JP2008189962A - Cathodic electrodeposition coating method - Google Patents

Cathodic electrodeposition coating method Download PDF

Info

Publication number
JP2008189962A
JP2008189962A JP2007023788A JP2007023788A JP2008189962A JP 2008189962 A JP2008189962 A JP 2008189962A JP 2007023788 A JP2007023788 A JP 2007023788A JP 2007023788 A JP2007023788 A JP 2007023788A JP 2008189962 A JP2008189962 A JP 2008189962A
Authority
JP
Japan
Prior art keywords
film thickness
epoxy resin
coated
electrodeposition coating
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007023788A
Other languages
Japanese (ja)
Inventor
Masaru Sakamoto
勝 坂本
Mitsuo Yamada
光夫 山田
Takayuki Oshima
隆幸 大嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Original Assignee
Nippon Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co Ltd filed Critical Nippon Paint Co Ltd
Priority to JP2007023788A priority Critical patent/JP2008189962A/en
Publication of JP2008189962A publication Critical patent/JP2008189962A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cathodic electrodeposition coating method which uniformizes the thickness of an electrodeposition paint film formed on transported articles to be coated (particularly parts) having various shapes and sizes. <P>SOLUTION: The cation electrodeposition coating method includes using a cationic electrodeposition paint which shows a film thickness increase rate in a range of 0.01 to 0.04 μm/V at an effective voltage of 110 to 200 V. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、カチオン電着塗装方法、特に大きさや形状が異なる部品が混在したままカチオン電着塗装を施しても各部品間で膜厚の差が少ないカチオン電着塗装方法に関する。   The present invention relates to a cationic electrodeposition coating method, and more particularly, to a cationic electrodeposition coating method in which a difference in film thickness is small between parts even when the cationic electrodeposition coating is performed while components having different sizes and shapes are mixed.

電着塗装は、複雑な形状を有する被塗物であっても細部にまで塗装を施すことができ、自動的かつ連続的に塗装することができるので、自動車車体等の大型で複雑な形状を有する被塗物のみならず、小さな部品の防錆性下塗り塗装に汎用されている。   Electrodeposition coating can be applied to the details even if the object has a complicated shape, and it can be applied automatically and continuously. It is widely used not only for the objects to be coated but also for the rust-proofing undercoating of small parts.

電着塗装で小さな部品を塗装する場合には、図1に模式的に示すように、塗装される部品(被塗物)3がハンガー4と呼ばれる吊り掛け手段に吊り下げられて、搬送手段5により移動し、電着浴1の電着塗料2に浸漬され、その間に部品3と対極に電圧が印加されて電着塗装が施される。   When painting small parts by electrodeposition coating, as schematically shown in FIG. 1, a part (object to be coated) 3 to be painted is suspended by a hanging means called a hanger 4, and the conveying means 5. The electrode 3 is immersed in the electrodeposition paint 2 of the electrodeposition bath 1, and a voltage is applied to the component 3 and the counter electrode in the meantime to perform electrodeposition coating.

大きな被塗物ではなく、小さな部品の電着塗装する場合には、一般的に、上記ハンガー4にいろんな形状あるいは大きさの部品が順次吊り下げられて塗装が施されていく。電着塗装は、理想的には、どのような形状のどのような大きさの部品が被塗物として電着浴に浸漬されても、塗装された膜厚が均一である筈である。しかし、実際には、被塗物の吊り掛け位置の差、通電時間の差、浸漬の深さの差、あるいは被塗物の塗装面積の差などいろいろな条件によって、塗装膜厚に差が生じる。その膜厚の差は、各被塗物間でもあるいは1つの被塗物内でも生じる。   In the case of electrodeposition coating of small parts rather than large objects, generally, various shapes or sizes of parts are successively suspended from the hanger 4 and applied. In the electrodeposition coating, ideally, the coated film thickness should be uniform no matter what shape and size of the component is immersed in the electrodeposition bath as an object to be coated. In practice, however, the coating film thickness varies depending on various conditions such as the difference in the hanging position of the object to be coated, the difference in energization time, the difference in the immersion depth, or the difference in the coating area of the object to be coated. . The difference in film thickness occurs between the objects to be coated or within one object to be coated.

現在は、上述のように、電着塗膜の膜厚の差が生じるのを考慮に入れて、一番薄膜になる部分の膜厚が所定の膜厚になるように電着時間や通電量などをコントロールしている。そのため、条件のよい部分は、逆に過剰膜厚になる。   Currently, taking into account the difference in film thickness of the electrodeposition coating film as described above, the electrodeposition time and the amount of energization are such that the film thickness of the thinnest part becomes the predetermined film thickness. It is controlling. For this reason, the portion with good conditions becomes an excessive film thickness.

電着塗装において、膜厚を均一化することについては、多くの検討が成されている。例えば、特開平9−249994号公報(特許文献1)には、被塗物上に異種金属接合部がある場合でも、膜厚差を少なくするために、電着浴に被塗物が入槽する際の電流集中をパルス電圧の印加により軽減する方法が記載されている。この方法では、装置の複雑化は避けられず、しかもたくさんの大きさや形状の違う部品が1つの電着浴で塗装される場合には対応できない。   In electrodeposition coating, many studies have been made on making the film thickness uniform. For example, in Japanese Patent Laid-Open No. 9-249994 (Patent Document 1), even when a dissimilar metal joint is present on the object to be coated, the object to be coated enters the electrodeposition bath in order to reduce the film thickness difference. A method is described in which current concentration during the reduction is reduced by applying a pulse voltage. This method inevitably complicates the apparatus, and cannot cope with a case where a large number of parts having different sizes and shapes are coated with one electrodeposition bath.

特開2004−83824号公報(特許文献2)は、袋構造を有する被塗物の外板膜厚と内板膜厚の差のない均一な塗装性を得るために、特定の組成のカチオン電着塗料を用いることを開示している。この方法は、内板部と外板部の膜厚差のみを目的としているので、いろんな形状あるいは大きさの部品が搬送されてくる部品塗装の膜厚制御には対応することができない。   Japanese Patent Application Laid-Open No. 2004-83824 (Patent Document 2) discloses a cation battery having a specific composition in order to obtain uniform coating properties with no difference between the outer plate thickness and the inner plate thickness of an article having a bag structure. The use of a paint is disclosed. Since this method is intended only for the film thickness difference between the inner plate portion and the outer plate portion, it cannot cope with the film thickness control of component coating in which components of various shapes or sizes are conveyed.

特開平7−18495号公報(特許文献3)には、電着浴に浸漬した電極からの距離に応じて塗料の析出し難い部位と、析出し易い部位が存在する場合でも被塗物の各部位における塗膜の膜厚の均一化を図るために、析出し難い部分付近で塗料温度を高めに設定し、析出し易い部分で塗料温度を低めに設定することが提案されている。このような液温の部分的な制御は技術的に複雑であると同時に、電極からの距離のみに依存しているため、被塗物の形態に応じた膜厚の制御はできない。
特開平9−249994号公報 特開2004−83824号公報 特開平7−18495号公報
Japanese Patent Application Laid-Open No. 7-18495 (Patent Document 3) describes each of the objects to be coated even when there is a site where the paint hardly deposits and a site where the paint easily deposits depending on the distance from the electrode immersed in the electrodeposition bath. In order to make the film thickness of the coating film uniform in a part, it has been proposed to set the coating temperature higher in the vicinity of the portion where precipitation is difficult and set the coating temperature lower in the portion where precipitation tends to occur. Such partial control of the liquid temperature is technically complicated, and at the same time depends only on the distance from the electrode, so that the film thickness cannot be controlled in accordance with the form of the object to be coated.
Japanese Patent Laid-Open No. 9-249994 JP 2004-83824 A Japanese Unexamined Patent Publication No. 7-18495

本発明は、いろいろな形状や大きさの被塗物(特に、部品)が搬送されてくるカチオン電着塗装において、電着塗膜の膜厚が均一になることを目的とする。   An object of the present invention is to make the film thickness of an electrodeposition coating film uniform in cationic electrodeposition coating in which articles (particularly parts) having various shapes and sizes are conveyed.

本発明者等は、上記目的を達成するためにカチオン電着塗装方法を検討し、本発明をなすに到った。即ち、本発明は、実効電圧110〜200Vで膜厚増加率が0.01〜0.04μm/Vの範囲を有するカチオン電着塗料を用いてカチオン電着塗装する方法を提供する。   In order to achieve the above object, the present inventors have studied a cationic electrodeposition coating method and have come to make the present invention. That is, the present invention provides a method for cationic electrodeposition coating using a cationic electrodeposition coating having an effective voltage of 110 to 200 V and a film thickness increase rate of 0.01 to 0.04 μm / V.

上記被塗物は表面積1〜30mを有し、表面積の異なる被塗物が混流されて塗装されていく。 The object to be coated has a surface area of 1 to 30 m 2 , and objects to be coated having different surface areas are mixed and applied.

上記カチオン電着塗料は被塗物に対して厚さ15μmに電着された塗膜の膜抵抗700〜1,800KΩ・cmを有するのが好ましい。 The cationic electrodeposition coating composition has a film resistance 700~1,800KΩ · cm 2 of the coating film was electrodeposited to a thickness of 15μm with respect to a coating object is preferred.

本発明は、また、実効電圧110〜200Vで膜厚増加率を0.01〜0.04μm/Vの範囲に制御したカチオン電着浴内でカチオン電着塗装することを特徴とする塗装物間の塗装膜厚を均一にするカチオン電着塗装方法を提供する。   The present invention also provides a method of applying cationic electrodeposition in a cationic electrodeposition bath having an effective voltage of 110 to 200 V and a film thickness increase rate controlled in a range of 0.01 to 0.04 μm / V. Provided is a cationic electrodeposition coating method for uniform coating film thickness.

その場合も、被塗物は表面積1〜30mを有し、表面積の異なる被塗物が混流されて塗装されて塗装されていくのが好ましい。 Also in that case, the object to be coated has a surface area of 1 to 30 m 2 , and it is preferable that the objects to be coated having different surface areas are mixed and applied.

また、被塗物間の塗装膜厚の偏差は、3μm以内であるのが好ましい。   Further, the deviation of the coating film thickness between the objects to be coated is preferably within 3 μm.

本発明のカチオン電着塗装方法を用いると、多種多様な被塗物(特に、部品)が混合されてカチオン電着塗料浴に搬送されてくる場合において、各被塗物間または各塗装内で膜厚の差が余り生じない。   When the cationic electrodeposition coating method of the present invention is used, a wide variety of objects to be coated (particularly parts) are mixed and conveyed to the cationic electrodeposition paint bath. There is not much difference in film thickness.

従来のカチオン電着塗装では、電着塗膜の膜厚が均一ではなく、膜厚の薄い部分に十分な電着塗膜が形成されるように電着塗装条件を選択していたので、他の部分では必然的に膜厚が厚くなっていた。本発明では、カチオン電着塗膜の膜厚の均一化がはかれるので、膜厚が厚くなった部分が少なくなり、付着する塗料の量が削減されるので、省資源化も図れる。   In conventional cationic electrodeposition coating, the film thickness of the electrodeposition coating was not uniform, and the electrodeposition coating conditions were selected so that a sufficient electrodeposition coating was formed on the thin part. In this part, the film thickness was inevitably thick. In the present invention, since the film thickness of the cationic electrodeposition coating film can be made uniform, the portion where the film thickness becomes thick is reduced, and the amount of the paint to be adhered is reduced, so that resource saving can be achieved.

本発明は、実効電圧が110V以上、具体的には110〜200Vの範囲内では、保持時間(即ち、電着塗装を行っている時間)を一定にした場合に実効電圧と膜厚が相関関係、即ち直線的関係を示すことを発見したことに基づいている。実効電圧とは、印可された電圧の中で、実際に電着塗膜の形成に利用される電圧であって、表面電位計により測定することができる。印可電圧は、電着塗膜の形成に作用する実効電圧の他に、水溶液の抵抗や析出塗膜の抵抗により消費される。   In the present invention, when the effective voltage is 110 V or more, specifically within the range of 110 to 200 V, the effective voltage and the film thickness are correlated when the holding time (that is, the time during which the electrodeposition coating is performed) is made constant. That is, based on the discovery of showing a linear relationship. The effective voltage is a voltage actually used for forming an electrodeposition coating film among applied voltages, and can be measured by a surface potential meter. The applied voltage is consumed by the resistance of the aqueous solution and the resistance of the deposited coating, in addition to the effective voltage that acts on the formation of the electrodeposition coating.

実効電圧について検討を重ねた結果、実効電圧が110Vになるまでは、析出・塗着する電着塗膜の膜厚は変化するが、110Vを超える場合に、保持時間を一定にすると、実効電圧と膜厚が直線的相関関係を示すので、その傾き(膜厚増加率)を0.01〜0.04μm/V、好ましくは0.01〜0.02μm/Vと小さくすることにより、カチオン電着塗装により多くの部品が流れてくる混流塗装ラインで、各被塗物間あるいは各被塗物内での塗装膜厚が均一化するのである。膜厚増加率が0.01μm/Vより小さいと、膜の形成や膜厚の増大が起こらなくなる。また、膜厚増加率が0.04μm/Vより大きいと実効電圧の変化が膜厚に大きく影響し、その結果膜厚の均一性が崩れてきて、各被塗物間あるいは各被塗物内での膜厚に相違が生じてくる。   As a result of repeated investigations on the effective voltage, the film thickness of the electrodeposition coating film deposited and applied changes until the effective voltage reaches 110V. However, if the holding time is constant when it exceeds 110V, the effective voltage Since the film thickness shows a linear correlation, the slope (thickness increase rate) is reduced to 0.01 to 0.04 μm / V, preferably 0.01 to 0.02 μm / V. In a mixed flow coating line in which many parts flow through the coating, the coating film thickness is uniform between or within each coated object. When the film thickness increase rate is smaller than 0.01 μm / V, film formation and film thickness increase do not occur. If the rate of film thickness increase is greater than 0.04 μm / V, the change in effective voltage greatly affects the film thickness. As a result, the uniformity of the film thickness is lost, and between each coated object or within each coated object. Differences in film thickness occur.

膜厚増加率は、使用するカチオン電着塗料に応じて変化する。具体的には、塗料に配合される溶剤量により膜厚増加率を調整することができる可能性があるが、必ずしもそれのみではなく、塗装浴の形態、材質、電極の形態など他の要因でも変化すると思われる。従って、膜厚増加率は実際に実効電圧が110Vを超える様にして、保持時間を一定にした場合の実効電圧と析出膜厚との相関関係をプロットして導き出すのが実際的である。   The film thickness increase rate varies depending on the cationic electrodeposition paint used. Specifically, there is a possibility that the film thickness increase rate can be adjusted by the amount of solvent blended in the paint, but not only that, but also by other factors such as the form of coating bath, material, electrode form, etc. It seems to change. Therefore, it is practical to derive the film thickness increase rate by plotting the correlation between the effective voltage and the deposited film thickness when the effective voltage actually exceeds 110 V and the holding time is constant.

実際にカチオン電着塗装に用いられる実効電圧は、好ましくは110〜220V、より好ましくは150〜200V、最も好ましくは180〜200Vである。110Vより小さい電圧では、前述のように膜厚の変化が大きく、一定化していない。また、逆に220Vを超える実効電圧は、GA不良やガスピン不良の欠点を有する。   The effective voltage actually used for cationic electrodeposition coating is preferably 110 to 220V, more preferably 150 to 200V, and most preferably 180 to 200V. At a voltage lower than 110 V, the change in film thickness is large as described above and is not constant. On the other hand, an effective voltage exceeding 220 V has a defect of GA failure and gas pin failure.

実効電圧を変化させるためには、印可電圧を変化して調節する必要がある。しかし、実効電圧と実際に印加される印加電圧とは前述のように差があり、実際には、実効電圧は印加電圧より20〜30%の低下があるので、実効電圧として110Vが必要なときは、印可電圧を150Vにすることで調整しても良い。または、実効電圧の測定値から、印可電圧を自動的に調節するようにしてもよい。実効電圧の測定部位は、ハンガーに吊した被塗物の中心部分、具体的には、実施例の図3(説明は後述する。)に示すハンガーに吊した所定の大きさの被塗物(鋼板)の一番中心の被塗物(5番の鋼板)で測定する。   In order to change the effective voltage, it is necessary to change and adjust the applied voltage. However, there is a difference between the effective voltage and the actually applied voltage as described above. Actually, the effective voltage is 20 to 30% lower than the applied voltage, so that 110 V is required as the effective voltage. May be adjusted by setting the applied voltage to 150V. Alternatively, the applied voltage may be automatically adjusted from the measured value of the effective voltage. The measurement site of the effective voltage is the center portion of the article suspended on the hanger, specifically, the article of a predetermined size suspended on the hanger shown in FIG. 3 of the embodiment (described later). Measured at the centermost object (No. 5 steel plate).

被塗物については、後述するが、本発明では被塗物の表面積が1〜30mであるのが好ましい。より好ましくは10〜30m、もっとも好ましくは10〜15mである。1mより小さいと、過剰膜厚となる傾向があり、30mより大きいと、膜厚が不足する傾向にある。 The object to be coated will be described later, but in the present invention, the surface area of the object to be coated is preferably 1 to 30 m 2 . More preferably, it is 10-30 m < 2 >, Most preferably, it is 10-15 m < 2 >. If it is smaller than 1 m 2 , the film thickness tends to be excessive, and if it is larger than 30 m 2 , the film thickness tends to be insufficient.

本発明で使用されるカチオン電着塗料組成物は、通常、水性媒体、水性媒体中に分散するか又は溶解した、バインダー樹脂、中和酸、有機溶媒、顔料、金属触媒等添加剤を含有する。バインダー樹脂は、アミン変性エポキシ樹脂、スルホニウム変性エポキシ樹脂(任意成分)、ブロックポリイソシアネート硬化剤を含む。水性媒体としては、イオン交換水等が一般に用いられる。   The cationic electrodeposition coating composition used in the present invention usually contains an aqueous medium, an additive such as a binder resin, a neutralizing acid, an organic solvent, a pigment, and a metal catalyst dispersed or dissolved in the aqueous medium. . The binder resin contains an amine-modified epoxy resin, a sulfonium-modified epoxy resin (optional component), and a block polyisocyanate curing agent. As the aqueous medium, ion exchange water or the like is generally used.

アミン変性エポキシ樹脂
本発明で用いられるカチオン電着塗料組成物には、アミンで変性されたビスフェノール型エポキシ樹脂が含まれる。このアミン変性エポキシ樹脂は、例えば、特開昭54−4978号、同昭56−34186号などに記載されているような従来公知のものでよい。アミン変性エポキシ樹脂は、典型的には、ビスフェノール型エポキシ樹脂のエポキシ環をアミンで開環して製造される。
In the cationic electrodeposition coating composition used in the amine-modified epoxy resin present invention include bisphenol type epoxy resin modified with an amine. The amine-modified epoxy resin may be a conventionally known one as described in, for example, JP-A Nos. 54-4978 and 56-34186. The amine-modified epoxy resin is typically produced by opening the epoxy ring of a bisphenol type epoxy resin with an amine.

ビスフェノール型エポキシ樹脂の典型例はビスフェノールA型またはビスフェノールF型エポキシ樹脂である。前者の市販品としてはエピコート828(油化シェルエポキシ社製、エポキシ当量180〜190)、エピコート1001(同、エポキシ当量450〜500)、エピコート1010(同、エポキシ当量3000〜4000)などがあり、後者の市販品としてはエピコート807(同、エポキシ当量170)などがある。   A typical example of the bisphenol type epoxy resin is a bisphenol A type or bisphenol F type epoxy resin. As the former commercial product, there are Epicoat 828 (manufactured by Yuka Shell Epoxy Co., Epoxy Equivalent 180-190), Epicoat 1001 (Same, Epoxy Equivalent 450-500), Epicoat 1010 (Same, Epoxy Equivalent 3000-4000), etc. As the latter commercial product, there is Epicoat 807 (same as above, epoxy equivalent 170).

特開平5−306327号公報第0004段落の式、化3に記載のような、オキサゾリドン環含有エポキシ樹脂をアミン変性エポキシ樹脂に用いてもよい。耐熱性及び耐食性に優れた塗膜が得られるからである。   An oxazolidone ring-containing epoxy resin as described in the formula in the paragraph 0004 of JP-A No. 5-306327 and Chemical Formula 3 may be used as the amine-modified epoxy resin. This is because a coating film having excellent heat resistance and corrosion resistance can be obtained.

エポキシ樹脂にオキサゾリドン環を導入する方法としては、例えば、メタノールのような低級アルコールでブロックされたブロックポリイソシアネートとポリエポキシドを塩基性触媒の存在下で加熱保温し、副生する低級アルコールを系内より留去することで得られる。   As a method for introducing an oxazolidone ring into an epoxy resin, for example, a block polyisocyanate blocked with a lower alcohol such as methanol and a polyepoxide are heated and kept in the presence of a basic catalyst, and a by-product lower alcohol is introduced from the system. Obtained by distilling off.

二官能エポキシ樹脂とモノアルコールでブロックしたジイソシアネート(すなわち、ビスウレタン)とを反応させるとオキサゾリドン環を含有するエポキシ樹脂が得られることは公知である。このオキサゾリドン環含有エポキシ樹脂の具体例及び製造方法は、例えば、特開2000−128959号公報第0012〜0047段落に記載されている。   It is known that an epoxy resin containing an oxazolidone ring can be obtained by reacting a bifunctional epoxy resin with a diisocyanate blocked with a monoalcohol (ie, bisurethane). Specific examples and production methods of this oxazolidone ring-containing epoxy resin are described, for example, in paragraphs 0012 to 0047 of JP-A No. 2000-128959.

これらのエポキシ樹脂は、ポリエステルポリオール、ポリエーテルポリオール、および単官能性のアルキルフェノールのような適当な樹脂で変性しても良い。また、エポキシ樹脂はエポキシ基とジオール又はジカルボン酸との反応を利用して鎖延長することができる。   These epoxy resins may be modified with suitable resins such as polyester polyols, polyether polyols, and monofunctional alkylphenols. In addition, the epoxy resin can be chain-extended using a reaction between an epoxy group and a diol or dicarboxylic acid.

カチオン性基を導入し得る活性水素化合物としては1級アミン、2級アミン、3級アミンの酸塩が含まれる。かかるアミンの中でも2級アミンが特に好ましい。エポキシ樹脂と2級アミンを反応させると、3級アミノ基を有するアミン変性エポキシ樹脂が得られる。   Examples of the active hydrogen compound into which a cationic group can be introduced include primary amine, secondary amine, and tertiary amine acid salts. Of these amines, secondary amines are particularly preferred. When an epoxy resin and a secondary amine are reacted, an amine-modified epoxy resin having a tertiary amino group is obtained.

アミンの具体例としては、ブチルアミン、オクチルアミン、ジエチルアミン、ジブチルアミン、メチルブチルアミン、モノエタノールアミン、ジエタノールアミン、N−メチルエタノールアミン、トリエチルアミン塩酸塩、N,N−ジメチルエタノールアミン酢酸塩、アミノエチルエタノールアミンのケチミン、ジエチレントリアミンのジケチミンなどの1級アミンをブロックした2級アミンがある。アミン類は複数のものを併用して用いてもよい。   Specific examples of amines include butylamine, octylamine, diethylamine, dibutylamine, methylbutylamine, monoethanolamine, diethanolamine, N-methylethanolamine, triethylamine hydrochloride, N, N-dimethylethanolamine acetate, aminoethylethanolamine There are secondary amines that are blocked from primary amines such as diketimine of diethylenetriamine. A plurality of amines may be used in combination.

スルホニウム変性エポキシ樹脂
本発明で用いられるカチオン電着塗料組成物には、スルホニウム変性エポキシ樹脂が含まれる。スルホニウム変性エポキシ樹脂とは、エポキシ樹脂にスルフィド化合物及び中和酸を反応させてそのエポキシ基が開環されると同時にスルホニウム塩基が導入された樹脂をいう。このスルホニウム変性エポキシ樹脂は、例えば、特開平6−128351号公報、特開平7−206968号公報などに記載されているような従来公知のものであってよい。スルホニウム変性エポキシ樹脂は、典型的には、ビスフェノール型エポキシ樹脂のエポキシ環をスルフィド化合物及び中和酸で開環して製造される。
Sulfonium-modified epoxy resin The cationic electrodeposition coating composition used in the present invention includes a sulfonium-modified epoxy resin. The sulfonium-modified epoxy resin is a resin in which a sulfonium base is introduced at the same time as the epoxy group is opened by reacting an epoxy resin with a sulfide compound and a neutralizing acid. The sulfonium-modified epoxy resin may be a conventionally known one as described in, for example, JP-A-6-128351 and JP-A-7-206968. The sulfonium-modified epoxy resin is typically produced by opening the epoxy ring of a bisphenol type epoxy resin with a sulfide compound and a neutralizing acid.

エポキシ樹脂と反応させるスルフィド化合物は、エポキシ基と反応し、かつ妨害基を含まない全てのスルフィド化合物が含まれる。尚、エポキシ樹脂とスルフィド化合物との反応は中和酸の存在下で行う必要があり、その結果、エポキシ樹脂にスルホニウム基が導入される。   The sulfide compound to be reacted with the epoxy resin includes all sulfide compounds that react with the epoxy group and do not contain an interfering group. The reaction between the epoxy resin and the sulfide compound needs to be performed in the presence of a neutralizing acid, and as a result, a sulfonium group is introduced into the epoxy resin.

スルフィド化合物の具体例としては、脂肪族スルフィド、脂肪族−芳香族混合スルフィド、アラルキルスルフィドまたは環状スルフィドであり得る。使用しうるスルフィド化合物の例には、ジエチルスルフィド、ジプロピルスルフィド、エチルフェニルスルフィド、テトラメチレンスルフィド、ペンタメチレンスルフィド等が挙げられる。   Specific examples of the sulfide compound may be aliphatic sulfide, mixed aliphatic-aromatic sulfide, aralkyl sulfide, or cyclic sulfide. Examples of sulfide compounds that can be used include diethyl sulfide, dipropyl sulfide, ethylphenyl sulfide, tetramethylene sulfide, pentamethylene sulfide and the like.

特に好ましいスルフィド化合物は、式

Figure 2008189962
[式中、R及びR'はそれぞれ独立して炭素数2〜8の直鎖又は分枝鎖アルキレン基である。]
で表されるチオジアルコールである。かかるスルホニウム変性エポキシ樹脂は電着開始直後の短時間(約10秒間)塗膜抵抗の形成を遅くする機能を有し、かつバインダー樹脂に水分散安定性を付与する。 Particularly preferred sulfide compounds are of the formula
Figure 2008189962
[Wherein, R and R ′ each independently represents a linear or branched alkylene group having 2 to 8 carbon atoms. ]
It is a thiodialcohol represented by Such a sulfonium-modified epoxy resin has a function of delaying the formation of coating film resistance for a short time (about 10 seconds) immediately after the start of electrodeposition, and imparts water dispersion stability to the binder resin.

チオジアルコールの例には、チオジエタノール、チオジプロパノール、チオジブタノール、1−(2−ヒドロキシエチルチオ)−2−プロパノール、1−(2−ヒドロキシエチルチオ)−2,3−プロパンジオール、1−(2−ヒドロキシエチルチオ)−2−ブタノ−ル、及び1−(2−ヒドロキシエチルチオ)−3−ブトキシ−1−プロパノールなどがある。最も好ましくは、スルフィド化合物は、1−(2−ヒドロキシエチルチオ)−2−プロパノールである。   Examples of thiodialcohols include thiodiethanol, thiodipropanol, thiodibutanol, 1- (2-hydroxyethylthio) -2-propanol, 1- (2-hydroxyethylthio) -2,3-propanediol, 1- (2-hydroxyethylthio) -2-butanol and 1- (2-hydroxyethylthio) -3-butoxy-1-propanol. Most preferably, the sulfide compound is 1- (2-hydroxyethylthio) -2-propanol.

ブロックイソシアネート硬化剤
本発明においてブロックイソシアネート硬化剤を得るために使用するポリイソシアネートとは、1分子中にイソシアネート基を2個以上有する化合物をいう。ポリイソシアネートとしては、例えば、脂肪族系、脂環式系、芳香族系および芳香族−脂肪族系等のうちのいずれのものであってもよい。
Blocked isocyanate curing agent The polyisocyanate used for obtaining the blocked isocyanate curing agent in the present invention refers to a compound having two or more isocyanate groups in one molecule. The polyisocyanate may be, for example, any of aliphatic, alicyclic, aromatic and aromatic-aliphatic.

ポリイソシアネートの具体例には、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、p−フェニレンジイソシアネート、及びナフタレンジイソシアネート等のような芳香族ジイソシアネート;ヘキサメチレンジイソシアネート(HDI)、2,2,4−トリメチルヘキサンジイソシアネート、及びリジンジイソシアネート等のような炭素数3〜12の脂肪族ジイソシアネート;1,4−シクロヘキサンジイソシアネート(CDI)、イソホロンジイソシアネート(IPDI)、4,4´−ジシクロヘキシルメタンジイソシアネート(水添MDI)、メチルシクロヘキサンジイソシアネート、イソプロピリデンジシクロヘキシル−4,4´−ジイソシアネート、及び1,3−ジイソシアナトメチルシクロヘキサン(水添XDI)、水添TDI、2,5−もしくは2,6−ビス(イソシアナートメチル)−ビシクロ[2.2.1]ヘプタン(ノルボルナンジイソシアネートとも称される。)等のような炭素数5〜18の脂環式ジイソシアネート;キシリレンジイソシアネート(XDI)、及びテトラメチルキシリレンジイソシアネート(TMXDI)等のような芳香環を有する脂肪族ジイソシアネート;これらのジイソシアネートの変性物(ウレタン化物、カーボジイミド、ウレトジオン、ウレトイミン、ビューレット及び/又はイソシアヌレート変性物);等があげられる。これらは、単独で、または2種以上併用することができる。   Specific examples of polyisocyanates include aromatic diisocyanates such as tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), p-phenylene diisocyanate, and naphthalene diisocyanate; hexamethylene diisocyanate (HDI), 2,2,4- C3-C12 aliphatic diisocyanates such as trimethylhexane diisocyanate and lysine diisocyanate; 1,4-cyclohexane diisocyanate (CDI), isophorone diisocyanate (IPDI), 4,4'-dicyclohexylmethane diisocyanate (hydrogenated MDI) Methylcyclohexane diisocyanate, isopropylidene dicyclohexyl-4,4'-diisocyanate, and 1,3-diisocyanatomethyl cyclohexyl Carbon such as xane (hydrogenated XDI), hydrogenated TDI, 2,5- or 2,6-bis (isocyanatomethyl) -bicyclo [2.2.1] heptane (also referred to as norbornane diisocyanate). Aliphatic diisocyanates having a number of 5 to 18; aliphatic diisocyanates having an aromatic ring such as xylylene diisocyanate (XDI) and tetramethylxylylene diisocyanate (TMXDI); modified products of these diisocyanates (urethanes, carbodiimides, Uretdione, uretoimine, burette and / or isocyanurate modified product); and the like. These may be used alone or in combination of two or more.

ポリイソシアネートをエチレングリコール、プロピレングリコール、トリメチロールプロパン、ヘキサントリオールなどの多価アルコールとNCO/OH比2以上で反応させて得られる付加体ないしプレポリマーもブロックイソシアネート硬化剤に使用してよい。   Adducts or prepolymers obtained by reacting polyisocyanates with polyhydric alcohols such as ethylene glycol, propylene glycol, trimethylolpropane and hexanetriol at an NCO / OH ratio of 2 or more may also be used as the block isocyanate curing agent.

ブロック剤は、ポリイソシアネート基に付加し、常温では安定であるが解離温度以上に加熱すると遊離のイソシアネート基を再生し得るものである。   The blocking agent is added to a polyisocyanate group and is stable at ordinary temperature, but can regenerate a free isocyanate group when heated to a temperature higher than the dissociation temperature.

ブロック剤としては、ε−カプロラクタムやブチルセロソルブ等通常使用されるものを用いることができる。しかしながら、これらの内、揮発性のブロック剤はHAPsの対象として規制されているものが多く、使用量は必要最小限とすることが好ましい。   As the blocking agent, those usually used such as ε-caprolactam and butyl cellosolve can be used. However, among these, many volatile blocking agents are regulated as targets of HAPs, and it is preferable that the amount used is minimized.

顔料
本発明の電着塗料組成物には通常用いられる顔料を含有させてもよい。本明細書でいう「顔料」には、前述のケイ酸化合物は含まれない。他方、例えばクレーやタルクなどはケイ酸を含むが、これらは溶出平衡濃度が所定範囲を満足しないので、顔料として扱う。使用し得る顔料の例としては、チタンホワイト、カーボンブラック及びベンガラのような着色顔料;カオリン、タルク、ケイ酸アルミニウム、炭酸カルシウム、マイカおよびクレーのような体質顔料;リン酸亜鉛、リン酸鉄、リン酸アルミニウム、リン酸カルシウム、亜リン酸亜鉛、シアン化亜鉛、酸化亜鉛、トリポリリン酸アルミニウム、モリブデン酸亜鉛、モリブデン酸アルミニウム、モリブデン酸カルシウム及びリンモリブデン酸アルミニウム、リンモリブデン酸アルミニウム亜鉛のような防錆顔料等が挙げられる。
Pigment The electrodeposition coating composition of the present invention may contain a commonly used pigment. The “pigment” as used herein does not include the above-described silicic acid compound. On the other hand, clay and talc, for example, contain silicic acid, but these are treated as pigments because the elution equilibrium concentration does not satisfy the predetermined range. Examples of pigments that can be used include colored pigments such as titanium white, carbon black and bengara; extender pigments such as kaolin, talc, aluminum silicate, calcium carbonate, mica and clay; zinc phosphate, iron phosphate, Rust preventive pigments such as aluminum phosphate, calcium phosphate, zinc phosphite, zinc cyanide, zinc oxide, aluminum tripolyphosphate, zinc molybdate, aluminum molybdate, calcium molybdate and aluminum phosphomolybdate, zinc phosphomolybdate Etc.

顔料の量は、塗料組成物中に含まれる顔料と樹脂固形分との質量比(P/V)が1/4.5以下になる量とする。塗料組成物中の顔料の量が樹脂固形分との質量比1/5.5を越えると塗料固形分の析出性が低下するため、つきまわり性が低下する。塗料組成物中に含まれる顔料と樹脂固形分との質量比(P/V)1/4.5〜1/5.5が好ましい。   The amount of the pigment is such that the mass ratio (P / V) between the pigment and the resin solid content contained in the coating composition is 1 / 4.5 or less. When the amount of the pigment in the coating composition exceeds 1 / 5.5 by mass ratio to the resin solid content, the precipitation property of the paint solid content decreases, and the throwing power decreases. The mass ratio (P / V) of the pigment contained in the coating composition to the resin solid content is preferably 1 / 4.5 to 1 / 5.5.

顔料分散ペースト
顔料を電着塗料の成分として用いる場合、一般に顔料を予め高濃度で水性媒体に分散させてペースト状にする。顔料は粉体状であるため、電着塗料組成物で用いる低濃度均一状態に一工程で分散させるのは困難だからである。一般にこのようなペーストを顔料分散ペーストという。
Pigment-dispersed paste When a pigment is used as a component of an electrodeposition paint, generally the pigment is dispersed in advance in an aqueous medium at a high concentration to form a paste. This is because the pigment is in a powder form, and it is difficult to disperse in a single step in a low concentration uniform state used in the electrodeposition coating composition. Such a paste is generally called a pigment dispersion paste.

顔料分散ペーストは、顔料を顔料分散樹脂分散物と共に水性媒体中に分散させて調製する。顔料分散樹脂分散物とは、顔料分散樹脂を水性媒体中に分散させたものである。顔料分散樹脂としては、一般に、カチオン性又はノニオン性の低分子量界面活性剤や4級アンモニウム基及び/又は3級スルホニウム基を有する変性エポキシ樹脂等のようなカチオン性重合体を用いる。水性媒体としてはイオン交換水や少量のアルコール類を含む水等を用いる。   The pigment dispersion paste is prepared by dispersing a pigment in an aqueous medium together with a pigment dispersion resin dispersion. The pigment dispersion resin dispersion is obtained by dispersing a pigment dispersion resin in an aqueous medium. As the pigment dispersion resin, a cationic polymer such as a cationic or nonionic low molecular weight surfactant or a modified epoxy resin having a quaternary ammonium group and / or a tertiary sulfonium group is generally used. As the aqueous medium, ion-exchanged water or water containing a small amount of alcohol is used.

顔料分散樹脂分散物と顔料等とを混合した後、その混合物中の顔料等の粒径が所定の均一な粒径となるまで、ボールミルやサンドグラインドミル等の通常の分散装置を用いて分散させて、顔料分散ペーストを得る。 After the pigment-dispersed resin dispersion is mixed with the pigment, etc., it is dispersed using a normal dispersing device such as a ball mill or a sand grind mill until the particle size of the pigment in the mixture reaches a predetermined uniform particle size. Thus, a pigment dispersion paste is obtained.

金属触媒
本発明のカチオン電着塗料組成物には塗膜の耐食性を改良するための触媒として、金属触媒を金属イオンとして含有させてもよい。金属イオンとしては、セリウムイオン、ビスマスイオン、銅イオン、亜鉛イオンが好ましい。これらは適当な酸と組み合わせた塩や金属イオンを含有する顔料からの溶出物として電着塗料組成物に含まれる。酸としては、スルホニウム変性エポキシ樹脂およびアミン変性エポキシ樹脂を中和するための中和酸として後に説明する塩酸、硝酸、リン酸、ギ酸、酢酸、乳酸のような無機酸または有機酸のいずれかであればよい。好ましい酸は酢酸である。
Metal Catalyst The cationic electrodeposition coating composition of the present invention may contain a metal catalyst as a metal ion as a catalyst for improving the corrosion resistance of the coating film. As the metal ions, cerium ions, bismuth ions, copper ions, and zinc ions are preferable. These are contained in the electrodeposition coating composition as an eluate from a pigment containing a salt or metal ion combined with an appropriate acid. The acid may be any of inorganic acids or organic acids such as hydrochloric acid, nitric acid, phosphoric acid, formic acid, acetic acid and lactic acid, which will be described later as neutralizing acids for neutralizing sulfonium-modified epoxy resins and amine-modified epoxy resins. I just need it. A preferred acid is acetic acid.

電着塗料組成物
本発明のカチオン電着塗料組成物は、上に述べた金属触媒、スルホニウム変性エポキシ樹脂、アミン変性エポキシ樹脂、ブロックイソシアネート硬化剤、及び顔料分散ペーストおよび必要に応じて金属触媒を水性媒体中に分散することによって調製される。また、通常、水性媒体にはスルホニウム変性エポキシ樹脂およびアミン変性エポキシ樹脂を中和して、バインダー樹脂エマルションの分散性を向上させるために中和酸を含有させる。中和酸は塩酸、硝酸、リン酸、ギ酸、酢酸、乳酸のような無機酸または有機酸である。
Electrodeposition coating composition The cationic electrodeposition coating composition of the present invention comprises the above-described metal catalyst, sulfonium-modified epoxy resin, amine-modified epoxy resin, blocked isocyanate curing agent, pigment dispersion paste, and optionally a metal catalyst. Prepared by dispersing in an aqueous medium. Also, the aqueous medium usually contains a neutralizing acid in order to neutralize the sulfonium-modified epoxy resin and the amine-modified epoxy resin and improve the dispersibility of the binder resin emulsion. The neutralizing acid is an inorganic or organic acid such as hydrochloric acid, nitric acid, phosphoric acid, formic acid, acetic acid, lactic acid.

本発明で使用される電着塗料組成物では、スルホニウム変性エポキシ樹脂の合計100gに含まれるスルホニウム塩基のミリ当量数は7〜45、好ましくは10〜35とする。スルホニウム塩基のミリ当量数が7ミリ当量未満であるとスルホニウム変性エポキシ樹脂の親水性が不充分となり、塗料の分散安定性が維持できないこととなり、45ミリ当量を超えると塗料のつきまわり性が劣ることとなる。   In the electrodeposition coating composition used in the present invention, the number of milliequivalents of sulfonium base contained in 100 g of the sulfonium-modified epoxy resin is 7 to 45, preferably 10 to 35. If the number of milliequivalents of the sulfonium base is less than 7 milliequivalents, the hydrophilicity of the sulfonium-modified epoxy resin becomes insufficient, and the dispersion stability of the paint cannot be maintained, and if it exceeds 45 milliequivalents, the throwing power of the paint is poor. It will be.

塗料組成物に含有させる中和酸の量が多くなると、スルホニウム変性エポキシ樹脂およびアミン変性エポキシ樹脂の中和率が高くなり、バインダー樹脂粒子の水性媒体に対する親和性が高くなり、分散安定性が増加する。このことは、電着塗装時に被塗物に対してバインダー樹脂が析出し難い特性を意味し、塗料固形分の析出性は低下する。   When the amount of neutralizing acid contained in the coating composition is increased, the neutralization rate of the sulfonium-modified epoxy resin and amine-modified epoxy resin is increased, the affinity of the binder resin particles to the aqueous medium is increased, and the dispersion stability is increased. To do. This means that the binder resin hardly deposits on the object to be coated during electrodeposition coating, and the depositability of the solid content of the paint is lowered.

逆に、塗料組成物に含有させる中和酸の量が少ないと、スルホニウム変性エポキシ樹脂およびアミン変性エポキシ樹脂の中和率が低くなり、バインダー樹脂粒子の水性媒体に対する親和性が低くなり、分散安定性が減少する。このことは、塗装時に被塗物に対してバインダー樹脂が析出し易い特性を意味し、塗料固形分の析出性は増大する。   Conversely, if the amount of neutralizing acid contained in the coating composition is small, the neutralization rate of the sulfonium-modified epoxy resin and amine-modified epoxy resin will be low, the affinity of the binder resin particles to the aqueous medium will be low, and dispersion stability will be reduced. Sex is reduced. This means that the binder resin is likely to be deposited on the object to be coated at the time of coating, and the depositability of the solid content of the paint is increased.

従って、電着塗料のつきまわり性を改良するためには、塗料組成物に含有させる中和酸の量を減らして、スルホニウム変性エポキシ樹脂およびアミン変性エポキシ樹脂の中和率を低レベルに抑えることが好ましい。   Therefore, in order to improve the throwing power of the electrodeposition paint, the neutralization rate of the sulfonium-modified epoxy resin and amine-modified epoxy resin should be kept at a low level by reducing the amount of neutralizing acid contained in the coating composition. Is preferred.

具体的には、中和酸の量は、スルホニウム変性エポキシ樹脂およびアミン変性エポキシ樹脂及びブロックイソシアネート硬化剤を含むバインダー樹脂固形分100gに対して10〜25mg当量、好ましくは15〜20mg当量とする。中和酸の量が10mg当量未満であると水への親和性が十分でなく水への分散ができないか、著しく安定性に欠ける状態となり、25mg当量を越えると析出に要する電気量が増加し、塗料固形分の析出性が低下し、つきまわり性が劣る状態となる。   Specifically, the amount of the neutralizing acid is 10 to 25 mg equivalent, preferably 15 to 20 mg equivalent, based on 100 g of the binder resin solid content including the sulfonium-modified epoxy resin, the amine-modified epoxy resin and the blocked isocyanate curing agent. If the amount of the neutralizing acid is less than 10 mg equivalent, the affinity for water is not sufficient and the dispersion in water cannot be performed or the stability is extremely poor. If the amount exceeds 25 mg equivalent, the amount of electricity required for precipitation increases. , The precipitation of the solid content of the paint is lowered and the throwing power is inferior.

なお、本明細書中において「中和酸の量」とは、スルホニウム変性エポキシ樹脂およびアミン変性エポキシ樹脂を中和するのに用いた酸の量であって、塗料組成物に含まれているバインダー樹脂固形分100gに対するmg当量数で表わし、MEQ(A)と表示する。   In the present specification, the “amount of neutralizing acid” is the amount of acid used to neutralize the sulfonium-modified epoxy resin and the amine-modified epoxy resin, and is a binder contained in the coating composition. Expressed as the number of mg equivalents relative to 100 g of resin solids, it is expressed as MEQ (A)

スルホニウム変性エポキシ樹脂、アミン変性エポキシ樹脂、及び硬化剤としてブロックイソシアネート硬化剤を配合し、水性媒体にこれらを分散させる方法については、スルホニウム変性エポキシ樹脂およびアミン変性エポキシ樹脂それぞれ、又はいずれかひとつにブロックイソシアネート硬化剤を溶液状態で混合し、それぞれをエマルションとし、その後それぞれのエマルションを混合してよく、又はスルホニウム変性エポキシ樹脂およびアミン変性エポキシ樹脂を予め溶液状態で混合しておき、これにブロックイソシアネート硬化剤を加えた混合溶液を、エマルションにしてもよい。   For the method of blending a sulfonium-modified epoxy resin, an amine-modified epoxy resin, and a blocked isocyanate curing agent as a curing agent and dispersing them in an aqueous medium, each of the sulfonium-modified epoxy resin and the amine-modified epoxy resin is blocked. The isocyanate curing agent may be mixed in a solution state to form an emulsion, and then each emulsion may be mixed. Alternatively, a sulfonium-modified epoxy resin and an amine-modified epoxy resin may be mixed in a solution state in advance and then blocked isocyanate cured. You may make the mixed solution which added the agent into an emulsion.

ブロックイソシアネート硬化剤の量は、硬化時にスルホニウム変性エポキシ樹脂およびアミン変性エポキシ樹脂中の1級、2級アミノ基、水酸基、等の活性水素含有官能基と反応して良好な硬化塗膜を与えるのに十分でなければならず、一般にスルホニウム変性エポキシ樹脂およびアミン変性エポキシ樹脂の合計と、ブロックイソシアネート硬化剤との固形分質量比(エポキシ樹脂/硬化剤)で表して一般に90/10〜50/50、好ましくは80/20〜65/35の範囲である。   The amount of the block isocyanate curing agent reacts with active hydrogen-containing functional groups such as primary, secondary amino groups, and hydroxyl groups in the sulfonium-modified epoxy resin and amine-modified epoxy resin at the time of curing to give a good cured coating film. In general, it is generally expressed as 90/10 to 50/50 in terms of solid mass ratio (epoxy resin / curing agent) of the sum of the sulfonium-modified epoxy resin and the amine-modified epoxy resin and the blocked isocyanate curing agent. The range is preferably 80/20 to 65/35.

スルホニウム変性エポキシ樹脂とアミン変性エポキシ樹脂との混合割合は、質量比で、25/75〜50/50、好ましくは40/60〜50/50の範囲である。スルホニウム変性エポキシ樹脂の質量比が上記混合割合25/75を下まわると塗料の耐ガスピン性が劣ることとなり、上記混合割合50/50を超えると、塗膜の外観不良が解消され難くなる。   The mixing ratio of the sulfonium-modified epoxy resin and the amine-modified epoxy resin is 25/75 to 50/50, preferably 40/60 to 50/50, in mass ratio. If the mass ratio of the sulfonium-modified epoxy resin is less than the mixing ratio 25/75, the gas pin resistance of the paint is inferior. If the mixing ratio exceeds 50/50, the appearance defect of the coating film is difficult to be solved.

塗料組成物は、ジラウリン酸ジブチルスズ、ジブチルスズオキサイドのようなスズ化合物や、通常のウレタン開裂触媒を含むことができる。但し本発明のカチオン電着塗料組成物は鉛を実質的に含まないため、その量は樹脂固形分の0.1〜5質量%とすることが好ましい。   The coating composition may contain a tin compound such as dibutyltin dilaurate and dibutyltin oxide, and a normal urethane cleavage catalyst. However, since the cationic electrodeposition coating composition of the present invention does not substantially contain lead, the amount is preferably 0.1 to 5% by mass of the resin solid content.

有機溶媒はスルホニウム変性エポキシ樹脂、アミン変性エポキシ樹脂、ブロックイソシアネート硬化剤、顔料分散樹脂等の樹脂成分を合成する際に溶剤として必ず必要であり、完全に除去するには煩雑な操作を必要とし、また、バインダー樹脂に有機溶媒が含まれていると造膜時の塗膜の流動性が改良され、塗膜の平滑性が向上することから、少量ではあるが一定量塗料中に含まれる。   An organic solvent is always required as a solvent when synthesizing resin components such as sulfonium-modified epoxy resin, amine-modified epoxy resin, blocked isocyanate curing agent, pigment dispersion resin, and complicated operation is required for complete removal. Further, when the organic solvent is contained in the binder resin, the fluidity of the coating film during film formation is improved and the smoothness of the coating film is improved. Therefore, a small amount is contained in the coating material.

塗料組成物に通常含まれる有機溶媒としては、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノエチルヘキシルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノブチルエーテル、プロピレングリコールモノフェニルエーテル等が挙げられる。   Examples of the organic solvent usually contained in the coating composition include ethylene glycol monobutyl ether, ethylene glycol monohexyl ether, ethylene glycol monoethyl hexyl ether, propylene glycol monobutyl ether, dipropylene glycol monobutyl ether, propylene glycol monophenyl ether and the like.

塗料組成物は、上記のほかに、可塑剤、界面活性剤、酸化防止剤、及び紫外線吸収剤などの常用の塗料用添加剤を含むことができる。   In addition to the above, the coating composition may contain conventional coating additives such as a plasticizer, a surfactant, an antioxidant, and an ultraviolet absorber.

本発明のカチオン電着塗料組成物は被塗物に電着塗装され、電着塗膜(未硬化)を形成する。被塗物としては導電性のあるものであれば特に限定されないが、本発明では自動車などの大きなものにも適用できるが、部品などの比較的小さなものを被塗物とする。部品としては、自動車用部品や工業用部品が最も好適である。   The cationic electrodeposition coating composition of the present invention is electrodeposited on an object to be coated to form an electrodeposition coating film (uncured). The object to be coated is not particularly limited as long as it is conductive, but in the present invention, it can be applied to a large object such as an automobile, but a relatively small object such as a part is used as an object to be coated. As the parts, automobile parts and industrial parts are most suitable.

電着塗装は、被塗物を陰極として陽極との間に、通常、50〜450Vの電圧を印加して行う。ただ、実効電圧が110Vを超える必要があるので、印加電圧は最低でも約150V程度が必要となる。印加電圧が低くなりすぎると電着が不充分となり、450Vを超えると、塗膜が破壊され異常外観となる。電着塗装時、塗料組成物の浴液温度は、通常10〜45℃に調節される。   Electrodeposition coating is usually performed by applying a voltage of 50 to 450 V between the object to be coated as a cathode and the anode. However, since the effective voltage needs to exceed 110V, the applied voltage needs to be about 150V at the minimum. When the applied voltage is too low, electrodeposition is insufficient, and when it exceeds 450 V, the coating film is destroyed and an abnormal appearance is obtained. At the time of electrodeposition coating, the bath temperature of the coating composition is usually adjusted to 10 to 45 ° C.

本発明の電着塗料組成物は、電着塗装における最小析出pHが11.90〜12.00である必要がある。11.90未満だと電着浴の安定性が低下し、12.00を超えるとつきまわり性が低下する。ここで最小析出pHとは、カチオン電着塗装において、バインダー樹脂が析出するために必要とされる水酸化物イオン濃度に基づくpHをいう。   The electrodeposition coating composition of the present invention needs to have a minimum precipitation pH of 11.90 to 12.00 in electrodeposition coating. If it is less than 11.90, the stability of the electrodeposition bath decreases, and if it exceeds 12.00, the throwing power decreases. Here, the minimum precipitation pH refers to a pH based on the hydroxide ion concentration required for the binder resin to precipitate in cationic electrodeposition coating.

上記の最小析出pHは、定電流電着塗装、すなわち電流密度(mA/cm)を一定にした電着塗装、における電着挙動により求めることができる。定電流電着塗装において、被電着塗装面での樹脂の析出が始まると、その樹脂の析出による電気抵抗の増大に依存して、より高い印加電圧が必要となる。ここで、電気抵抗が増大するまでの通電時間から、樹脂が析出するために必要とされる水酸化物イオン濃度(COH−)を下記式により求めることができる。

Figure 2008189962
F:ファラデー定数 96486.7
D:イオン拡散係数 OH=5×10−5 Said minimum precipitation pH can be calculated | required by the electrodeposition behavior in constant current electrodeposition coating, ie, the electrodeposition coating which made current density (mA / cm < 2 >) constant. In constant current electrodeposition coating, when deposition of a resin on the surface to be electrodeposited begins, a higher applied voltage is required depending on the increase in electrical resistance due to the deposition of the resin. Here, from the energization time until the electrical resistance increases, the hydroxide ion concentration (C OH− ) required for the precipitation of the resin can be obtained by the following equation.
Figure 2008189962
F: Faraday constant 96486.7
D: Ion diffusion coefficient OH = 5 × 10 −5

最小析出pHは下記式により求めることができる。

Figure 2008189962
The minimum precipitation pH can be determined by the following formula.
Figure 2008189962

また、最小析出pHにおける印加電圧と通電時間との関係を示すグラフを図1に示す。   Moreover, the graph which shows the relationship between the applied voltage and the electricity supply time in minimum precipitation pH is shown in FIG.

電着過程は、カチオン電着塗料組成物に被塗物を浸漬する過程、及び、上記被塗物を陰極として陽極との間に電圧を印加し、被膜を析出させる過程、から構成される。また、電圧を印加する時間は、電着条件によって異なるが、一般には、2〜4分とすることができる。本明細書中「電着塗膜」とは、上記の、被膜を析出させる過程後であって、焼付硬化前の、電着塗装後の未硬化の塗膜をいう。   The electrodeposition process includes a process of immersing an object to be coated in a cationic electrodeposition coating composition, and a process of applying a voltage between the object to be coated as a cathode and an anode to deposit a film. Moreover, although the time which applies a voltage changes with electrodeposition conditions, generally it can be made into 2 to 4 minutes. In the present specification, the “electrodeposition coating film” refers to an uncured coating film after electrodeposition coating after the above-described process of depositing the coating film and before baking hardening.

電着塗膜の膜厚は、好ましくは5〜25μm、より好ましくは20μmとする。膜厚が5μm未満であると、防錆性が不充分であり、25μmを超えると、塗料の浪費につながる。本発明では、膜厚の均一性が発明の効果であるので、各被塗物間の膜厚に違いが少なくなる。即ち、膜厚の各被塗物間の偏差が5μm以内、好ましくは3μm以内である。膜厚の各被塗物間の偏差が5μmを超えると、本発明の効果が十分でなくなる。膜厚の各被塗物間の偏差は、小さければ小さいほど良いが、実際には偏差を0にすることは不可能に近い。   The film thickness of the electrodeposition coating film is preferably 5 to 25 μm, more preferably 20 μm. When the film thickness is less than 5 μm, the rust prevention property is insufficient, and when it exceeds 25 μm, the paint is wasted. In the present invention, since the uniformity of the film thickness is the effect of the invention, the difference in the film thickness between the objects to be coated is reduced. That is, the deviation of the film thickness between the objects to be coated is within 5 μm, preferably within 3 μm. When the deviation of the film thickness between the objects to be coated exceeds 5 μm, the effect of the present invention is not sufficient. The smaller the deviation of the film thickness between the objects to be coated, the better, but in practice it is almost impossible to make the deviation zero.

また、電着塗膜の膜抵抗は膜厚15μmにおいて700〜1,800kΩ・cm2であることが好ましい。塗膜の膜抵抗が700kΩ・cm2未満であると膜厚の均一化が得られなくなり、1,800kΩ・cm2を越えると塗膜外観が著しく劣ることとなる。塗膜の膜抵抗は、より好ましくは900〜1,500kΩ・cm2、最も好ましくは1,000〜1,300kΩ・cm2である。電着塗膜の膜抵抗は、析出膜の電荷移動媒体量や粘性を制御することにより調節できる。 Further, the film resistance of the electrodeposition coating film is preferably 700 to 1,800 kΩ · cm 2 at a film thickness of 15 μm. When the film resistance of the coating film is less than 700 kΩ · cm 2, it is impossible to obtain a uniform film thickness, and when it exceeds 1,800 kΩ · cm 2 , the appearance of the coating film is remarkably deteriorated. The film resistance of the coating film is more preferably 900 to 1,500 kΩ · cm 2 , and most preferably 1,000 to 1,300 kΩ · cm 2 . The film resistance of the electrodeposition coating film can be adjusted by controlling the charge transfer medium amount and viscosity of the deposited film.

上述のようにして得られる電着塗膜を、電着過程の終了後、そのまま又は水洗した後、120〜260℃、好ましくは140〜220℃で、10〜30分間焼き付けることにより硬化させる。   The electrodeposition coating film obtained as described above is cured by baking at 120 to 260 ° C., preferably 140 to 220 ° C. for 10 to 30 minutes after completion of the electrodeposition process or after washing with water.

以下の実施例により本発明を詳細に説明するが、本発明はこれらに限定されない。実施例中、「部」および「%」は、ことわりのない限り、質量基準による。   The present invention will be described in detail by the following examples, but the present invention is not limited thereto. In the examples, “parts” and “%” are based on mass unless otherwise specified.

製造例1
ブロックイソシアネート硬化剤の製造
ジフェニルメタンジイソシアネート1250部およびメチルイソブチルケトン(以下「MIBK」という。)266.4部を反応容器に仕込み、これを80℃まで加熱した後、ジブチルスズジラウレート2.5部を加えた。ここに、ε−カプロラクタム226部をブチルセロソルブ944部に溶解させたものを80℃で2時間かけて滴下した。さらに100℃で4時間加熱した後、IRスペクトルの測定において、イソシアネート基に基づく吸収が消失したことを確認し、放冷後、MIBK336.1部を加えてブロックイソシアネート硬化剤を得た。
Production Example 1
Production of Blocked Isocyanate Curing Agent 1250 parts of diphenylmethane diisocyanate and 266.4 parts of methyl isobutyl ketone (hereinafter referred to as “MIBK”) were charged into a reaction vessel and heated to 80 ° C., and then 2.5 parts of dibutyltin dilaurate was added. . A solution prepared by dissolving 226 parts of ε-caprolactam in 944 parts of butyl cellosolve was added dropwise at 80 ° C. over 2 hours. Furthermore, after heating at 100 degreeC for 4 hours, in the measurement of IR spectrum, it confirmed that the absorption based on an isocyanate group disappeared, and after standing to cool, MIBK 336.1 parts was added and the block isocyanate hardening | curing agent was obtained.

製造例2
スルホニウム変性エポキシ樹脂の製造
攪拌機、冷却管、窒素導入管、温度計および滴下漏斗を装備したフラスコに、2,4−/2,6−トリレンジイソシアネート(質量比=8/2)87部、MIBK85部およびジブチルスズジラウレート0.1部を仕込んだ。反応混合物を攪拌下、メタノール32部を滴下した。反応は、室温から始め、発熱により60℃まで昇温した。反応は主に、60〜65℃の範囲で行い、IRスペクトルの測定において、イソシアネート基に基づく吸収が消失するまで継続した。
Production Example 2
Production of sulfonium-modified epoxy resin In a flask equipped with a stirrer, a cooling tube, a nitrogen introducing tube, a thermometer and a dropping funnel, 87 parts of 2,4- / 2,6-tolylene diisocyanate (mass ratio = 8/2), MIBK85 Part and 0.1 part of dibutyltin dilaurate were charged. While stirring the reaction mixture, 32 parts of methanol was added dropwise. The reaction was started from room temperature and heated to 60 ° C. due to heat generation. The reaction was mainly carried out in the range of 60 to 65 ° C. and continued until absorption based on the isocyanate group disappeared in the measurement of IR spectrum.

次に、ビスフェノールAとエピクロルヒドリンから既知の方法で合成したエポキシ当量188のエポキシ樹脂550部を反応混合物に加えて、125℃まで昇温した。その後、ベンジルジメチルアミン1.0部を加え、エポキシ当量330になるまで130℃で反応させた。   Next, 550 parts of epoxy resin having an epoxy equivalent of 188 synthesized from bisphenol A and epichlorohydrin by a known method was added to the reaction mixture, and the temperature was raised to 125 ° C. Thereafter, 1.0 part of benzyldimethylamine was added and reacted at 130 ° C. until an epoxy equivalent of 330 was reached.

続いて、ビスフェノールA100部及びオクチル酸36部を加えて120℃で反応させたところ、エポキシ当量は1030となった。その後MIBK107部を加え反応混合物を冷却し、SHP−100(1−(2―ヒドロキシエチルチオ)−2−プロパノール、三洋化成製)52部、イオン交換水21部、88%乳酸39部を加え、80℃で反応させた。反応は酸価が5を下回るまで継続し、3級スルホニウム塩基を有するエポキシ樹脂(樹脂固形分80%)を得た。   Subsequently, 100 parts of bisphenol A and 36 parts of octylic acid were added and reacted at 120 ° C., resulting in an epoxy equivalent of 1030. Thereafter, 107 parts of MIBK was added to cool the reaction mixture, 52 parts of SHP-100 (1- (2-hydroxyethylthio) -2-propanol, Sanyo Chemical Co., Ltd.), 21 parts of ion-exchanged water, and 39 parts of 88% lactic acid were added. The reaction was performed at 80 ° C. The reaction was continued until the acid value was below 5, and an epoxy resin having a tertiary sulfonium base (resin solid content: 80%) was obtained.

得られた樹脂に製造例1で得られたブロックイソシアネート硬化剤と固形分比で60/40で均一になるように混合した。その後、イオン交換水をゆっくりと加えて希釈した。減圧下でMIBKを除去することにより、固形分が36%のブロックイソシアネート含有のスルホニウム変性エポキシ樹脂エマルションを得た。またこのエマルションの樹脂固形分100g当たりの塩基のミリ当量は10であった。   The obtained resin was mixed with the blocked isocyanate curing agent obtained in Production Example 1 so as to be uniform at a solid content ratio of 60/40. Thereafter, ion-exchanged water was slowly added for dilution. By removing MIBK under reduced pressure, a blocked isocyanate-containing sulfonium-modified epoxy resin emulsion having a solid content of 36% was obtained. Further, the milliequivalent of the base per 100 g of resin solid content of this emulsion was 10.

製造例3
アミン変性エポキシ樹脂の製造
攪拌機、冷却管、窒素導入管、温度計および滴下漏斗を装備したフラスコに、2,4−/2,6−トリレンジイソシアネート(質量比=8/2)87部、MIBK85部およびジブチルスズジラウレート0.1部を仕込んだ。反応混合物を攪拌下、メタノール32部を滴下した。反応は、室温から始め、発熱により60℃まで昇温した。反応は主に、60〜65℃の範囲で行い、IRスペクトルの測定において、イソシアネート基に基づく吸収が消失するまで継続した。
Production Example 3
Production of amine-modified epoxy resin In a flask equipped with a stirrer, a condenser tube, a nitrogen inlet tube, a thermometer and a dropping funnel, 87 parts of 2,4- / 2,6-tolylene diisocyanate (mass ratio = 8/2), MIBK85 Part and 0.1 part of dibutyltin dilaurate were charged. While stirring the reaction mixture, 32 parts of methanol was added dropwise. The reaction was started from room temperature and heated to 60 ° C. due to heat generation. The reaction was mainly carried out in the range of 60 to 65 ° C. and continued until absorption based on the isocyanate group disappeared in the measurement of IR spectrum.

次に、ビスフェノールAとエピクロルヒドリンから既知の方法で合成したエポキシ当量188のエポキシ樹脂650部を反応混合物に加えて、125℃まで昇温した。その後、ベンジルジメチルアミン1.0部を加え、エポキシ当量300になるまで130℃で反応させた。   Next, 650 parts of epoxy resin having an epoxy equivalent of 188 synthesized from bisphenol A and epichlorohydrin by a known method was added to the reaction mixture, and the temperature was raised to 125 ° C. Thereafter, 1.0 part of benzyldimethylamine was added and reacted at 130 ° C. until an epoxy equivalent of 300 was reached.

続いて、ビスフェノールA165部及びオクチル酸29部を加えて120℃で反応させたところ、エポキシ当量は1160となった。その後MIBK107部を加え反応混合物を冷却し、ジエタノールアミン85部を加え、110℃で2時間反応させた。その後、MIBKで不揮発分80%となるまで希釈し、3級アミノ塩基を有するエポキシ樹脂(樹脂固形分80%)を得た。   Subsequently, when 165 parts of bisphenol A and 29 parts of octylic acid were added and reacted at 120 ° C., the epoxy equivalent was 1160. Thereafter, 107 parts of MIBK was added, the reaction mixture was cooled, 85 parts of diethanolamine was added, and the mixture was reacted at 110 ° C. for 2 hours. Then, it diluted with MIBK until it became 80% of non volatile matters, and the epoxy resin (resin solid content 80%) which has a tertiary amino base was obtained.

得られた樹脂に製造例1で得られたブロックイソシアネート硬化剤と固形分比で60/40で均一になるように混合した。その後、樹脂固形分100g当たり酸のミリ当量数が25になるようギ酸を加え、さらにイオン交換水をゆっくりと加えて希釈した。減圧下でMIBKを除去することにより、固形分が36%のブロックイソシアネート含有のアミン変性エポキシ樹脂エマルションを得た。   The obtained resin was mixed with the blocked isocyanate curing agent obtained in Production Example 1 so as to be uniform at a solid content ratio of 60/40. Thereafter, formic acid was added so that the number of milliequivalents of acid was 25 per 100 g of resin solids, and further ion-exchanged water was slowly added for dilution. MIBK was removed under reduced pressure to obtain a blocked isocyanate-containing amine-modified epoxy resin emulsion having a solid content of 36%.

製造例4
アミン変性エポキシ樹脂の製造
攪拌機、冷却管、窒素導入管、温度計および滴下漏斗を装備したフラスコに、2,4−/2,6−トリレンジイソシアネート(質量比=8/2)87部、MIBK85部およびジブチルスズジラウレート0.1部を仕込んだ。反応混合物を攪拌下、メタノール32部を滴下した。反応は、室温から始め、発熱により60℃まで昇温した。反応は主に、60〜65℃の範囲で行い、IRスペクトルの測定において、イソシアネート基に基づく吸収が消失するまで継続した。
Production Example 4
Production of amine-modified epoxy resin In a flask equipped with a stirrer, a condenser tube, a nitrogen inlet tube, a thermometer and a dropping funnel, 87 parts of 2,4- / 2,6-tolylene diisocyanate (mass ratio = 8/2), MIBK85 Part and 0.1 part of dibutyltin dilaurate were charged. While stirring the reaction mixture, 32 parts of methanol was added dropwise. The reaction was started from room temperature and heated to 60 ° C. due to heat generation. The reaction was mainly carried out in the range of 60 to 65 ° C. and continued until absorption based on the isocyanate group disappeared in the measurement of IR spectrum.

次に、ビスフェノールAとエピクロルヒドリンから既知の方法で合成したエポキシ当量188のエポキシ樹脂492部を反応混合物に加えて、125℃まで昇温した。その後、ベンジルジメチルアミン1.0部を加え、エポキシ当量360になるまで130℃で反応させた。   Next, 492 parts of an epoxy resin having an epoxy equivalent of 188 synthesized from bisphenol A and epichlorohydrin by a known method was added to the reaction mixture, and the temperature was raised to 125 ° C. Thereafter, 1.0 part of benzyldimethylamine was added and reacted at 130 ° C. until the epoxy equivalent was 360.

続いて、ビスフェノールA70部及びオクチル酸29部を加えて120℃で反応させたところ、エポキシ当量は850となった。その後MIBK107部を加え反応混合物を冷却し、メチルエタノールアミン48部およびジエチレントリアミンをケチミン化したもの70部を加え、110℃で2時間反応させた。その後、MIBKで不揮発分80%となるまで希釈し、3級アミノ塩基を有するエポキシ樹脂(樹脂固形分80%)を得た。   Subsequently, when 70 parts of bisphenol A and 29 parts of octylic acid were added and reacted at 120 ° C., the epoxy equivalent was 850. Thereafter, 107 parts of MIBK was added and the reaction mixture was cooled. 48 parts of methylethanolamine and 70 parts of ketiminized diethylenetriamine were added and reacted at 110 ° C. for 2 hours. Then, it diluted with MIBK until it became 80% of non volatile matters, and the epoxy resin (resin solid content 80%) which has a tertiary amino base was obtained.

得られた樹脂に製造例1で得られたブロックイソシアネート硬化剤と固形分比で60/40で均一になるように混合した。その後、樹脂固形分100g当たり酸のミリ当量数が25になるようギ酸を加え、さらにイオン交換水をゆっくりと加えて希釈した。減圧下でMIBKを除去することにより、固形分が36%のブロックイソシアネート含有のアミン変性エポキシ樹脂エマルションを得た。   The obtained resin was mixed with the blocked isocyanate curing agent obtained in Production Example 1 so as to be uniform at a solid content ratio of 60/40. Thereafter, formic acid was added so that the number of milliequivalents of acid was 25 per 100 g of resin solids, and further ion-exchanged water was slowly added for dilution. MIBK was removed under reduced pressure to obtain a blocked isocyanate-containing amine-modified epoxy resin emulsion having a solid content of 36%.

製造例5
アミン変性エポキシ樹脂の製造
攪拌機、冷却管、窒素導入管、温度計および滴下漏斗を装備したフラスコに、2,4−/2,6−トリレンジイソシアネート(質量比=8/2)87部、MIBK85部およびジブチルスズジラウレート0.1部を仕込んだ。反応混合物を攪拌下、メタノール32部を滴下した。反応は、室温から始め、発熱により60℃まで昇温した。反応は主に、60〜65℃の範囲で行い、IRスペクトルの測定において、イソシアネート基に基づく吸収が消失するまで継続した。
Production Example 5
Production of amine-modified epoxy resin In a flask equipped with a stirrer, a condenser tube, a nitrogen inlet tube, a thermometer and a dropping funnel, 87 parts of 2,4- / 2,6-tolylene diisocyanate (mass ratio = 8/2), MIBK85 Part and 0.1 part of dibutyltin dilaurate were charged. While stirring the reaction mixture, 32 parts of methanol was added dropwise. The reaction was started from room temperature and heated to 60 ° C. due to heat generation. The reaction was mainly carried out in the range of 60 to 65 ° C. and continued until absorption based on the isocyanate group disappeared in the measurement of IR spectrum.

次に、ビスフェノールAとエピクロルヒドリンから既知の方法で合成したエポキシ当量188のエポキシ樹脂834部を反応混合物に加えて、125℃まで昇温した。その後、ベンジルジメチルアミン1.0部を加え、エポキシ当量270になるまで130℃で反応させた。   Next, 834 parts of epoxy resin having an epoxy equivalent of 188 synthesized from bisphenol A and epichlorohydrin by a known method was added to the reaction mixture, and the temperature was raised to 125 ° C. Thereafter, 1.0 part of benzyldimethylamine was added and reacted at 130 ° C. until the epoxy equivalent was 270.

続いて、ビスフェノールA194部及びオクチル酸29部を加えて120℃で反応させたところ、エポキシ当量は1540となった。その後MIBK107部を加え反応混合物を冷却し、ジエタノールアミン85部を加え、110℃で2時間反応させた。その後、MIBKで不揮発分80%となるまで希釈し、3級アミノ塩基を有するエポキシ樹脂(樹脂固形分80%)を得た。   Subsequently, when 194 parts of bisphenol A and 29 parts of octylic acid were added and reacted at 120 ° C., the epoxy equivalent was 1540. Thereafter, 107 parts of MIBK was added, the reaction mixture was cooled, 85 parts of diethanolamine was added, and the mixture was reacted at 110 ° C. for 2 hours. Then, it diluted with MIBK until it became 80% of non volatile matters, and the epoxy resin (resin solid content 80%) which has a tertiary amino base was obtained.

得られた樹脂に製造例1で得られたブロックイソシアネート硬化剤と固形分比で60/40で均一になるように混合した。その後、樹脂固形分100g当たり酸のミリ当量数が25になるようギ酸を加え、さらにイオン交換水をゆっくりと加えて希釈した。減圧下でMIBKを除去することにより、固形分が36%のブロックイソシアネート含有のアミン変性エポキシ樹脂エマルションを得た。   The obtained resin was mixed with the blocked isocyanate curing agent obtained in Production Example 1 so as to be uniform at a solid content ratio of 60/40. Thereafter, formic acid was added so that the number of milliequivalents of acid was 25 per 100 g of resin solids, and further ion-exchanged water was slowly added for dilution. MIBK was removed under reduced pressure to obtain a blocked isocyanate-containing amine-modified epoxy resin emulsion having a solid content of 36%.

製造例6
顔料分散樹脂分散物の製造
まず、攪拌装置、冷却管、窒素導入管、温度計を装備した反応容器に、イソホロンジイソシアネート(以下、IPDIと略す)222.0部を入れ、MIBK39.1部で希釈した後、ここへジブチルスズジラウリート0.2部を加えた。その後、これを50℃に昇温した後、2−エチルヘキサノール131.5部を攪拌下、乾燥窒素雰囲気中で2時間かけて滴下した。適宜、冷却することにより、反応温度を50℃に維持した。その結果、2−エチルヘキサノールハーフブロック化IPDI(樹脂固形分90.0%)が得られた。
Production Example 6
Manufacture of pigment-dispersed resin dispersion First, 222.0 parts of isophorone diisocyanate (hereinafter abbreviated as IPDI) is placed in a reaction vessel equipped with a stirrer, a cooling pipe, a nitrogen introduction pipe and a thermometer, and diluted with 39.1 parts of MIBK. After that, 0.2 parts of dibutyltin dilaurate was added thereto. Then, after heating this to 50 degreeC, 131.5 parts of 2-ethylhexanol was dripped over 2 hours in dry nitrogen atmosphere, stirring. The reaction temperature was maintained at 50 ° C. by cooling appropriately. As a result, 2-ethylhexanol half-blocked IPDI (resin solid content: 90.0%) was obtained.

次いで適当な反応容器に、ジメチルエタノール87.2部、75%乳酸水溶液117.6部およびエチレングリコールモノブチルエーテル39.2部を順に加え、65℃で約半時間攪拌して、4級化剤を調製した。   Next, 87.2 parts of dimethylethanol, 117.6 parts of 75% lactic acid aqueous solution and 39.2 parts of ethylene glycol monobutyl ether are added in order to a suitable reaction vessel, and the mixture is stirred at 65 ° C. for about half an hour to add the quaternizing agent. Prepared.

次に、エポン(EPON)829(シェル・ケミカル・カンパニー社製ビスフェノールA型エポキシ樹脂、エポキシ当量193〜203)710.0部とビスフェノールA289.6部とを適当な反応容器に仕込み、窒素雰囲気下、150〜160℃に加熱したところ初期発熱反応が生じた。反応混合物を150〜160℃で約1時間反応させて、次いで、120℃に冷却した後、先に調整した2−エチルヘキサノールハーフブロック化IPDI(MIBK溶液)498.8部を加えた。   Next, 710.0 parts of EPON 829 (bisphenol A type epoxy resin manufactured by Shell Chemical Company, epoxy equivalent 193 to 203) and 289.6 parts of bisphenol A were charged into a suitable reaction vessel, and the reaction was conducted under a nitrogen atmosphere. When heated to 150 to 160 ° C., an initial exothermic reaction occurred. The reaction mixture was allowed to react at 150-160 ° C. for about 1 hour, then cooled to 120 ° C., and then 498.8 parts of previously prepared 2-ethylhexanol half-blocked IPDI (MIBK solution) was added.

反応混合物を110〜120℃に約1時間保ち、次いで、エチレングリコールモノブチルエーテル463.4部を加え、混合物を85〜95℃に冷却し、均一化した後、先に調製した4級化剤196.7部を加えた。酸価が1となるまで反応混合物を85〜95℃に保持した後、脱イオン水964部を加えて、エポキシ−ビスフェノールA樹脂において4級化を終了させ、4級アンモニウム塩部分を有する顔料分散樹脂分散物を得た(樹脂固形分50%)。   The reaction mixture is kept at 110-120 ° C. for about 1 hour, then 463.4 parts of ethylene glycol monobutyl ether are added, the mixture is cooled to 85-95 ° C. and homogenized, and then the quaternizing agent 196 prepared above is used. .7 parts were added. After maintaining the reaction mixture at 85 to 95 ° C. until the acid value becomes 1, 964 parts of deionized water is added to finish quaternization in the epoxy-bisphenol A resin, and a pigment dispersion having a quaternary ammonium salt portion A resin dispersion was obtained (resin solid content 50%).

製造例7、8
顔料分散ペーストの製造
サンドグラインドミルに製造例6で得た顔料分散樹脂分散物を120部、カーボンブラック2.0部、二酸化チタン80.0部、リンモリブデン酸アルミニウム18.0部およびイオン交換水221.7部を入れ、粒度10μm以下になるまで分散して、顔料ペーストを得た(固形分48%)。
Production Examples 7 and 8
Production of pigment dispersion paste 120 parts of pigment dispersion resin dispersion obtained in Production Example 6 in a sand grind mill, 2.0 parts of carbon black, 80.0 parts of titanium dioxide, 18.0 parts of aluminum phosphomolybdate and ion-exchanged water 221.7 parts was added and dispersed until the particle size became 10 μm or less to obtain a pigment paste (solid content 48%).

実施例1
製造例2で得られたスルホニウム変性エポキシ樹脂エマルションと製造例3で得られたアミン変性エポキシ樹脂エマルションとを混合して、樹脂固形分比25/75とし、次いで製造例7で得られた顔料分散ペーストを混合した。さらにジブチルスズオキサイドを樹脂固形分に対し1質量%分とイオン交換水を加えて、固形分が20%のカチオン電着塗料組成物を得た。得られた電着塗料組成物のMEQ(A)(中和酸の量:塗料組成物に含まれているバインダー樹脂固形分100gに対するmg当量数)は19.5であり、塗料組成物中に含まれる顔料と樹脂固形分との質量比(P/V)は1/4.5であった。
Example 1
The sulfonium-modified epoxy resin emulsion obtained in Production Example 2 and the amine-modified epoxy resin emulsion obtained in Production Example 3 were mixed to obtain a resin solid content ratio of 25/75, and then the pigment dispersion obtained in Production Example 7 The paste was mixed. Further, 1% by mass of dibutyltin oxide and ion exchange water were added to the resin solid content to obtain a cationic electrodeposition coating composition having a solid content of 20%. The obtained electrodeposition coating composition has a MEQ (A) (amount of neutralizing acid: mg equivalent number per 100 g of binder resin solid content contained in the coating composition) of 19.5. The mass ratio (P / V) between the contained pigment and the resin solid was 1 / 4.5.

<電着塗膜の膜抵抗>
カチオン電着塗料組成物を含む電着浴に、リン酸亜鉛処理鋼板(JIS G 3141 SPCC−SDのサーフダインSD−2500処理)(寸法:70mm×150mm、厚さ0.7mm)を電着塗料に10cm浸漬した。この鋼板に電圧を印加し、30秒間かけて200Vの電圧に昇圧し、150秒間電着した。浴温28℃における塗膜厚15μmの塗装電圧および電着終了時の残余電流を測定して、塗膜抵抗値(kΩ・cm2)を算出した。結果を表1に示す。
<Membrane resistance of electrodeposition coating film>
Electrodeposition paint containing zinc phosphate-treated steel sheet (JIS G 3141 SPCC-SD surfdyne SD-2500 treatment) (dimensions: 70 mm x 150 mm, thickness 0.7 mm) in an electrodeposition bath containing a cationic electrodeposition paint composition Was immersed in 10 cm. A voltage was applied to the steel sheet, the voltage was increased to 200 V over 30 seconds, and electrodeposition was performed for 150 seconds. The coating voltage with a coating thickness of 15 μm at a bath temperature of 28 ° C. and the residual current at the end of electrodeposition were measured to calculate the coating resistance value (kΩ · cm 2 ). The results are shown in Table 1.

このカチオン電着塗料の膜厚増加率を測定した。塗装温度と保持時間(被塗物が電着塗料中に浸漬されている時間)をそれぞれ30℃で150秒にして、実効電圧を変化させて同じ形の被塗物、具体的には厚さ0.5mm×縦2.0cm×横5cmの鉄板を塗装し、膜厚の変化をプロットした。実施例1のカチオン電着塗料のプロットしたグラフを図2に示す。   The film thickness increase rate of this cationic electrodeposition coating was measured. The coating temperature and holding time (time during which the coating is immersed in the electrodeposition coating) are set to 30 seconds at 30 ° C. for 150 seconds, and the effective voltage is changed. A 0.5 mm × 2.0 cm long × 5 cm wide iron plate was applied and the change in film thickness was plotted. A plotted graph of the cationic electrodeposition paint of Example 1 is shown in FIG.

図2から明らかなように、実効電圧が110Vより小さいときは、膜厚の変化が直線状に乗らないが、110Vを超えて200Vの間は、ほぼ直線状に乗っている。実効電圧が100V〜200Vの間での膜厚増加率は、図2から以下の式で得ることができる。
膜厚増加率=(15−12)÷(200−100)=0.03μm/V
従って、実施例1のカチオン電着塗料の実効電圧100〜200Vでの膜厚増加率は0.03μm/Vであることがわかる。
As is clear from FIG. 2, when the effective voltage is smaller than 110V, the change in the film thickness does not ride in a straight line. The film thickness increase rate when the effective voltage is between 100 V and 200 V can be obtained from FIG.
Thickness increase rate = (15-12) ÷ (200-100) = 0.03 μm / V
Therefore, it can be seen that the film thickness increase rate of the cationic electrodeposition paint of Example 1 at an effective voltage of 100 to 200 V is 0.03 μm / V.

この電着塗料を用いて、図3に記載のハンガーに被塗物として厚さ0.5mm×縦2.0cm×横5cmの鉄板を9個吊るして、30℃3分間電圧200Vで電着塗装し、各被塗物の膜厚を測定した。膜厚の測定結果を表1に示す。表1には、被塗物の最大膜厚と最小膜厚、および両者の差も記載する。   Using this electrodeposition paint, nine iron plates with a thickness of 0.5 mm x length 2.0 cm x width 5 cm are hung on the hanger shown in Fig. 3, and electrodeposition is applied at a voltage of 200V for 3 minutes at 30 ° C. And the film thickness of each to-be-coated object was measured. Table 1 shows the film thickness measurement results. Table 1 also describes the maximum film thickness and the minimum film thickness of the object to be coated, and the difference between the two.

比較例1
日本ペイント社製の電着塗料(商品名パワーニクス120M)を用いて同じ条件で図3に記載のハンガーを用いて電着塗装を行った。各被塗物の膜厚を同様に測定し、結果を表1に示す。比較例1の電着塗料の塗膜抵抗値は650kΩ・cm2であった。尚、このパワーニクス120Mの膜厚増加率は、実施例1のカチオン電着塗料と同様に測定した。実効電圧と膜厚のプロットしたものを図4に示す。この図4から、実効電圧100V〜200Vの間の膜厚増加率を計算すると、(16−7.5)÷(200−100)=0.085μm/Vであった。
Comparative Example 1
Electrodeposition coating was performed using the hanger described in FIG. 3 under the same conditions using an electrodeposition paint (trade name Powernics 120M) manufactured by Nippon Paint. The film thickness of each object was measured in the same manner, and the results are shown in Table 1. Coating resistance of the electrodeposition paint of Comparative Example 1 was 650kΩ · cm 2. The film thickness increase rate of the powernics 120M was measured in the same manner as the cationic electrodeposition paint of Example 1. A plot of effective voltage vs. film thickness is shown in FIG. From this FIG. 4, the film thickness increase rate between the effective voltage of 100V and 200V was calculated to be (16−7.5) ÷ (200−100) = 0.085 μm / V.

Figure 2008189962
Figure 2008189962

上記結果から明らかなように、実施例1のカチオン電着塗料では各被塗物間の膜厚の差は2.5μmで、比較例1のカチオン電着塗料の膜厚の差5.8μmより非常に少なくなっている。   As is apparent from the above results, in the cationic electrodeposition paint of Example 1, the difference in film thickness between the objects to be coated was 2.5 μm, and the difference in film thickness of the cationic electrodeposition paint in Comparative Example 1 was 5.8 μm. It is very low.

部品の電着塗装ラインの電着浴部分の模式図である。It is a schematic diagram of the electrodeposition bath part of the electrodeposition coating line of components. 実施例1のカチオン電着塗料の塗装温度30℃で保持時間150秒にしたときの実効電圧と膜厚の関係を示すグラフである。It is a graph which shows the relationship between the effective voltage when the coating temperature of the cationic electrodeposition coating material of Example 1 is 30 ° C. and the holding time is 150 seconds, and the film thickness. 実施例および比較例で用いたハンガーと被塗物(鉄板)の吊り下げ状態を示す模式図である。It is a schematic diagram which shows the hanging state of the hanger and to-be-coated object (iron plate) used in the Example and the comparative example. 比較例1のカチオン電着塗料(日本ペイント株社製パワーニクス120M)の塗装温度30℃で保持時間150秒にしたときの実効電圧と膜厚の関係を示すグラフである。It is a graph which shows the relationship between the effective voltage and film thickness when the coating time of the cationic electrodeposition coating material of Comparative Example 1 (Powernics 120M manufactured by Nippon Paint Co., Ltd.) is 30 ° C. and the holding time is 150 seconds.

符号の説明Explanation of symbols

1…電着浴、
2…電着塗料、
3…部品、
4…ハンガー、
5…搬送手段、
6…矢印。
1 ... Electrodeposition bath,
2 ... Electrodeposition paint,
3 ... Parts,
4 ... hangers,
5 ... Conveying means,
6 ... Arrow.

Claims (6)

実効電圧110〜200Vで膜厚増加率が0.01〜0.04μm/Vの範囲を有するカチオン電着塗料を用いてカチオン電着塗装する方法。   Cationic electrodeposition coating using a cationic electrodeposition paint having an effective voltage of 110 to 200 V and a film thickness increase rate of 0.01 to 0.04 μm / V. 被塗物が表面積1〜30mを有し、表面積の異なる被塗物が混流されて塗装されていく請求項1記載の方法。 The method according to claim 1, wherein the object to be coated has a surface area of 1 to 30 m 2 , and the objects to be coated having different surface areas are mixed and applied. カチオン電着塗料が被塗物に対して厚さ15μmに電着された塗膜の膜抵抗700〜1,800KΩ・cmを有する請求項1記載の方法。 The method according to claim 1, wherein the cationic electrodeposition coating has a film resistance of 700 to 1,800 KΩ · cm 2 of a coating film electrodeposited with a thickness of 15 μm on an object to be coated. 実効電圧110〜200Vで膜厚増加率を0.01〜0.04μm/Vの範囲に制御したカチオン電着塗料でカチオン電着塗装することを特徴とする塗装物間の塗装膜厚を均一にするカチオン電着塗装方法。   Uniform coating film thickness between coated objects, characterized by applying cationic electrodeposition with a cationic electrodeposition paint with an effective voltage of 110 to 200 V and a film thickness increase rate controlled to a range of 0.01 to 0.04 μm / V Cationic electrodeposition coating method. 被塗物が表面積1〜30mを有し、表面積の異なる被塗物が混流されて塗装されていく請求項4記載のカチオン電着塗装方法。 The cationic electrodeposition coating method according to claim 4, wherein the object to be coated has a surface area of 1 to 30 m 2 , and the objects to be coated having different surface areas are mixed and coated. 被塗物間の塗装膜厚の偏差が、3μm以内である請求項4記載のカチオン電着塗装方法。   The cationic electrodeposition coating method according to claim 4, wherein the coating film thickness deviation between the objects to be coated is within 3 μm.
JP2007023788A 2007-02-02 2007-02-02 Cathodic electrodeposition coating method Pending JP2008189962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007023788A JP2008189962A (en) 2007-02-02 2007-02-02 Cathodic electrodeposition coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007023788A JP2008189962A (en) 2007-02-02 2007-02-02 Cathodic electrodeposition coating method

Publications (1)

Publication Number Publication Date
JP2008189962A true JP2008189962A (en) 2008-08-21

Family

ID=39750331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007023788A Pending JP2008189962A (en) 2007-02-02 2007-02-02 Cathodic electrodeposition coating method

Country Status (1)

Country Link
JP (1) JP2008189962A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082415A1 (en) * 2009-01-13 2010-07-22 日本パーカライジング株式会社 Surface-treated metallic material and method of treating metal surface

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082415A1 (en) * 2009-01-13 2010-07-22 日本パーカライジング株式会社 Surface-treated metallic material and method of treating metal surface

Similar Documents

Publication Publication Date Title
JP4060620B2 (en) Electrodeposition coating method using lead-free cationic electrodeposition paint
JP4130086B2 (en) Lead-free cationic electrodeposition coating composition and coating method
JP2008037889A (en) Electroconductivity-controlling agent for cation electrodeposition coating, and method for controlling electroconductivity of electrodeposition coating by using the same
JP2010095668A (en) Cationic electrodeposition coating composition
JP4527944B2 (en) Lead-free cationic electrodeposition coating composition
JP2006348316A (en) Method for forming electrodeposition coating film
JP2007039617A (en) Cationic electrodeposition coating composition and coated material produced therewith
JP2008214705A (en) Cation electrodeposition coating method
JP2005194389A (en) Lead-free cationic electrodeposition coating composition
JP2008189962A (en) Cathodic electrodeposition coating method
JP2002356645A (en) Lead-less cationic electrodeposition coating composition
JP2006002003A (en) Cathodic electrodeposition coating composition
JP2006265689A (en) Cation electrodeposition painting method
JP2002285391A (en) Electrodeposition coating method
JP2008189960A (en) Method for forming electrodeposition paint film
JP4518800B2 (en) Lead-free cationic electrodeposition coating composition
JP2002285392A (en) Electrodeposition coating method
JP2006348076A (en) Cationic electrodeposition coating composition
JP4326351B2 (en) Method for forming cationic electrodeposition coating film
JP2009161825A (en) Electrodeposition coating method and method for shortening water-washing process or reducing use amount of washing water
JP2002294146A (en) Non-lead cationic electrodeposition coating material composition
JP2007313420A (en) Cation electrodeposition coating method
JP2008189961A (en) Cathodic electrodeposition coating method and method for controlling film thickness using the same
JP2008229406A (en) Coating film formation method and coating film obtained by the same
JP2006002002A (en) Cathodic electrodeposition coating composition