態のうちで、予測エネルギ削減量が最も大きい運転形態を求める。
更に、前記運転制御部5は、停止時の予測エネルギ削減量が、停止前用の負荷追従連続運転形態、停止前用の強制連続運転形態、停止前用の抑制連続運転形態、停止前用の負荷追従断続運転形態、停止前用の強制断続運転形態、停止前用の抑制断続運転形態の複数種の運転形態夫々について求めた予測エネルギ削減量のうちで最も大きい予測エネルギ削減量よりも大きいときは、停止前運転周期の運転条件を、その停止前運転周期の全時間帯にわたって燃料電池1を停止させる条件に定め、停止時の予測エネルギ削減量が前記複数種の運転形態夫々について求めた予測エネルギ削減量のうちで最も大きい予測エネルギ削減量以下のときは、停止前運転周期の運転条件を、前記複数種の運転形態のうちで予測エネルギ削減量が最も大きい運転形態にて燃料電池1を運転する条件に定める。
And the said operation control part 5 is the load follow continuous operation form before a stop, the forced continuous operation form before a stop, the suppression continuous operation form before a stop, the load follow intermittent operation form before a stop, and before stop Among the forced intermittent operation modes and the pre-stop restrained intermittent operation mode, the operation mode having the largest predicted energy reduction amount is obtained.
Further, the operation control unit 5 has a predicted energy reduction amount at the time of stoppage that is a load follow continuous operation mode before stop, a forced continuous operation mode before stop, a suppressed continuous operation mode before stop, When the predicted energy reduction amount is larger than the largest predicted energy reduction amount among the plurality of types of operation modes of the load following intermittent operation mode, the forced intermittent operation mode before stop, and the suppressed intermittent operation mode before stop Is defined as the condition for stopping the fuel cell 1 over the entire time period of the pre-stop operation cycle, and the predicted energy reduction amount at the time of the stop is obtained for each of the plurality of operation modes. When the energy reduction amount is equal to or less than the largest predicted energy reduction amount, the operation condition of the pre-stop operation cycle is set to the operation type with the largest predicted energy reduction amount among the plurality of operation modes. Prescribed in the conditions of operating the fuel cell 1 at.

以下、図10ないし図13に示すフローチャートに基づいて、運転制御手段5による燃料電池1の制御動作について説明する。
図10に示すように、通常運転周期の開始時点になると、通常時運転条件設定処理を実行して、その通常時運転条件設定処理にて設定した運転条件にてその運転周期の間燃料電池1を運転し、停止前運転周期の開始時点になると、停止前運転条件設定処理を実行して、その停止前運転条件設定処理にて設定した運転条件にてその停止前運転周期の間燃料電池1を運転し、停止用運転周期の開始時点になると、燃料電池1の運転を停止して、その運転停止をその停止用運転周期の間継続する(ステップ#m1〜m7)。
Hereinafter, the control operation of the fuel cell 1 by the operation control means 5 will be described based on the flowcharts shown in FIGS.
As shown in FIG. 10, when the normal operation cycle starts, the normal operation condition setting process is executed, and the fuel cell 1 is operated during the operation cycle under the operation conditions set in the normal operation condition setting process. Is operated, the pre-stop operation condition setting process is executed, and the fuel cell 1 is operated during the pre-stop operation period under the operation conditions set in the pre-stop operation condition setting process. When the stop operation cycle starts, the operation of the fuel cell 1 is stopped, and the operation stop is continued during the stop operation cycle (steps # m1 to m7).

次に、図11及び図12に示すフローチャートに基づいて、前記通常時運転条件設定処理について説明を加える。
燃料電池1を停止させていても、例えば発電可能な状態に維持しておく等のために、エネルギ(電力)が消費されるものであり、運転周期内の全時間帯において燃料電池1を停止させているときにコージェネレーションシステムにて消費されるエネルギを、予め実験等により求めて、待機時消費エネルギZとして、運転制御部5に記憶させてある。
Next, the normal operation condition setting process will be described based on the flowcharts shown in FIGS. 11 and 12.
Even when the fuel cell 1 is stopped, energy (electric power) is consumed, for example, to keep it in a state where power generation is possible, and the fuel cell 1 is stopped in all time zones within the operation cycle. The energy consumed by the cogeneration system during the operation is obtained in advance through experiments or the like, and is stored in the operation control unit 5 as the standby energy consumption Z.

図11に示すように、運転制御部5は、データ管理処理を実行して予測電力負荷データ及び予測熱負荷データを求め、続いて、運転メリット演算処理を実行する(ステップ#1、2)。   As shown in FIG. 11, the operation control unit 5 executes the data management process to obtain the predicted power load data and the predicted heat load data, and then executes the operation merit calculation process (steps # 1 and # 2).

図12に示すように、運転メリット演算処理では、負荷追従連続運転形態を行うと仮定したときに運転周期に熱余り単位時間が存在する場合は、負荷追従連続運転形態の予測エネルギ削減量Pc1、及び、抑制連続運転形態の予測エネルギ削減量Pc2を求め、更に、強制連続運転形態の予測エネルギ削減量Pc3を牽制用の設定値Fに定め、負荷追従連続運転形態を行うと仮定したときに運転周期に熱不足単位時間が存在する場合は、負荷追従連続運転形態の予測エネルギ削減量Pc1、及び、強制連続運転形態の予測エネルギ削減量Pc3を求め、更に、抑制連続運転形態の予測エネルギ削減量Pc2を前記設定値Fに定め、負荷追従連続運転形態を行うと仮定したときに運転周期に熱余り単位時間及び熱不足単位時間いずれも存在しない場合は、負荷追従連続運転形態の予測エネルギ削減量Pc1を求め、更に、抑制連続運転形態の予測エネルギ削減量Pc2及び強制連続運転形態の予測エネルギ削減量Pc3夫々を前記設定値Fに定める(ステップ#101〜105)。   As shown in FIG. 12, in the operation merit calculation process, when it is assumed that the load following continuous operation mode is performed, if there is a surplus unit time in the operation cycle, the predicted energy reduction amount Pc1 of the load following continuous operation mode, Then, the predicted energy reduction amount Pc2 of the suppressed continuous operation mode is obtained, and further, the predicted energy reduction amount Pc3 of the forced continuous operation mode is set to the set value F for checking, and the operation is performed assuming that the load following continuous operation mode is performed. When the heat shortage unit time exists in the cycle, the predicted energy reduction amount Pc1 of the load following continuous operation mode and the predicted energy reduction amount Pc3 of the forced continuous operation mode are obtained, and the predicted energy reduction amount of the suppression continuous operation mode is further obtained. When Pc2 is set to the set value F and it is assumed that the load follow-up continuous operation mode is performed, neither the heat excess unit time nor the heat shortage unit time exists in the operation cycle. In this case, the predicted energy reduction amount Pc1 of the load following continuous operation mode is obtained, and further, the predicted energy reduction amount Pc2 of the suppression continuous operation mode and the predicted energy reduction amount Pc3 of the forced continuous operation mode are determined as the set value F (step) # 101-105).

ちなみに、前記設定値Fは、種々の予測電力負荷及び予測熱負荷に対応して負荷追従連続運転形態の予測エネルギ削減量Pc1、抑制連続運転形態の予測エネルギ削減量Pc2及び強制連続運転形態の予測エネルギ削減量Pc3夫々として求められると予測される値のうちの最小値よりも小さく設定してある。尚、その最小値が負の値として求められると予測される場合は、前記設定値Fを前記最小値よりも絶対値が大きい負の値に設定することになる。   Incidentally, the set value F corresponds to various predicted power loads and predicted thermal loads, the predicted energy reduction amount Pc1 of the load following continuous operation mode, the predicted energy reduction amount Pc2 of the suppression continuous operation mode, and the prediction of the forced continuous operation mode. The energy reduction amount Pc3 is set to be smaller than the minimum value predicted to be obtained. If it is predicted that the minimum value is obtained as a negative value, the set value F is set to a negative value having an absolute value larger than the minimum value.

続いて、1日対応型の負荷追従断続運転形態の予測エネルギ削減量Pi1、1日対応型の抑制断続運転形態の予測エネルギ削減量Pi2、1日対応型の強制断続運転形態の予測エネルギ削減量Pi3、2日対応型の負荷追従断続運転形態の予測エネルギ削減量Pi4、2日対応型の抑制断続運転形態の予測エネルギ削減量Pi5、2日対応型の強制断続運転形態の予測エネルギ削減量Pi6、3日対応型の負荷追従断続運転形態の予測エネルギ削減量Pi7、3日対応型の抑制断続運転形態の予測エネルギ削減量Pi8、3日対応型の強制断続運転形態の予測エネルギ削減量Pi9を求める(ステップ#106)。   Subsequently, the predicted energy reduction amount Pi1 of the daily-response type load following intermittent operation mode Pi1, the predicted energy reduction amount Pi2 of the one-day type suppression intermittent operation mode, and the predicted energy reduction amount of the one-day type forced intermittent operation mode. Pi3 Predicted energy reduction amount Pi4 of the 2-day compatible type load follow intermittent operation mode Pi4 Predicted energy reduction amount Pi5 of the 2-day compatible type intermittent intermittent operation mode Pi5 Predicted energy reduction amount Pi6 of the 2-day compatible type forced intermittent operation mode Predicted energy reduction amount Pi7 for the 3-day compatible type load follow intermittent operation mode Predicted energy reduction amount Pi8 for the 3-day compatible type controlled intermittent operation mode Pi8 Predicted energy reduction amount Pi9 for the 3-day compatible type forced intermittent operation mode (Step # 106).

続いて、図11に示すように、負荷追従連続運転形態、抑制連続運転形態及び強制連続運転形態の3種の連続運転形態の予測エネルギ削減量Pc1,Pc2,Pc3のうちの最大のものを連続運転形態の予測エネルギ削減量Pcに設定し、1日対応型の負荷追従断続運転形態、1日対応型の抑制断続運転形態、1日対応型の強制断続運転形態、2日対応型の負荷追従断続運転形態、2日対応型の抑制断続運転形態、2日対応型の強制断続運転形態、3日対応型の負荷追従断続運転形態、3日対応型の抑制断続運転形態及び3日対応型の強制断続運転形態の9種の断続運転形態の予測エネルギ削減量Pi1,Pi2,Pi3,Pi4,Pi5,Pi6,Pi7,Pi8,Pi9のうちの最大のものを断続運転形態の予測エネルギ削減量Piに設定する(ステップ#3,4)。   Subsequently, as shown in FIG. 11, the largest one of the predicted energy reduction amounts Pc1, Pc2, and Pc3 of the three types of continuous operation modes of the load following continuous operation mode, the suppression continuous operation mode, and the forced continuous operation mode is continuously used. Set to the predicted energy reduction amount Pc of the operation mode, the load tracking intermittent operation mode corresponding to the day, the suppression intermittent operation mode corresponding to the day, the forced intermittent operation mode corresponding to the day, the load tracking corresponding to the day Intermittent operation mode, 2-day response suppression intermittent operation configuration, 2-day response forced intermittent operation configuration, 3-day response load follow-up intermittent operation configuration, 3-day response suppression intermittent operation configuration, and 3-day response type The predicted energy reduction amount Pi1, Pi2, Pi3, Pi4, Pi5, Pi6, Pi7, Pi8, Pi9 of the nine types of forced intermittent operation modes is the predicted energy reduction amount Pi of the intermittent operation mode. Setting (Step # 3, 4).

続いて、ステップ#5において、連続運転形態の予測エネルギ削減量Pc及び断続運転形態の予測エネルギ削減量Piのうちの最大のものが待機時消費エネルギZの負の値「−Z」よりも大きいか否かを判断することにより、連続運転形態及び断続運転形態のうちのいずれか1つを実行した方が、運転周期の全時間帯にわたって燃料電池1を停止させるよりも省エネルギになるかを判断する。   Subsequently, in Step # 5, the maximum of the predicted energy reduction amount Pc in the continuous operation mode and the predicted energy reduction amount Pi in the intermittent operation mode is larger than the negative value “−Z” of the standby energy consumption Z. It is determined whether or not one of the continuous operation mode and the intermittent operation mode saves energy compared to stopping the fuel cell 1 over the entire time period of the operation cycle. to decide.

つまり、連続運転形態や断続運転形態を実行したときのエネルギ消費量が燃料電池1を運転しないときのエネルギ消費量よりも多くなって、連続運転形態の予測エネルギ削減量Pcや断続運転形態の予測エネルギ削減量Piが負の値として求められる場合があるが、それらの正負に拘らず、連続運転形態の予測エネルギ削減量Pc及び断続運転形態の予測エネルギ削減量Piのうちの最大のものが待機時消費エネルギZの負の値「−Z」よりも大きいときは、連続運転形態及び断続運転形態のいずれかを実行した方が運転周期の全時間帯にわたって燃料電池1を停止させるよりも省エネルギになる。   That is, the energy consumption amount when the continuous operation mode or the intermittent operation mode is executed is larger than the energy consumption amount when the fuel cell 1 is not operated, and the predicted energy reduction amount Pc of the continuous operation mode or the prediction of the intermittent operation mode is obtained. The energy reduction amount Pi may be obtained as a negative value, but the largest of the predicted energy reduction amount Pc in the continuous operation mode and the predicted energy reduction amount Pi in the intermittent operation mode is on standby regardless of the sign. When the hourly energy consumption Z is larger than the negative value “−Z”, it is energy saving to execute one of the continuous operation mode and the intermittent operation mode than to stop the fuel cell 1 over the entire time period of the operation cycle. become.

そして、ステップ#5にて、連続運転形態及び断続運転形態のいずれかを実行した方が運転周期の全時間帯にわたって燃料電池1を停止させるよりも省エネルギになると判断したときは、ステップ#6にて、連続運転形態の予測エネルギ削減量Pc及び断続運転形態の予測エネルギ削減量Piのうち、断続運転形態の予測エネルギ削減量Piが最大か否かを判断し、断続運転形態の予測エネルギ削減量Piが最大でない場合は、ステップ#7にて、通常運転周期の運転条件を、3種の連続運転形態のうちの予測エネルギ削減量が最大の連続運転形態にて燃料電池1を運転する条件に定める。   When it is determined in step # 5 that performing either the continuous operation mode or the intermittent operation mode saves energy than stopping the fuel cell 1 over the entire time period of the operation cycle, step # 6 is performed. Then, it is determined whether the predicted energy reduction amount Pi of the intermittent operation mode is the maximum among the predicted energy reduction amount Pc of the continuous operation mode and the predicted energy reduction amount Pi of the intermittent operation mode, and the predicted energy reduction of the intermittent operation mode is determined. When the amount Pi is not the maximum, in step # 7, the operating condition of the normal operation cycle is set as the condition for operating the fuel cell 1 in the continuous operation mode with the maximum predicted energy reduction amount among the three continuous operation modes. Stipulated in

ステップ#6において、連続運転形態の予測エネルギ削減量Pc及び断続運転形態の予測エネルギ削減量Piのうち、断続運転形態の予測エネルギ削減量Piが最大と判断すると、ステップ#8において、運転周期の開始時点における貯湯熱量にてその運転周期の予測熱負荷を賄える程度を示す熱負荷賄い率U/Lを求め、ステップ#9では、その求めた熱負荷賄い率U/Lと下位設定値Kとを比較して、熱負荷賄い率U/Lが下位設定値Kよりも大きいときは、待機条件を満たすと判断し、熱負荷賄い率U/Lが下位設定値K以下のときは、待機条件を満たさないと判断する。   In step # 6, when it is determined that the predicted energy reduction amount Pi of the intermittent operation mode is the maximum among the predicted energy reduction amount Pc of the continuous operation mode and the predicted energy reduction amount Pi of the intermittent operation mode, in step # 8, the operation cycle The heat load coverage rate U / L indicating the extent to which the predicted heat load of the operation cycle can be covered by the amount of stored hot water at the start time is obtained. In step # 9, the obtained heat load coverage rate U / L and the lower set value K When the thermal load coverage rate U / L is larger than the lower set value K, it is determined that the standby condition is satisfied. When the thermal load coverage rate U / L is lower than the lower set value K, the standby condition It is judged that it does not satisfy.

ちなみに、熱負荷賄い率U/LのLは、最初の運転周期の各単位時間の予測熱負荷を合計することにより求めた運転周期の予測熱負荷である。
又、熱負荷賄い率U/LのUは、燃料電池1の予測熱出力を0として、最初の運転周期の予測熱負荷のうち、最初の運転周期の開始時点における貯湯熱量にて賄えると予測される予測利用熱量である。
例えば、運転周期の開始時点が、図5にて示す2回目の運転周期の開始時点の状態であると仮定すると、Lは、図5に示す如き、運転周期の各単位時間の予測熱負荷を合計した値となり、Uは、図5に示す如き、運転周期の各単位時間の予測利用熱量を合計した値となる。
尚、前記下位設定値Kは、例えば、0.4に設定する。
Incidentally, L of the thermal load coverage rate U / L is the predicted heat load of the operation cycle obtained by summing the predicted heat loads of each unit time of the first operation cycle.
Moreover, U of the thermal load coverage rate U / L is predicted to be covered by the amount of stored hot water at the start of the first operation cycle out of the predicted heat load of the first operation cycle, assuming the predicted heat output of the fuel cell 1 as 0. Predicted amount of heat used.
For example, assuming that the start time of the operation cycle is the state of the start time of the second operation cycle shown in FIG. 5, L is the predicted heat load of each unit time of the operation cycle as shown in FIG. As shown in FIG. 5, U is a total value of predicted usage heat amounts for each unit time of the operation cycle.
The lower set value K is set to 0.4, for example.

つまり、貯湯槽2からは放熱があることから、最初の運転周期の開始時点における貯湯槽2の貯湯熱量にて最初の運転周期における予測熱負荷を賄える程度を示す熱負荷賄い率を求めるに当たっては、最初の運転周期の開始時点の貯湯槽2の貯湯熱量そのものを用いるよりも、最初の運転周期の予測熱負荷のうち、最初の運転周期の開始時点における貯湯熱量にて賄えると予測される予測利用熱量Uを用いる方が、貯湯槽2からの放熱を考慮することができるので、熱負荷賄賄い率を適切に求めることができる。   That is, since there is heat radiation from the hot water tank 2, when obtaining the heat load coverage rate indicating the extent to which the predicted heat load in the first operation cycle can be covered by the amount of hot water stored in the hot water tank 2 at the start of the first operation cycle. Rather than using the amount of hot water stored in the hot water tank 2 at the start of the first operation cycle, it is predicted that the predicted heat load of the first operation cycle can be covered by the amount of stored hot water at the start of the first operation cycle. Since the direction using the heat usage amount U can consider the heat radiation from the hot water tank 2, it is possible to appropriately obtain the thermal load bridging rate.

そして、ステップ#9で待機条件を満たさないと判断したときは、ステップ#10において、通常運転周期の運転条件を、9種の断続運転形態のうちの予測エネルギ削減量が最大の断続運転形態にて燃料電池1を運転する条件に定める。   When it is determined in step # 9 that the standby condition is not satisfied, in step # 10, the operation condition of the normal operation cycle is changed to the intermittent operation mode in which the predicted energy reduction amount among the nine types of intermittent operation modes is the maximum. The conditions for operating the fuel cell 1 are determined.

又、ステップ#9で待機条件を満たすと判断したときは、ステップ#11で、燃料電池1が運転中か否かを判断して、運転中のときは、ステップ#12にて、熱負荷賄い率U/Lが前記下位設定値Kよりも大きい上位設定値M(例えば0.9)よりも大きいか否かを判断して、大きくないと判断したときは、ステップ#13において、燃料電池1の運転を継続する運転継続条件を満たすか否かを判断する。   If it is determined in step # 9 that the standby condition is satisfied, it is determined in step # 11 whether or not the fuel cell 1 is in operation. If it is in operation, the heat load is covered in step # 12. When it is determined whether or not the ratio U / L is larger than the upper set value M (for example, 0.9) larger than the lower set value K, it is determined that the ratio U / L is not larger. In step # 13, the fuel cell 1 It is determined whether or not the operation continuation condition for continuing the operation is satisfied.

つまり、メモリ34に記憶されている仮運転パターンのうち、開始時点に引き続き且つ個数が1〜設定数N2(例えば10個)の単位時間からなる時間帯を運転時間帯として仮定する全ての仮運転パターンの夫々について、運転時間帯に発電出力を電主出力に調節するとして、最初の運転周期における最終の単位時間の貯湯熱量が0になるか否かを判断し、その貯湯熱量が0になる仮運転パターンが存在するときは、貯湯槽2の湯を使い切る状態で燃料電池1の運転を継続することが可能であり、運転継続条件を満たすと判断し、その貯湯熱量が0になる仮運転パターンが存在しないときは、運転継続条件を満たさないと判断する。   That is, all the temporary operation patterns that are assumed to be the operation time zone from the temporary operation patterns stored in the memory 34, which continues from the start time and is composed of unit times of 1 to the set number N2 (for example, 10). For each of the patterns, assuming that the power generation output is adjusted to the main output during the operation time period, it is determined whether or not the amount of stored hot water in the final unit time in the first operation cycle is 0, and the amount of stored hot water becomes 0. When the temporary operation pattern exists, it is possible to continue the operation of the fuel cell 1 with the hot water in the hot water tank 2 used up, and it is determined that the operation continuation condition is satisfied, and the temporary operation in which the amount of stored hot water becomes 0 When the pattern does not exist, it is determined that the operation continuation condition is not satisfied.

そして、ステップ#13において、運転継続条件を満たすと判断すると、ステップ#14において、通常運転周期の運転条件を、燃料電池1の運転を負荷追従運転にて継続する条件に定め、続いて、ステップ#15において、燃料電池1の運転を継続する運転継続時間を設定する運転継続時間設定処理を実行する。   When it is determined in step # 13 that the operation continuation condition is satisfied, in step # 14, the operation condition of the normal operation cycle is set to a condition for continuing the operation of the fuel cell 1 in the load following operation. In # 15, an operation duration setting process for setting an operation duration for continuing the operation of the fuel cell 1 is executed.

前記運転継続時間設定処理では、ステップ#13にて最初の運転周期における最終の単位時間の貯湯熱量が0になると判断した仮運転パターンのうち、予測エネルギ削減量Pが最大となる仮運転パターンの運転時間帯を運転継続時間に設定する。
つまり、ステップ#13にて最初の運転周期における最終の単位時間の貯湯熱量が0になると判断した仮運転パターンの夫々について、燃料電池1を運転した場合のエネルギ消費量E2を前記式8により求めて、その求めたエネルギ消費量E2及び前記式7により求めた燃料電池1を運転しない場合のエネルギ消費量E1を前記式6に代入することにより、予測エネルギ削減量Pを求め、求めた予測エネルギ削減量Pが最大の仮運転パターンの運転時間帯を運転継続時間に設定する。
In the operation continuation time setting process, the temporary operation pattern in which the predicted energy reduction amount P is the maximum among the temporary operation patterns determined in step # 13 that the stored hot water amount in the final unit time in the first operation cycle becomes zero. Set the operation time zone to the operation continuation time.
That is, the energy consumption amount E2 when the fuel cell 1 is operated is obtained by the above equation 8 for each of the temporary operation patterns determined that the amount of stored hot water in the final unit time in the first operation cycle becomes 0 in step # 13. Then, by substituting the obtained energy consumption E2 and the energy consumption E1 obtained when the fuel cell 1 is not operated according to the equation 7 into the equation 6, the predicted energy reduction amount P is obtained and the obtained predicted energy is calculated. The operation time zone of the temporary operation pattern with the maximum reduction amount P is set as the operation continuation time.

ステップ#5にて、運転周期の全時間帯にわたって燃料電池1を停止させる方が省エネルギになると判断したとき、ステップ#11にて、燃料電池1が停止中であると判断したとき、ステップ#12にて、熱負荷賄い率U/Lが上位設定値Mよりも大きいと判断したとき、ステップ#13にて、運転継続条件を満たさないと判断したときは、ステップ#16にて、通常運転周期の運転条件を、その通常運転周期の全時間帯にわたって燃料電池1を停止させる条件に定める。   When it is determined in step # 5 that it is energy saving to stop the fuel cell 1 over the entire operation period, when it is determined in step # 11 that the fuel cell 1 is stopped, step # 12, when it is determined that the thermal load coverage ratio U / L is larger than the upper set value M, when it is determined in step # 13 that the operation continuation condition is not satisfied, normal operation is performed in step # 16. The operation condition of the cycle is determined as a condition for stopping the fuel cell 1 over the entire time period of the normal operation cycle.

運転制御手段5は、通常運転周期においては前記通常時運転条件設定処理にて定めた運転条件にて燃料電池1を運転する。
つまり、燃料電池1を負荷追従連続運転形態にて運転する条件に定めたときは、運転周期の全時間帯にわたって燃料電池1の発電出力を現在要求されている現電力負荷に追従させる現電力負荷追従運転を実行する。
その現電力負荷追従運転では、1分等の比較的短い所定の出力調整周期毎に現電力負荷を求め、最小出力(例えば300W)から最大出力(例えば1000W)の範囲内で、連続的に現電力負荷に追従する電主出力を決定し、燃料電池1の発電出力をその決定した電主出力に調整する形態で運転する。
尚、前記現電力負荷は、前記電力負荷計測手段11の計測値及び前記インバータ6の出力値に基づいて計測し、更に、その現電力負荷は、前の出力調整周期において所定のサンプリング時間(例えば5秒)でサンプリングしたデータの平均値として求められる。
The operation control means 5 operates the fuel cell 1 under the operation conditions determined in the normal operation condition setting process in the normal operation cycle.
That is, when the conditions for operating the fuel cell 1 in the load following continuous operation mode are set, the current power load for causing the power generation output of the fuel cell 1 to follow the current power load currently requested over the entire time period of the operation cycle. Follow-up operation is executed.
In the current power load follow-up operation, the current power load is obtained at a relatively short predetermined output adjustment cycle such as one minute, and continuously within a range from the minimum output (for example, 300 W) to the maximum output (for example, 1000 W). The operation is performed in such a manner that the main output following the electric power load is determined and the power generation output of the fuel cell 1 is adjusted to the determined main output.
The current power load is measured based on the measured value of the power load measuring means 11 and the output value of the inverter 6, and the current power load is measured at a predetermined sampling time (for example, in the previous output adjustment cycle). It is obtained as an average value of data sampled at 5 seconds).

燃料電池1を抑制連続運転形態にて運転する条件に定めたときは、燃料電池1の発電出力を設定抑制出力にすると定められている単位時間では燃料電池1の発電出力を設定抑制出力に調節し、他の単位時間では現電力負荷追従運転を実行する。
燃料電池1を強制連続運転形態にて運転する条件に定めたときは、燃料電池1の発電出力を設定増大出力にすると定められている単位時間では燃料電池1の発電出力を設定増大出力に調節し、他の単位時間では現電力負荷追従運転を実行する。
When the conditions for operating the fuel cell 1 in the suppression continuous operation mode are set, the power generation output of the fuel cell 1 is adjusted to the setting suppression output for the unit time determined to set the power generation output of the fuel cell 1 to the setting suppression output. However, the current power load following operation is executed in other unit times.
When the conditions for operating the fuel cell 1 in the forced continuous operation mode are set, the power generation output of the fuel cell 1 is adjusted to the set increase output for a unit time that is determined to set the power generation output of the fuel cell 1 to the set increase output. However, the current power load following operation is executed in other unit times.

燃料電池1を1日対応型、2日対応型、3日対応型のいずれかの負荷追従断続運転にて運転する条件に定めたときは、運転時間帯に含まれる単位時間においては現電力負荷追従運転を実行し、停止時間帯に含まれる単位時間においては燃料電池1を停止させる。
燃料電池1を1日対応型、2日対応型、3日対応型のいずれかの抑制断続運転にて運転する条件に定めたときは、運転時間帯に含まれる単位時間のうち設定抑制出力が設定されている単位時間では燃料電池1の発電出力を設定抑制出力に調節し、停止時間帯に含まれる単位時間においては燃料電池1を停止させる。
燃料電池1を1日対応型、2日対応型、3日対応型のいずかの強制断続運転にて運転する条件に定めたときは、運転時間帯に含まれる単位時間のうち設定増大出力が設定されている単位時間では燃料電池1の発電出力を設定増大出力に調節し、停止時間帯に含まれる単位時間においては燃料電池1を停止させる。
When the conditions for operating the fuel cell 1 in one-day, two-day, or three-day load-following intermittent operation are set, the current power load in the unit time included in the operation time zone Following operation is performed, and the fuel cell 1 is stopped during a unit time included in the stop time zone.
When the conditions for operating the fuel cell 1 in one-day correspondence type, two-day correspondence type, or three-day correspondence type of intermittent intermittent operation are set, the set suppression output is included in the unit time included in the operation time zone. In the set unit time, the power generation output of the fuel cell 1 is adjusted to the set suppression output, and the fuel cell 1 is stopped in the unit time included in the stop time zone.
When the conditions for operating the fuel cell 1 in one-day compatible type, two-day compatible type, or three-day compatible type of forced intermittent operation are set, a set increase output in the unit time included in the operation time zone Is adjusted to the set increased output during the unit time in which the fuel cell 1 is set, and the fuel cell 1 is stopped during the unit time included in the stop time zone.

つまり、通常運転周期の開始時点になる毎に通常時運転条件設定処理を実行し、その通常時運転条件設定処理では、上述のように、熱負荷賄い率U/Lが下位設定値Kよりも大きくて待機条件を満たすと判断したときに、燃料電池1が停止中であると判断した場合、燃料電池1が運転中で且つ熱負荷賄い率U/Lが上位設定値Mよりも大きいと判断した場合、及び、燃料電池1が運転中で且つ熱負荷賄い率U/Lが上位設定値M以下で且つ運転継続条件を満たさないと判断した場合のいずれかの場合では、通常運転周期の運転条件をその全時間帯にわたって燃料電池1を停止させる条件に定めるように構成されているので、先の通常時運転条件設定処理にて2日対応型又は3日対応型の負荷追従、抑制又は強制のいずれかの断続運転形態に設定されて、今回の通常時運転条件設定処理を行う時点が2日対応型又は3日対応型の断続運転形態における2回目の運転周期の開始時点に相当するときに、その通常時運転条件設定処理にて通常運転周期の運転条件がその全時間帯にわたって燃料電池1を停止させる条件に定められると、その2日対応型又は3日対応型の断続運転形態における2回目の運転周期の全時間帯にわたって燃料電池1が停止されることになり、2日対応型又は3日対応型の断続運転形態が継続される。   That is, the normal operation condition setting process is executed every time the normal operation cycle starts, and in the normal operation condition setting process, the thermal load coverage ratio U / L is lower than the lower set value K as described above. When it is determined that the fuel cell 1 is stopped when it is determined that the standby condition is large, it is determined that the fuel cell 1 is in operation and the thermal load coverage ratio U / L is larger than the upper set value M. In the case where the fuel cell 1 is in operation and the thermal load coverage ratio U / L is not higher than the upper set value M and does not satisfy the operation continuation condition, Since the condition is set to the condition for stopping the fuel cell 1 over the entire time period, the load tracking, suppression or forcing of the 2-day type or the 3-day type is performed in the previous normal operation condition setting process. Set to one of the intermittent operation modes When the current normal operation condition setting process corresponds to the start time of the second operation cycle in the 2-day-compatible or 3-day intermittent operation mode, the normal-time operation condition setting process is performed. When the operation condition of the normal operation cycle is determined as the condition for stopping the fuel cell 1 over the entire time period, the entire time period of the second operation cycle in the intermittent operation mode of the two-day correspondence type or the three-day correspondence type The fuel cell 1 is stopped over a period of time, and the two-day correspondence type or the three-day correspondence type intermittent operation mode is continued.

又、2日対応型又は3日対応型の断続運転形態においてその1回目の運転周期における実際の熱負荷が予測熱負荷よりも多くなって、又は、3日対応型の断続運転形態においてその2回目の運転周期における実際の熱負荷が予測熱負荷よりも多くなって、熱負荷賄い率U/Lが下位設定値K以下で待機条件を満たさないと判断されると、新たに、いずれかの断続運転形態に定められることになる。   In the 2-day or 3-day intermittent operation mode, the actual heat load in the first operation cycle is larger than the predicted heat load, or in the 3-day intermittent operation mode, 2 When it is determined that the actual thermal load in the second operation cycle is greater than the predicted thermal load and the thermal load coverage ratio U / L is lower than the lower set value K and does not satisfy the standby condition, It will be determined in the intermittent operation mode.

又、熱負荷賄い率U/Lが下位設定値Kよりも大きくて待機条件を満たすと判断したときに、燃料電池1が運転中で且つ熱負荷賄い率U/Lが上位設定値M以下で且つ運転継続条件を満たすと判断されると、貯湯槽2の湯を使い切る状態で燃料電池1の運転が負荷追従運転にて継続されるので、起動時消費エネルギを消費することなく、最初の運転周期の熱負荷を十分に賄うことが可能となり、省エネルギ性を一段と向上することができる。   Further, when it is determined that the thermal load coverage rate U / L is larger than the lower set value K and the standby condition is satisfied, the fuel cell 1 is in operation and the thermal load coverage rate U / L is equal to or lower than the upper set value M. When it is determined that the operation continuation condition is satisfied, the operation of the fuel cell 1 is continued in the load following operation while the hot water in the hot water tank 2 is used up. It becomes possible to sufficiently cover the heat load of the cycle, and energy saving can be further improved.

次に、図13に示すフローチャートに基づいて、前記停止前運転条件設定処理について説明を加える。
先ず、ステップ#21において、データ管理処理を実行して、停止前運転周期の予測電力負荷データ及び予測熱負荷データ並びに停止用運転周期の予測熱負荷データを求める。
続いて、ステップ#22において、上述のように、停止前用の負荷追従連続運転形態の予測エネルギ削減量Pb1、停止前用の抑制連続運転形態の予測エネルギ削減量Pb2、停止前用の強制連続運転形態の予測エネルギ削減量Pb3、停止前用の負荷追従断続運転形態の予測エネルギ削減量Pb4、停止前用の抑制断続運転形態の予測エネルギ削減量Pb5、停止前用の強制断続運転形態の予測エネルギ削減量Pb6、及び、停止時の予測エネルギ削減量Psを求める。
Next, the pre-stop operation condition setting process will be described based on the flowchart shown in FIG.
First, in step # 21, a data management process is executed to obtain predicted power load data and predicted heat load data for the pre-stop operation cycle and predicted heat load data for the stop operation cycle.
Subsequently, in step # 22, as described above, the predicted energy reduction amount Pb1 of the load following continuous operation mode before stop, the predicted energy reduction amount Pb2 of the suppression continuous operation mode before stop, and the forced continuous time before stop. Predicted energy reduction amount Pb3 of the operation mode, predicted energy reduction amount Pb4 of the load following intermittent operation mode before stoppage, predicted energy reduction amount Pb5 of the suppression intermittent operation mode before stoppage, prediction of the forced intermittent operation mode before stoppage The energy reduction amount Pb6 and the predicted energy reduction amount Ps at the time of stop are obtained.

続いて、ステップ#23において、停止時の予測エネルギ削減量Psが、停止前用の負荷追従連続運転形態の予測エネルギ削減量Pb1、停止前用の抑制連続運転形態の予測エネルギ削減量Pb2、停止前用の強制連続運転形態の予測エネルギ削減量Pb3、停止前用の負荷追従断続運転形態の予測エネルギ削減量Pb4、停止前用の抑制断続運転形態の予測エネルギ削減量Pb5及び停止前用の強制断続運転形態の予測エネルギ削減量Pb6のうちで最大の予測エネルギ削減量よりも大きいか否かを判別して、大きくないと判別したときは、ステップ#24にて、停止前運転周期の運転条件を、停止前用の負荷追従連続運転形態、停止前用の抑制連続運転形態、停止前用の強制連続運転形態、停止前用の負荷追従断続運転形態、停止前用の抑制断続運転形態及び停止前用の強制断続運転形態のうちで予測エネルギ削減量が最大の運転形態にて燃料電池1を運転する条件に定め、大きいと判別したときは、ステップ#25にて、停止前運転周期の運転条件を、その停止前運転周期の全時間帯にわたって燃料電池1を停止させる条件に定める。   Subsequently, in step # 23, the predicted energy reduction amount Ps at the time of stop is the predicted energy reduction amount Pb1 of the load following continuous operation mode before stop, the predicted energy reduction amount Pb2 of the suppressed continuous operation mode before stop, Predicted energy reduction amount Pb3 of the forced continuous operation mode for the previous time, predicted energy reduction amount Pb4 of the load follow-up intermittent operation mode for the stop time, predicted energy reduction amount Pb5 of the suppressed intermittent operation mode for the stop time, and forcing for the stop time When it is determined whether or not it is larger than the maximum predicted energy reduction amount among the predicted energy reduction amounts Pb6 of the intermittent operation mode, if it is determined that it is not larger, in step # 24, the operation conditions of the pre-stop operation cycle Load-following continuous operation mode before stop, restraint continuous operation mode before stop, forced continuous operation mode before stop, load-following intermittent operation mode before stop, When it is determined that the fuel cell 1 is operated in the operation mode in which the predicted energy reduction amount is the largest among the controlled intermittent operation mode and the forced intermittent operation mode before stopping, when it is determined that the fuel cell 1 is large, in step # 25, The operation condition of the pre-stop operation cycle is determined as a condition for stopping the fuel cell 1 over the entire time period of the pre-stop operation cycle.

運転制御手段5は、停止前運転周期においては前記停止前運転条件設定処理にて定めた運転条件にて燃料電池1を運転する。
つまり、燃料電池1を停止前用の負荷追従連続運転形態にて運転する条件に定めたときは、運転周期の全時間帯にわたって現電力負荷追従運転を実行する。
燃料電池1を停止前用の抑制連続運転形態にて運転する条件に定めたときは、燃料電池1の発電出力を設定抑制出力にすると定められている単位時間では燃料電池1の発電出力を設定抑制出力に調節し、他の単位時間では現電力負荷追従運転を実行する。
燃料電池1を停止前用の強制連続運転形態にて運転する条件に定めたときは、燃料電池1の発電出力を設定増大出力にすると定められている単位時間では燃料電池1の発電出力を設定増大出力に調節し、他の単位時間では現電力負荷追従運転を実行する。
燃料電池1を停止前用の負荷追従断続運転にて運転する条件に定めたときは、運転時間帯に含まれる単位時間においては現電力負荷追従運転を実行し、停止時間帯に含まれる単位時間においては燃料電池1を停止させる。
燃料電池1を停止前用の抑制断続運転にて運転する条件に定めたときは、運転時間帯に含まれる単位時間のうち設定抑制出力が設定されている単位時間では燃料電池1の発電出力を設定抑制出力に調節し、停止時間帯に含まれる単位時間においては燃料電池1を停止させる。
燃料電池1を停止前用の強制断続運転にて運転する条件に定めたときは、運転時間帯に含まれる単位時間のうち設定増大出力が設定されている単位時間では燃料電池1の発電出力を設定増大出力に調節し、停止時間帯に含まれる単位時間においては燃料電池1を停止させる。
The operation control means 5 operates the fuel cell 1 under the operation conditions determined in the pre-stop operation condition setting process in the pre-stop operation cycle.
That is, when the conditions for operating the fuel cell 1 in the load following continuous operation mode before stopping are set, the current power load following operation is executed over the entire time period of the operation cycle.
When the conditions for operating the fuel cell 1 in the continuous suppression mode before stopping are set, the power generation output of the fuel cell 1 is set for the unit time that is determined to set the power generation output of the fuel cell 1 to the set suppression output. It adjusts to the suppression output and executes the current power load following operation in other unit time.
When the conditions for operating the fuel cell 1 in the forced continuous operation mode before stopping are set, the power generation output of the fuel cell 1 is set for a unit time that is set to increase the power generation output of the fuel cell 1 to the set increase output. The output is adjusted to the increased output, and the current power load following operation is executed in other unit time.
When the conditions for operating the fuel cell 1 in the load following intermittent operation before stopping are determined, the current power load following operation is executed in the unit time included in the operation time zone, and the unit time included in the stop time zone. In FIG. 2, the fuel cell 1 is stopped.
When the conditions for operating the fuel cell 1 in the controlled intermittent operation before stopping are determined, the power generation output of the fuel cell 1 is output in the unit time in which the set suppression output is set in the unit time included in the operation time zone. The fuel cell 1 is stopped during the unit time included in the stop time zone by adjusting to the set suppression output.
When the conditions for operating the fuel cell 1 in the forced intermittent operation before stopping are set, the power generation output of the fuel cell 1 is output in the unit time in which the set increase output is set in the unit time included in the operation time zone. The fuel cell 1 is stopped during the unit time included in the stop time zone by adjusting to the set increase output.

以下、本発明の第2ないし第5の実施形態を説明するが、第2ないし第5の各実施形態は、運転制御部5の制御動作の別の実施形態を説明するものであって、コージェネレーションシステムの全体構成は上記の第1実施形態と同様であるので、コージェネレーションシステムの全体構成についての説明を省略して、運転制御部5の制御動作について説明する。   Hereinafter, the second to fifth embodiments of the present invention will be described. Each of the second to fifth embodiments describes another embodiment of the control operation of the operation control unit 5, and Since the overall configuration of the generation system is the same as that of the first embodiment, description of the overall configuration of the cogeneration system will be omitted and the control operation of the operation control unit 5 will be described.

〔第2実施形態〕
この第2実施形態は、上記の第1実施形態と同様に、運転制御部5が、時系列的な予測電力負荷及び時系列的な予測熱負荷を時系列で並ぶ運転周期毎に区分けして管理し、且つ、燃料電池1を停止することを予定する停止用期間が時系列で並ぶ運転周期のうちのいずれであるかについて管理するデータ管理処理を実行するように構成されている。
そして、上記の第1実施形態では、運転制御部5が、データ管理処理にて停止用期間として管理している運転周期では燃料電池1を停止させるように構成されているが、この第2実施形態では、運転制御部5は、前記停止用期間を管理している運転周期とする場合、前記停止用期間を管理している運転周期よりも前の運転周期とする場合、及び、前記停止用期間を管理している運転周期よりも後の運転周期とする場合のうちで、前記停止用期間とする運転周期の予測熱負荷並びにその運転周期よりも前の運転周期における予測電力負荷及び予測熱負荷に基づいて求める運転メリットが最も高くなる場合を求め、その場合に対応させて前記停止用期間とする運転周期を定めて、その定めた運転周期において燃料電池1を停止させるように構成されている。
以下、上述のように停止用期間とする運転周期を定める処理を停止用期間設定処理と記載する場合がある。
[Second Embodiment]
In the second embodiment, as in the first embodiment, the operation control unit 5 classifies the time-series predicted power load and the time-series predicted heat load for each operation cycle arranged in time series. It is configured to execute a data management process for managing and managing which of the operation periods arranged in time series is the period for stopping the fuel cell 1 scheduled to be stopped.
In the first embodiment, the operation control unit 5 is configured to stop the fuel cell 1 in the operation cycle managed as the stop period in the data management process. In the embodiment, the operation control unit 5 sets the stop period as an operation cycle that manages the stop period, sets the stop period as an operation cycle that is earlier than the operation cycle that manages the stop period, and Among the cases in which the operation cycle is later than the operation cycle in which the period is managed, the predicted heat load of the operation cycle to be the period for stopping and the predicted power load and the predicted heat in the operation cycle before the operation cycle A case where the operation merit obtained based on the load is the highest is obtained, an operation cycle to be the stop period is determined corresponding to the case, and the fuel cell 1 is stopped in the determined operation cycle. To have.
Hereinafter, the process for determining the operation cycle as the stop period as described above may be referred to as a stop period setting process.

更に、運転制御部5が、前記停止用期間設定処理において、前記停止用期間を管理している運転周期とする場合、前記停止用期間を管理している運転周期よりも前の運転周期とする場合、及び、前記停止用期間を管理している運転周期よりも後の運転周期とする場合の夫々を、燃料電池1の異なる運転形態である複数種の停止前用の運転形態の夫々で運転する場合のうちで、前記停止用期間とする運転周期の予測熱負荷並びにその運転周期よりも前の運転周期における予測電力負荷及び予測熱負荷に基づいて求められる運転メリットが最も高くなる場合を求め、その求めた場合に対応させて前記停止用期間とする運転周期を定めるように構成されている。   Furthermore, when the operation control unit 5 sets the operation period for managing the stop period in the stop period setting process, the operation period is set to an operation period before the operation period for managing the stop period. In the case where the operation period is later than the operation period in which the stop period is managed, the fuel cell 1 is operated in each of a plurality of types of pre-stop operation forms which are different operation forms. In the case where the operation merit obtained based on the predicted heat load of the operation cycle to be the stop period and the predicted power load and the predicted heat load in the operation cycle prior to the operation cycle is determined. The operation cycle to be the stop period is determined in correspondence with the obtained case.

この第2実施形態では、前記複数種の停止前用の運転形態が、前記停止用期間とする運転周期(以下、停止用運転周期と記載する場合がある)の直前の運転周期(以下、停止前運転周期と記載する場合がある)の全時間帯において燃料電池1の発電出力を予測電力負荷に追従させる停止前用の負荷追従連続運転形態、停止前運転周期における一部の時間帯において燃料電池1の発電出力を予測電力負荷よりも小さい設定抑制出力に調節しかつ残りの時間帯において燃料電池1の発電出力を予測電力負荷に追従させ、且つ、燃料電池1の発電出力を前記設定抑制出力に調節する時間帯を、停止前運転周期の予測電力負荷及び予測熱負荷並びに停止用運転周期の予測熱負荷に基づいて求められる運転メリットが最も高くなる時間帯に定める停止前用の抑制連続運転形態、停止前運転周期における一部の時間帯において燃料電池1の発電出力を予測電力負荷よりも大きい設定増大出力に調節しかつ残りの時間帯において燃料電池1の発電出力を予測電力負荷に追従させ、且つ、燃料電池1の発電出力を前記設定増大出力に調節する時間帯を、停止前運転周期の予測電力負荷及び予測熱負荷並びに停止用運転周期の予測熱負荷に基づいて求められる運転メリットが最も高くなる時間帯に定める停止前用の強制連続運転形態、停止前運転周期のうちの一部の運転時間帯において燃料電池1の発電出力を予測電力負荷に追従させかつ残りの時間帯において燃料電池1を停止させ、且つ、前記運転時間帯を、停止前運転周期の予測電力負荷及び予測熱負荷並びに停止用運転周期の予測熱負荷に基づいて求められる運転メリットが最も高くなる時間帯に定める停止前用の負荷追従断続運転形態、停止前運転周期のうちの一部の運転時間帯において燃料電池1の発電出力を予測電力負荷よりも小さい設定抑制出力に調節しかつ残りの時間帯において燃料電池1を停止させ、且つ、前記運転時間帯を、停止前運転周期の予測電力負荷及び予測熱負荷並びに停止用運転周期の予測熱負荷に基づいて求められる運転メリットが最も高くなる時間帯に定める停止前用の抑制断続運転形態、及び、停止前運転周期のうちの一部の運転時間帯において燃料電池1の発電出力を予測電力負荷よりも大きい設定増大出力に調節しかつ残りの時間帯において燃料電池1を停止させ、且つ、前記運転時間帯を、停止前運転周期の予測電力負荷及び予測熱負荷並びに停止用運転周期の予測熱負荷に基づいて求められる運転メリットが最も高くなる時間帯に定める停止前用の強制断続運転形態の6つの運転形態である。   In the second embodiment, the plurality of types of pre-stop operation modes are the operation cycle immediately before the operation cycle (hereinafter sometimes referred to as the stop operation cycle) as the stop period (hereinafter referred to as stop). (It may be described as a pre-operation cycle). The load follow-up continuous operation mode for stoppage in which the power generation output of the fuel cell 1 follows the predicted power load in all time zones, and fuel in some time zones in the pre-stop operation cycle. The power generation output of the battery 1 is adjusted to a setting suppression output smaller than the predicted power load, the power generation output of the fuel cell 1 is made to follow the prediction power load in the remaining time zone, and the power generation output of the fuel cell 1 is suppressed to the setting. The time zone to be adjusted to the output is set to the time zone where the operation merit obtained based on the predicted power load and predicted heat load of the operation cycle before stop and the predicted heat load of the stop operation cycle is the highest. In the continuous operation mode, the power generation output of the fuel cell 1 is adjusted to a set increase output larger than the predicted power load in a part of the time period in the pre-stop operation cycle, and the power generation output of the fuel cell 1 is predicted in the remaining time period Based on the predicted power load and predicted heat load of the pre-stop operation cycle, and the predicted heat load of the stop operation cycle, the time zone for following the power load and adjusting the power generation output of the fuel cell 1 to the set increase output Forced continuous operation mode for pre-stop set in the time zone in which the required operation merit is the highest, and the remaining power generation output of the fuel cell 1 follows the predicted power load in the part of the pre-stop operation cycle The fuel cell 1 is stopped during the time period, and the operation time period is determined based on the predicted power load and predicted heat load of the pre-stop operation cycle and the predicted heat load of the stop operation cycle. The load following intermittent operation mode for pre-stop set in the time zone in which the operation merit required is the highest, and the power generation output of the fuel cell 1 is smaller than the predicted power load in a part of the operation time zone of the pre-stop operation cycle The fuel cell 1 is adjusted to the set suppression output and is stopped in the remaining time zone, and the operation time zone is based on the predicted power load and predicted heat load in the pre-stop operation cycle and the predicted heat load in the stop operation cycle. The controlled intermittent operation mode for stop before the stop that is determined in the time zone in which the required operation merit is the highest, and the power generation output of the fuel cell 1 in a part of the operation time zone of the pre-stop operation cycle The fuel cell 1 is adjusted to a large set increase output, and the fuel cell 1 is stopped in the remaining time zone, and the operation time zone is changed to the predicted power load, predicted heat load, and stoppage of the operation cycle before stoppage. These are the six operation modes of the forced intermittent operation mode for pre-stop that is set in the time zone in which the operation merit obtained based on the predicted heat load of the stop operation cycle is the highest.

以下、前記停止用期間設定処理について、説明を加える。
この第2実施形態においても、上記の第1実施形態と同様に、運転周期が1日に設定され、前記停止用期間が1運転周期、即ち、1日に設定され、その停止用期間が前記ガス漏洩判定期間である30日よりも短い停止用期間設定間隔(例えば27日)毎に設定されている。
そして、運転制御部5は、停止用期間として管理している運転周期よりも停止用期間設定用の設定数前の運転周期から、停止用期間として管理している運転周期よりも前記停止用期間設定用の設定数後の運転周期までの期間を停止用運転周期設定期間として管理するように構成されている。ちなみに、詳細は後述するが、前記停止用期間とする運転周期は、前記停止用運転周期設定期間内の運転周期のうちの第2番目の運転周期から最終の運転周期の間のいずれかの運転周期に設定されることになるので、前記停止用期間設定用の設定数は、先に停止用期間として設定された運転周期とその次に停止用期間として設定された運転周期との間隔が前記ガス漏洩判定期間よりも長くならないように、例えば2に設定される。
Hereinafter, the stop period setting process will be described.
Also in the second embodiment, similarly to the first embodiment, the operation cycle is set to one day, the stop period is set to one operation cycle, that is, one day, and the stop period is set to the above-described stop period. It is set every stop period setting interval (for example, 27 days) shorter than 30 days, which is the gas leakage determination period.
And the operation control part 5 is the said period for a stop rather than the operation period managed as a period for a stop from the operation period before the setting period for the period for a stop setting from the operation period managed as a period for a stop. A period until the operation cycle after the set number for setting is configured to be managed as a stop operation cycle setting period. Incidentally, although the details will be described later, the operation cycle to be the stop period is any operation between the second operation cycle and the final operation cycle among the operation cycles in the stop operation cycle setting period. Since the set number for the stop period setting is set to the cycle, the interval between the operation cycle previously set as the stop period and the next operation cycle set as the stop period is the For example, 2 is set so as not to be longer than the gas leakage determination period.

停止用運転周期設定期間内に、2つの連続する運転周期からなる停止用運転周期設定用の仮運転パターンの全てを形成する。
例えば、前記停止用期間設定用の設定数が2に設定される場合は、第1及び第2番目の運転周期からなるパターン、第2及び第3番目の運転周期からなるパターン、第3及び第4番目の運転周期からなるパターン、第4及び第5番目の運転周期からなるパターンの合計4つの停止用運転周期設定用の仮運転パターンが形成される。
Within the stop operation cycle setting period, all the temporary operation patterns for setting the stop operation cycle composed of two consecutive operation cycles are formed.
For example, when the set number for setting the stop period is set to 2, the pattern composed of the first and second operation cycles, the pattern composed of the second and third operation cycles, the third and the third A total of four temporary operation patterns for setting a stop operation cycle are formed: a pattern composed of the fourth operation cycle and a pattern composed of the fourth and fifth operation cycles.

そして、全ての停止用運転周期設定用の仮運転パターンの夫々を、停止前用の負荷追従連続運転形態、停止前用の抑制連続運転形態、停止前用の強制連続運転形態、停止前用の負荷追従断続運転形態、停止前用の抑制断続運転形態及び停止前用の強制断続運転形態の複数種の運転形態夫々で運転する場合について、停止前運転周期の予測電力負荷及び予測熱負荷並びに停止用運転周期の予測熱負荷に基づいて予測エネルギ削減量を求める。尚、停止前用の負荷追従連続運転形態、停止前用の抑制連続運転形態、停止前用の強制連続運転形態、停止前用の負荷追従断続運転形態、停止前用の抑制断続運転形態及び停止前用の強制断続運転形態夫々の予測エネルギ削減量は、上記の第1実施形態と同様に求める。   Then, all of the temporary operation patterns for setting the operation cycle for stopping are changed to the load following continuous operation mode before stopping, the suppressed continuous operating mode before stopping, the forced continuous driving mode before stopping, and the pre-stopping operation mode, respectively. Predicted power load, predicted thermal load, and stop of the operation cycle before stop for each of a plurality of operation modes such as a load following intermittent operation mode, a controlled intermittent operation mode before stop and a forced intermittent operation mode before stop The predicted energy reduction amount is obtained based on the predicted thermal load of the operation cycle. In addition, the load follow continuous operation form before stop, the restraint continuous operation form before stop, the forced continuous operation form before stop, the load follow intermittent operation form before stop, the restraint intermittent operation form before stop and stop The predicted energy reduction amount for each of the previous forced intermittent operation modes is obtained in the same manner as in the first embodiment.

続いて、全ての停止用運転周期設定用の仮運転パターン夫々を前記複数種の運転形態夫々で運転する場合のうちで、予測エネルギ削減量が最大の場合を求めて、その求めた場合に対応させて、停止用期間とする運転周期を定める。   Subsequently, among the cases where all the temporary operation patterns for setting the operation cycle for stopping are operated in each of the plural types of operation modes, the case where the predicted energy reduction amount is the maximum is obtained, and the case corresponding to the obtained case is dealt with. Let the operating cycle be the period for stopping.

そして、前記停止用期間設定処理にて定めた停止用期間とする運転周期の直前の運転周期の開始時点になると、上記の第1実施形態と同様に、停止前運転条件設定処理を実行して、停止前運転周期の運転条件を定め、その設定した運転条件にてその停止前運転周期の間燃料電池1を運転する。   Then, when the start time of the operation cycle immediately before the operation cycle set as the stop period set in the stop period setting process is reached, the pre-stop operation condition setting process is executed as in the first embodiment. Then, the operating condition of the pre-stop operating cycle is determined, and the fuel cell 1 is operated during the pre-stop operating cycle under the set operating condition.

以下、図14及び図15に示すフローチャートに基づいて、運転制御手段5による燃料電池1の制御動作について説明する。
図14のフローチャートに示すように、停止用期間として管理している運転周期よりも前記停止用期間設定用の設定数前の運転周期の開始時点になることにより、停止用期間の設定時点になると、前記停止用期間設定処理を実行して、停止用運転周期を設定し、通常運転周期の開始時点になると、前記通常時運転条件設定処理を実行して、その通常時運転条件設定処理にて設定した運転条件にてその運転周期の間燃料電池1を運転し、前記停止用期間設定処理にて設定した停止用運転周期の直前の停止前運転周期の開始時点になると、前記停止前運転条件設定処理を実行して、その停止前運転条件設定処理にて設定した運転条件にてその停止前運転周期の間燃料電池1を運転し、停止用運転周期の開始時点になると、燃料電池1の運転を停止して、その運転停止をその停止用運転周期の間継続する(ステップ#m11〜m19)。
Hereinafter, the control operation of the fuel cell 1 by the operation control means 5 will be described based on the flowcharts shown in FIGS. 14 and 15.
As shown in the flowchart of FIG. 14, when the stop period is set as a start point of the stop period, the start point of the start period is a set number before the stop period setting number. , Execute the stop period setting process, set the stop operation cycle, and at the start of the normal operation cycle, execute the normal operation condition setting process, in the normal operation condition setting process When the fuel cell 1 is operated under the set operation condition for the operation cycle, and the start time of the pre-stop operation cycle immediately before the stop operation cycle set in the stop period setting process is reached, the pre-stop operation condition When the setting process is executed, the fuel cell 1 is operated during the pre-stop operation cycle under the operation conditions set in the pre-stop operation condition setting process, and when the start of the stop operation cycle is reached, Stop driving Te, the operation stop continued during the stop operation cycle (step # m11~m19).

前記通常時運転条件設定処理の制御動作は、上記の第1実施形態において図11及び図12に示すフローチャートに基づいて説明したのと同様であるので、説明を省略する。   The control operation of the normal operation condition setting process is the same as that described with reference to the flowcharts shown in FIGS. 11 and 12 in the first embodiment, and a description thereof will be omitted.

次に、図15に示すフローチャートに基づいて、前記停止用期間設定処理について説明を加える。
先ず、ステップ#31において、データ管理処理を実行して、停止用運転周期設定期間に含まれる複数の運転周期夫々について、予測電力負荷データ及び予測熱負荷データを曜日を考慮した状態で求める。つまり、予測電力負荷データ及び予測熱負荷データを求める対象の運転周期の曜日と同曜日に対応して管理している過去の予測電力負荷データ及び予測熱負荷データに基づいて、複数の運転周期夫々の予測電力負荷データ及び予測熱負荷データを求める。
続いて、ステップ#32において、上述のように、停止用運転周期設定期間内に停止用運転周期設定用の仮運転パターンの全てを形成して、全ての停止用運転周期設定用の仮運転パターンの夫々について、停止前用の負荷追従連続運転形態の予測エネルギ削減量Pb1、停止前用の抑制連続運転形態の予測エネルギ削減量Pb2、停止前用の強制連続運転形態の予測エネルギ削減量Pb3、停止前用の負荷追従断続運転形態の予測エネルギ削減量Pb4、停止前用の抑制断続運転形態の予測エネルギ削減量Pb5、及び、停止前用の強制断続運転形態の予測エネルギ削減量Pb6を求める。
Next, the stop period setting process will be described based on the flowchart shown in FIG.
First, in step # 31, a data management process is executed to obtain predicted power load data and predicted heat load data in consideration of the day of the week for each of a plurality of operation cycles included in the stop operation cycle setting period. That is, based on the past predicted power load data and predicted heat load data managed corresponding to the day of the week of the target operation cycle for which the predicted power load data and the predicted heat load data are obtained, each of the plurality of operation cycles The predicted power load data and the predicted heat load data are obtained.
Subsequently, in step # 32, as described above, all the temporary operation patterns for setting the stop operation cycle are formed within the stop operation cycle setting period, and all the stop operation cycle setting temporary operation patterns are formed. For each of the above, the predicted energy reduction amount Pb1 of the load following continuous operation mode before stop, the predicted energy reduction amount Pb2 of the suppression continuous operation mode before stop, the predicted energy reduction amount Pb3 of the forced continuous operation mode before stop, A predicted energy reduction amount Pb4 of the load following intermittent operation mode before stop, a predicted energy reduction amount Pb5 of the suppression intermittent operation mode before stop, and a predicted energy reduction amount Pb6 of the forced intermittent operation mode before stop are obtained.

続いて、ステップ#33において、全ての停止用運転周期設定用の仮運転パターンの夫々について求めた停止前用の負荷追従連続運転形態の予測エネルギ削減量Pb1、停止前用の抑制連続運転形態の予測エネルギ削減量Pb2、停止前用の強制連続運転形態の予測エネルギ削減量Pb3、停止前用の負荷追従断続運転形態の予測エネルギ削減量Pb4、停止前用の抑制断続運転形態の予測エネルギ削減量Pb5、及び、停止前用の強制断続運転形態の予測エネルギ削減量Pb6のうちで、最大の予測エネルギ削減量を求めて、その予測エネルギ削減量が最大となる停止用運転周期設定用の仮運転パターンに対応して停止用運転周期を定める。   Subsequently, in Step # 33, the predicted energy reduction amount Pb1 of the load following continuous operation mode for stoppage obtained for each of the temporary operation patterns for setting all the operation cycles for stoppage, the suppression continuous operation mode for stoppage before the stoppage. Predicted energy reduction amount Pb2, predicted energy reduction amount Pb3 of forced continuous operation mode before stoppage, predicted energy reduction amount Pb4 of load follow-up intermittent operation mode before stoppage, predicted energy reduction amount of suppression intermittent operation mode for stoppage Of Pb5 and the predicted energy reduction amount Pb6 of the forced intermittent operation mode before stoppage, the maximum predicted energy reduction amount is obtained, and the temporary operation for setting the stop operation cycle that maximizes the predicted energy reduction amount A stop operation cycle is determined corresponding to the pattern.

〔第3実施形態〕
以下、本発明の第3実施形態を説明するが、この第3実施形態は、運転制御部5の通常時運転条件設定処理における制御動作の別の実施形態を説明するものである。
具体的には、通常時運転条件設定処理における運転形態選択条件についての別の実施形態を説明するものであり、データ管理処理及び運転メリット演算処理は、上記の第1実施形態と同様であるので、それらデータ管理処理及び運転メリット演算処理の説明を省略する。
[Third Embodiment]
Hereinafter, although 3rd Embodiment of this invention is described, this 3rd Embodiment demonstrates another embodiment of the control action in the normal time operating condition setting process of the operation control part 5. FIG.
Specifically, another embodiment of the driving mode selection condition in the normal driving condition setting process will be described, and the data management process and the driving merit calculation process are the same as those in the first embodiment. Description of these data management processing and driving merit calculation processing is omitted.

この第3実施形態では、前記運転形態選択条件が、連続運転メリットとしての連続運転形態の予測エネルギ削減量が設定削減量G(例えば580Wh)以上のときは、燃料電池1の運転形態を断続運転形態よりも優先して連続運転形態に定め、且つ、連続運転形態の予測エネルギ削減量が設定削減量Gよりも小さいときは、燃料電池1の運転形態を連続運転形態の予測エネルギ削減量及び断続運転形態の予測エネルギ削減量のうちのエネルギ削減量が大きい方に対応する運転形態に定める条件に設定されている。   In the third embodiment, when the operation mode selection condition is that the predicted energy reduction amount of the continuous operation mode as the continuous operation merit is equal to or greater than the set reduction amount G (for example, 580 Wh), the operation mode of the fuel cell 1 is intermittently operated. If the continuous operation mode is determined in preference to the mode, and the predicted energy reduction amount of the continuous operation mode is smaller than the set reduction amount G, the operation mode of the fuel cell 1 is changed to the predicted energy reduction amount and intermittent operation of the continuous operation mode. It is set to the condition defined in the driving mode corresponding to the larger energy saving amount of the predicted energy saving amount of the driving mode.

以下、図16及び図17に示すフローチャートに基づいて、通常時運転条件設定処理について説明する。
運転制御部5は、第1実施形態と同様にデータ管理処理を実行して予測電力負荷データ及び予測熱負荷データを求め、図12のフローチャートに基づいて説明した第1実施形態と同様に運転メリット演算処理を実行する(ステップ#41、42)。
Hereinafter, based on the flowcharts shown in FIGS. 16 and 17, the normal operation condition setting process will be described.
The operation control unit 5 performs the data management process in the same manner as in the first embodiment to obtain the predicted power load data and the predicted heat load data, and operates in the same manner as in the first embodiment described based on the flowchart of FIG. Arithmetic processing is executed (steps # 41 and 42).

続いて、ステップ#43において、負荷追従連続運転形態の予測エネルギ削減量Pc1が設定削減量G以上か否かを判断して、設定削減量G以上のときは、通常運転周期の運転条件を負荷追従連続運転形態にて燃料電池1を運転する条件に定め、負荷追従連続運転形態の予測エネルギ削減量Pc1が設定削減量Gよりも小さいときは、抑制連続運転形態の予測エネルギ削減量Pc2が設定削減量G以上か否かを判断して、設定削減量G以上のときは、通常運転周期の運転条件を抑制連続運転形態にて燃料電池1を運転する条件に定め、抑制連続運転形態の予測エネルギ削減量Pc2が設定削減量Gよりも小さいときは、強制連続運転形態の予測エネルギ削減量Pc3が設定削減量G以上か否かを判断して、設定削減量G以上のときは、通常運転周期の運転条件を強制連続運転形態にて燃料電池1を運転する条件に定め(ステップ#43〜48)、強制連続運転形態の予測エネルギ削減量Pc3が設定削減量Gよりも小さいときは、ステップ#49に進む。
ちなみに、前記牽制用の設定値Fは、設定削減量Gよりも小さい値に設定してある。
Subsequently, in Step # 43, it is determined whether or not the predicted energy reduction amount Pc1 in the load following continuous operation mode is equal to or greater than the set reduction amount G. When the fuel cell 1 is operated in the follow-up continuous operation mode and the predicted energy reduction amount Pc1 in the load-following continuous operation mode is smaller than the set reduction amount G, the predicted energy reduction amount Pc2 in the suppressed continuous operation mode is set. It is determined whether or not the reduction amount is equal to or greater than G. If the reduction amount is equal to or greater than the set reduction amount G, the operation condition of the normal operation cycle is set to the condition for operating the fuel cell 1 in the suppressed continuous operation mode, When the energy reduction amount Pc2 is smaller than the set reduction amount G, it is determined whether or not the predicted energy reduction amount Pc3 in the forced continuous operation mode is equal to or greater than the set reduction amount G. When the operation condition of the cycle is set to a condition for operating the fuel cell 1 in the forced continuous operation mode (steps # 43 to 48), and when the predicted energy reduction amount Pc3 in the forced continuous operation mode is smaller than the set reduction amount G, step Proceed to # 49.
Incidentally, the set value F for checking is set to a value smaller than the set reduction amount G.

ステップ#49では、第1実施形態と同様に熱負荷賄い率U/Lを求め、ステップ#50では、その求めた熱負荷賄い率U/Lと下位設定値Kとを比較して、熱負荷賄い率U/Lが下位設定値Kよりも大きいときは、待機条件を満たすと判断し、熱負荷賄い率U/Lが下位設定値K以下のときは、待機条件を満たさないと判断する。   In step # 49, the thermal load coverage rate U / L is obtained in the same manner as in the first embodiment. In step # 50, the obtained thermal load coverage rate U / L is compared with the lower set value K to determine the thermal load. When the coverage ratio U / L is larger than the lower set value K, it is determined that the standby condition is satisfied, and when the thermal load coverage ratio U / L is less than the lower set value K, it is determined that the standby condition is not satisfied.

ステップ#50で、待機条件を満たさないと判断したときは、負荷追従連続運転形態、抑制連続運転形態及び強制連続運転形態の3種の連続運転形態の予測エネルギ削減量Pc1,Pc2,Pc3のうちの最大のものを連続運転形態の予測エネルギ削減量Pcに設定し、1日対応型の負荷追従断続運転形態、1日対応型の抑制断続運転形態、1日対応型の強制断続運転形態、2日対応型の負荷追従断続運転形態、2日対応型の抑制断続運転形態、2日対応型の強制断続運転形態、3日対応型の負荷追従断続運転形態、3日対応型の抑制断続運転形態及び3日対応型の強制断続運転形態の9種の断続運転形態の予測エネルギ削減量Pi1,Pi2,Pi3,Pi4,Pi5,Pi6,Pi7,Pi8,Pi9のうちの最大のものを断続運転形態の予測エネルギ削減量P1に設定する(ステップ#51,52)。   When it is determined in step # 50 that the standby condition is not satisfied, among the predicted energy reduction amounts Pc1, Pc2, and Pc3 of the three types of continuous operation modes of the load following continuous operation mode, the suppression continuous operation mode, and the forced continuous operation mode Is set as the predicted energy reduction amount Pc in the continuous operation mode, the load following intermittent operation mode for one day type, the suppressed intermittent operation mode for one day type, the forced intermittent operation mode for one day type, 2 Day-to-day load follow-up intermittent operation mode, 2-day-to-day controlled intermittent operation mode, 2-day-to-day forced intermittent operation mode, 3-day-to-day load follow-up intermittent operation mode, and 3-day-to-day suppression / intermittent operation mode And the predicted energy reduction amounts Pi1, Pi2, Pi3, Pi4, Pi5, Pi6, Pi7, Pi8, and Pi9 of the nine types of intermittent intermittent operation modes corresponding to the three-day correspondence type are intermittently operated. Set to the predicted energy reductions P1 (step # 51).

続いて、ステップ#53において、連続運転形態の予測エネルギ削減量Pc及び断続運転形態の予測エネルギ削減量Piのうちの最大のものが待機時消費エネルギZの負の値「−Z」よりも小さいか否かを判断することにより、連続運転形態及び断続運転形態のうちのいずれか1つを実行した方が運転周期の全時間帯にわたって燃料電池1を停止させるよりも省エネルギになるかを判断する。   Subsequently, in step # 53, the maximum of the predicted energy reduction amount Pc in the continuous operation mode and the predicted energy reduction amount Pi in the intermittent operation mode is smaller than the negative value “−Z” of the standby energy consumption Z. By determining whether or not, it is determined whether performing one of the continuous operation mode and the intermittent operation mode saves energy than stopping the fuel cell 1 over the entire time period of the operation cycle. To do.

そして、ステップ#53にて、連続運転形態の予測エネルギ削減量Pc及び断続運転形態の予測エネルギ削減量Piのうちの最大のものが待機時消費エネルギZの負の値「−Z」よりも小さくないと判断したときは、ステップ#54において、連続運転形態の予測エネルギ削減量Pc及び断続運転形態の予測エネルギ削減量Piのうち、断続運転形態の予測エネルギ削減量Piが最大か否かを判断し、断続運転形態の予測エネルギ削減量Piが最大である場合は、ステップ#56において、通常運転周期の運転条件を、9種の断続運転形態のうちの予測エネルギ削減量が最大の断続運転形態にて燃料電池1を運転する条件に定め、断続運転形態の予測エネルギ削減量Piが最大でない場合は、ステップ#55において、通常運転周期の運転条件を、3種の連続運転形態のうちの予測エネルギ削減量が最大の連続運転形態にて燃料電池1を運転する条件に定める。   In step # 53, the maximum of the predicted energy reduction amount Pc in the continuous operation mode and the predicted energy reduction amount Pi in the intermittent operation mode is smaller than the negative value “−Z” of the standby energy consumption Z. If it is determined that there is not, in step # 54, it is determined whether the predicted energy reduction amount Pi of the intermittent operation mode is the maximum among the predicted energy reduction amount Pc of the continuous operation mode and the predicted energy reduction amount Pi of the intermittent operation mode. If the predicted energy reduction amount Pi of the intermittent operation mode is the maximum, in step # 56, the operation condition of the normal operation cycle is set to the intermittent operation mode having the maximum predicted energy reduction amount among the nine types of intermittent operation modes. If the predicted energy reduction amount Pi in the intermittent operation mode is not the maximum in step # 55, the operating conditions of the normal operation cycle are determined. The defines the conditions predicted energy reductions of three continuous operation mode to operate the fuel cell 1 at maximum continuous operation mode.

又、ステップ#50で待機条件を満たすと判断したときは、ステップ#57で、燃料電池1が運転中か否かを判断して、運転中のときは、ステップ#58で、熱負荷賄い率U/Lが前記下位設定値Kよりも大きい上位設定値Mよりも大きいか否かを判断して、大きくないと判断したときは、ステップ#59において、第1実施形態と同様に、燃料電池1の運転を継続する運転継続条件を満たすか否かを判断し、運転継続条件を満たすと判断すると、ステップ#60において、通常運転周期の運転条件を、燃料電池1の運転を負荷追従運転にて継続する条件に定め、ステップ#61において、第1実施形態と同様に、前記運転継続時間を設定する運転継続時間設定処理を実行する。   If it is determined in step # 50 that the standby condition is satisfied, it is determined in step # 57 whether or not the fuel cell 1 is in operation. If it is in operation, in step # 58, the thermal load coverage rate is determined. When it is determined whether U / L is greater than the upper set value M, which is greater than the lower set value K, and is not greater, in step # 59, as in the first embodiment, the fuel cell. If it is determined whether or not the operation continuation condition for continuing the operation of 1 is satisfied and it is determined that the operation continuation condition is satisfied, in step # 60, the operation condition of the normal operation cycle is changed to the load following operation. In step # 61, an operation duration setting process for setting the operation duration is executed in step # 61.

ステップ#53にて、連続運転形態時の予測エネルギ削減量Pc及び断続運転形態の予測エネルギ削減量Piのうちの最大のものが待機時消費エネルギZの負の値「−Z」よりも小さいと判断したとき、ステップ#57にて、燃料電池1が停止中であると判断したとき、ステップ#58にて、熱負荷賄い率U/Lが上位設定値Mよりも大きいと判断したとき、ステップ#59にて、運転継続条件を満たさないと判断したときは、ステップ#62にて、通常運転周期の運転条件を、その通常運転周期の全時間帯にわたって燃料電池1を停止させる条件に定める。
そして、第1実施形態と同様に、運転制御手段5は、通常運転周期においては前記通常時運転条件設定処理にて定めた運転条件にて燃料電池1を運転する。
In Step # 53, when the maximum of the predicted energy reduction amount Pc in the continuous operation mode and the predicted energy reduction amount Pi in the intermittent operation mode is smaller than the negative value “−Z” of the standby energy consumption Z. When it is determined, when it is determined at step # 57 that the fuel cell 1 is stopped, when it is determined at step # 58 that the thermal load coverage ratio U / L is larger than the upper set value M, step If it is determined in # 59 that the operation continuation condition is not satisfied, in step # 62, the operation condition of the normal operation cycle is set to a condition for stopping the fuel cell 1 over the entire time period of the normal operation cycle.
As in the first embodiment, the operation control means 5 operates the fuel cell 1 under the operation conditions determined in the normal operation condition setting process in the normal operation cycle.

〔第4実施形態〕
この第4実施形態は、運転条件を定める運転周期に続く運転周期が停止用期間である場合における前記運転条件を定める構成の別実施形態を説明するものである。
つまり、上記の第1実施形態と同様に、運転制御部5が、時系列的な予測電力負荷及び時系列的な予測熱負荷を時系列で並ぶ運転周期毎に区分けして管理し、且つ、燃料電池1を停止することを予定する停止用期間が時系列で並ぶ運転周期のうちのいずれであるかについて管理するデータ管理処理を実行して、運転周期の開始時点毎に、そのデータ管理処理にて管理している時系列的な予測電力負荷及び時系列的な予測熱負荷に基づいて、その運転周期の運転条件を定めて燃料電池1を運転し、且つ、前記運転条件を定める運転周期に続く運転周期が前記停止用期間である場合には、その運転周期における予測電力負荷及び予測熱負荷並びに前記停止用期間の予測熱負荷に基づいて、その運転周期の運転条件を定めて燃料電池1を運転するように構成されている。
[Fourth Embodiment]
This 4th Embodiment demonstrates another embodiment of the structure which defines the said operating condition in case the driving | running period following the driving | operating period which defines a driving | running condition is a period for a stop.
That is, as in the first embodiment, the operation control unit 5 manages the time-series predicted power load and the time-series predicted heat load separately for each operation cycle arranged in time series, and A data management process is performed to manage which of the operation periods in which the stop periods scheduled to stop the fuel cell 1 are arranged in time series, and each time the operation period starts, the data management process Based on the time-series predicted power load and the time-series predicted heat load managed in step 1, the fuel cell 1 is operated under the operating conditions of the operating cycle, and the operating conditions are determined. When the operation cycle following the stop period is the stop period, the fuel cell is configured by determining the operation conditions of the operation cycle based on the predicted power load and the predicted heat load in the operation cycle and the predicted heat load in the stop period. I will drive one It is configured.

そして、上記の第1実施形態では、停止用期間が後続している停止前用運転周期の運転条件として、停止前用の負荷追従連続運転形態、停止前用の抑制連続運転形態、停止前用の強制連続運転形態、停止前用の負荷追従断続運転形態、停止前用の抑制断続運転形態及び停止前用の強制断続運転形態のうちで運転メリットが最も高い停止前用の運転形態にて燃料電池1を運転する条件に定めたが、この第4実施形態では、停止前用運転周期の運転条件が、停止前用の負荷追従断続運転形態にて運転する条件に予め定められている。
又、停止用期間が後続していない通常運転周期の運転形態が、負荷追従断続運転形態に定められ、その負荷追従断続運転形態として、単周期対応型の負荷追従断続運転形態と複数周期対応型の負荷追従断続運転形態とが含まれる。
And in said 1st Embodiment, as a driving | running condition of the operation cycle for stop before the period for stop being followed, the load follow continuous operation form for stop, the suppression continuous operation form for stop, and for stop Fuel in the pre-stop operation mode with the highest driving merit among the forced continuous operation mode, load follow intermittent operation mode before stop, restrained intermittent operation mode before stop, and forced intermittent operation mode before stop Although the conditions for operating the battery 1 are set, in the fourth embodiment, the operating conditions for the pre-stop operation cycle are set in advance to the conditions for operating in the load following intermittent operation mode for stop.
In addition, the operation mode of the normal operation cycle that is not followed by the stop period is determined as the load follow-up intermittent operation mode, and the load follow-up intermittent operation mode is a single-cycle compatible load follow-up intermittent operation mode and a multi-cycle compatible type. Load follow intermittent operation mode.

説明を加えると、前記運転制御部5は、通常運転周期の開始時点では、1日対応型の負荷追従断続運転形態、2日対応型の負荷追従断続運転形態及び3日対応型の負荷追従断続運転形態夫々の予測エネルギ削減量を上記の第1実施形態と同様に求め、通常運転周期の運転条件として、1日対応型の負荷追従断続運転形態、2日対応型の負荷追従断続運転形態及び3日対応型の負荷追従断続運転形態のうちで予測エネルギ削減量が最も高い負荷追従断続運転形態にて燃料電池1を運転する条件に定める。   In other words, the operation control unit 5 is configured such that, at the start of the normal operation cycle, the 1-day type load follow-up intermittent operation mode, the 2-day type load follow-up intermittent operation mode, and the 3-day type load follow-up intermittent mode. The amount of predicted energy reduction for each operation mode is obtained in the same manner as in the first embodiment, and as the operation condition of the normal operation cycle, the load follow intermittent operation mode for one day type, the load follow intermittent operation mode for two day type, and It is determined as a condition for operating the fuel cell 1 in the load follow-up intermittent operation mode having the highest predicted energy reduction amount among the three-day load follow-up intermittent operation modes.

又、前記運転制御部5は、停止前運転周期の開始時点では、燃料電池1を停止前用の負荷追従断続運転形態にて運転するとして、その停止前用の負荷追従断続運転形態の運転時間帯を、第1実施形態と同様に、停止前運転周期の予測電力負荷及び予測熱負荷並びに停止用期間の予測熱負荷に基づいて求められる予測エネルギ削減量が最も高くなる時間帯に定めることにより、停止前用運転周期の運転条件を定める。   The operation control unit 5 assumes that the fuel cell 1 is operated in the load following intermittent operation mode before stopping at the start of the pre-stop operation cycle. As in the first embodiment, the band is set to a time period in which the predicted energy reduction amount obtained based on the predicted power load and predicted heat load in the pre-stop operation cycle and the predicted heat load in the stop period is the highest. Determine the operating conditions for the pre-stop operating cycle.

〔第5実施形態〕
この第5実施形態は、停止用期間とする運転周期を定める停止用期間設定処理の別実施形態を説明するものである。
つまり、上記の第2実施形態と同様に、運転制御部5が、時系列的な予測電力負荷及び時系列的な予測熱負荷を時系列で並ぶ運転周期毎に区分けして管理し、且つ、燃料電池1を停止することを予定する停止用期間が時系列で並ぶ運転周期のうちのいずれであるかについて管理するデータ管理処理を実行して、前記停止用期間を管理している運転周期とする場合、前記停止用期間を管理している運転周期よりも前の運転周期とする場合、及び、前記停止用期間を管理している運転周期よりも後の運転周期とする場合のうちで、前記停止用期間とする運転周期の予測熱負荷並びにその運転周期よりも前の運転周期における予測電力負荷及び予測熱負荷に基づいて求める運転メリットが最も高くなる場合を求め、その場合に対応させて前記停止用期間とする運転周期を定めるように構成されている。
[Fifth Embodiment]
In the fifth embodiment, another embodiment of a stop period setting process for determining an operation cycle as a stop period will be described.
That is, as in the second embodiment, the operation control unit 5 manages the time-series predicted power load and the time-series predicted heat load separately for each operation cycle arranged in time series, and A data management process for managing which of the operation periods in which the stop periods scheduled to stop the fuel cell 1 are arranged in time series; and an operation period managing the stop period; In the case where the operation period is prior to the operation period managing the stop period, and the operation period is later than the operation period managing the stop period, Determine the case where the operation merit obtained based on the predicted heat load and the predicted heat load and the predicted heat load in the operation cycle prior to the operation cycle as the stop period is the highest, and correspond to that case For stopping It is configured to define the operation cycle be between.

そして、上記の第2実施形態では、運転制御部5が、前記停止用期間設定処理においては、前記停止用期間を管理している運転周期とする場合、前記停止用期間を管理している運転周期よりも前の運転周期とする場合、及び、前記停止用期間を管理している運転周期よりも後の運転周期とする場合の夫々を、停止前用の負荷追従連続運転形態、停止前用の抑制連続運転形態、停止前用の強制連続運転形態、停止前用の負荷追従断続運転形態、停止前用の抑制断続運転形態及び停止前用の強制断続運転形態の夫々で運転する場合のうちで、運転メリットが最も高くなる場合を求め、その求めた場合に対応させて前記停止用期間とする運転周期を定めるように構成されていたが、この第5実施形態では、運転制御部5が、前記停止用期間設定処理においては、停止前用の負荷追従断続運転形態にて燃料電池1を運転するとして、前記停止用期間を管理している運転周期とする場合、前記停止用期間を管理している運転周期よりも前の運転周期とする場合、及び、前記停止用期間を管理している運転周期よりも後の運転周期とする場合のうちで、運転メリットが最も高くなる場合を求め、その求めた場合に対応させて前記停止用期間とする運転周期を定めるように構成されている。
又、停止用期間が後続していない通常運転周期の運転形態が、負荷追従断続運転形態に定められ、その負荷追従断続運転形態として、単周期対応型の負荷追従断続運転形態と複数周期対応型の負荷追従断続運転形態とが含まれる。
And in said 2nd Embodiment, the driving | operation control part 5 is the driving | running which is managing the said period for a stop, when setting it as the driving | operation period which manages the said period for a stop in the said period setting for a stop. When the operation cycle is earlier than the cycle, and when the operation cycle is later than the operation cycle in which the stop period is managed, the load follow continuous operation mode before stop, before stop Among the cases of operation in each of the continuous operation mode, the forced continuous operation mode before stop, the load following intermittent operation mode before stop, the suppressed intermittent operation mode before stop, and the forced intermittent operation mode before stop In this fifth embodiment, the operation control unit 5 is configured to determine the operation cycle that is the period for the stop in response to the case where the operation merit is the highest. , Stop period setting process In this case, when the fuel cell 1 is operated in the load following intermittent operation mode for before stop, when the operation period is managed as the stop period, the operation period is managing the stop period. If the operation cycle is the previous operation cycle, and the operation cycle is later than the operation cycle that manages the stop period, the case where the driving merit is the highest is obtained. It is comprised so that the driving | operation period used as the said period for a stop may be determined correspondingly.
In addition, the operation mode of the normal operation cycle that is not followed by the stop period is determined as the load follow-up intermittent operation mode, and the load follow-up intermittent operation mode is a single-cycle compatible load follow-up intermittent operation mode and a multi-cycle compatible type. Load follow intermittent operation mode.

以下、前記停止用期間設定処理について、説明を加える。
上記の第2実施形態と同様に、前記停止用期間が1運転周期、即ち、1日に設定され、その停止用期間が前記ガス漏洩判定期間である30日よりも短い停止用期間設定間隔(例えば27日)毎に設定され、運転制御部5が、停止用期間として管理している運転周期よりも停止用期間設定用の設定数(例えば2に設定される)前の運転周期から、停止用期間として管理している運転周期よりも前記停止用期間設定用の設定数後の運転周期までの期間を停止用運転周期設定期間として管理するように構成されている。
Hereinafter, the stop period setting process will be described.
As in the second embodiment, the stop period is set to one operation cycle, that is, one day, and the stop period is shorter than the 30 days that is the gas leakage determination period (stop period setting interval ( For example, 27 days), the operation control unit 5 stops from the operation cycle before the set number for setting the stop period (for example, set to 2) than the operation cycle managed as the stop period. It is configured to manage, as a stop operation cycle setting period, a period up to a drive cycle after the set number for the stop period setting than the operation cycle managed as a stop period.

そして、前記停止用運転周期設定期間内に、上記の第2実施形態と同様に、2つの連続する運転周期からなる停止用運転周期設定用の仮運転パターンの全てを形成して、停止前用の負荷追従断続運転形態にて燃料電池1を運転するとして、全ての停止用運転周期設定用の仮運転パターンの夫々について、上記の第1実施形態と同様に、停止前運転周期の予測電力負荷及び予測熱負荷並びに停止用運転周期の予測熱負荷に基づいて予測エネルギ削減量を求めて、予測エネルギ削減量が最大の停止用運転周期設定用の仮運転パターンに対応させて、停止用期間とする運転周期を定める。   Then, in the stop operation cycle setting period, as in the second embodiment, all of the temporary operation patterns for setting the stop operation cycle consisting of two continuous operation cycles are formed, and before stop. As in the first embodiment, the predicted power load of the pre-stop operation cycle is assumed for each of the temporary operation patterns for setting the stop operation cycle. And calculating the predicted energy reduction amount based on the predicted thermal load and the predicted thermal load of the stop operation cycle, corresponding to the temporary operation pattern for setting the stop operation cycle with the maximum predicted energy reduction amount, Determine the operation cycle.

尚、前記運転制御部5は、通常運転周期の開始時点では、上記の第4実施形態と同様に通常運転周期の運転条件を定め、前記停止用期間設定処理にて定めた停止前運転周期の開始時点では、上記の第4実施形態と同様に停止前用運転周期の運転条件を定める。   The operation control unit 5 determines the operation conditions of the normal operation cycle at the start of the normal operation cycle as in the fourth embodiment, and the operation cycle before stop determined in the stop period setting process. At the start time, the operating conditions for the pre-stop operating cycle are determined as in the fourth embodiment.

〔別実施形態〕
次に別実施形態を説明する。
(イ) 上記の第4実施形態においては、停止前用運転周期の運転条件を停止前用の負荷追従断続運転形態にて運転する条件に定める場合について例示したが、停止前用運転周期の運転条件を、停止前用の抑制連続運転形態にて運転する条件、停止前用の強制連続運転形態にて運転する条件、停止前用の抑制断続運転形態にて運転する条件及び停止前用の強制断続運転形態にて運転する条件のうちの予め定めた1つとしても良い。
例えば、停止前用運転周期の運転条件を停止前用の抑制連続運転形態にて運転する条件に定める場合、燃料電池1の発電出力を設定抑制出力に調節する時間帯を停止前運転周期の予測電力負荷及び予測熱負荷並びに停止用期間の予測熱負荷に基づいて求められる運転メリットが最も高くなる時間帯に定めることが、停止前運転周期の運転条件を定めることになる。
又、停止前用運転周期の運転条件を停止前用の強制連続運転形態にて運転する条件に定める場合、燃料電池1の発電出力を設定増大出力に調節する時間帯を停止前運転周期の予測電力負荷及び予測熱負荷並びに停止用期間の予測熱負荷に基づいて求められる運転メリットが最も高くなる時間帯に定めることが、停止前運転周期の運転条件を定めることになる。
又、停止前用運転周期の運転条件を停止前用の抑制断続運転形態及び停止前用の強制断続運転形態のうちのいずれか1つで運転する条件に定める場合、運転時間帯を停止前運転周期の予測電力負荷及び予測熱負荷並びに停止用期間の予測熱負荷に基づいて求められる運転メリットが最も高くなる時間帯に定めることが、停止前運転周期の運転条件を定めることになる。
[Another embodiment]
Next, another embodiment will be described.
(B) In the above fourth embodiment, the operation condition of the pre-stop operation cycle is exemplified as the condition for operating in the pre-stop load follow intermittent operation mode. Conditions for driving in the suppression continuous operation mode for before stopping, conditions for driving in the forced continuous driving mode for before stopping, conditions for driving in the suppression intermittent driving mode for before stopping, and forcing for stopping It is good also as predetermined one of the conditions which drive | operate by an intermittent operation form.
For example, when the operation condition of the pre-stop operation cycle is set to the condition of operation in the pre-stop suppression continuous operation mode, the time period for adjusting the power generation output of the fuel cell 1 to the set suppression output is predicted for the pre-stop operation cycle. The operation condition of the pre-stop operation cycle is determined to be determined in a time zone in which the operation merit obtained based on the electric power load, the predicted heat load, and the predicted heat load in the stop period is the highest.
Further, when the operation condition of the pre-stop operation cycle is set to the condition of operation in the forced continuous operation mode for pre-stop, the time period for adjusting the power generation output of the fuel cell 1 to the set increase output is predicted for the pre-stop operation cycle. The operation condition of the pre-stop operation cycle is determined to be determined in a time zone in which the operation merit obtained based on the electric power load, the predicted heat load, and the predicted heat load in the stop period is the highest.
In addition, when the operation condition of the pre-stop operation cycle is set to the condition of operating in one of the controlled intermittent operation mode before stop and the forced intermittent operation mode before stop, the operation time zone is set to the pre-stop operation mode. The operation condition of the pre-stop operation cycle is determined to be determined in the time zone in which the operation merit obtained based on the predicted power load and the predicted heat load of the cycle and the predicted heat load of the stop period is the highest.

尚、通常運転周期の運転形態としては、停止前用の抑制連続運転形態、停止前用の強制連続運転形態、停止前用の抑制断続運転形態及び停止前用の強制断続運転形態のうち予め定めた1つの停止前用の運転形態と同様の運転形態とするのが好ましい。例えば、停止前用の運転形態を停止前用の抑制連続運転形態に定めた場合は、通常運転周期の運転形態は、抑制連続運転形態に定めることになる。   In addition, as the operation mode of the normal operation cycle, it is determined in advance among the suppression continuous operation mode for before stop, the forced continuous operation mode for before stop, the suppression intermittent operation mode for before stop, and the forced intermittent operation mode for before stop. It is preferable that the driving mode is the same as the driving mode for one stop. For example, when the operation mode for before stop is set to the suppression continuous operation mode for before stop, the operation mode of the normal operation cycle is determined to be the suppression continuous operation mode.

(ロ) 運転制御部5により、停止用期間を管理している運転周期とする場合及び前記停止用期間を管理している運転周期よりも前又は後の運転周期とする場合のうちで、運転メリットが最も高くなる場合を求め、その求めた場合に対応させて前記停止用期間とする運転周期を定めるに当たって、上記の第5実施形態においては、停止前用の負荷追従断続運転形態にて燃料電池1を運転するとして定める場合について例示したが、停止前用の負荷追従連続運転形態、停止前用の抑制連続運転形態、停止前用の強制連続運転形態、停止前用の抑制断続運転形態及び停止前用の強制断続運転形態のうちの予め定められた1つの運転形態にて燃料電池1を運転するとして定めるように構成しても良い。
尚、通常運転周期の運転形態としては、停止前用の負荷追従連続運転形態、停止前用の抑制連続運転形態、停止前用の強制連続運転形態、停止前用の抑制断続運転形態及び停止前用の強制断続運転形態のうち予め定めた1つの停止前用の運転形態と同様の運転形態とするのが好ましい。
(B) When the operation control unit 5 sets the operation period for managing the stop period and the operation period before or after the operation period for managing the stop period, the operation is performed. In obtaining the case where the merit is the highest, and determining the operation cycle for the stop period corresponding to the obtained case, in the fifth embodiment, in the load following intermittent operation mode for stop, the fuel is used. The case where it is determined that the battery 1 is operated is illustrated, but the load following continuous operation mode before stop, the suppression continuous operation mode before stop, the forced continuous operation mode before stop, the suppression intermittent operation mode before stop, and You may comprise so that the fuel cell 1 may be determined to drive | operate by one predetermined driving | running form among the forced intermittent driving | running forms for a stop.
In addition, as the operation mode of the normal operation cycle, the load following continuous operation mode before the stop, the suppression continuous operation mode before the stop, the forced continuous operation mode before the stop, the suppression intermittent operation mode before the stop, and before the stop It is preferable that the operation mode is the same as the predetermined operation mode before stopping among the forced intermittent operation modes.

(ハ) 上記の第1及び第3の各実施形態において、停止用期間の直前の運転周期における燃料電池1の複数種の停止前用の運転形態を、運転条件を定める運転周期の全時間帯において燃料電池1を運転する停止前用の連続運転形態、及び、前記運転条件を定める運転周期のうちに、その運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間の予測熱負荷に基づいて求められる運転メリットが最も高くなる運転時間帯を定めて燃料電池1を運転する停止前用の断続運転形態としても良い。
ちなみに、前記停止前用の連続運転形態を、停止前用の負荷追従連続運転形態、停止前用の抑制連続運転形態及び停止前用の強制連続運転形態のうちのいずれか1つとし、又、前記停止前用の断続運転形態を、停止前用の負荷追従断続運転形態、停止前用の抑制断続運転形態及び停止前用の強制断続運転形態のうちのいずれか1つとする。
(C) In each of the above first and third embodiments, the plurality of types of pre-stop operation modes of the fuel cell 1 in the operation cycle immediately before the stop period are all time periods of the operation cycle that define the operating conditions. Among the continuous operation mode for stopping the fuel cell 1 in operation and the operation cycle for determining the operation condition, based on the predicted power load and the predicted heat load of the operation cycle, and the predicted heat load of the stop period. Alternatively, an intermittent operation mode for stopping the fuel cell 1 may be determined by setting an operation time zone in which the operation merit required is the highest.
Incidentally, the continuous operation mode before the stop is any one of the load following continuous operation mode before the stop, the suppression continuous operation mode before the stop, and the forced continuous operation mode before the stop, The intermittent operation mode for before stop is any one of the load follow intermittent operation mode for before stop, the suppression intermittent operation mode for before stop, and the forced intermittent operation mode for before stop.

(ニ) 上記の第2実施形態において、停止用期間の直前の運転周期における燃料電池1の複数種の停止前用の運転形態を、停止用期間とする運転周期の直前の運転周期の全時間帯において燃料電池1を運転する停止前用の連続運転形態、及び、前記停止用期間とする運転周期の直前の運転周期のうちに、その運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間の予測熱負荷に基づいて求められる運転メリットが最も高くなる運転時間帯を定めて燃料電池1を運転する停止前用の断続運転形態としても良い。
ちなみに、前記停止前用の連続運転形態を、停止前用の負荷追従連続運転形態、停止前用の抑制連続運転形態及び停止前用の強制連続運転形態のうちのいずれか1つとし、又、前記停止前用の断続運転形態を、停止前用の負荷追従断続運転形態、停止前用の抑制断続運転形態及び停止前用の強制断続運転形態のうちのいずれか1つとする。
(D) In the second embodiment described above, the entire time of the operation cycle immediately before the operation cycle in which the plurality of types of operation modes before stop of the fuel cell 1 in the operation cycle immediately before the stop period are set as the stop period. Among the continuous operation mode for stopping the fuel cell 1 in the belt and the operation cycle immediately before the operation cycle as the stop period, the predicted power load and the predicted heat load of the operation cycle, and the stop It is good also as the intermittent driving | running form for a stop before driving | operating the fuel cell 1 by setting the driving | operation time slot | zone when the driving | operation merit calculated | required based on the prediction thermal load of a period becomes the highest.
Incidentally, the continuous operation mode before the stop is any one of the load following continuous operation mode before the stop, the suppression continuous operation mode before the stop, and the forced continuous operation mode before the stop, The intermittent operation mode for before stop is any one of the load follow intermittent operation mode for before stop, the suppression intermittent operation mode for before stop, and the forced intermittent operation mode for before stop.

(ホ) 燃料電池1の複数種の停止前用の運転形態は、上記の第1〜第3の各実施形態において例示した如き、停止前用の負荷追従連続運転形態、停止前用の抑制連続運転形態、停止前用の強制連続運転形態、停止前用の負荷追従断続運転形態、停止前用の抑制断続運転形態及び停止前用の強制断続運転形態の6種の運転形態の全てとする場合に限定されるものではなく、それら6種の運転形態のうちの少なくとも2つとすれば良い。
又、前記6種の運転形態以外の運転形態を含ませても良い。
例えば、運転条件を定める運転周期(停止用期間とする運転周期の前の運転周期)の全時間帯にわたって燃料電池1の発電出力を定格出力(例えば発電出力調節範囲における最大出力)に調節する停止前用の定格連続運転形態を含ませても良い。
又、運転条件を定める運転周期(停止用期間とする運転周期の前の運転周期)の一部の運転時間帯において燃料電池1の発電出力を定格出力(例えば発電出力調節範囲における最大出力)に調節するとして、前記運転時間帯を、運転条件を定める運転周期(停止用期間とする運転周期の前の運転周期)の予測電力負荷及び予測熱負荷並びに前記停止用期間の予測熱負荷に基づいて求められる運転メリットが最も高くなる時間帯に定める停止前用の定格断続運転を含ませても良い。
(E) A plurality of types of pre-stop operation modes of the fuel cell 1 are illustrated in the first to third embodiments described above, a load follow-up continuous operation mode before stop, and a continuous suppression mode before stop. When the operation mode, forced continuous operation mode before stoppage, load follow intermittent operation mode before stoppage, suppression intermittent operation mode before stoppage, and forced intermittent operation mode before stoppage are all 6 types of operation modes However, it is not limited to the above, and at least two of the six types of operation modes may be used.
Further, operation modes other than the above six operation modes may be included.
For example, the stop for adjusting the power generation output of the fuel cell 1 to the rated output (for example, the maximum output in the power generation output adjustment range) over the entire time period of the operation cycle that determines the operation conditions (the operation cycle before the operation cycle as the stop period) The previous rated continuous operation mode may be included.
In addition, the power generation output of the fuel cell 1 is set to the rated output (for example, the maximum output in the power generation output adjustment range) in a part of the operation time period of the operation cycle that determines the operation conditions (the operation cycle before the stop operation cycle). As the adjustment, the operation time zone is determined based on the predicted power load and the predicted heat load of the operation cycle (the operation cycle before the operation cycle set as the stop period) that defines the operation conditions, and the predicted heat load of the stop period. You may include the rated intermittent operation for stop before the time zone in which the required driving merit is the highest.

(ヘ) 上記の第1〜第5の各実施形態において、停止用期間を人為操作で設定する停止用期間設定手段を設け、前記運転制御部5を、その停止用期間設定手段にて設定される停止用期間が時系列で並ぶ運転周期のうちのいずれであるかを管理するように構成しても良い。
この場合、前記停止用期間設定手段により、例えば、メンテナンスのためにコージェネレーションシステムを停止することを予定する停止用期間を設定することが可能である。
(F) In each of the first to fifth embodiments described above, stop period setting means for setting the stop period by an artificial operation is provided, and the operation control unit 5 is set by the stop period setting means. It may be configured to manage which of the operation periods in which the stop periods are arranged in time series.
In this case, the stop period setting means can set a stop period in which the cogeneration system is scheduled to be stopped for maintenance, for example.

(ト) 上記の第2及び第5の各実施形態において、停止用運転周期設定期間の設定範囲は種々に変更可能である。例えば、上記の第2及び第5の各実施形態にて例示した如く、停止用期間として管理している運転周期の前後にわたって設定する場合、停止用運転周期設定期間に含ませる運転周期の数を変更しても良い。又、停止用運転周期設定期間を、停止用期間として管理している運転周期の前のみに設定しても良いし、停止用期間として管理している運転周期の後のみに設定しても良い。 (G) In each of the second and fifth embodiments, the setting range of the stop operation cycle setting period can be variously changed. For example, as illustrated in each of the second and fifth embodiments above, when setting across the operation cycle managed as the stop period, the number of operation cycles included in the stop operation cycle setting period is set. It may be changed. Moreover, the stop operation cycle setting period may be set only before the operation cycle managed as the stop period, or may be set only after the operation cycle managed as the stop period. .

(チ) 強制連続運転形態や停止前用の強制連続運転形態における設定増大出力を設定するための増大出力設定条件として、上記の第1〜第3の各実施形態において説明した条件に代えて、上記の各実施形態において説明した強制断続運転形態の設定増大出力を設定するための増大出力設定条件を用いても良い。又、抑制連続運転形態や停止前用の抑制連続運転形態における設定抑制出力を設定するための抑制出力設定条件として、上記の第1〜第3の各実施形態において説明した条件に代えて、上記の各実施形態において説明した抑制断続運転形態の設定抑制出力を設定するための抑制出力設定条件を用いても良い。 (H) As an increased output setting condition for setting a set increased output in the forced continuous operation mode or the forced continuous operation mode before stopping, instead of the conditions described in the first to third embodiments, You may use the increase output setting conditions for setting the setting increase output of the forced intermittent operation form demonstrated in said each embodiment. In addition, as a suppression output setting condition for setting a set suppression output in a suppression continuous operation mode and a suppression continuous operation mode before stop, instead of the conditions described in the first to third embodiments, the above The suppression output setting condition for setting the suppression suppression output of the suppression intermittent operation mode described in each of the embodiments may be used.

(リ) 強制連続運転形態、強制断続運転形態、停止前用の強制連続運転形態及び停止前用の強制断続運転形態における設定増大出力を設定するための増大出力設定条件、並びに、抑制連続運転形態、抑制断続運転形態、停止前用の抑制連続運転形態及び停止前用の抑制断続運転形態における設定抑制出力を設定するための抑制出力設定条件は、上記の第1〜第3の各実施形態において例示した条件に限定されるものではない。
例えば、増大出力設定条件は、予測電力負荷に対して設定電力大きい電力に設定する条件や、燃料電池1の発電出力調節範囲における最大値に設定する条件でも良い。
又、抑制出力設定条件は、予測電力負荷に対して設定電力小さい電力に設定する条件や、燃料電池1の発電出力調節範囲における最小値に設定する条件でも良い。
(I) Forced continuous operation mode, forced intermittent operation mode, forced continuous operation mode for before stop and forced intermittent operation mode for before stop The suppression output setting condition for setting the set suppression output in the suppression intermittent operation mode, the suppression continuous operation mode for before stop and the suppression intermittent operation mode for before stop is as described in each of the first to third embodiments. The conditions are not limited to the exemplified conditions.
For example, the increased output setting condition may be a condition for setting the power to be larger than the predicted power load or a condition for setting the maximum value in the power generation output adjustment range of the fuel cell 1.
Further, the suppression output setting condition may be a condition for setting the power to be smaller than the predicted power load or a condition for setting the minimum value in the power generation output adjustment range of the fuel cell 1.

(ヌ) 強制連続運転形態、強制断続運転形態、停止前用の強制連続運転形態及び停止前用の強制断続運転形態における設定増大出力を設定するための形態は、上記の第1〜第3の各実施形態のように増大出力設定条件に基づいて設定する形態に限定されるものではない。
例えば、単位時間の夫々について仮設定増大出力を複数段階に設定しておき、各単位時間の仮設定増大出力を異ならせた状態で、全ての仮運転パターンについて予測エネルギ削減量を求めて、予測エネルギ削減量が最大の仮運転パターンにおいて設定されている仮設定増大出力を設定増大出力とするようにしても良い。
又、抑制連続運転形態、抑制断続運転形態、停止前用の抑制連続運転形態及び停止前用の抑制断続運転形態における設定抑制出力を設定するための形態は、上記の第1〜第3の各実施形態にように抑制出力設定条件に基づいて設定する形態に限定されるものではない。
例えば、単位時間の夫々について仮設定抑制出力を複数段階に設定しておき、各単位時間の仮設定抑制出力を異ならせた状態で、全ての仮運転パターンについて予測エネルギ削減量を求めて、予測エネルギ削減量が最大の仮運転パターンにおいて設定されている仮設定抑制出力を設定抑制出力とするようにしても良い。
(N) Forced continuous operation mode, forced intermittent operation mode, forced continuous operation mode for before stop and forced intermittent operation mode for before stop, the mode for setting the setting increase output is the first to third of the above It is not limited to the form set based on increase output setting conditions like each embodiment.
For example, the temporary setting increase output for each unit time is set in a plurality of stages, and the predicted energy reduction amount is obtained for all temporary operation patterns in a state where the temporary setting increase output for each unit time is different. The temporarily set increase output set in the temporary operation pattern with the maximum energy reduction amount may be set as the set increase output.
Moreover, the mode for setting the setting suppression output in the suppression continuous operation mode, the suppression intermittent operation mode, the suppression continuous operation mode for stop and the suppression intermittent operation mode for before stop is the first to third modes described above. It is not limited to the form set based on the suppression output setting conditions as in the embodiment.
For example, the temporary setting suppression output is set in a plurality of stages for each unit time, and the predicted energy reduction amount is obtained for all temporary operation patterns in a state where the temporary setting suppression output for each unit time is different, and predicted. The temporary setting suppression output set in the temporary operation pattern with the maximum energy reduction amount may be set as the setting suppression output.

(ル) 上記の第1〜第3の各実施形態において、複数段階に設定された仮設定増大出力のうちで増大時メリット評価用指標が最大、即ち、エネルギ面で最も有利な仮設定増大出力を設定増大出力として設定しても良い。
又、複数段階に設定された仮設定抑制出力のうちで抑制時メリット評価用指標の絶対値が最大、即ち、エネルギ面で最も有利な仮設定抑制出力を設定抑制出力として設定しても良い。
(L) In each of the first to third embodiments described above, the increase merit evaluation index is the maximum among the temporarily set increase outputs set in a plurality of stages, that is, the temporarily set increase output that is most advantageous in terms of energy. May be set as a setting increase output.
Further, among the temporary setting suppression outputs set in a plurality of stages, the absolute value of the suppression merit evaluation index may be set as the maximum, that is, the temporary setting suppression output that is most advantageous in terms of energy may be set as the setting suppression output.

(ヲ) 上記の第1〜第3の各実施形態において、停止前用の強制連続運転形態の予測エネルギ削減量を求めるための停止前用の強制連続運転用の仮運転パターンとして、強制運転用時間帯に設定増大出力が設定されていない単位時間が含まれる仮運転パターンを除外して、強制運転用時間帯が設定増大出力が設定されている単位時間のみにて構成される仮運転パターンのみを含ませるように構成しても良い。
又、停止前用の抑制連続運転形態の予測エネルギ削減量を求めるための停止前用の抑制連続運転用の仮運転パターンとして、抑制運転用時間帯に設定抑制出力が設定されていない単位時間が含まれる仮運転パターンを除外して、抑制運転用時間帯が設定抑制出力が設定されている単位時間のみにて構成される仮運転パターンのみを含ませるように構成しても良い。
又、停止前用の強制断続運転形態の予測エネルギ削減量を求めるための停止前用の強制断続運転用の仮運転パターンとして、運転時間帯に設定増大出力が設定されていない単位時間が含まれる仮運転パターンを除外して、運転時間帯が設定増大出力が設定されている単位時間のみにて構成される仮運転パターンのみを含ませるように構成しても良い。
又、停止前用の抑制断続運転形態の予測エネルギ削減量を求めるための停止前用の抑制断続運転用の仮運転パターンとして、運転時間帯に設定抑制出力が設定されていない単位時間が含まれる仮運転パターンを除外して、運転時間帯が設定抑制出力が設定されている単位時間のみにて構成される仮運転パターンのみを含ませるように構成しても良い。
(W) In each of the above first to third embodiments, as a temporary operation pattern for forced continuous operation for stoppage for obtaining the predicted energy reduction amount of the forced continuous operation mode for stoppage, for forced operation Excluding temporary operation patterns that include unit time for which no set increase output is set in the time zone, only temporary operation patterns that consist only of unit time for which the set increase output is set for the forced operation time zone May be included.
In addition, as a temporary operation pattern for the suppression continuous operation for before the stop for obtaining the predicted energy reduction amount of the suppression continuous operation mode for before the stop, the unit time for which the set suppression output is not set in the suppression operation time zone The temporary operation pattern included may be excluded, and only the temporary operation pattern configured by only the unit time for which the set suppression output is set may be included in the suppression operation time zone.
In addition, as a temporary operation pattern for forced intermittent operation for stoppage for obtaining a predicted energy reduction amount in the forced intermittent operation mode for before stoppage, a unit time in which the set increase output is not set is included in the operation time zone The temporary operation pattern may be excluded, and only the temporary operation pattern configured by the unit time in which the operation time zone is set to the set increase output may be included.
Moreover, the unit time for which the set suppression output is not set is included in the operation time zone as the temporary operation pattern for the suppression intermittent operation for the stop for obtaining the predicted energy reduction amount of the suppression intermittent operation mode for the stop. The temporary operation pattern may be excluded and only the temporary operation pattern that includes only the unit time for which the setting suppression output is set in the operation time zone may be included.

(ワ) 上記の第1〜第3の各実施形態においては、強制連続運転形態や停止前用の強制連続運転形態における強制運転用時間帯、及び、抑制連続運転形態や停止前用の抑制連続運転形態における抑制運転用時間帯を運転周期内に1つ設定する場合について例示したが、運転周期内に複数設定しても良い。
又、上記の第1〜第3の各実施形態においては、負荷追従断続運転形態、強制断続運転形態、抑制断続運転形態、停止前用の負荷追従断続運転形態、停止前用の強制断続運転形態及び停止前用の抑制断続運転形態の夫々において、運転時間帯を運転周期内に1つ設定する場合について例示したが、運転周期内に複数設定しても良い。
(W) In each of the first to third embodiments described above, the forced operation time zone in the forced continuous operation mode and the forced continuous operation mode before stopping, and the suppression continuous operation mode and the suppression continuous before stopping. Although the case where one suppression operation time zone in the operation mode is set in the operation cycle has been illustrated, a plurality of time zones may be set in the operation cycle.
In the first to third embodiments, the load following intermittent operation mode, the forced intermittent operation mode, the suppression intermittent operation mode, the load following intermittent operation mode before stopping, and the forced intermittent operation mode before stopping. In addition, in each of the suppression intermittent operation modes before stopping, the case where one operation time zone is set in the operation cycle has been illustrated, but a plurality of operation time zones may be set in the operation cycle.

(カ) 運転メリットとしては、上記の第1〜第5の各実施形態において例示した予測エネルギ削減量等の省エネルギ性に限定されるものではなく、例えば、予測エネルギコスト削減額等の経済性や、予測二酸化炭素削減量等の環境性を用いても良い。
ちなみに、予測エネルギコスト削減額は、燃料電池1を運転させない場合のエネルギコストから、燃料電池1を運転したときのエネルギコストを減じて求めることができる。
前記燃料電池1を運転させない場合のエネルギコストは、予測電力負荷の全てを商用電源7から買電するときのコストと、予測熱負荷の全てを補助加熱器28で賄うときのエネルギコスト(燃料コスト)の和として求められる。
一方、燃料電池1を運転したときのエネルギコストは、予測電力負荷及び予測熱負荷を燃料電池1の予測発電電力及び予測発生熱で補う場合の燃料電池1のエネルギコスト(燃料コスト)と、予測電力負荷から予測発電電力を差し引いた分に相当する不足電力負荷を商用電源7から買電するときのコストと、予測熱負荷から予測利用熱量を差し引いた分に相当する不足熱負荷を補助加熱器28の発生熱で補う場合のエネルギコスト(燃料コスト)との和として求められる。
(F) The driving merit is not limited to the energy saving such as the predicted energy reduction amount exemplified in each of the first to fifth embodiments. For example, the economics such as the predicted energy cost reduction amount Alternatively, environmental properties such as predicted carbon dioxide reduction may be used.
Incidentally, the predicted energy cost reduction amount can be obtained by subtracting the energy cost when the fuel cell 1 is operated from the energy cost when the fuel cell 1 is not operated.
The energy cost when the fuel cell 1 is not operated includes the cost when purchasing all of the predicted power load from the commercial power source 7 and the energy cost when supplying the predicted heat load with the auxiliary heater 28 (fuel cost). ).
On the other hand, the energy cost when the fuel cell 1 is operated is the energy cost (fuel cost) of the fuel cell 1 when the predicted power load and the predicted heat load are supplemented by the predicted generated power and the predicted generated heat of the fuel cell 1. Auxiliary heaters for the cost of purchasing power from the commercial power supply 7 corresponding to the amount obtained by subtracting the predicted generated power from the power load, and the short heat load corresponding to the amount obtained by subtracting the predicted heat usage from the predicted heat load It is obtained as the sum of the energy cost (fuel cost) when supplementing with the generated heat of 28.

又、予測二酸化炭素削減量は、燃料電池1を運転させない場合の二酸化炭素発生量から、燃料電池1を運転したときの二酸化炭素発生量を減じて求めることができる。
前記燃料電池1を運転させない場合の二酸化炭素発生量は、予測電力負荷の全てを商用電源7から買電するときの二酸化炭素発生量と、予測熱負荷の全てを補助加熱器28で賄うときの二酸化炭素発生量との和として求められる。
一方、燃料電池1を運転したときの二酸化炭素発生量は、予測電力負荷及び予測熱負荷を燃料電池1の予測発電電力及び予測発生熱で補う場合の燃料電池1からの二酸化炭素発生量と、予測電力負荷から予測発電電力を差し引いた分に相当する不足電力負荷を商用電源7から買電するときの二酸化炭素発生量と、予測熱負荷から予測利用熱量を差し引いた分に相当する不足熱負荷を補助加熱器28の発生熱で補う場合の二酸化炭素発生量との和として求められる。
The predicted carbon dioxide reduction amount can be obtained by subtracting the carbon dioxide generation amount when the fuel cell 1 is operated from the carbon dioxide generation amount when the fuel cell 1 is not operated.
The amount of carbon dioxide generated when the fuel cell 1 is not operated is the amount of carbon dioxide generated when all of the predicted power load is purchased from the commercial power supply 7 and when the auxiliary heater 28 covers all of the predicted heat load. Calculated as the sum of carbon dioxide generation.
On the other hand, the amount of carbon dioxide generated when the fuel cell 1 is operated is the amount of carbon dioxide generated from the fuel cell 1 when the predicted power load and the predicted heat load are supplemented with the predicted generated power and the predicted generated heat of the fuel cell 1, and The amount of carbon dioxide generated when power is purchased from the commercial power supply 7 corresponding to the amount obtained by subtracting the predicted generated power from the predicted power load, and the amount of heat generated corresponding to the amount obtained by subtracting the predicted heat usage from the predicted heat load Is obtained as the sum of the amount of carbon dioxide generated when the heat is supplemented with the heat generated by the auxiliary heater 28.

(ヨ) 上記の第1〜第3の各実施形態においては、停止前用の強制連続運転形態、停止前用の抑制連続運転形態、停止前用の負荷追従断続運転形態、停止前用の強制断続運転形態及び停止前用の抑制断続運転形態夫々の予測エネルギ削減量を求めるに当たっては、全ての仮運転パターンのうちで、停止前運転周期の最終の単位時間の予測貯湯熱量が0よりも大きい仮運転パターンを対象にして予測エネルギ削減量を求める場合について例示したが、停止前運転周期の最終の単位時間の予測貯湯熱量が0となる仮運転パターンを含めた全ての仮運転パターンを対象にして予測エネルギ削減量を求めるように構成しても良い。 (Y) In each of the above first to third embodiments, the forced continuous operation mode before stop, the suppressed continuous operation mode before stop, the load following intermittent operation mode before stop, and the forced force before stop In determining the predicted energy reduction amount for each of the intermittent operation mode and the suppression intermittent operation mode for before stop, the predicted hot water storage amount for the final unit time of the operation cycle before stop is greater than 0 among all the temporary operation patterns. Although the case where the predicted energy reduction amount is calculated for the temporary operation pattern is exemplified, all the temporary operation patterns including the temporary operation pattern in which the predicted hot water storage heat amount in the final unit time of the operation period before the stop is 0 are targeted. Thus, the predicted energy reduction amount may be obtained.

(タ) 運転メリットを求めるに当たって、燃料電池1を運転しない場合のエネルギ消費量等は、予測電力負荷の全てを商用電源7からの受電電力で賄い、予測熱負荷の全てを前記補助加熱器28とは異なる一般的な給湯器にて賄うとして求めるように構成しても良い。 (T) In determining the operation merit, the energy consumption and the like when the fuel cell 1 is not operated are covered by all the predicted power load with the received power from the commercial power source 7 and all the predicted heat load is the auxiliary heater 28. You may comprise so that it may obtain | require with a general water heater different from.

(レ) 上記の各実施形態においては、熱消費端末3を設けた場合について例示して、熱負荷を給湯熱負荷と端末熱負荷とを合わせたものとしたが、熱消費端末3を設けない場合は、熱負荷を給湯熱負荷のみとすることになる。又、燃料電池1から発生する熱を回収した冷却水の温度に比べて、熱消費端末3において必要とされる熱媒の温度が高い場合は、熱消費端末3が設けられていても、熱負荷を給湯熱負荷のみとする。 (L) In each of the above embodiments, the case where the heat consuming terminal 3 is provided is illustrated, and the heat load is a combination of the hot water supply heat load and the terminal heat load, but the heat consuming terminal 3 is not provided. In this case, the heat load is only the hot water supply heat load. Further, when the temperature of the heat medium required in the heat consuming terminal 3 is higher than the temperature of the cooling water from which the heat generated from the fuel cell 1 is recovered, the heat consuming terminal 3 is provided with the heat Use only hot water supply heat load.

(ソ) 熱電併給装置として、上記の各実施形態では燃料電池1を適用したが、これ以外に、例えば、ガスエンジンにより発電機を駆動するように構成したもの等、種々のものを適用することができる。 (So) Although the fuel cell 1 is applied in each of the above-described embodiments as the combined heat and power supply apparatus, in addition to this, for example, various devices such as a configuration in which a generator is driven by a gas engine may be applied. Can do.

実施形態に係るコージェネレーションシステムの全体構成を示すブロック図The block diagram which shows the whole structure of the cogeneration system which concerns on embodiment 実施形態に係るコージェネレーションシステムの制御構成を示すブロック図The block diagram which shows the control structure of the cogeneration system which concerns on embodiment 最初の運転周期における予測電力負荷及び予測熱負荷に対する燃料電池の運転状態及び熱利用状態を示す説明図Explanatory drawing which shows the driving | running state and heat utilization state of a fuel cell with respect to the prediction electric power load and prediction heat load in the first driving | operation period 最初の運転周期における予測電力負荷及び予測熱負荷に対する燃料電池の運転状態及び熱利用状態を示す説明図Explanatory drawing which shows the driving | running state and heat utilization state of a fuel cell with respect to the prediction electric power load and prediction heat load in the first driving | operation period 2回目の運転周期又は停止用運転周期における予測熱負荷に対する熱利用状態を示す説明図Explanatory drawing which shows the heat utilization state with respect to the predicted heat load in the second operation cycle or the stop operation cycle 電池発電効率及び電池熱効率を示す図Diagram showing battery power generation efficiency and battery thermal efficiency 仮運転パターンを説明する図Diagram explaining temporary operation pattern 仮運転パターンを説明する図Diagram explaining temporary operation pattern 出力増大時発生熱量及び出力抑制時発電用エネルギ量差を示す図Figure showing the amount of heat generated when output is increased and the difference in energy amount for power generation when output is suppressed 第1実施形態に係る制御動作のフローチャートを示す図The figure which shows the flowchart of the control action which concerns on 1st Embodiment. 第1実施形態に係る制御動作のフローチャートを示す図The figure which shows the flowchart of the control action which concerns on 1st Embodiment. 第1実施形態に係る制御動作のフローチャートを示す図The figure which shows the flowchart of the control action which concerns on 1st Embodiment. 第1実施形態に係る制御動作のフローチャートを示す図The figure which shows the flowchart of the control action which concerns on 1st Embodiment. 第2実施形態に係る制御動作のフローチャートを示す図The figure which shows the flowchart of the control action which concerns on 2nd Embodiment. 第2実施形態に係る制御動作のフローチャートを示す図The figure which shows the flowchart of the control action which concerns on 2nd Embodiment. 第3実施形態に係る制御動作のフローチャートを示す図The figure which shows the flowchart of the control action which concerns on 3rd Embodiment. 第3実施形態に係る制御動作のフローチャートを示す図The figure which shows the flowchart of the control action which concerns on 3rd Embodiment.

符号の説明Explanation of symbols

1 熱電併給装置
2 貯湯槽
4 貯湯手段
5 運転制御手段
DESCRIPTION OF SYMBOLS 1 Cogeneration apparatus 2 Hot water tank 4 Hot water storage means 5 Operation control means

Claims (11)

電力と熱とを併せて発生する熱電併給装置と、その熱電併給装置にて発生する熱にて貯湯槽に貯湯する貯湯手段と、前記熱電併給装置を運転する運転制御手段とが設けられたコージェネレーションシステムであって、
前記運転制御手段が、
時系列的な予測電力負荷及び時系列的な予測熱負荷を時系列で並ぶ運転周期毎に区分けして管理し、且つ、前記熱電併給装置を停止することを予定する停止用期間が時系列で並ぶ運転周期のうちのいずれであるかについて管理して、
運転周期の開始時点毎に、時系列的な予測電力負荷及び時系列的な予測熱負荷に基づいて、その運転周期の運転条件を定めて前記熱電併給装置を運転し、且つ、前記運転条件を定める運転周期に続く運転周期が前記停止用期間である場合には、前記運転条件を定める運転周期における予測電力負荷及び予測熱負荷並びに前記停止用期間の予測熱負荷に基づいて、その運転周期の運転条件を定めて前記熱電併給装置を運転するように構成されているコージェネレーションシステム。
A cogeneration device that is provided with a combined heat and power device that generates electric power and heat, a hot water storage device that stores hot water in a hot water storage tank with heat generated by the combined heat and power device, and an operation control device that operates the combined heat and power device. A generation system,
The operation control means is
The time-series predicted power load and the time-series predicted heat load are managed separately for each operation cycle arranged in time series, and the stop period in which the cogeneration device is scheduled to be stopped is time-series. Manage which of the operating cycles are in line,
For each start point of the operation cycle, based on the time-series predicted power load and the time-series predicted heat load, the operation condition of the operation cycle is determined to operate the combined heat and power supply device, and the operation condition is set to When the operation cycle following the determined operation cycle is the stop period, the operation cycle is determined based on the predicted power load and the predicted heat load in the operation cycle for determining the operation condition and the predicted heat load in the stop period. A cogeneration system configured to operate the combined heat and power supply device by determining operating conditions.
前記運転制御手段が、
前記運転条件を定める運転周期に続く運転周期が前記停止用期間である場合における前記運転条件として、前記熱電併給装置の異なる運転形態である複数種の停止前用の運転形態のうちで、前記運転条件を定める運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間の予測熱負荷に基づいて求められる運転メリットにて定める停止前用の運転形態にて前記熱電併給装置を運転する条件に定めるように構成されている請求項1記載のコージェネレーションシステム。
The operation control means is
As the operation condition in the case where the operation cycle following the operation cycle that defines the operation condition is the stop period, among the plurality of types of pre-stop operation modes that are different operation modes of the cogeneration device, the operation The conditions for operating the combined heat and power unit in the pre-stop operation mode determined by the operation merit obtained based on the predicted power load and the predicted heat load of the operation cycle and the predicted heat load of the stop period are set. The cogeneration system according to claim 1 configured as described above.
前記運転制御手段が、
前記運転条件を定める運転周期に続く運転周期が前記停止用期間である場合における前記運転条件として、前記運転条件を定める運転周期の全時間帯において前記熱電併給装置を停止させると仮定したときに、その運転条件を定める運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間の予測熱負荷に基づいて求められる運転メリットが、前記複数種の停止前用の運転形態夫々について求められる前記運転メリットとの対比により停止用条件を満たすときには、前記運転条件を定める運転周期の全時間帯にわたって前記熱電併給装置を停止させる条件に定めるように構成されている請求項2記載のコージェネレーションシステム。
The operation control means is
Assuming that the combined heat and power device is stopped in the entire time period of the operation cycle for determining the operation condition as the operation condition when the operation cycle following the operation cycle for determining the operation condition is the period for stopping, The operation merit obtained based on the predicted power load and the predicted heat load of the operation cycle that defines the operation conditions and the predicted heat load of the stop period is the operation merit required for each of the plurality of types of pre-stop operation modes. 3. The cogeneration system according to claim 2, wherein the cogeneration system is configured to set the condition for stopping the thermoelectric power supply device over the entire time period of the operation cycle for determining the operation condition when the condition for the stop is satisfied by comparison with.
前記複数種の停止前用の運転形態が、
前記運転条件を定める運転周期の全時間帯において前記熱電併給装置を運転する停止前用の連続運転形態、及び、前記運転条件を定める運転周期のうちに、その運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間の予測熱負荷に基づいて求められる運転メリットが高くなる運転時間帯を定めて前記熱電併給装置を運転する停止前用の断続運転形態である請求項2又は3記載のコージェネレーションシステム。
The plurality of types of operation modes before stopping are as follows:
In the continuous operation mode before stopping for operating the combined heat and power supply device in the entire time period of the operation cycle that defines the operation condition, and the operation cycle that defines the operation condition, the predicted power load and the predicted heat of the operation cycle 4. The code according to claim 2, wherein the operation is an intermittent operation mode before stopping, in which an operation time zone in which an operation merit obtained based on a load and a predicted thermal load in the stop period is high is determined. Generation system.
前記複数種の停止前用の運転形態が、
前記運転条件を定める運転周期の全時間帯において前記熱電併給装置の発電出力を予測電力負荷に追従させる停止前用の負荷追従連続運転形態、
前記運転条件を定める運転周期における一部の時間帯において前記熱電併給装置の発電出力を予測電力負荷よりも小さい設定抑制出力に調節しかつ残りの時間帯において前記熱電併給装置の発電出力を予測電力負荷に追従させ、且つ、前記熱電併給装置の発電出力を前記設定抑制出力に調節する時間帯を、前記運転条件を定める運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間の予測熱負荷に基づいて求められる運転メリットが高くなる時間帯に定める停止前用の抑制連続運転形態、
前記運転条件を定める運転周期における一部の時間帯において前記熱電併給装置の発電出力を予測電力負荷よりも大きい設定増大出力に調節しかつ残りの時間帯において前記熱電併給装置の発電出力を予測電力負荷に追従させ、且つ、前記熱電併給装置の発電出力を前記設定増大出力に調節する時間帯を、前記運転条件を定める運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間の予測熱負荷に基づいて求められる運転メリットが高くなる時間帯に定める停止前用の強制連続運転形態、
前記運転条件を定める運転周期のうちの一部の運転時間帯において前記熱電併給装置の発電出力を予測電力負荷に追従させかつ残りの時間帯において前記熱電併給装置を停止させ、且つ、前記運転時間帯を、前記運転条件を定める運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間の予測熱負荷に基づいて求められる運転メリットが高くなる時間帯に定める停止前用の負荷追従断続運転形態、
前記運転条件を定める運転周期のうちの一部の運転時間帯において前記熱電併給装置の発電出力を予測電力負荷よりも小さい設定抑制出力に調節しかつ残りの時間帯において前記熱電併給装置を停止させ、且つ、前記運転時間帯を、前記運転条件を定める運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間の予測熱負荷に基づいて求められる運転メリットが高くなる時間帯に定める停止前用の抑制断続運転形態、及び、
前記運転条件を定める運転周期のうちの一部の運転時間帯において前記熱電併給装置の発電出力を予測電力負荷よりも大きい設定増大出力に調節しかつ残りの時間帯において前記熱電併給装置を停止させ、且つ、前記運転時間帯を、前記運転条件を定める運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間の予測熱負荷に基づいて求められる運転メリットが高くなる時間帯に定める停止前用の強制断続運転形態のうちの少なくとも2つの運転形態である請求項2又は3記載のコージェネレーションシステム。
The plurality of types of operation modes before stopping are as follows:
Load follow-up continuous operation mode for stop before causing the power generation output of the cogeneration device to follow the predicted power load in all time periods of the operation cycle that determines the operation conditions,
The power generation output of the combined heat and power unit is adjusted to a setting suppression output smaller than the predicted power load in a part of the time period in the operation cycle that defines the operation condition, and the power generation output of the combined heat and power unit is predicted power in the remaining time period. The time period for following the load and adjusting the power generation output of the cogeneration device to the set suppression output is the predicted power load and predicted heat load of the operation cycle that defines the operating conditions, and the predicted heat load of the stop period. Suppressed continuous operation mode for pre-stop set in the time zone when the driving merit required based on
The power generation output of the combined heat and power unit is adjusted to a setting increase output larger than the predicted power load in a part of the time period in the operation cycle that defines the operation condition, and the power generation output of the combined heat and power unit is predicted power in the remaining time period. The time period during which the power generation output of the combined heat and power supply device is adjusted to the set increase output is adjusted to follow the load, and the predicted power load and predicted heat load of the operation cycle that defines the operating conditions, and the predicted heat load of the stop period Forced continuous operation mode for pre-stop set in the time zone when the driving merit required based on
The power generation output of the combined heat and power device is made to follow the predicted power load in a part of the operation period of the operation cycle that defines the operation condition, and the combined heat and power unit is stopped in the remaining time period, and the operation time Load follow-up intermittent operation mode for pre-stop where the belt is defined as a time zone during which the operation merit required based on the predicted power load and predicted heat load of the operation cycle that determines the operation conditions and the predicted heat load of the stop period is high ,
The power generation output of the combined heat and power unit is adjusted to a setting suppression output smaller than the predicted power load in a part of the operation period of the operation cycle that defines the operation condition, and the combined heat and power unit is stopped in the remaining time period. In addition, the operation time zone is defined as a time zone during which the operation merit required based on the predicted power load and the predicted heat load of the operation cycle that defines the operation condition and the predicted heat load of the stop period is high. Suppressed intermittent operation mode, and
Adjusting the power generation output of the combined heat and power device to a set increased output larger than the predicted power load in a part of the operation period of the operation cycle that defines the operation condition, and stopping the combined heat and power unit in the remaining time period In addition, the operation time zone is defined as a time zone during which the operation merit required based on the predicted power load and the predicted heat load of the operation cycle that defines the operation condition and the predicted heat load of the stop period is high. The cogeneration system according to claim 2 or 3, which is at least two of the forced intermittent operation modes.
前記運転条件を定める運転周期に続く運転周期が前記停止用期間である場合における前記運転条件が、
前記運転条件を定める運転周期における一部の時間帯において前記熱電併給装置の発電出力を予測電力負荷よりも小さい設定抑制出力に調節しかつ残りの時間帯において前記熱電併給装置の発電出力を予測電力負荷に追従させ、且つ、前記熱電併給装置の発電出力を前記設定抑制出力に調節する時間帯を、前記運転条件を定める運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間の予測熱負荷に基づいて求められる運転メリットが高くなる時間帯に定める停止前用の抑制連続運転形態にて運転する条件、
前記運転条件を定める運転周期における一部の時間帯において前記熱電併給装置の発電出力を予測電力負荷よりも大きい設定増大出力に調節しかつ残りの時間帯において前記熱電併給装置の発電出力を予測電力負荷に追従させ、且つ、前記熱電併給装置の発電出力を前記設定増大出力に調節する時間帯を、前記運転条件を定める運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間の予測熱負荷に基づいて求められる運転メリットが高くなる時間帯に定める停止前用の強制連続運転形態にて運転する条件、
前記運転条件を定める運転周期のうちの一部の運転時間帯において前記熱電併給装置の発電出力を予測電力負荷に追従させかつ残りの時間帯において前記熱電併給装置を停止させ、且つ、前記運転時間帯を、前記運転条件を定める運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間の予測熱負荷に基づいて求められる運転メリットが高くなる時間帯に定める停止前用の負荷追従断続運転形態にて運転する条件、
前記運転条件を定める運転周期のうちの一部の運転時間帯において前記熱電併給装置の発電出力を予測電力負荷よりも小さい設定抑制出力に調節しかつ残りの時間帯において前記熱電併給装置を停止させ、且つ、前記運転時間帯を、前記運転条件を定める運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間の予測熱負荷に基づいて求められる運転メリットが高くなる時間帯に定める停止前用の抑制断続運転形態にて運転する条件、及び、
前記運転条件を定める運転周期のうちの一部の運転時間帯において前記熱電併給装置の発電出力を予測電力負荷よりも大きい設定増大出力に調節しかつ残りの時間帯において前記熱電併給装置を停止させ、且つ、前記運転時間帯を、前記運転条件を定める運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間の予測熱負荷に基づいて求められる運転メリットが高くなる時間帯に定める停止前用の強制断続運転形態にて運転する条件のうちの予め定められた1つである請求項1記載のコージェネレーションシステム。
The operation condition in the case where the operation cycle following the operation cycle that defines the operation condition is the period for stopping,
The power generation output of the combined heat and power unit is adjusted to a setting suppression output smaller than the predicted power load in a part of the time period in the operation cycle that defines the operation condition, and the power generation output of the combined heat and power unit is predicted power in the remaining time period. The time period for following the load and adjusting the power generation output of the cogeneration device to the set suppression output is the predicted power load and predicted heat load of the operation cycle that defines the operating conditions, and the predicted heat load of the stop period. The conditions for driving in the restrained continuous driving mode for pre-stop set in the time zone when the driving merit required based on
The power generation output of the combined heat and power unit is adjusted to a setting increase output larger than the predicted power load in a part of the time period in the operation cycle that defines the operation condition, and the power generation output of the combined heat and power unit is predicted power in the remaining time period. The time period during which the power generation output of the combined heat and power supply device is adjusted to the set increase output is adjusted to follow the load, and the predicted power load and predicted heat load of the operation cycle that defines the operating conditions, and the predicted heat load of the stop period Conditions for driving in the forced continuous operation mode for pre-stop set in the time zone when the driving merit required based on
The power generation output of the combined heat and power device is made to follow the predicted power load in a part of the operation period of the operation cycle that defines the operation condition, and the combined heat and power unit is stopped in the remaining time period, and the operation time Load follow-up intermittent operation mode for pre-stop where the belt is defined as a time zone during which the operation merit required based on the predicted power load and predicted heat load of the operation cycle that determines the operation conditions and the predicted heat load of the stop period is high Conditions for driving at
The power generation output of the combined heat and power unit is adjusted to a setting suppression output smaller than the predicted power load in a part of the operation period of the operation cycle that defines the operation condition, and the combined heat and power unit is stopped in the remaining time period. In addition, the operation time zone is defined as a time zone during which the operation merit required based on the predicted power load and the predicted heat load of the operation cycle that defines the operation condition and the predicted heat load of the stop period is high. Conditions for driving in the controlled intermittent operation mode, and
Adjusting the power generation output of the combined heat and power device to a set increased output larger than the predicted power load in a part of the operation period of the operation cycle that defines the operation condition, and stopping the combined heat and power unit in the remaining time period In addition, the operation time zone is defined as a time zone during which the operation merit required based on the predicted power load and the predicted heat load of the operation cycle that defines the operation condition and the predicted heat load of the stop period is high. The cogeneration system according to claim 1, which is a predetermined one of the conditions for driving in the forced intermittent operation mode.
電力と熱とを併せて発生する熱電併給装置と、その熱電併給装置にて発生する熱にて貯湯槽に貯湯する貯湯手段と、前記熱電併給装置を運転する運転制御手段とが設けられたコージェネレーションシステムであって、
前記運転制御手段が、
時系列的な予測電力負荷及び時系列的な予測熱負荷を時系列で並ぶ運転周期毎に区分けして管理し、且つ、前記熱電併給装置を停止することを予定する停止用期間が時系列で並ぶ運転周期のうちのいずれであるかについて管理して、
前記停止用期間を管理している運転周期とする場合及び前記停止用期間を管理している運転周期よりも前又は後の運転周期とする場合のうちで、前記停止用期間とする運転周期の予測熱負荷並びにその運転周期よりも前の運転周期における予測電力負荷及び予測熱負荷に基づいて求める運転メリットが高くなる場合を求め、その場合に対応させて前記停止用期間とする運転周期を定めるように構成されているコージェネレーションシステム。
A cogeneration device that is provided with a combined heat and power device that generates electric power and heat, a hot water storage device that stores hot water in a hot water storage tank with heat generated by the combined heat and power device, and an operation control device that operates the combined heat and power device. A generation system,
The operation control means is
The time-series predicted power load and the time-series predicted heat load are managed separately for each operation cycle arranged in time series, and the stop period in which the cogeneration device is scheduled to be stopped is time-series. Manage which of the operating cycles are in line,
Of the operation cycle to be the stop period, in the case of the operation cycle managing the stop period and the operation cycle before or after the operation cycle managing the stop period A case where the operation merit obtained based on the predicted heat load and the predicted power load and the predicted heat load in the operation cycle prior to the operation cycle is increased is determined, and the operation cycle used as the stop period is determined in accordance with the case. Cogeneration system that is configured as follows.
前記運転制御手段が、
前記停止用期間を管理している運転周期とする場合及び前記停止用期間を管理している運転周期よりも前又は後の運転周期とする場合の夫々を、前記熱電併給装置の異なる運転形態である複数種の停止前用の運転形態の夫々で運転する場合のうちで、前記停止用期間とする運転周期の予測熱負荷並びにその運転周期よりも前の運転周期における予測電力負荷及び予測熱負荷に基づいて求められる運転メリットが高くなる場合を求め、その求めた場合に対応させて前記停止用期間とする運転周期を定めるように構成されている請求項7記載のコージェネレーションシステム。
The operation control means is
When the operation period managing the stop period and the operation period before or after the operation period managing the stop period are respectively different operation modes of the cogeneration device. Among the cases where the operation is performed in a plurality of types of operation modes before stoppage, the predicted heat load of the operation cycle as the stop period and the predicted power load and the predicted heat load in the operation cycle prior to the operation cycle The cogeneration system according to claim 7, wherein the cogeneration system is configured so as to obtain a case where the driving merit obtained on the basis of the requirement is high and to determine an operation cycle as the stop period corresponding to the obtained case.
前記複数種の停止前用の運転形態が、
前記停止用期間とする運転周期の前の運転周期の全時間帯において前記熱電併給装置を運転する停止前用の連続運転形態、及び、前記停止用期間とする運転周期の前の運転周期のうちに、その運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間とする運転周期の予測熱負荷に基づいて求められる運転メリットが高くなる運転時間帯を定めて前記熱電併給装置を運転する停止前用の断続運転形態である請求項8記載のコージェネレーションシステム。
The plurality of types of operation modes before stopping are as follows:
Of the continuous operation mode for before operating the combined heat and power unit in the entire time period of the operation cycle before the operation cycle for the stop period, and the operation cycle before the operation cycle for the stop period In addition, the operation of operating the combined heat and power supply apparatus is determined by setting an operation time period in which the operation merit required based on the predicted power load and the predicted heat load of the operation cycle and the predicted heat load of the operation cycle as the stop period is increased. The cogeneration system according to claim 8, which is a previous intermittent operation mode.
前記複数種の停止前用の運転形態が、
前記停止用期間とする運転周期の前の運転周期の全時間帯において前記熱電併給装置の発電出力を予測電力負荷に追従させる停止前用の負荷追従連続運転形態、
前記停止用期間とする運転周期の前の運転周期における一部の時間帯において前記熱電併給装置の発電出力を予測電力負荷よりも小さい設定抑制出力に調節しかつ残りの時間帯において前記熱電併給装置の発電出力を予測電力負荷に追従させ、且つ、前記熱電併給装置の発電出力を前記設定抑制出力に調節する時間帯を、前記停止用期間とする運転周期の前の運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間とする運転周期の予測熱負荷に基づいて求められる運転メリットが高くなる時間帯に定める停止前用の抑制連続運転形態、
前記停止用期間とする運転周期の前の運転周期における一部の時間帯において前記熱電併給装置の発電出力を予測電力負荷よりも大きい設定増大出力に調節しかつ残りの時間帯において前記熱電併給装置の発電出力を予測電力負荷に追従させ、且つ、前記熱電併給装置の発電出力を前記設定増大出力に調節する時間帯を、前記停止用期間とする運転周期の前の運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間とする運転周期の予測熱負荷に基づいて求められる運転メリットが高くなる時間帯に定める停止前用の強制連続運転形態、
前記停止用期間とする運転周期の前の運転周期のうちの一部の運転時間帯において前記熱電併給装置の発電出力を予測電力負荷に追従させかつ残りの時間帯において前記熱電併給装置を停止させ、且つ、前記運転時間帯を、前記停止用期間とする運転周期の前の運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間とする運転周期の予測熱負荷に基づいて求められる運転メリットが高くなる時間帯に定める停止前用の負荷追従断続運転形態、
前記停止用期間とする運転周期の前の運転周期のうちの一部の運転時間帯において前記熱電併給装置の発電出力を予測電力負荷よりも小さい設定抑制出力に調節しかつ残りの時間帯において前記熱電併給装置を停止させ、且つ、前記運転時間帯を、前記停止用期間とする運転周期の前の運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間とする運転周期の予測熱負荷に基づいて求められる運転メリットが高くなる時間帯に定める停止前用の抑制断続運転形態、及び、
前記停止用期間とする運転周期の前の運転周期のうちの一部の運転時間帯において前記熱電併給装置の発電出力を予測電力負荷よりも大きい設定増大出力に調節しかつ残りの時間帯において前記熱電併給装置を停止させ、且つ、前記運転時間帯を、前記停止用期間とする運転周期の前の運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間とする運転周期の予測熱負荷に基づいて求められる運転メリットが高くなる時間帯に定める停止前用の強制断続運転形態のうちの少なくとも2つの運転形態である請求項8記載のコージェネレーションシステム。
The plurality of types of operation modes before stopping are as follows:
Load follow-up continuous operation mode for stop before causing the power generation output of the combined heat and power supply device to follow the predicted power load in the entire time period of the operation cycle before the operation cycle as the stop period,
The power generation output of the combined heat and power device is adjusted to a setting suppression output smaller than the predicted power load in a part of the time period in the operation cycle before the operation cycle as the stop period, and the combined heat and power device in the remaining time period And the predicted power load of the operation cycle before the operation cycle with the time period during which the power generation output of the combined heat and power supply device is adjusted to the setting suppression output as the period for stop, Suppressed continuous operation mode for pre-stop set in a time zone in which the operation merit obtained based on the predicted heat load and the predicted heat load of the operation cycle as the stop period is high,
The power generation output of the combined heat and power device is adjusted to a set increase output larger than the predicted power load in a part of the time period in the operation cycle before the operation cycle as the stop period, and the combined heat and power device in the remaining time period And the predicted power load of the operation cycle before the operation cycle with the time period during which the power generation output of the combined heat and power supply device is adjusted to the set increased output as the period for stop, Forced continuous operation mode for pre-stop set in a time zone in which the operation merit obtained based on the predicted heat load and the predicted heat load of the operation cycle as the stop period is high,
The generated power output of the combined heat and power unit is made to follow the predicted power load in a part of the operation period before the operation period to be the stop period, and the combined heat and power unit is stopped in the remaining time period. And the operation merit obtained based on the predicted power load and the predicted heat load of the operation cycle before the operation cycle in which the operation time period is the stop period, and the predicted heat load of the operation cycle to be the stop period Load follow-up intermittent operation mode for pre-stop set in the time zone when
The power generation output of the combined heat and power unit is adjusted to a setting suppression output smaller than the predicted power load in a part of the operation period of the operation period before the operation period as the stop period, and the remaining period of time The combined heat and power supply device is stopped, and the predicted power load and the predicted heat load of the operation cycle before the operation cycle set as the stop period are set to the predicted heat load of the operation cycle set as the stop period. Suppressed intermittent operation mode for pre-stop set in the time zone when the driving merit required based on is high, and
The power generation output of the combined heat and power unit is adjusted to a set increase output larger than the predicted power load in a part of the operation period before the operation period to be the stop period, and in the remaining time period The combined heat and power supply device is stopped, and the predicted power load and the predicted heat load of the operation cycle before the operation cycle set as the stop period are set to the predicted heat load of the operation cycle set as the stop period. 9. The cogeneration system according to claim 8, wherein the cogeneration system is at least two of the forced intermittent operation modes for pre-stop that are determined in a time zone in which the driving merit obtained based on the driving time is high.
前記運転制御手段が、
前記停止用期間とする運転周期の前の運転周期の全時間帯において前記熱電併給装置の発電出力を予測電力負荷に追従させる停止前用の負荷追従連続運転形態、
前記停止用期間とする運転周期の前の運転周期における一部の時間帯において前記熱電併給装置の発電出力を予測電力負荷よりも小さい設定抑制出力に調節しかつ残りの時間帯において前記熱電併給装置の発電出力を予測電力負荷に追従させ、且つ、前記熱電併給装置の発電出力を前記設定抑制出力に調節する時間帯を、前記停止用期間とする運転周期の前の運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間とする運転周期の予測熱負荷に基づいて求められる運転メリットが高くなる時間帯に定める停止前用の抑制連続運転形態、
前記停止用期間とする運転周期の前の運転周期における一部の時間帯において前記熱電併給装置の発電出力を予測電力負荷よりも大きい設定増大出力に調節しかつ残りの時間帯において前記熱電併給装置の発電出力を予測電力負荷に追従させ、且つ、前記熱電併給装置の発電出力を前記設定増大出力に調節する時間帯を、前記停止用期間とする運転周期の前の運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間とする運転周期の予測熱負荷に基づいて求められる運転メリットが高くなる時間帯に定める停止前用の強制連続運転形態、
前記停止用期間とする運転周期の前の運転周期のうちの一部の運転時間帯において前記熱電併給装置の発電出力を予測電力負荷に追従させかつ残りの時間帯において前記熱電併給装置を停止させ、且つ、前記運転時間帯を、前記停止用期間とする運転周期の前の運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間とする運転周期の予測熱負荷に基づいて求められる運転メリットが高くなる時間帯に定める停止前用の負荷追従断続運転形態、
前記停止用期間とする運転周期の前の運転周期のうちの一部の運転時間帯において前記熱電併給装置の発電出力を予測電力負荷よりも小さい設定抑制出力に調節しかつ残りの時間帯において前記熱電併給装置を停止させ、且つ、前記運転時間帯を、前記停止用期間とする運転周期の前の運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間とする運転周期の予測熱負荷に基づいて求められる運転メリットが高くなる時間帯に定める停止前用の抑制断続運転形態、及び、
前記停止用期間とする運転周期の前の運転周期のうちの一部の運転時間帯において前記熱電併給装置の発電出力を予測電力負荷よりも大きい設定増大出力に調節しかつ残りの時間帯において前記熱電併給装置を停止させ、且つ、前記運転時間帯を、前記停止用期間とする運転周期の前の運転周期の予測電力負荷及び予測熱負荷並びに前記停止用期間とする運転周期の予測熱負荷に基づいて求められる運転メリットが高くなる時間帯に定める停止前用の強制断続運転形態のうちの予め定められた1つの運転形態にて前記熱電併給装置を運転するとして、
前記停止用期間を管理している運転周期とする場合及び前記停止用期間を管理している運転周期よりも前又は後の運転周期とする場合のうちで、運転メリットが高くなる場合を求め、その求めた場合に対応させて前記停止用期間とする運転周期を定めるように構成されている請求項7記載のコージェネレーションシステム。
The operation control means is
Load follow-up continuous operation mode for stop before causing the power generation output of the combined heat and power supply device to follow the predicted power load in the entire time period of the operation cycle before the operation cycle as the stop period,
The power generation output of the combined heat and power device is adjusted to a setting suppression output smaller than the predicted power load in a part of the time period in the operation cycle before the operation cycle as the stop period, and the combined heat and power device in the remaining time period And the predicted power load of the operation cycle before the operation cycle with the time period during which the power generation output of the combined heat and power supply device is adjusted to the setting suppression output as the period for stop, Suppressed continuous operation mode for pre-stop set in a time zone in which the operation merit obtained based on the predicted heat load and the predicted heat load of the operation cycle as the stop period is high,
The power generation output of the combined heat and power device is adjusted to a set increase output larger than the predicted power load in a part of the time period in the operation cycle before the operation cycle as the stop period, and the combined heat and power device in the remaining time period And the predicted power load of the operation cycle before the operation cycle with the time period during which the power generation output of the combined heat and power supply device is adjusted to the set increased output as the period for stop, Forced continuous operation mode for pre-stop set in a time zone in which the operation merit obtained based on the predicted heat load and the predicted heat load of the operation cycle as the stop period is high,
The generated power output of the combined heat and power unit is made to follow the predicted power load in a part of the operation period before the operation period to be the stop period, and the combined heat and power unit is stopped in the remaining time period. And the operation merit obtained based on the predicted power load and the predicted heat load of the operation cycle before the operation cycle in which the operation time period is the stop period, and the predicted heat load of the operation cycle to be the stop period Load follow-up intermittent operation mode for pre-stop set in the time zone when
The power generation output of the combined heat and power unit is adjusted to a setting suppression output smaller than the predicted power load in a part of the operation period of the operation period before the operation period as the stop period, and the remaining period of time The combined heat and power supply device is stopped, and the predicted power load and the predicted heat load of the operation cycle before the operation cycle set as the stop period are set to the predicted heat load of the operation cycle set as the stop period. Suppressed intermittent operation mode for pre-stop set in the time zone when the driving merit required based on is high, and
The power generation output of the combined heat and power unit is adjusted to a set increase output larger than the predicted power load in a part of the operation period before the operation period to be the stop period, and in the remaining time period The combined heat and power supply device is stopped, and the predicted power load and the predicted heat load of the operation cycle before the operation cycle set as the stop period are set to the predicted heat load of the operation cycle set as the stop period. As the operation of the combined heat and power device in one of the predetermined operation modes of the forced intermittent operation mode for the stop before the stop determined in the time zone when the operation merit required based on becomes high,
In the case where the operation period is managed as the operation period managing the stop period and in the case where the operation period is set before or after the operation period managing the stop period, the case where the driving merit is increased is obtained. The cogeneration system according to claim 7, wherein the cogeneration system is configured to determine an operation cycle to be the stop period corresponding to the obtained case.
JP2007024469A 2007-02-02 2007-02-02 Cogeneration system Expired - Fee Related JP5048354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007024469A JP5048354B2 (en) 2007-02-02 2007-02-02 Cogeneration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007024469A JP5048354B2 (en) 2007-02-02 2007-02-02 Cogeneration system

Publications (2)

Publication Number Publication Date
JP2008190755A true JP2008190755A (en) 2008-08-21
JP5048354B2 JP5048354B2 (en) 2012-10-17

Family

ID=39751020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007024469A Expired - Fee Related JP5048354B2 (en) 2007-02-02 2007-02-02 Cogeneration system

Country Status (1)

Country Link
JP (1) JP5048354B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011175816A (en) * 2010-02-24 2011-09-08 Toto Ltd Fuel cell system
JP2014017161A (en) * 2012-07-10 2014-01-30 Kyocera Corp Power system, device and method
JP2014211975A (en) * 2013-04-17 2014-11-13 トヨタホーム株式会社 Fuel cell power generation system
JP2017022078A (en) * 2015-07-13 2017-01-26 大阪瓦斯株式会社 Energy supply system
JP2017022079A (en) * 2015-07-14 2017-01-26 大阪瓦斯株式会社 Energy supply system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004257667A (en) * 2003-02-26 2004-09-16 Osaka Gas Co Ltd Maintenance supporting system for hot water supply-combined processing device
JP2005009476A (en) * 2003-05-29 2005-01-13 Osaka Gas Co Ltd Cogeneration system
JP2005009781A (en) * 2003-06-19 2005-01-13 Chofu Seisakusho Co Ltd Output control device and output control method for cogeneration system
JP2006127967A (en) * 2004-10-29 2006-05-18 Ebara Ballard Corp Cogeneration system and its operation method
JP2006183947A (en) * 2004-12-28 2006-07-13 Tokyo Gas Co Ltd Cogeneration system and control method
JP2006266579A (en) * 2005-03-23 2006-10-05 Noritz Corp Heat source control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004257667A (en) * 2003-02-26 2004-09-16 Osaka Gas Co Ltd Maintenance supporting system for hot water supply-combined processing device
JP2005009476A (en) * 2003-05-29 2005-01-13 Osaka Gas Co Ltd Cogeneration system
JP2005009781A (en) * 2003-06-19 2005-01-13 Chofu Seisakusho Co Ltd Output control device and output control method for cogeneration system
JP2006127967A (en) * 2004-10-29 2006-05-18 Ebara Ballard Corp Cogeneration system and its operation method
JP2006183947A (en) * 2004-12-28 2006-07-13 Tokyo Gas Co Ltd Cogeneration system and control method
JP2006266579A (en) * 2005-03-23 2006-10-05 Noritz Corp Heat source control device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011175816A (en) * 2010-02-24 2011-09-08 Toto Ltd Fuel cell system
JP2014017161A (en) * 2012-07-10 2014-01-30 Kyocera Corp Power system, device and method
JP2014211975A (en) * 2013-04-17 2014-11-13 トヨタホーム株式会社 Fuel cell power generation system
JP2017022078A (en) * 2015-07-13 2017-01-26 大阪瓦斯株式会社 Energy supply system
JP2017022079A (en) * 2015-07-14 2017-01-26 大阪瓦斯株式会社 Energy supply system

Also Published As

Publication number Publication date
JP5048354B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
JP5048354B2 (en) Cogeneration system
JP2011185520A (en) Cogeneration system
JP5006678B2 (en) Hot water storage water heater
JP5222100B2 (en) Hot water storage water heater
JP5032857B2 (en) Cogeneration system
JP2007247968A (en) Cogeneration system
JP5064856B2 (en) Cogeneration system
JP4912837B2 (en) Cogeneration system
JP4916197B2 (en) Cogeneration system
JP5722970B2 (en) Cogeneration system
JP5143603B2 (en) Cogeneration system
JP5551942B2 (en) Cogeneration system
JP4861059B2 (en) Cogeneration system
JP5069455B2 (en) Collective cogeneration system
JP5037959B2 (en) Cogeneration system
JP2009243851A (en) Cogeneration system
JP5210010B2 (en) Cogeneration system
JP5438540B2 (en) Cogeneration system
JP5433071B2 (en) Cogeneration system
JP5462849B2 (en) Cogeneration system
JP5592656B2 (en) Operation control device for fuel cell
JP5406640B2 (en) Cogeneration system
JP5507615B2 (en) Cogeneration system
JP5551953B2 (en) Hot water storage water heater
JP5592657B2 (en) Cogeneration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees