WO2010082415A1 - Surface-treated metallic material and method of treating metal surface - Google Patents

Surface-treated metallic material and method of treating metal surface Download PDF

Info

Publication number
WO2010082415A1
WO2010082415A1 PCT/JP2009/070658 JP2009070658W WO2010082415A1 WO 2010082415 A1 WO2010082415 A1 WO 2010082415A1 JP 2009070658 W JP2009070658 W JP 2009070658W WO 2010082415 A1 WO2010082415 A1 WO 2010082415A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface treatment
metal material
metal
nitrate
contained
Prior art date
Application number
PCT/JP2009/070658
Other languages
French (fr)
Japanese (ja)
Inventor
和久 鶴田
康彦 永嶋
典昭 小林
Original Assignee
日本パーカライジング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本パーカライジング株式会社 filed Critical 日本パーカライジング株式会社
Publication of WO2010082415A1 publication Critical patent/WO2010082415A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/4488Cathodic paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/68Particle size between 100-1000 nm
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances

Definitions

  • the present invention relates to a surface-treated metal material in which a surface-treated film having excellent corrosion resistance is formed on the surface of a metal material typified by an automobile body, and a metal surface treatment method for producing the surface-treated metal material.
  • a zinc phosphate treatment method or a chromate treatment method As a method for depositing a surface treatment film having excellent corrosion resistance after coating on a metal surface, a zinc phosphate treatment method or a chromate treatment method is currently generally used.
  • the zinc phosphate treatment method a film having excellent corrosion resistance can be deposited on the surface of steel such as hot rolled steel sheet and cold rolled steel sheet, galvanized steel sheet and some aluminum alloys.
  • the generation of sludge which is a by-product of the reaction, is unavoidable, and depending on the type of aluminum alloy, sufficient resistance to yarn rust after coating cannot be ensured. .
  • chromate treatment containing hexavalent chromium harmful to the treatment liquid is in a direction to be avoided. Therefore, various methods have been proposed as surface treatment methods that do not contain harmful components in the treatment liquid.
  • Patent Document 1 discloses a chemical conversion treatment agent composed of “at least one selected from the group consisting of zirconium, titanium, and hafnium, fluorine, and an adhesion and corrosion resistance imparting agent, wherein the adhesion and corrosion resistance imparting agent includes: , 1 to 5000 ppm (metal ion concentration) of at least one metal ion (A) selected from the group consisting of zinc, manganese, and cobalt ions, Alkaline earth metal ions (B) 1 to 5000 ppm (metal ion concentration), Periodic Table III metal ions (C) 1-1000ppm (metal ion concentration), Copper ion (D) 0.5-100 ppm (metal ion concentration), and Silicon-containing compound (E) 1 to 5000 ppm (as silicon component)
  • a chemical conversion treatment agent characterized by being at least one selected from the group consisting of: And "a surface-treated metal having a chemical conversion film formed on the surface thereof by the chemical conversion treatment agent according to claim
  • a metal surface treatment method comprising a treatment liquid contact step of bringing a treatment liquid for metal surface treatment according to any one of claims 4 to 10 into contact with a metal material. And “On the surface of an iron-based metal material.” A surface formed by the metal surface treatment method according to any one of claims 12 to 17 and containing the element of the component (A) and having an adhesion amount in terms of the element of 20 mg / m 2 or more. A metal material having a treated coating layer has been proposed ([Claim 4] [Claim 12] [Claim 18]).
  • Patent Document 3 discloses a metal surface treatment solution for cationic electrodeposition coating having a pH of 1.5 to 6.5, which contains zirconium ions, copper ions, and other metal ions,
  • the other metal ions are at least one selected from the group consisting of tin ions, indium ions, aluminum ions, niobium ions, tantalum ions, yttrium ions, and cerium ions,
  • the concentration of the zirconium ions is 10 to 10,000 ppm
  • the concentration ratio of copper ions to zirconium ions is 0.005 to 1 in terms of mass
  • a metal surface treatment solution for cationic electrodeposition coating wherein the concentration ratio of the other metal ions to copper ions is 0.1 to 1000 in terms of mass.
  • a metal surface treatment method including a step of performing a surface treatment on a metal substrate using the metal surface treatment liquid according to any one of claims 1 to 4.
  • the method according to claim 5 A metal substrate on which a film is formed by surface treatment obtained by the method "is described ([Claim 1] [Claim 5] [Claim 6]).
  • an object of the present invention is to provide a surface-treated metal material that is excellent in both corrosion resistance and electrodeability with electrodeposition coating, and a metal surface treatment method for producing the same.
  • the present inventor has newly found that the physical state and the chemical state of the surface of the electrodeposited material have a great influence on the wearability of the electrodeposition coating.
  • a surface treatment film on the surface of the metal material in which a semiconductor particle containing copper, tin or the like is present in a predetermined form with a predetermined coverage in an amorphous film containing zirconium, Ti or the like, corrosion resistance and
  • the present invention has been completed by finding that the surface-treated metal material is excellent in both of the reversibility with electrodeposition coating.
  • the present inventor brings the surface treatment liquid into contact with the surface of the metal material at a predetermined flow rate, so that the semiconductor particles containing copper, tin, etc.
  • the present invention was completed by finding that the surface treatment film existing in (1) was formed on the surface of the metal material. That is, the present invention provides the following (1) to (13).
  • a surface-treated metal material obtained by surface-treating a metal material The surface of the metal material has an amorphous film and a surface-treated film containing semiconductor particles having a maximum average particle diameter of 5 to 300 nm, The surface coverage of the semiconductor particles in the surface treatment film is 10 to 90%, The semiconductor particles are exposed from the surface of the surface treatment film, A surface-treated metal material having a semiconductor particle density of 5 to 10,000 particles / ⁇ m 2 .
  • the amorphous film contains at least one element selected from the group consisting of Zr, Ti and Hf,
  • the element conversion amount of the element contained in the amorphous film is 5 to 200 mg / m 2 ;
  • metal material according to any one of (1) to (3), wherein the metal material is at least one metal material selected from the group consisting of iron-based metal materials, zinc-based metal materials, and aluminum-based metal materials. Surface treatment metal material.
  • First to third surface-treated metal materials having a size of 150 mm in length and 70 mm in width and having a hole with a diameter of 8 mm at a position 50 mm from the lower end of the center in the horizontal direction, and a size of 150 mm in length and 70 mm in width
  • the fourth surface-treated metal materials are installed in parallel in this order at intervals of 20 mm, Each of the first to fourth surface-treated metal materials is immersed in an electrodeposition coating bath from the lower end to a position of 95 mm, A counter electrode is installed on the surface of the first surface-treated metal material where the second surface-treated metal material is not installed, and electrodeposition coating is performed under the following conditions (a) to (c): A coating thickness ratio (A / G) of the surface on the counter electrode side (A surface) of the first surface-treated metal material and the surface on the counter electrode side (G surface) of the fourth surface-treated metal material is 3.0.
  • a surface-treated metal material that can be: (A) Electrodeposition paint temperature: 28 ° C (B) Electrolytic conditions: A voltage is applied linearly from 0 V to 230 V over 30 seconds and then held at 230 V for 150 seconds. (C) Firing conditions: 170 ° C., 20 minutes
  • the metal material contains at least one element selected from the group consisting of Zr, Ti, and Hf, and contains at least one element selected from the group consisting of Sn, In, Te, and Cu.
  • the surface treatment liquid contains 1 to 10,000 ppm of at least one element selected from the group consisting of Zr, Ti and Hf, and at least one selected from the group consisting of Sn, In, Te and Cu
  • the metal surface treatment method according to the above (6) which contains 1 to 5000 ppm of one element and has a pH of 2.0 to 6.0.
  • Zr contained in the surface treatment liquid is zirconium sulfate, zirconium oxysulfate, ammonium zirconium sulfate, zirconium nitrate, zirconium oxynitrate, zirconium nitrate ammonium, zirconium sulfate, zirconium oxysulfate, ammonium zirconium sulfate, zirconium nitrate, oxy
  • the metal surface treatment method according to the above (6) or (7) which is contained as at least one selected from the group consisting of zirconium nitrate, ammonium zirconium nitrate, fluorozirconic acid, and fluorozirconium complex salt.
  • Ti contained in the surface treatment liquid is titanium sulfate, titanium oxysulfate, ammonium ammonium sulfate, titanium nitrate, titanium oxynitrate, titanium ammonium nitrate, titanium sulfate, titanium oxysulfate, ammonium titanium sulfate, titanium nitrate, oxy
  • the Sn contained in the surface treatment liquid is any one of the above (6) to (9), which is contained as at least one selected from the group consisting of tin nitrate, tin sulfate and tin fluoride. Metal surface treatment method.
  • the In contained in the surface treatment liquid is contained as at least one selected from the group consisting of indium nitrate, indium sulfate, indium sulfamate, indium fluoride, indium oxide and indium hydroxide ( 6)
  • Te contained in the surface treatment liquid is at least one selected from the group consisting of telluric acid, potassium tellurate, sodium tellurate, telluric acid, potassium tellurite, sodium tellurite and tellurium dioxide.
  • Cu contained in the surface treatment liquid is selected from the group consisting of copper nitrate, copper sulfate, copper chloride, copper carbonate, basic copper carbonate, copper oxide, copper acetate, copper hydroxide, copper fluoride and copper sulfide.
  • the surface-treated metal material of the present invention exhibits such an effect is not clear, but the present inventor presumes as follows.
  • the amorphous film in the surface treatment film makes the corrosion resistance good, and the electrocoating with the electrodeposition coating is good due to the semiconductor particles existing in a predetermined form (exposure) with a predetermined coverage, particle diameter and density in the amorphous film. It is thought that it is.
  • the cationic electrodeposition when a predetermined potential is applied so that the metal material (object to be processed) becomes a cathode, the pH of the metal material surface (interface) increases, so that the paint aggregates and precipitates.
  • a film in which insulating zinc phosphate crystals are deposited in the form of particles is formed. Is formed. Therefore, when a predetermined voltage is applied, the insulating crystal becomes a resistance, and the current is concentrated in the gap between the crystals.
  • the current density is locally high and the pH of the metal material surface is greatly increased.
  • the electrodeposition paint is easily aggregated and deposited.
  • the agglomerated and deposited paint is fused as a coating film, it is considered that due to the high resistance of the coating film, the current sequentially goes to a place where the resistance is low, and as a result, a high throwing power is exhibited.
  • the presence of semiconductor particles in a predetermined manner in the amorphous film that ensures corrosion resistance causes the same action (current concentration) as the zinc phosphate film described above, and also exhibits high removability with electrodeposition coating. It is done.
  • the surface-treated metal material of the present invention is very useful because the coating film adhesion is improved. Furthermore, according to the metal surface treatment method of the present invention, a metal surface treatment solution that does not contain environmentally harmful components is used for a wide range of metal materials such as iron-based metal materials, zinc-based metal materials, and aluminum-based metal materials. In addition, since the surface adjustment step and the post-treatment step are not required, the treatment step can be shortened and space can be saved.
  • FIG. 1 is a schematic view showing an example of a cross-sectional structure of the surface-treated metal material of the present invention.
  • FIG. 2 is a schematic view showing another example of the cross-sectional structure of the surface-treated metal material of the present invention.
  • FIG. 3 is an SEM image of the surface treatment film measured in Comparative Example 1, Example 1 and Example 2.
  • FIG. 4 is a sketch drawing of a box used for the throwing power test of electrodeposition coating (four-sheet box test).
  • the surface-treated metal material of the present invention and the metal surface treatment method of the present invention (hereinafter simply referred to as “the treatment method of the present invention”) will be described in detail.
  • the surface-treated metal material according to the first aspect of the present invention is a surface-treated metal material obtained by surface-treating a metal material, and has an amorphous film and a maximum average particle size of 5 to 300 nm on the surface of the metal material.
  • a surface treatment film containing the semiconductor particles, the surface coverage of the semiconductor particles in the surface treatment film is 10 to 90%, the semiconductor particles are exposed from the surface of the surface treatment film,
  • the surface-treated metal material has a semiconductor particle density of 5 to 10,000 particles / ⁇ m 2 .
  • FIG. 1 is a schematic diagram showing an example of the cross-sectional structure of the surface-treated metal material of the present invention
  • FIG. 2 is a schematic diagram showing another example of the cross-sectional structure of the surface-treated metal material of the present invention.
  • the surface-treated metal material 30 of the present invention has a surface-treated film 34 containing an amorphous film 32 and semiconductor particles 33 on the surface of the metal material 31.
  • Metal material 31 is not specifically limited, It applies suitably to an iron-type metal material, a zinc-type metal material, and an aluminum-type metal material.
  • the said iron-type metallic material is not specifically limited, For example, steel plates, such as a cold rolled steel plate and a hot rolled steel plate; Cast iron; Sintered material;
  • the said zinc-type metal material is not specifically limited, For example, zinc die-casting, zinc containing plating, etc. are mentioned.
  • Zinc-containing plating is plated with zinc or zinc and other metals (for example, alloys of at least one of nickel, iron, aluminum, manganese, chromium, magnesium, cobalt, lead, antimony, and inevitable impurities). is there.
  • the plating method is not particularly limited, and examples thereof include hot dipping, electroplating, and vapor deposition plating.
  • the aluminum-based metal material is not particularly limited, and examples thereof include aluminum alloy plate materials such as a 5000-series aluminum alloy and a 6000-series aluminum alloy; an aluminum alloy die-cast represented by ADC-12;
  • two or more kinds of metal materials can be surface-treated at the same time.
  • the surface treatment may be performed in a state in which different kinds of metals are not in contact with each other, and in a state in which different kinds of metals are joined and contacted by a joining method such as welding, adhesion, or riveting. May be processed.
  • the surface treatment film 34 is a mixed film in which the semiconductor particles 33 are present in the amorphous film 32 in a predetermined form (exposed) with a predetermined coverage, particle diameter, and density.
  • the method for forming the surface treatment film 34 is not particularly limited. As shown in the treatment method of the present invention, which will be described later, a predetermined surface treatment liquid is brought into contact with the metal material 31 to form the metal material 31. It is preferable that the surface is formed by chemical conversion treatment.
  • the amorphous film 32 is a main component constituting the surface treatment film 34 and is considered to be a part that ensures good corrosion resistance as described above.
  • the amorphous film preferably contains at least one element selected from the group consisting of Zr, Ti, and Hf, and contains these elements as oxides and / or hydroxides. More preferred. Of these, zirconium oxides and / or hydroxides are preferable because a uniform and dense film structure can be obtained and the surface-treated metal material of the present invention has better corrosion resistance.
  • the amount of the element in terms of the element contained in the amorphous film is preferably 5 to 200 mg / m 2 , more preferably 10 to 100 mg / m 2 .
  • the adhesion amount is within this range, the corrosion resistance of the surface-treated metal material of the present invention becomes better.
  • the film thickness of the amorphous film 32 is not particularly limited, but is preferably 3 to 300 nm, more preferably 20 to 200 nm.
  • the semiconductor particles 33 are other main components constituting the surface treatment film 34 and, as described above, are considered to be portions that ensure good removability with electrodeposition coating.
  • the semiconductor particle 33 has a particle size described later among substances having an electric conductivity of about 10 3 to 10 ⁇ 10 S / cm between the metal and the insulator.
  • the semiconductor particle 33 preferably contains at least one element selected from the group consisting of Sn, In, Te and Cu, and contains these elements as oxides. More preferably, as shown in FIG. 2, it is more preferable that these elements are contained as the core 35 and the periphery is covered with the oxide. The presence or absence of the core 35 shown in FIG. 2 can be measured by X-ray photoelectron spectroscopy.
  • the amount of the element contained in the semiconductor particles in terms of element is preferably 1 to 100 mg / m 2 , more preferably 3 to 60 mg / m 2 .
  • the surface-treated metal material of the present invention has better electrodeability with electrodeposition coating.
  • the maximum average particle size of the semiconductor particles 33 is 5 to 300 nm, and preferably 50 to 200 nm.
  • the maximum average particle diameter refers to a value obtained by measuring the maximum particle diameter of all the particles present in the measurement range of 1 ⁇ m 2 using a scanning electron microscope and calculating the average of those measured values.
  • the surface coverage of the semiconductor particles 33 in the surface treatment film 34 is 10 to 90%, preferably 20 to 80%, and more preferably 30 to 70%. .
  • the surface coverage in the surface treatment film 34 can also be referred to as the abundance ratio of the semiconductor particles 33 in the surface treatment film 34.
  • the surface treatment film of the surface treatment metal material 30 The surface on which the surface 34 is formed is observed with a scanning electron microscope to measure the geometric measurement area of the surface treatment film 34 and the semiconductor particles 33, and the ratio thereof (the semiconductor particles 33 / the surface treatment film 34). ).
  • the surface coverage of the surface treatment film 34 is equal to the coverage of the semiconductor particles 33 on the surface of the metal material 31. The same.
  • the maximum average particle diameter and surface coverage of the semiconductor particles can be adjusted by the elements forming the semiconductor particles. Specifically, when the semiconductor particles contain Te as a main component, it becomes easy to make the maximum average particle size in the range of 5 to 100 nm and the surface coverage in the range of 60 to 90%. Similarly, when the semiconductor particles contain In as a main component, it becomes easy to make the maximum average particle size in the range of 80 to 180 nm and the surface coverage in the range of 50 to 70%. Similarly, when the semiconductor particles contain Sn as a main component, it becomes easy to make the maximum average particle size in the range of 120 to 200 nm and the surface coverage in the range of 40 to 60%.
  • the semiconductor particle Cu when the semiconductor particle Cu is contained as a main component, it becomes easy to make the maximum average particle size in the range of 150 to 300 nm and the surface coverage in the range of 10 to 50%.
  • the maximum average particle diameter and the surface coverage can be appropriately adjusted within the range other than the above.
  • the maximum average particle size can be reduced by containing Te, and the maximum average particle size can be increased by containing copper.
  • the maximum average particle diameter and surface coverage of the semiconductor particles are the composition, pH, temperature, concentration of the semiconductor particles described later, and the contact time of the processing liquid in the processing method of the present invention described later. Can be adjusted. Specifically, the surface coverage can be lowered by adding a chelating agent described later to the processing solution of the present invention described later. Moreover, the maximum average particle diameter can be reduced and the surface coverage can be lowered by adding an organic substance to be described later, for example, an amino group-containing compound. In addition, when the treatment is performed in a relatively high pH region (pH of about 3.5 or more), it is possible to increase the maximum average particle diameter and increase the surface coverage. Similarly, when the treatment is performed in a relatively high temperature range (about 40 ° C.
  • the maximum average particle size can be increased and the surface coverage can be increased.
  • the treatment is performed at a higher concentration of the semiconductor particles, it is possible to increase the maximum average particle size and increase the surface coverage.
  • the treatment time is increased (about 120 seconds or more), it is possible to increase the maximum average particle size and increase the surface coverage.
  • the semiconductor particles 33 are exposed from the surface of the surface treatment film 34, and the density thereof is 5 to 10,000 particles / ⁇ m 2 .
  • the existence of the semiconductor particles 33 exposed from the surface of the surface treatment film 34 means that the elements contained in the amorphous film 32 and the elements contained in the semiconductor particles 33 are energy dispersive X-ray spectroscopy. It can be confirmed by analyzing by law.
  • the density is a value obtained by observing the surface of the surface-treated metal material 30 on which the surface-treated film 34 is formed with a scanning electron microscope and measuring the number of the semiconductor particles 32 present at 1 ⁇ m 2. is there.
  • the density can be adjusted by the elements forming the semiconductor particles. Specifically, when the semiconductor particles contain Te as a main component, it becomes easy to set the density to a range of 1000 to 10,000 particles / ⁇ m 2 . Similarly, when the semiconductor particles contain Sn as a main component, it becomes easy to set the density to a range of 100 to 1000 particles / ⁇ m 2 . Similarly, when the semiconductor particles contain In as a main component, it becomes easy to set the density to a range of 100 to 500 particles / ⁇ m 2 . Similarly, when the semiconductor particle Cu is contained as a main component, it becomes easy to set the density in the range of 5 to 100 particles / ⁇ m 2 .
  • the density can be appropriately adjusted in a range other than the above by using the semiconductor particles in various proportions.
  • the density can be increased by adding Te, and the density can be decreased by adding copper.
  • the density can be reduced.
  • processing is performed in a relatively high temperature range (about 40 ° C. or higher), the density can be reduced.
  • the density can be increased.
  • the density can be increased by increasing the processing time (about 120 seconds or more).
  • the surface-treated metal material according to the second aspect of the present invention has a size of 150 mm in length and 70 mm in width, and has a hole having a diameter of 8 mm at a position 50 mm from the lower end of the center in the horizontal direction.
  • a surface-treated metal material and a fourth surface-treated metal material having a size of 150 mm in length and 70 mm in width are installed in parallel in this order at intervals of 20 mm, Each of the first to fourth surface-treated metal materials is immersed in an electrodeposition coating bath from the lower end to a position of 95 mm, A counter electrode is installed on the surface of the first surface-treated metal material where the second surface-treated metal material is not installed, and electrodeposition coating is performed under the following conditions (a) to (c): A coating thickness ratio (A / G) of the surface on the counter electrode side (A surface) of the first surface-treated metal material and the surface on the counter electrode side (G surface) of the fourth surface-treated metal material is 3.0.
  • a surface-treated metal material that can be: (A) Electrodeposition paint temperature: 28 ° C (B) Electrolytic conditions: A voltage is applied linearly from 0 V to 230 V over 30 seconds and then held at 230 V for 150 seconds. (C) Firing conditions: 170 ° C., 20 minutes
  • FIG. 4 is a sketch drawing of a box used for the throwing power test of electrodeposition coating (four-sheet box test).
  • the four-box 1 is assembled by first to third surfaces having a length of 150 mm and a width of 70 mm, and a hole having a diameter of 8 mm at a position 50 mm from the lower end of the center in the horizontal direction.
  • the treated metal materials 12 to 14 and the fourth surface treated metal material 15 having a size of 150 mm in length and 70 mm in width were arranged in parallel in this order with an interval of 20 mm.
  • the both sides and lower surface of the surface-treated metal materials 12 to 15 are closed with the vinyl chloride plates 21 to 23, and the vinyl chloride plates 21 to 23 and the surface-treated metal materials 12 to 15 are fixed with the adhesive tape. It was.
  • the counter electrode (not shown) is a stainless steel plate (SUS304) 70 ⁇ 150 ⁇ 0.55 mm sealed on one side with an insulating tape.
  • the surface of the electrodeposition paint is immersed in a surface treated metal material 12-15 and the counter electrode is 95 mm. Controlled to a position.
  • the electrodeposition coating was performed while maintaining the temperature of the electrodeposition paint at 28 ° C. and stirring with a stirrer. All of the four surface-treated metal materials 12 to 15 were short-circuited, and a coating film was electrolytically deposited by a cathode electrolysis method using a rectifier with the counter electrode as an anode. The electrolysis was performed by applying a voltage linearly from 0V to 230V over 30 seconds in the cathode direction and then maintaining 230V for 150 seconds. After the electrolysis, each of the surface-treated metal materials 12 to 15 was washed with water and baked at 170 ° C. for 20 minutes to form a coating film.
  • the surface-treated metal material according to the second aspect of the present invention has a coating thickness ratio (A / G) of 3.0 or less.
  • at least the surface-treated metal material according to the first aspect of the present invention described above has a coating film thickness ratio (A / G) of 3.0 or less.
  • the coating film thickness ratio (A / G) is 3.0 or less, the surface-treated metal material is excellent in both corrosion resistance and reversibility with electrodeposition coating. I found.
  • the treatment method of the present invention contains at least one element selected from the group consisting of Zr, Ti and Hf in the metal material, and at least one selected from the group consisting of Sn, In, Te and Cu Metal surface treatment method for obtaining the surface-treated metal material of the present invention described above by contacting a surface treatment liquid containing an element (hereinafter referred to formally as "treatment liquid of the present invention") at a flow rate of 1 to 10 cm / second.
  • the flow rate refers to the flow rate of the surface treatment liquid brought into contact with the surface of the metal material.
  • the flow rate can be adjusted by the dipping rate.
  • the speed of the surface treatment liquid at the contact interface can be adjusted by oscillating the pump for circulating the treatment liquid of the present invention or the metal material that is the object to be treated.
  • the method of bringing the treatment liquid of the present invention into contact with the metal material is not particularly limited as long as the flow rate of the surface treatment liquid is in the range of 1 to 10 cm / second, and examples include immersion treatment.
  • the temperature of the treatment liquid of the present invention at the time of contact is preferably 30 to 60 ° C.
  • the contact time is preferably about 2 to 600 seconds, although it depends on the material and structure of the metal material, the concentration of the treatment liquid of the present invention, and the treatment temperature. For example, in the case of a complex structure typified by an automobile body, liquid replacement inside the bag structure is necessary, and therefore it is preferable that the contact is made for 30 to 120 seconds.
  • the metal material surface-treated by the treatment method of the present invention forms the above-mentioned surface-treated film excellent in corrosion resistance and electrodeposition with electrodeposition coating. This is because when the flow rate of the surface treatment liquid is 1 to 10 cm / second, the pH at the interface between the treatment liquid of the present invention and the metal material can be maintained in a relatively high range (3.5 or more). This is considered to be because the etching reaction occurring at this interface proceeds gently. Moreover, after a surface treatment film is formed, it can be subjected to electrodeposition coating without being dried after being washed with water or deionized water as needed.
  • the treatment liquid of the present invention contains at least one element selected from the group consisting of Zr, Ti and Hf, and contains at least one element selected from the group consisting of Sn, In, Te and Cu. It is a surface treatment liquid.
  • the treatment liquid of the present invention contains 1 to 10,000 ppm of at least one element selected from the group consisting of Zr, Ti and Hf from the viewpoint of further improving the corrosion resistance and the ability of electrodeposition coating, and Sn. It is preferable to contain 1 to 5000 ppm of at least one element selected from the group consisting of In, Te and Cu.
  • Sn contained in the treatment liquid of the present invention is selected from the group consisting of tin nitrate, tin sulfate and tin fluoride. It is preferable to contain as at least one kind.
  • in contained in the treatment liquid of the present invention is indium nitrate, indium sulfate, indium sulfamate, indium fluoride, It is preferably contained as at least one selected from the group consisting of indium oxide and indium hydroxide.
  • Te contained in the treatment liquid of the present invention is telluric acid, potassium tellurate, sodium tellurate, tellurite. And at least one selected from the group consisting of potassium tellurite, sodium tellurite and tellurium dioxide.
  • Cu contained in the treatment liquid of the present invention is copper nitrate, copper sulfate, copper chloride, copper carbonate, basic It is preferably contained as at least one selected from the group consisting of copper carbonate, copper oxide, copper acetate, copper hydroxide, copper fluoride and copper sulfide.
  • the treatment liquid of the present invention preferably contains a fluorine compound from the viewpoint of promoting an etching reaction occurring at the interface between the treatment liquid of the present invention and the metal material.
  • a fluorine compound include hydrofluoric acid, ammonium fluoride, ammonium hydrogen fluoride, germanium fluoride, potassium fluoride, potassium hydrogen fluoride, iron fluoride, sodium fluoride, and hydrogen fluoride. Sodium etc. are mentioned, These may be used individually by 1 type and may use 2 or more types together.
  • the treatment liquid of the present invention contains ions that are relatively easily reduced together with the fluorine compound. Further, from the same viewpoint, it is preferable to treat the treatment liquid of the present invention in the relatively high pH range (3.5 or more) in the presence of an oxidizing substance such as nitrate ions. This is because, at a high pH, the etching reaction occurring at the interface between the treatment liquid of the present invention and the metal material proceeds gently, and an amorphous film is likely to be formed. Further, due to the electron emission accompanying this etching reaction, Sn or Cu is reduced, and a metal nucleus is formed on the surface.
  • metal ions eluted by the etching reaction occurring at the interface between the treatment liquid of the present invention and the metal material, for example, Fe, Zn, Al, etc.
  • metal ions eluted by the etching reaction occurring at the interface between the treatment liquid of the present invention and the metal material for example, Fe, Zn, Al, etc.
  • Zr, Sn, etc. are contained, but contain Zr, Sn, etc.
  • the corrosion resistance can be further improved by positively adding metal ions and eutectating the metal.
  • polyvalent metal ions such as Mg, Si, Ca, V, Mn, Co, Ni, Y, Ag, Ba, Bi, and Ce can be added.
  • the processing liquid of this invention contains a metal chelating agent.
  • the metal chelating agent basically has the effect of increasing the stability of the treatment liquid of the present invention.
  • the pH increases.
  • the stability of the processing solution may be impaired due to the tendency. Therefore, it is preferable to contain a metal chelating agent in such a case.
  • the metal chelating agent examples include oxalic acid, tartaric acid, citric acid, malic acid, malonic acid, organic phosphonic acid, nitrilodiacetic acid (NTA), ethylenediaminetetraacetic acid (EDTA), and hydroxyethylenediamine.
  • NTA nitrilodiacetic acid
  • EDTA ethylenediaminetetraacetic acid
  • HEDTA triacetic acid
  • malic acid, malonic acid, organic phosphonic acid, HEDTA, and salts thereof, which do not affect the precipitation of Zr, Sn, etc., that is, the formation of the above-described surface treatment film, are preferable.
  • the content of the chelating agent is preferably 5 to 5000 mg / L, and more preferably 10 to 1000 mg / L.
  • the treatment liquid of the present invention can be added with an organic substance such as a resin within the range that does not impair the object of the present invention.
  • organic substances include amino group-containing compounds (for example, vinylamine, polyvinylamine, allylamine, polyallylamine, polyethyleneimine, etc.), vinyl alcohol, polyvinyl alcohol, urethane resin, polyester, acrylic acid, and polyacrylic acid. , Phenol, polyphenol, bisphenol, saccharides and derivatives thereof.
  • the pH of the treatment liquid of the present invention is preferably 2.0 to 6.0, more preferably 2.5 to 5.0, and still more preferably 3.0 to 4.5.
  • the pH is within this range, the deposition efficiency of Zr, Sn, etc. is improved, and the generation of sludge during continuous operation of the surface treatment can be suppressed.
  • the chemical used when it is necessary to adjust the pH of the treatment liquid, is not particularly limited.
  • specific examples of such agents include acids such as hydrochloric acid, sulfuric acid, nitric acid, hydrofluoric acid, boric acid, and organic acids; lithium hydroxide, potassium hydroxide, sodium hydroxide, calcium hydroxide, Examples include alkalis such as magnesium hydroxide, barium hydroxide, alkali metal salts, aqueous ammonia, ammonium hydrogen carbonate, ammonium salts, and amines.
  • cold-rolled steel plate size: 70 ⁇ 150 ⁇ 0.8 mm, trade name: SPCC (JIS 3141), manufactured by Partec), alloyed hot-dip galvanized steel plate (size: 70 ⁇ 150 ⁇ 0.8 mm, Product name: SGCC F06 MO (JIS G3302), manufactured by Partec Co., Ltd.) and aluminum alloy plate (size: 70 x 150 x 1.0 mm, product name: A5052P (JIS 4000), manufactured by Partec Co., Ltd.) It was.
  • the cold-rolled steel sheet is abbreviated as “SPC”, the galvannealed steel sheet as “GA”, and the aluminum alloy sheet as “AL”.
  • Example 1 A treatment liquid 1 for metal surface treatment was prepared, and the surface treatment film layer was formed by performing surface treatment of the three kinds of metal materials cleaned by the above-described method and a box described later.
  • the following components (A) to (C) were first added in this order so as to have the following concentrations, followed by stirring at room temperature for 20 minutes. Subsequently, it heated to predetermined temperature (35 degreeC), pH was adjusted to 4.5 using aqueous ammonia, and the metal surface treatment processing liquid 1 was obtained. Further, the surface treatment using the metal surface treatment solution 1 was performed under the surface treatment condition 1 described above. Thereafter, the metal material after the surface treatment was washed with water, deionized water, and electrodeposition coating was performed without drying, thereby forming a coating film.
  • Example 2 A treatment liquid 2 for metal surface treatment was prepared, and the surface treatment film layer was formed by performing the surface treatment of the three kinds of metal materials cleaned by the above-described method and the box described below.
  • the following components (A) to (D) were first added in this order so as to have the following concentrations, followed by stirring at room temperature for 20 minutes. Subsequently, it heated to predetermined temperature (40 degreeC), pH was adjusted to 3.0 using aqueous ammonia, and the metal surface treatment processing liquid 2 was obtained.
  • the surface treatment using the metal surface treatment solution 2 was performed under the surface treatment condition 2 described above. Thereafter, the metal material after the surface treatment was washed with water, deionized water, and electrodeposition coating was performed without drying, thereby forming a coating film.
  • Example 3 A metal surface treatment solution 3 was prepared, and surface treatment was performed on the three types of metal materials cleaned by the above-described method and a box described later to form a surface treatment film layer.
  • the following components (A) to (F) were first added in this order so as to have the following concentrations, followed by stirring at room temperature for 20 minutes. Subsequently, it heated to predetermined temperature (35 degreeC), pH was adjusted to 4.0 using ammonia water, and the metal surface treatment processing liquid 3 was obtained. Further, the surface treatment using the metal surface treatment liquid 3 was performed under the surface treatment condition 1 described above. Thereafter, the metal material after the surface treatment was washed with water, deionized water, and electrodeposition coating was performed without drying, thereby forming a coating film.
  • Example 4 A metal surface treatment treatment solution 4 was prepared, and surface treatment was performed on the three types of metal materials cleaned by the above-described method and a box described later to form a surface treatment film layer.
  • the following components (A) to (E) were first added in this order so as to have the following concentrations, followed by stirring at room temperature for 20 minutes. Subsequently, it heated to predetermined temperature (35 degreeC), pH was adjusted to 3.5 using aqueous ammonia, and the metal surface treatment processing liquid 4 was obtained. Further, the surface treatment using the metal surface treatment solution 4 was performed under the surface treatment condition 1 described above. Thereafter, the metal material after the surface treatment was washed with water, deionized water, and electrodeposition coating was performed without drying, thereby forming a coating film.
  • Example 5 A treatment liquid 5 for metal surface treatment was prepared, and the surface treatment film layer was formed by performing surface treatment of the three kinds of metal materials cleaned by the above-described method and a box described later.
  • the following components (A) to (E) were added in this order so as to have the following concentrations, followed by stirring at room temperature for 20 minutes. Subsequently, it heated to predetermined temperature (40 degreeC), pH was adjusted to 4.0 using aqueous ammonia, and the metal surface treatment processing liquid 5 was obtained. Further, the surface treatment using the metal surface treatment solution 5 was performed under the surface treatment condition 2 described above. Thereafter, the metal material after the surface treatment was washed with water, deionized water, and electrodeposition coating was performed without drying, thereby forming a coating film.
  • Example 6 A treatment liquid 6 for metal surface treatment was prepared, and the surface treatment film layer was formed by performing surface treatment of the three kinds of metal materials cleaned by the above-described method and a box described later.
  • the following components (A) to (E) were added in this order so as to have the following concentrations, followed by stirring at room temperature for 20 minutes. Subsequently, it heated to predetermined temperature (35 degreeC), pH was adjusted to 4.0 using ammonia water, and the metal surface treatment processing liquid 6 was obtained. Further, the surface treatment using the metal surface treatment liquid 6 was performed under the surface treatment condition 1 described above. Thereafter, the metal material after the surface treatment was washed with water, deionized water, and electrodeposition coating was performed without drying, thereby forming a coating film.
  • Example 7 A metal surface treatment solution 7 was prepared, and the surface treatment film layer was formed by performing the surface treatment of the three types of metal materials cleaned by the above-described method and the box described below.
  • the following components (A) to (D) were first added in this order so as to have the following concentrations, followed by stirring at room temperature for 20 minutes. Subsequently, it heated to predetermined temperature (35 degreeC), pH was adjusted to 4.0 using ammonia water, and the metal surface treatment processing liquid 7 was obtained. Further, the surface treatment using the metal surface treatment solution 7 was performed under the surface treatment condition 1 described above. Thereafter, the metal material after the surface treatment was washed with water, deionized water, and electrodeposition coating was performed without drying, thereby forming a coating film.
  • Example 9 A metal surface treatment treatment liquid 9 was prepared, and surface treatment was performed on the three types of metal materials cleaned by the above-described method and a box described below to form a surface treatment film layer.
  • the following components (A) to (D) were first added in this order so as to have the following concentrations, followed by stirring at room temperature for 20 minutes. Subsequently, it heated to predetermined temperature (35 degreeC), pH was adjusted to 4.5 using aqueous ammonia, and the metal surface treatment processing liquid 9 was obtained. Further, the surface treatment using the metal surface treatment liquid 9 was performed under the surface treatment condition 1 described above. Thereafter, the metal material after the surface treatment was washed with water, deionized water, and electrodeposition coating was performed without drying, thereby forming a coating film.
  • Example 11 A metal surface treatment solution 11 was prepared, and surface treatment was performed on the three types of metal materials cleaned by the above-described method and a box described later, thereby forming a surface treatment film layer.
  • the following components (A) to (D) were first added in this order so as to have the following concentrations, followed by stirring at room temperature for 20 minutes. Subsequently, it heated to predetermined temperature (35 degreeC), pH was adjusted to 4.0 using aqueous ammonia, and the metal surface treatment processing liquid 11 was obtained. Further, the surface treatment using the metal surface treatment solution 11 was performed under the surface treatment condition 1 described above. Thereafter, the metal material after the surface treatment was washed with water, deionized water, and electrodeposition coating was performed without drying, thereby forming a coating film.
  • Example 12 A treatment liquid 12 for metal surface treatment was prepared, and surface treatment of the three types of metal materials cleaned by the above-described method and a box described later was performed to form a surface treatment film layer.
  • the following components (A) to (D) were first added in this order so as to have the following concentrations, followed by stirring at room temperature for 20 minutes. Subsequently, it heated to predetermined temperature (35 degreeC), pH was adjusted to 3.0 using ammonia water, and the metal surface treatment processing liquid 12 was obtained. Further, the surface treatment using the metal surface treatment liquid 12 was performed under the surface treatment condition 1 described above. Thereafter, the metal material after the surface treatment was washed with water, deionized water, and electrodeposition coating was performed without drying, thereby forming a coating film.
  • a metal surface treatment treatment liquid 13 was prepared, and the surface treatment film layer was formed by performing the surface treatment of the three types of metal materials cleaned by the above-described method and the box described below.
  • the following components (A) to (D) were first added in this order so as to have the following concentrations, followed by stirring at room temperature for 20 minutes. Subsequently, it heated to predetermined temperature (35 degreeC), pH was adjusted to 3.5 using aqueous ammonia, and the metal surface treatment processing liquid 13 was obtained. Further, the surface treatment using the metal surface treatment liquid 13 was performed under the surface treatment condition 1 described above. Thereafter, the metal material after the surface treatment was washed with water, deionized water, and electrodeposition coating was performed without drying, thereby forming a coating film.
  • a metal surface treatment solution 15 was prepared, and the surface treatment film layer was formed by performing the surface treatment of the three types of metal materials cleaned by the above-described method and the box described below.
  • preparation of the metal surface treatment solution 15 was performed by first adding the following component (A) so as to have the following concentration and stirring at room temperature for 20 minutes. Subsequently, it heated to predetermined temperature (40 degreeC), pH was adjusted to 7.0 using nitric acid water, and the metal surface treatment processing liquid 15 was obtained. Further, the surface treatment using the metal surface treatment solution 15 was performed under the surface treatment condition 1 described above. Thereafter, the metal material after the surface treatment was dried without being washed with water by the method described above, and then electrodeposition coating was performed to form a coating film.
  • component (A) so as to have the following concentration and stirring at room temperature for 20 minutes. Subsequently, it heated to predetermined temperature (40 degreeC), pH was adjusted to 7.0 using nitric acid water, and the metal surface treatment processing liquid 15 was obtained. Further, the surface treatment using
  • a treatment liquid 16 for metal surface treatment was prepared, and the surface treatment film layer was formed by performing the surface treatment of the three types of metal materials cleaned by the above-described method and the box described below.
  • the following components (A) to (D) were first added in this order so as to have the following concentrations, followed by stirring at room temperature for 20 minutes. Subsequently, it heated to predetermined temperature (35 degreeC), pH was adjusted to 7.0 using aqueous ammonia, and the metal surface treatment processing liquid 16 was obtained. Further, the surface treatment using the metal surface treatment liquid 16 was performed under the surface treatment condition 1 described above. Thereafter, the metal material after the surface treatment was washed with water, deionized water, and electrodeposition coating was performed without drying, thereby forming a coating film.
  • the surface treatment film layer was formed by performing surface treatment of the three types of metal materials cleaned by the above-described method and the box described below.
  • the surface treatment using the metal surface treatment solution 12 was performed under the surface treatment condition 2 described above, and copper and tellurium were precipitated in the form of particles.
  • surface treatment was performed using the metal surface treatment solution 14 under the following conditions. Thereafter, the metal material after the surface treatment was dried without being washed with water by the method described above, and then electrodeposition coating was performed to form a coating film.
  • Treatment time 300 seconds
  • Contact method Immersion (4) Flow velocity during contact: 5 cm / second
  • ⁇ Metal surface treatment liquid 17> (A) Zirconia sol (ZR-40BL, manufactured by Nissan Chemical Industries): 1000 ppm
  • Metal adhesion after surface treatment The metal adhesion amount (mg / m 2 ) in the surface-treated metal material after the surface treatment was quantified with a fluorescent X-ray analyzer (ZSX Primus, manufactured by Rigaku Corporation). The metal material used for the measurement was washed with water after the surface treatment, washed with deionized water, and dried in cold air.
  • the film thickness of the metal material after electrodeposition coating is shown as follows: when the metal material is SPC or GA, an electromagnetic film thickness meter (LZ-200, manufactured by Kett Science Laboratory), and when the metal material is AL, the vortex It measured using the electric current type film thickness meter, and confirmed that it was 20 micrometers.
  • the coated surface of the electrodeposited metal material was cross-cut and subjected to a salt spray test (JIS-Z2371), and the one-side swollen width of the cross-cut portion after 1000 hours was measured. In general, it can be evaluated as good if it is 3 mm or less for a cold-rolled steel sheet, good if it is 3 mm or less for an galvannealed steel sheet, and good if it is 2 mm or less for an aluminum alloy sheet.
  • FIG. 4 is a sketch drawing of a box used for the throwing power test of electrodeposition coating (four-sheet box test).
  • four metal plates 12 to 15 of the same kind were prepared, and a hole 10 having a diameter of 8 mm was formed in three of the metal plates 12 to 14 among them. The position of the hole 10 was 50 mm from the center in the lateral direction and from the lower end.
  • the four metal plates 12 to 15 were assembled with a clearance of 20 mm as shown in FIG.
  • the both sides and the lower surface of the metal plates 12 to 15 were closed with the vinyl chloride plates 21 to 23, and the vinyl chloride plates 21 to 23 and the metal plates 12 to 15 were fixed with the adhesive tape, and the four-sheet box 1 was assembled.
  • the assembled box was subjected to the surface treatment shown in each of the above experimental examples, and electrodeposition coating was performed without drying.
  • the counter electrode a stainless steel plate (SUS304) 70 ⁇ 150 ⁇ 0.55 mm whose one surface was sealed with an insulating tape was used.
  • the liquid level of the electrodeposition paint was controlled at a position where the metal plates 12 to 15 and the counter electrode were immersed 90 mm.
  • Electrodeposition coating was carried out with the temperature of the electrodeposition paint maintained at 28 ° C. and stirring with a stirrer. After all of the four metal plates 12 to 15 were short-circuited, a coating film was electrolytically deposited by a cathode electrolysis method using a rectifier with the counter electrode as an anode.
  • the electrolysis was performed by applying a voltage linearly from 0 V to 230 V in the direction of the cathode over 30 seconds, and then maintaining 230 V for 150 seconds.
  • each of the metal plates 12 to 15 was washed with water and baked at 170 ° C. for 20 minutes to form a coating film.
  • the counter electrode side of the metal plate 12 closest to the counter electrode is the A surface
  • the counter electrode side of the metal plate 15 furthest from the counter electrode is the G surface
  • the coating thickness of the A surface and the G surface is measured, and the ratio of A / G is determined. It was used as an indicator of the throwing power of electrodeposition coating.
  • the film thickness of the coating film in the four-box test is as follows.
  • the electromagnetic film thickness meter (LZ-200, manufactured by Kett Science Laboratory Co., Ltd.) is used. It measured using the electric current type film thickness meter.
  • the G-side coating film thickness is preferably 7 ⁇ m or more, and an A / G ratio of 2.0 to 2.5 is judged to be good.

Abstract

A surface-treated metallic material having excellent corrosion resistance and excellent suitability for coating by electrodeposition, and a method of metal surface treatment for producing the material.  The surface-treated metallic material, which is obtained by treating a surface of a metallic material, comprises the metallic material and, formed on the surface, a surface treatment coating film comprising an amorphous coating film and semiconductor particles having a maximum average particle diameter of 5-300 nm, wherein the surface treatment coating film has a proportion of surface coverage by the semiconductor particles of 10-90%, the semiconductor particles are exposed on the surface of the surface treatment coating film, and the semiconductor particles are present at a density of 5-10,000 particles/µm2.

Description

表面処理金属材料および金属表面処理方法Surface treatment metal material and metal surface treatment method
 本発明は、自動車車体に代表される金属材料の表面に耐食性に優れる表面処理皮膜を形成させた表面処理金属材料およびそれを製造する金属表面処理方法に関する。 The present invention relates to a surface-treated metal material in which a surface-treated film having excellent corrosion resistance is formed on the surface of a metal material typified by an automobile body, and a metal surface treatment method for producing the surface-treated metal material.
 金属表面に塗装後の耐食性に優れる表面処理皮膜を析出させる手法としては、リン酸亜鉛処理法やクロメート処理法が現在一般に用いられている。
 ここで、リン酸亜鉛処理法では、熱延鋼板や冷延鋼板等の鋼、亜鉛めっき鋼板および一部のアルミニウム合金表面に耐食性に優れる皮膜を析出させることができる。
 しかしながら、リン酸亜鉛処理を行う際には、反応の副生成物であるスラッジの発生が避けられず、かつ、アルミニウム合金の種類によっては塗装後の耐糸錆性を十分に確保することができない。
 また、アルミニウム合金に対しては、クロメート処理を施すことによって十分な塗装後の性能を確保することが可能である。
 しかしながら、昨今の環境規制から処理液中に有害な6価クロムを含むクロメート処理は敬遠される方向にある。
 そこで、処理液中に有害成分を含まない表面処理方法として、種々の方法が提案されている。
As a method for depositing a surface treatment film having excellent corrosion resistance after coating on a metal surface, a zinc phosphate treatment method or a chromate treatment method is currently generally used.
Here, in the zinc phosphate treatment method, a film having excellent corrosion resistance can be deposited on the surface of steel such as hot rolled steel sheet and cold rolled steel sheet, galvanized steel sheet and some aluminum alloys.
However, when zinc phosphate treatment is performed, the generation of sludge, which is a by-product of the reaction, is unavoidable, and depending on the type of aluminum alloy, sufficient resistance to yarn rust after coating cannot be ensured. .
Moreover, it is possible to ensure sufficient performance after coating by applying chromate treatment to the aluminum alloy.
However, due to recent environmental regulations, chromate treatment containing hexavalent chromium harmful to the treatment liquid is in a direction to be avoided.
Therefore, various methods have been proposed as surface treatment methods that do not contain harmful components in the treatment liquid.
 例えば、特許文献1には、「ジルコニウム、チタン及びハフニウムからなる群より選ばれる少なくとも一種、フッ素、並びに、密着性及び耐食性付与剤からなる化成処理剤であって、前記密着性及び耐食性付与剤は、
 亜鉛、マンガン、及び、コバルトイオンからなる群より選ばれる少なくとも一種の金属イオン(A)1~5000ppm(金属イオン濃度)、
 アルカリ土類金属イオン(B)1~5000ppm(金属イオン濃度)、
 周期律表第三属金属イオン(C)1~1000ppm(金属イオン濃度)、
 銅イオン(D)0.5~100ppm(金属イオン濃度)、及び、
 ケイ素含有化合物(E)1~5000ppm(ケイ素成分として)
 からなる群より選ばれる少なくとも一種であることを特徴とする化成処理剤。」、および、「請求項1又は2記載の化成処理剤により形成された化成皮膜を表面に有することを特徴とする表面処理金属。」が記載されている([請求項1][請求項3])。
For example, Patent Document 1 discloses a chemical conversion treatment agent composed of “at least one selected from the group consisting of zirconium, titanium, and hafnium, fluorine, and an adhesion and corrosion resistance imparting agent, wherein the adhesion and corrosion resistance imparting agent includes: ,
1 to 5000 ppm (metal ion concentration) of at least one metal ion (A) selected from the group consisting of zinc, manganese, and cobalt ions,
Alkaline earth metal ions (B) 1 to 5000 ppm (metal ion concentration),
Periodic Table III metal ions (C) 1-1000ppm (metal ion concentration),
Copper ion (D) 0.5-100 ppm (metal ion concentration), and
Silicon-containing compound (E) 1 to 5000 ppm (as silicon component)
A chemical conversion treatment agent characterized by being at least one selected from the group consisting of: And "a surface-treated metal having a chemical conversion film formed on the surface thereof by the chemical conversion treatment agent according to claim 1 or 2" ([Claim 1] and [Claim 3]. ]).
 また、特許文献2では、本出願人により、「次の成分(A)、成分(B)および成分(C):
 (A)Ti、Zr、HfおよびSiからなる群から選ばれる少なくとも1種の元素を含む化合物
 (B)ナフタレンスルホン酸、ナフタレンスルホン酸-ホルムアルデヒド縮合物、スチレンスルホン酸、ポリスチレンスルホン酸、ビニルアミン、ポリビニルアミン、アリルアミン、ポリアリルアミンおよびこれらの誘導体からなる群から選ばれる少なくとも1種の化合物
 (C)Ag、Al、Cu、Fe、Mn、Mg、Ni、Co、Zn、CaおよびSrからなる群から選ばれる少なくとも1種の金属元素を含む化合物
 を含有し、前記成分(B)の合計質量濃度Bと前記成分(A)中の前記元素の合計質量濃度Aの比であるK1=B/Aが、0.01≦K1≦50を満足し、前記成分(A)の化合物中の前記元素の合計質量濃度Aが5~10000mg/Lであり、前記成分(C)の前記化合物中の前記金属元素の合計質量濃度が1~50000mg/Lである、金属表面処理用処理液。」、「金属材料に、請求項4~10のいずれかに記載の金属表面処理用処理液を接触させる処理液接触工程を有する、金属表面処理方法。」、および、「鉄系金属材料表面に、請求項12~17のいずれかに記載の金属表面処理方法によって形成された、前記成分(A)の前記元素を含有し、かつ、前記元素換算の付着量が20mg/m2以上である表面処理皮膜層を有する、金属材料。」が提案されている([請求項4][請求項12][請求項18])。
Moreover, in patent document 2, this applicant says "The following component (A), component (B), and component (C):
(A) Compound containing at least one element selected from the group consisting of Ti, Zr, Hf and Si (B) Naphthalenesulfonic acid, naphthalenesulfonic acid-formaldehyde condensate, styrenesulfonic acid, polystyrenesulfonic acid, vinylamine, polyvinyl At least one compound selected from the group consisting of amine, allylamine, polyallylamine and derivatives thereof (C) Selected from the group consisting of Ag, Al, Cu, Fe, Mn, Mg, Ni, Co, Zn, Ca and Sr K1 = B / A, which is a ratio of the total mass concentration B of the component (B) and the total mass concentration A of the element in the component (A), 0.01 ≦ K1 ≦ 50 is satisfied, and the total mass concentration A of the elements in the compound of the component (A) is 5 to 100 0 mg / L, and the total mass concentration of the metal element in the compound is 1 ~ 50000mg / L, the metal surface treatment processing solution of the component (C). "A metal surface treatment method comprising a treatment liquid contact step of bringing a treatment liquid for metal surface treatment according to any one of claims 4 to 10 into contact with a metal material." And "On the surface of an iron-based metal material." A surface formed by the metal surface treatment method according to any one of claims 12 to 17 and containing the element of the component (A) and having an adhesion amount in terms of the element of 20 mg / m 2 or more. A metal material having a treated coating layer has been proposed ([Claim 4] [Claim 12] [Claim 18]).
 更に、特許文献3には、「ジルコニウムイオン、銅イオン、および、その他の金属イオンを含む、pHが1.5~6.5のカチオン電着塗装用金属表面処理液であって、
 前記その他の金属イオンが、錫イオン、インジウムイオン、アルミニウムイオン、ニオブイオン、タンタルイオン、イットリウムイオン、セリウムイオンからなる群から少なくとも1つ選ばれるものであって、
 前記ジルコニウムイオンの濃度が10~10000ppmであり、
 前記ジルコニウムイオンに対する銅イオンの濃度比が質量換算で0.005~1であり、
 前記その他の金属イオンの銅イオンに対する濃度比が質量換算で0.1~1000である、カチオン電着塗装用金属表面処理液。」、「請求項1~4いずれかに記載の金属表面処理液を用いて、金属基材に対して表面処理を行う工程を含む、金属表面処理方法。」、および、「請求項5記載の方法で得られる、表面処理による皮膜が形成された金属基材。」が記載されている([請求項1][請求項5][請求項6])。
Further, Patent Document 3 discloses a metal surface treatment solution for cationic electrodeposition coating having a pH of 1.5 to 6.5, which contains zirconium ions, copper ions, and other metal ions,
The other metal ions are at least one selected from the group consisting of tin ions, indium ions, aluminum ions, niobium ions, tantalum ions, yttrium ions, and cerium ions,
The concentration of the zirconium ions is 10 to 10,000 ppm,
The concentration ratio of copper ions to zirconium ions is 0.005 to 1 in terms of mass,
A metal surface treatment solution for cationic electrodeposition coating, wherein the concentration ratio of the other metal ions to copper ions is 0.1 to 1000 in terms of mass. "A metal surface treatment method including a step of performing a surface treatment on a metal substrate using the metal surface treatment liquid according to any one of claims 1 to 4.", and "The method according to claim 5." A metal substrate on which a film is formed by surface treatment obtained by the method "is described ([Claim 1] [Claim 5] [Claim 6]).
特開2004-218073号公報JP 2004-218073 A 特開2005-264230号公報JP 2005-264230 A 特開2008-174832号公報JP 2008-174832 A
 本発明者は、上述した特許文献1~3に記載されている化成処理剤(金属表面処理用処理液)を用いて表面処理した表面処理金属(金属材料、金属基材)について鋭意研究した結果、鉄系金属材料、亜鉛系金属材料、アルミニウム系金属材料等の金属材料の種類によっては耐食性を改善できない場合や、袋構造物(例えば、自動車車体のような輸送用の構造物)には電着塗装時の塗装の付き廻り性(以下、「電着塗装付き廻り性」という。)が悪くなる場合があることを明らかとした。 As a result of intensive studies on the surface-treated metal (metal material, metal substrate) surface-treated with the chemical conversion treatment agent (metal surface treatment solution) described in Patent Documents 1 to 3 described above Depending on the type of metal material such as iron-based metal material, zinc-based metal material, and aluminum-based metal material, the corrosion resistance cannot be improved, or bag structures (for example, transportation structures such as automobile bodies) It has been clarified that there is a case where the throwing power of the paint at the time of wearing is deteriorated (hereinafter referred to as “the throwing ability with electrodeposition coating”).
 そこで、本発明は、耐食性および電着塗装付き廻り性のいずれにも優れる表面処理金属材料およびそれを製造する金属表面処理方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a surface-treated metal material that is excellent in both corrosion resistance and electrodeability with electrodeposition coating, and a metal surface treatment method for producing the same.
 そして、本発明者は、上記目的を達成すべく引き続き鋭意研究した結果、電着塗装付き廻り性には、被電着材料の表面の物理状態と化学状態が大きく影響することを新たに知見し、ジルコニウムやTi等を含有するアモルファス皮膜中に銅やスズ等を含有する半導体粒子が所定の被覆率等で所定の形態で存在する表面処理皮膜が金属材料表面に形成されることにより、耐食性および電着塗装付き廻り性のいずれにも優れる表面処理金属材料となることを見出し、本発明を完成させた。
 また、本発明者は、金属材料の表面に所定の流速で表面処理液を接触させることにより、ジルコニウムやTi等を含有するアモルファス皮膜中に銅やスズ等を含有する半導体粒子が所定の密度等で存在する表面処理皮膜が金属材料表面に形成されることを見出し、本発明を完成させた。
 すなわち、本発明は、以下の(1)~(13)を提供するものである。
As a result of continuing earnest research to achieve the above object, the present inventor has newly found that the physical state and the chemical state of the surface of the electrodeposited material have a great influence on the wearability of the electrodeposition coating. By forming a surface treatment film on the surface of the metal material in which a semiconductor particle containing copper, tin or the like is present in a predetermined form with a predetermined coverage in an amorphous film containing zirconium, Ti or the like, corrosion resistance and The present invention has been completed by finding that the surface-treated metal material is excellent in both of the reversibility with electrodeposition coating.
In addition, the present inventor brings the surface treatment liquid into contact with the surface of the metal material at a predetermined flow rate, so that the semiconductor particles containing copper, tin, etc. in the amorphous film containing zirconium, Ti, etc. have a predetermined density, etc. The present invention was completed by finding that the surface treatment film existing in (1) was formed on the surface of the metal material.
That is, the present invention provides the following (1) to (13).
 (1)金属材料を表面処理して得られる表面処理金属材料であって、
 上記金属材料の表面に、アモルファス皮膜および最大平均粒径が5~300nmの半導体粒子を含有する表面処理皮膜を有し、
 上記表面処理皮膜における上記半導体粒子の表面被覆率が10~90%であり、
 上記半導体粒子が上記表面処理皮膜の表面から露出しており、
 上記半導体粒子の密度が5~10000個/μm2である表面処理金属材料。
(1) A surface-treated metal material obtained by surface-treating a metal material,
The surface of the metal material has an amorphous film and a surface-treated film containing semiconductor particles having a maximum average particle diameter of 5 to 300 nm,
The surface coverage of the semiconductor particles in the surface treatment film is 10 to 90%,
The semiconductor particles are exposed from the surface of the surface treatment film,
A surface-treated metal material having a semiconductor particle density of 5 to 10,000 particles / μm 2 .
 (2)上記アモルファス皮膜がZr、TiおよびHfからなる群から選択される少なくとも1種の元素を含有し、
 上記半導体粒子がSn、In、TeおよびCuからなる群から選択される少なくとも1種の元素を含有する上記(1)に記載の表面処理金属材料。
(2) The amorphous film contains at least one element selected from the group consisting of Zr, Ti and Hf,
The surface-treated metal material according to (1), wherein the semiconductor particles contain at least one element selected from the group consisting of Sn, In, Te, and Cu.
 (3)上記アモルファス皮膜に含有する上記元素の元素換算の付着量が5~200mg/m2であり、
 上記半導体粒子に含有する上記元素の元素換算の付着量が1~100mg/m2である上記(2)に記載の表面処理金属材料。
(3) The element conversion amount of the element contained in the amorphous film is 5 to 200 mg / m 2 ;
The surface-treated metal material according to the above (2), wherein the amount of the element-converted adhesion of the element contained in the semiconductor particles is 1 to 100 mg / m 2 .
 (4)上記金属材料が、鉄系金属材料、亜鉛系金属材料およびアルミニウム系金属材料からなる群から選択される少なくとも1種の金属材料である上記(1)~(3)のいずれかに記載の表面処理金属材料。 (4) The metal material according to any one of (1) to (3), wherein the metal material is at least one metal material selected from the group consisting of iron-based metal materials, zinc-based metal materials, and aluminum-based metal materials. Surface treatment metal material.
 (5)縦150mm、横70mmの大きさで、横方向中央の下端から50mmの位置に直径8mmの穴を有する第1から第3の表面処理金属材料、および、縦150mm、横70mmの大きさの第4の表面処理金属材料を、それぞれ平行にこの順で20mmの間隔をおいて設置し、
 上記第1から第4の各表面処理金属材料を下端から95mmの位置まで電着塗装浴に浸漬し、
 上記第1表面処理金属材料の上記第2表面処理金属材料が設置されていない側の面側に対極を設置して下記(a)~(c)の条件で電着塗装を施し、
 上記第1表面処理金属材料の上記対極側の面(A面)および上記第4表面処理金属材料の上記対極側の面(G面)の塗膜厚の比(A/G)を3.0以下とすることができる、表面処理金属材料。
 (a)電着塗料温度:28℃
 (b)電解条件:30秒かけて0Vから230Vまで直線的に電圧を陰極方向に印加した後150秒間230Vで保持
 (c)焼成条件:170℃、20分間
(5) First to third surface-treated metal materials having a size of 150 mm in length and 70 mm in width and having a hole with a diameter of 8 mm at a position 50 mm from the lower end of the center in the horizontal direction, and a size of 150 mm in length and 70 mm in width The fourth surface-treated metal materials are installed in parallel in this order at intervals of 20 mm,
Each of the first to fourth surface-treated metal materials is immersed in an electrodeposition coating bath from the lower end to a position of 95 mm,
A counter electrode is installed on the surface of the first surface-treated metal material where the second surface-treated metal material is not installed, and electrodeposition coating is performed under the following conditions (a) to (c):
A coating thickness ratio (A / G) of the surface on the counter electrode side (A surface) of the first surface-treated metal material and the surface on the counter electrode side (G surface) of the fourth surface-treated metal material is 3.0. A surface-treated metal material that can be:
(A) Electrodeposition paint temperature: 28 ° C
(B) Electrolytic conditions: A voltage is applied linearly from 0 V to 230 V over 30 seconds and then held at 230 V for 150 seconds. (C) Firing conditions: 170 ° C., 20 minutes
 (6)金属材料に、Zr、TiおよびHfからなる群から選択される少なくとも1つの元素を含有し、かつ、Sn、In、TeおよびCuからなる群から選択される少なくとも1つの元素を含有する表面処理液を流速1~10cm/秒で接触させて、上記(1)~(5)のいずれかに記載の表面処理金属材料を得る金属表面処理方法。 (6) The metal material contains at least one element selected from the group consisting of Zr, Ti, and Hf, and contains at least one element selected from the group consisting of Sn, In, Te, and Cu. A metal surface treatment method for obtaining a surface-treated metal material according to any one of the above (1) to (5) by contacting a surface treatment solution at a flow rate of 1 to 10 cm / sec.
 (7)上記表面処理液が、Zr、TiおよびHfからなる群から選択される少なくとも1つの元素を1~10000ppm含有し、かつ、Sn、In、TeおよびCuからなる群から選択される少なくとも1つの元素を1~5000ppm含有し、pHが2.0~6.0である上記(6)に記載の金属表面処理方法。 (7) The surface treatment liquid contains 1 to 10,000 ppm of at least one element selected from the group consisting of Zr, Ti and Hf, and at least one selected from the group consisting of Sn, In, Te and Cu The metal surface treatment method according to the above (6), which contains 1 to 5000 ppm of one element and has a pH of 2.0 to 6.0.
 (8)上記表面処理液が含有するZrが、硫酸ジルコニウム、オキシ硫酸ジルコニウム、硫酸ジルコニウムアンモニウム、硝酸ジルコニウム、オキシ硝酸ジルコニウム、硝酸ジルコニウムアンモニウム、硫酸ジルコニウム、オキシ硫酸ジルコニウム、硫酸ジルコニウムアンモニウム、硝酸ジルコニウム、オキシ硝酸ジルコニウム、硝酸ジルコニウムアンモニウム、フルオロジルコニウム酸およびフルオロジルコニウム錯塩からなる群から選択される少なくとも1種として含有している上記(6)または(7)に記載の金属表面処理方法。 (8) Zr contained in the surface treatment liquid is zirconium sulfate, zirconium oxysulfate, ammonium zirconium sulfate, zirconium nitrate, zirconium oxynitrate, zirconium nitrate ammonium, zirconium sulfate, zirconium oxysulfate, ammonium zirconium sulfate, zirconium nitrate, oxy The metal surface treatment method according to the above (6) or (7), which is contained as at least one selected from the group consisting of zirconium nitrate, ammonium zirconium nitrate, fluorozirconic acid, and fluorozirconium complex salt.
 (9)上記表面処理液が含有するTiが、硫酸チタン、オキシ硫酸チタン、硫酸チタンアンモニウム、硝酸チタン、オキシ硝酸チタン、硝酸チタンアンモニウム、硫酸チタン、オキシ硫酸チタン、硫酸チタンアンモニウム、硝酸チタン、オキシ硝酸チタン、硝酸チタンアンモニウム、フルオロチタン酸およびフルオロチタン錯塩からなる群から選択される少なくとも1種として含有している上記(6)~(8)のいずれかに記載の金属表面処理方法。 (9) Ti contained in the surface treatment liquid is titanium sulfate, titanium oxysulfate, ammonium ammonium sulfate, titanium nitrate, titanium oxynitrate, titanium ammonium nitrate, titanium sulfate, titanium oxysulfate, ammonium titanium sulfate, titanium nitrate, oxy The metal surface treatment method according to any one of the above (6) to (8), which is contained as at least one selected from the group consisting of titanium nitrate, ammonium titanium nitrate, fluorotitanic acid, and fluorotitanium complex salt.
 (10)上記表面処理液が含有するSnが、硝酸スズ、硫酸スズおよびフッ化スズからなる群から選択される少なくとも1種として含有している上記(6)~(9)のいずれかに記載の金属表面処理方法。 (10) The Sn contained in the surface treatment liquid is any one of the above (6) to (9), which is contained as at least one selected from the group consisting of tin nitrate, tin sulfate and tin fluoride. Metal surface treatment method.
 (11)上記表面処理液が含有するInが、硝酸インジウム、硫酸インジウム、スルファミン酸インジウム、フッ化インジウム、酸化インジウムおよび水酸化インジウムからなる群から選択される少なくとも1種として含有している上記(6)~(10)のいずれかに記載の金属表面処理方法。 (11) The In contained in the surface treatment liquid is contained as at least one selected from the group consisting of indium nitrate, indium sulfate, indium sulfamate, indium fluoride, indium oxide and indium hydroxide ( 6) The metal surface treatment method according to any one of (10).
 (12)上記表面処理液が含有するTeが、テルル酸、テルル酸カリウム、テルル酸ナトリウム、亜テルル酸、亜テルル酸カリウム、亜テルル酸ナトリウムおよび二酸化テルルからなる群から選択される少なくとも1種として含有している上記(6)~(11)のいずれかに記載の金属表面処理方法。 (12) Te contained in the surface treatment liquid is at least one selected from the group consisting of telluric acid, potassium tellurate, sodium tellurate, telluric acid, potassium tellurite, sodium tellurite and tellurium dioxide. The metal surface treatment method according to any one of the above (6) to (11), which is contained as:
 (13)上記表面処理液が含有するCuが、硝酸銅、硫酸銅、塩化銅、炭酸銅、塩基性炭酸銅、酸化銅、酢酸銅、水酸化銅、フッ化銅および硫化銅からなる群から選択される少なくとも1種として含有している上記(6)~(12)のいずれかに記載の金属表面処理方法。 (13) Cu contained in the surface treatment liquid is selected from the group consisting of copper nitrate, copper sulfate, copper chloride, copper carbonate, basic copper carbonate, copper oxide, copper acetate, copper hydroxide, copper fluoride and copper sulfide. The metal surface treatment method according to any one of the above (6) to (12), which is contained as at least one selected.
 本発明によれば、以下に示すように、耐食性および電着塗装付き廻り性のいずれにも優れる表面処理金属材料およびそれを製造する金属表面処理方法を提供することができる。 According to the present invention, as shown below, it is possible to provide a surface-treated metal material that is excellent in both corrosion resistance and removability with electrodeposition coating, and a metal surface treatment method for producing the same.
 本発明の表面処理金属材料が、このような効果を奏する理由は明確ではないが、本発明者は以下のように推察している。
 すなわち、表面処理皮膜におけるアモルファス皮膜により耐食性を良好なものとし、アモルファス皮膜中に所定の被覆率、粒子径および密度で所定の形態(露出)で存在する半導体粒子により電着塗装付き廻り性を良好なものとしていると考えられる。
The reason why the surface-treated metal material of the present invention exhibits such an effect is not clear, but the present inventor presumes as follows.
In other words, the amorphous film in the surface treatment film makes the corrosion resistance good, and the electrocoating with the electrodeposition coating is good due to the semiconductor particles existing in a predetermined form (exposure) with a predetermined coverage, particle diameter and density in the amorphous film. It is thought that it is.
 特に、電着塗装付き廻り性については次のように考えられる。
 まず、カチオン電着においては、金属材料(被処理物)がカソードになるように所定の電位を印加すると、金属材料表面(界面)のpHが上昇するため、塗料が凝集し析出する。
 そして、電着塗装付き廻り性が良好となる、リン酸亜鉛系の金属表面処理液を用いた表面処理後の金属材料表面には、絶縁性のリン酸亜鉛結晶が粒子状に析出した皮膜が形成されている。
 そのため、所定の電圧を印加した際に、絶縁体である結晶が抵抗となり、結晶と結晶の隙間に電流が集中した結果、局部的に電流密度が高く、かつ、金属材料表面のpH上昇が大きくなることにより、電着塗料が凝集し析出し易くなると考えられる。
 また、凝集し析出した塗料が塗膜として融着すると、塗膜の高い抵抗により、順次、電流が抵抗の低いところに廻り、その結果、高い電着塗装付き廻り性が発現すると考えられる。
In particular, it is considered as follows about the reversibility with electrodeposition coating.
First, in the cationic electrodeposition, when a predetermined potential is applied so that the metal material (object to be processed) becomes a cathode, the pH of the metal material surface (interface) increases, so that the paint aggregates and precipitates.
On the surface of the metal material after the surface treatment using a zinc phosphate-based metal surface treatment solution, which has good electrodeposition coating performance, a film in which insulating zinc phosphate crystals are deposited in the form of particles is formed. Is formed.
Therefore, when a predetermined voltage is applied, the insulating crystal becomes a resistance, and the current is concentrated in the gap between the crystals. As a result, the current density is locally high and the pH of the metal material surface is greatly increased. Thus, it is considered that the electrodeposition paint is easily aggregated and deposited.
Further, when the agglomerated and deposited paint is fused as a coating film, it is considered that due to the high resistance of the coating film, the current sequentially goes to a place where the resistance is low, and as a result, a high throwing power is exhibited.
 一方、電着塗装付き廻り性が劣る、ジルコニウム系の金属表面処理液を用いた表面処理後の金属材料表面には、均一で平滑なアモルファス皮膜が形成されている。
 そのため、所定の電圧を印加した際に、上述した電流の集中が起こり難いため電着塗料が凝集し難く、また、得られる塗膜自体の抵抗も低いため、電着塗装付き廻り性が劣ると考えられる。
On the other hand, a uniform and smooth amorphous film is formed on the surface of the metal material after the surface treatment using the zirconium-based metal surface treatment liquid, which is poor in circulation performance with electrodeposition coating.
Therefore, when a predetermined voltage is applied, the above-mentioned current concentration is unlikely to occur, so that the electrodeposition paint is less likely to agglomerate. Conceivable.
 したがって、耐食性を担保するアモルファス皮膜中に所定の態様で半導体粒子を存在させることにより、上述したリン酸亜鉛皮膜と同様の作用(電流集中)が起こり、高い電着塗装付き廻り性も発現すると考えられる。 Therefore, it is considered that the presence of semiconductor particles in a predetermined manner in the amorphous film that ensures corrosion resistance causes the same action (current concentration) as the zinc phosphate film described above, and also exhibits high removability with electrodeposition coating. It is done.
 また、本発明の表面処理金属材料は、塗膜密着性も良好となるため非常に有用である。
 更に、本発明の金属表面処理方法によれば、鉄系金属材料、亜鉛系金属材料、アルミニウム系金属材料等の幅広い金属材料に対して、環境に有害な成分を含まない金属表面処理液を使用することができ、また、表面調整工程および後処理工程を必要としないため処理工程の短縮および省スペース化を図ることもできる。
Further, the surface-treated metal material of the present invention is very useful because the coating film adhesion is improved.
Furthermore, according to the metal surface treatment method of the present invention, a metal surface treatment solution that does not contain environmentally harmful components is used for a wide range of metal materials such as iron-based metal materials, zinc-based metal materials, and aluminum-based metal materials. In addition, since the surface adjustment step and the post-treatment step are not required, the treatment step can be shortened and space can be saved.
図1は、本発明の表面処理金属材料の断面構造の一例を示す模式図である。FIG. 1 is a schematic view showing an example of a cross-sectional structure of the surface-treated metal material of the present invention. 図2は、本発明の表面処理金属材料の断面構造の他の一例を示す模式図である。FIG. 2 is a schematic view showing another example of the cross-sectional structure of the surface-treated metal material of the present invention. 図3は、比較例1、実施例1および実施例2で測定した表面処理皮膜のSEM画像である。FIG. 3 is an SEM image of the surface treatment film measured in Comparative Example 1, Example 1 and Example 2. 図4は、電着塗装の付き廻り性試験(4枚ボックス試験)に使用するボックスの見取り図である。FIG. 4 is a sketch drawing of a box used for the throwing power test of electrodeposition coating (four-sheet box test).
 以下、本発明の表面処理金属材料および本発明の金属表面処理方法(以下、単に「本発明の処理方法」という。)について詳細に説明する。 Hereinafter, the surface-treated metal material of the present invention and the metal surface treatment method of the present invention (hereinafter simply referred to as “the treatment method of the present invention”) will be described in detail.
 〔本発明の表面処理金属材料〕
 本発明の第1の態様に係る表面処理金属材料は、金属材料を表面処理して得られる表面処理金属材料であって、上記金属材料の表面に、アモルファス皮膜および最大平均粒径が5~300nmの半導体粒子を含有する表面処理皮膜を有し、上記表面処理皮膜における前記半導体粒子の表面被覆率が10~90%であり、上記半導体粒子が前記表面処理皮膜の表面から露出しており、上記半導体粒子の密度が5~10000個/μm2である表面処理金属材料である。
[Surface-treated metal material of the present invention]
The surface-treated metal material according to the first aspect of the present invention is a surface-treated metal material obtained by surface-treating a metal material, and has an amorphous film and a maximum average particle size of 5 to 300 nm on the surface of the metal material. A surface treatment film containing the semiconductor particles, the surface coverage of the semiconductor particles in the surface treatment film is 10 to 90%, the semiconductor particles are exposed from the surface of the surface treatment film, The surface-treated metal material has a semiconductor particle density of 5 to 10,000 particles / μm 2 .
 次に、図1および2を用いて本発明の第1の態様に係る表面処理金属材料を説明するが、本発明の第1の態様に係る表面処理金属材料は、これらの図面に記載された態様に限定されるものではない。
 ここで、図1は、本発明の表面処理金属材料の断面構造の一例を示す模式図であり、図2は、本発明の表面処理金属材料の断面構造の他の一例を示す模式図である。
Next, the surface-treated metal material according to the first aspect of the present invention will be described with reference to FIGS. 1 and 2, and the surface-treated metal material according to the first aspect of the present invention is described in these drawings. It is not limited to the embodiment.
Here, FIG. 1 is a schematic diagram showing an example of the cross-sectional structure of the surface-treated metal material of the present invention, and FIG. 2 is a schematic diagram showing another example of the cross-sectional structure of the surface-treated metal material of the present invention. .
 図1および図2に示すように、本発明の表面処理金属材料30は、金属材料31の表面に、アモルファス皮膜32および半導体粒子33を含有する表面処理皮膜34を有するものである。 1 and 2, the surface-treated metal material 30 of the present invention has a surface-treated film 34 containing an amorphous film 32 and semiconductor particles 33 on the surface of the metal material 31.
 <金属材料>
 上記金属材料31は特に限定されないが、鉄系金属材料、亜鉛系金属材料、アルミニウム系金属材料に好適に適用される。
<Metal material>
Although the said metal material 31 is not specifically limited, It applies suitably to an iron-type metal material, a zinc-type metal material, and an aluminum-type metal material.
 上記鉄系金属材料は、特に限定されないが、例えば、冷間圧延鋼板、熱間圧延鋼板等の鋼板;鋳鉄;焼結材;等が挙げられる。
 上記亜鉛系金属材料は、特に限定されないが、例えば、亜鉛ダイキャスト、亜鉛含有めっき等が挙げられる。亜鉛含有めっきは、亜鉛または亜鉛と他の金属(例えば、ニッケル、鉄、アルミニウム、マンガン、クロム、マグネシウム、コバルト、鉛、アンチモン等の少なくとも1種との合金および不可避不純物)によりめっきされたものである。めっき方法は特に限定されず、例えば、溶融めっき、電気めっき、蒸着めっき等が挙げられる。
 上記アルミニウム系金属材料は、特に限定されないが、例えば、5000系アルミニウム合金、6000系アルミニウム合金等のアルミニウム合金板材;ADC-12に代表されるアルミニウム合金ダイキャスト;等が挙げられる。
Although the said iron-type metallic material is not specifically limited, For example, steel plates, such as a cold rolled steel plate and a hot rolled steel plate; Cast iron; Sintered material;
Although the said zinc-type metal material is not specifically limited, For example, zinc die-casting, zinc containing plating, etc. are mentioned. Zinc-containing plating is plated with zinc or zinc and other metals (for example, alloys of at least one of nickel, iron, aluminum, manganese, chromium, magnesium, cobalt, lead, antimony, and inevitable impurities). is there. The plating method is not particularly limited, and examples thereof include hot dipping, electroplating, and vapor deposition plating.
The aluminum-based metal material is not particularly limited, and examples thereof include aluminum alloy plate materials such as a 5000-series aluminum alloy and a 6000-series aluminum alloy; an aluminum alloy die-cast represented by ADC-12;
 本発明においては、2種以上の金属材料を同時に表面処理することもできる。2種以上の金属材料を同時に表面処理する場合は、異種金属同士が接触しない状態で表面処理されてもよく、溶接、接着、リベット止め等の接合方法によって異種金属同士が接合接触した状態で表面処理されてもよい。 In the present invention, two or more kinds of metal materials can be surface-treated at the same time. When two or more kinds of metal materials are simultaneously surface-treated, the surface treatment may be performed in a state in which different kinds of metals are not in contact with each other, and in a state in which different kinds of metals are joined and contacted by a joining method such as welding, adhesion, or riveting. May be processed.
 <表面処理皮膜>
 上記表面処理皮膜34は、アモルファス皮膜32中に半導体粒子33が所定の被覆率、粒子径および密度で所定の形態(露出)で存在する混合皮膜である。
 本発明においては、上記表面処理皮膜34の形成方法は特に限定されないが、後述する本発明の処理方法に示すように、上記金属材料31に所定の表面処理液を接触させて、上記金属材料31の表面を化成処理して形成するのが好ましい。
<Surface treatment film>
The surface treatment film 34 is a mixed film in which the semiconductor particles 33 are present in the amorphous film 32 in a predetermined form (exposed) with a predetermined coverage, particle diameter, and density.
In the present invention, the method for forming the surface treatment film 34 is not particularly limited. As shown in the treatment method of the present invention, which will be described later, a predetermined surface treatment liquid is brought into contact with the metal material 31 to form the metal material 31. It is preferable that the surface is formed by chemical conversion treatment.
 (アモルファス皮膜)
 上記アモルファス皮膜32は、上記表面処理皮膜34を構成する主要成分であり、上述したように、良好な耐食性を担保している部分と考えられる。
 本発明においては、上記アモルファス皮膜がZr、TiおよびHfからなる群から選択される少なくとも1種の元素を含有するのが好ましく、これらの元素を酸化物および/または水酸化物として含有するのがより好ましい。
 これらのうち、ジルコニウムの酸化物および/または水酸化物であるのが、均一で緻密な皮膜構造が得られ、本発明の表面処理金属材料の耐食性がより良好となるため好ましい。
(Amorphous film)
The amorphous film 32 is a main component constituting the surface treatment film 34 and is considered to be a part that ensures good corrosion resistance as described above.
In the present invention, the amorphous film preferably contains at least one element selected from the group consisting of Zr, Ti, and Hf, and contains these elements as oxides and / or hydroxides. More preferred.
Of these, zirconium oxides and / or hydroxides are preferable because a uniform and dense film structure can be obtained and the surface-treated metal material of the present invention has better corrosion resistance.
 また、本発明においては、上記アモルファス皮膜に含有する上記元素の元素換算の付着量が5~200mg/m2であるのが好ましく、10~100mg/m2であるのがより好ましい。
 付着量がこの範囲であると、本発明の表面処理金属材料の耐食性がより良好となる。
In the present invention, the amount of the element in terms of the element contained in the amorphous film is preferably 5 to 200 mg / m 2 , more preferably 10 to 100 mg / m 2 .
When the adhesion amount is within this range, the corrosion resistance of the surface-treated metal material of the present invention becomes better.
 更に、本発明においては、上記アモルファス皮膜32の膜厚は特に限定されないが、3~300nmであるのが好ましく、20~200nmであるのがより好ましい。 Furthermore, in the present invention, the film thickness of the amorphous film 32 is not particularly limited, but is preferably 3 to 300 nm, more preferably 20 to 200 nm.
 (半導体粒子)
 上記半導体粒子33は、上記表面処理皮膜34を構成する他の主要成分であり、上述したように、良好な電着塗装付き廻り性を担保している部分と考えられる。
 本発明においては、上記半導体粒子33は、電気伝導率が金属と絶縁体の中間の103~10-10S/cm程度である物質のうち後述する粒径を有するものである。
(Semiconductor particles)
The semiconductor particles 33 are other main components constituting the surface treatment film 34 and, as described above, are considered to be portions that ensure good removability with electrodeposition coating.
In the present invention, the semiconductor particle 33 has a particle size described later among substances having an electric conductivity of about 10 3 to 10 −10 S / cm between the metal and the insulator.
 また、本発明においては、上記半導体粒子33は、Sn、In、TeおよびCuからなる群から選択される少なくとも1種の元素を含有するのが好ましく、これらの元素を酸化物として含有するのがより好ましく、図2に示すように、これらの元素を中核35として含み周囲をその酸化物で覆われたものが更に好ましい。
 なお、図2に示す中核35の有無については、X線光電子分光分析で測定することができる。
In the present invention, the semiconductor particle 33 preferably contains at least one element selected from the group consisting of Sn, In, Te and Cu, and contains these elements as oxides. More preferably, as shown in FIG. 2, it is more preferable that these elements are contained as the core 35 and the periphery is covered with the oxide.
The presence or absence of the core 35 shown in FIG. 2 can be measured by X-ray photoelectron spectroscopy.
 更に、本発明においては、上記半導体粒子に含有する上記元素の元素換算の付着量が1~100mg/m2であるのが好ましく、3~60mg/m2であるのがより好ましい。
 付着量がこの範囲であると、本発明の表面処理金属材料の電着塗装付き廻り性がより良好となる。
Further, in the present invention, the amount of the element contained in the semiconductor particles in terms of element is preferably 1 to 100 mg / m 2 , more preferably 3 to 60 mg / m 2 .
When the amount of adhesion is within this range, the surface-treated metal material of the present invention has better electrodeability with electrodeposition coating.
 本発明においては、上記半導体粒子33の最大平均粒径は5~300nmであり、50~200nmであるのが好ましい。
 ここで、最大平均粒径とは、1μm2の測定範囲に存在する全ての粒子の最大粒径を走査型電子顕微鏡を用いて測定し、それらの測定値の平均を算出した値をいう。
In the present invention, the maximum average particle size of the semiconductor particles 33 is 5 to 300 nm, and preferably 50 to 200 nm.
Here, the maximum average particle diameter refers to a value obtained by measuring the maximum particle diameter of all the particles present in the measurement range of 1 μm 2 using a scanning electron microscope and calculating the average of those measured values.
 また、本発明においては、上記表面処理皮膜34における上記半導体粒子33の表面被覆率は、10~90%であり、20~80%であるのが好ましく、30~70%であるのがより好ましい。
 ここで、上記表面処理皮膜34における表面被覆率とは、上記表面処理皮膜34における上記半導体粒子33の存在割合ともいうことができ、本発明においては、上記表面処理金属材料30の上記表面処理皮膜34が形成された側の表面を走査型電子顕微鏡で観察して上記表面処理皮膜34および上記半導体粒子33の幾何学的測定面積を測定し、それらの比率(上記半導体粒子33/表面処理皮膜34)から算出した値をいう。なお、上記表面処理皮膜34が上記金属材料31の表面の全面に形成されている場合は、上記表面処理皮膜34における表面被覆率は、上記金属材料31の表面に対する上記半導体粒子33の被覆率と同じである。
In the present invention, the surface coverage of the semiconductor particles 33 in the surface treatment film 34 is 10 to 90%, preferably 20 to 80%, and more preferably 30 to 70%. .
Here, the surface coverage in the surface treatment film 34 can also be referred to as the abundance ratio of the semiconductor particles 33 in the surface treatment film 34. In the present invention, the surface treatment film of the surface treatment metal material 30. The surface on which the surface 34 is formed is observed with a scanning electron microscope to measure the geometric measurement area of the surface treatment film 34 and the semiconductor particles 33, and the ratio thereof (the semiconductor particles 33 / the surface treatment film 34). ). When the surface treatment film 34 is formed on the entire surface of the metal material 31, the surface coverage of the surface treatment film 34 is equal to the coverage of the semiconductor particles 33 on the surface of the metal material 31. The same.
 上記半導体粒子の最大平均粒径および表面被覆率は、上記半導体粒子を形成する元素により調節することができる。
 具体的には、上記半導体粒子がTeを主成分として含有する場合、最大平均粒径を5~100nmの範囲、および、表面被覆率を60~90%の範囲にすることが容易となる。
 同様に、上記半導体粒子がInを主成分として含有する場合、最大平均粒径を80~180nmの範囲、および、表面被覆率を50~70%の範囲にすることが容易となる。
 同様に、上記半導体粒子がSnを主成分として含有する場合、最大平均粒径を120~200nmの範囲、および、表面被覆率を40~60%の範囲にすることが容易となる。
 同様に、上記半導体粒子Cuを主成分として含有する場合、最大平均粒径を150~300nmの範囲、および、表面被覆率を10~50%の範囲にすることが容易となる。
 また、上記半導体粒子を種々の割合で併用することにより、最大平均粒径および表面被覆率を上記以外の範囲で適宜調節することもできる。例えば、Teを含有させることにより最大平均粒径を小さくすることができ、また、銅を含有させることにより最大平均粒径を大きくすることができる。
The maximum average particle diameter and surface coverage of the semiconductor particles can be adjusted by the elements forming the semiconductor particles.
Specifically, when the semiconductor particles contain Te as a main component, it becomes easy to make the maximum average particle size in the range of 5 to 100 nm and the surface coverage in the range of 60 to 90%.
Similarly, when the semiconductor particles contain In as a main component, it becomes easy to make the maximum average particle size in the range of 80 to 180 nm and the surface coverage in the range of 50 to 70%.
Similarly, when the semiconductor particles contain Sn as a main component, it becomes easy to make the maximum average particle size in the range of 120 to 200 nm and the surface coverage in the range of 40 to 60%.
Similarly, when the semiconductor particle Cu is contained as a main component, it becomes easy to make the maximum average particle size in the range of 150 to 300 nm and the surface coverage in the range of 10 to 50%.
In addition, by using the semiconductor particles in various proportions, the maximum average particle diameter and the surface coverage can be appropriately adjusted within the range other than the above. For example, the maximum average particle size can be reduced by containing Te, and the maximum average particle size can be increased by containing copper.
 また、上記半導体粒子の最大平均粒径および表面被覆率は、後述する本発明の処理液の組成、pH、温度、上記半導体粒子の濃度、後述する本発明の処理方法における処理液の接触時間でも調節することができる。
 具体的には、後述する本発明の処理液に後述するキレート剤を添加することで表面被覆率を低くすることが可能である。また、後述する有機物、例えば、アミノ基含有化合物を添加することで最大平均粒径を小さくし、表面被覆率を低くすることが可能である。
 また、比較的pHの高い領域(pH3.5程度以上)で処理を施すと、最大平均粒径を大きくし、表面被覆率を高くすることが可能である。
 同様に、比較的高温の温度領域(40℃程度以上)で処理を施すと、最大平均粒径を大きくし、表面被覆率を高くすることが可能である。
 同様に、上記半導体粒子の濃度を高くして処理を施すと、最大平均粒径を大きくし、表面被覆率を高くすることが可能である。
 同様に、処理時間を長く(120秒程度以上)すると、最大平均粒径を大きくし、表面被覆率を高くすることが可能である。
In addition, the maximum average particle diameter and surface coverage of the semiconductor particles are the composition, pH, temperature, concentration of the semiconductor particles described later, and the contact time of the processing liquid in the processing method of the present invention described later. Can be adjusted.
Specifically, the surface coverage can be lowered by adding a chelating agent described later to the processing solution of the present invention described later. Moreover, the maximum average particle diameter can be reduced and the surface coverage can be lowered by adding an organic substance to be described later, for example, an amino group-containing compound.
In addition, when the treatment is performed in a relatively high pH region (pH of about 3.5 or more), it is possible to increase the maximum average particle diameter and increase the surface coverage.
Similarly, when the treatment is performed in a relatively high temperature range (about 40 ° C. or more), the maximum average particle size can be increased and the surface coverage can be increased.
Similarly, when the treatment is performed at a higher concentration of the semiconductor particles, it is possible to increase the maximum average particle size and increase the surface coverage.
Similarly, if the treatment time is increased (about 120 seconds or more), it is possible to increase the maximum average particle size and increase the surface coverage.
 更に、上記半導体粒子の上記表面被覆率については、上記金属材料31の材料によっても調節することができる。
 具体的には、上記金属材料31が鉄系金属材料である場合、上記表面被覆率は40~60%の範囲にすることが容易となる。
 同様に、上記金属材料31が亜鉛系金属材料である場合、上記表面被覆率は、60~90%の範囲にすることが容易となる。
 同様に、上記金属材料31がアルミニウム系金属材料である場合、上記表面被覆率は、10~40%の範囲にすることが容易となる。
Further, the surface coverage of the semiconductor particles can be adjusted by the material of the metal material 31.
Specifically, when the metal material 31 is an iron-based metal material, the surface coverage can easily be set in the range of 40 to 60%.
Similarly, when the metal material 31 is a zinc-based metal material, the surface coverage can easily be in the range of 60 to 90%.
Similarly, when the metal material 31 is an aluminum-based metal material, the surface coverage can easily be in the range of 10 to 40%.
 本発明においては、上記半導体粒子33の少なくとも一部は、上記表面処理皮膜34の表面から露出した状態で存在しており、その密度は5~10000個/μm2である。
 ここで、上記半導体粒子33が上記表面処理皮膜34の表面から露出した状態で存在していることは、アモルファス皮膜32に含有する元素と半導体粒子33に含有する元素とをエネルギー分散型X線分光法で分析することで確認することができる。
 また、上記密度は、上記表面処理金属材料30の上記表面処理皮膜34が形成された側の表面を走査型電子顕微鏡で観察し、1μm2に存在する上記半導体粒子32の数を測定した値である。
In the present invention, at least a part of the semiconductor particles 33 are exposed from the surface of the surface treatment film 34, and the density thereof is 5 to 10,000 particles / μm 2 .
Here, the existence of the semiconductor particles 33 exposed from the surface of the surface treatment film 34 means that the elements contained in the amorphous film 32 and the elements contained in the semiconductor particles 33 are energy dispersive X-ray spectroscopy. It can be confirmed by analyzing by law.
The density is a value obtained by observing the surface of the surface-treated metal material 30 on which the surface-treated film 34 is formed with a scanning electron microscope and measuring the number of the semiconductor particles 32 present at 1 μm 2. is there.
 上記密度は、上記半導体粒子を形成する元素により調節することができる。
 具体的には、上記半導体粒子がTeを主成分として含有する場合、密度を1000~10000個/μm2の範囲にすることが容易となる。
 同様に、上記半導体粒子がSnを主成分として含有する場合、密度を100~1000個/μm2の範囲にすることが容易となる。
 同様に、上記半導体粒子がInを主成分として含有する場合、密度を100~500個/μm2の範囲にすることが容易となる。
 同様に、上記半導体粒子Cuを主成分として含有する場合、密度を5~100個/μm2の範囲にすることが容易となる。
 また、上記半導体粒子を種々の割合で併用することにより、密度を上記以外の範囲で適宜調節することもできる。例えば、Teを含有させることにより密度を高くすることができ、また、銅を含有させることにより密度を小さくすることができる。
 更に、比較的pHの高い領域(pH3.5程度以上)で処理を施すと、密度を小さくすることが可能である。
 同様に、比較的高温の温度領域(40℃程度以上)で処理を施すと、密度を小さくすることが可能である。
 また、上記半導体粒子の濃度を高くして処理を施すと、密度を高くすることが可能である。
 同様に、処理時間を長く(120秒程度以上)すると、密度を高くすることが可能である。
The density can be adjusted by the elements forming the semiconductor particles.
Specifically, when the semiconductor particles contain Te as a main component, it becomes easy to set the density to a range of 1000 to 10,000 particles / μm 2 .
Similarly, when the semiconductor particles contain Sn as a main component, it becomes easy to set the density to a range of 100 to 1000 particles / μm 2 .
Similarly, when the semiconductor particles contain In as a main component, it becomes easy to set the density to a range of 100 to 500 particles / μm 2 .
Similarly, when the semiconductor particle Cu is contained as a main component, it becomes easy to set the density in the range of 5 to 100 particles / μm 2 .
Moreover, the density can be appropriately adjusted in a range other than the above by using the semiconductor particles in various proportions. For example, the density can be increased by adding Te, and the density can be decreased by adding copper.
Furthermore, when the treatment is performed in a relatively high pH region (pH of about 3.5 or more), the density can be reduced.
Similarly, when processing is performed in a relatively high temperature range (about 40 ° C. or higher), the density can be reduced.
Further, when the treatment is performed with the concentration of the semiconductor particles increased, the density can be increased.
Similarly, the density can be increased by increasing the processing time (about 120 seconds or more).
 次に、本発明の第2の態様に係る表面処理金属材料は、縦150mm、横70mmの大きさで、横方向中央の下端から50mmの位置に直径8mmの穴を有する第1から第3の表面処理金属材料、および、縦150mm、横70mmの大きさの第4の表面処理金属材料を、それぞれ平行にこの順で20mmの間隔をおいて設置し、
 上記第1から第4の各表面処理金属材料を下端から95mmの位置まで電着塗装浴に浸漬し、
 上記第1表面処理金属材料の上記第2表面処理金属材料が設置されていない側の面側に対極を設置して下記(a)~(c)の条件で電着塗装を施し、
 上記第1表面処理金属材料の上記対極側の面(A面)および上記第4表面処理金属材料の上記対極側の面(G面)の塗膜厚の比(A/G)を3.0以下とすることができる、表面処理金属材料である。
 (a)電着塗料温度:28℃
 (b)電解条件:30秒かけて0Vから230Vまで直線的に電圧を陰極方向に印加した後150秒間230Vで保持
 (c)焼成条件:170℃、20分間
Next, the surface-treated metal material according to the second aspect of the present invention has a size of 150 mm in length and 70 mm in width, and has a hole having a diameter of 8 mm at a position 50 mm from the lower end of the center in the horizontal direction. A surface-treated metal material and a fourth surface-treated metal material having a size of 150 mm in length and 70 mm in width are installed in parallel in this order at intervals of 20 mm,
Each of the first to fourth surface-treated metal materials is immersed in an electrodeposition coating bath from the lower end to a position of 95 mm,
A counter electrode is installed on the surface of the first surface-treated metal material where the second surface-treated metal material is not installed, and electrodeposition coating is performed under the following conditions (a) to (c):
A coating thickness ratio (A / G) of the surface on the counter electrode side (A surface) of the first surface-treated metal material and the surface on the counter electrode side (G surface) of the fourth surface-treated metal material is 3.0. A surface-treated metal material that can be:
(A) Electrodeposition paint temperature: 28 ° C
(B) Electrolytic conditions: A voltage is applied linearly from 0 V to 230 V over 30 seconds and then held at 230 V for 150 seconds. (C) Firing conditions: 170 ° C., 20 minutes
 次に、図4を用いて本発明の第2の態様に係る表面処理金属材料を説明する。
 図4は、電着塗装の付き廻り性試験(4枚ボックス試験)に使用するボックスの見取り図である。
Next, the surface-treated metal material according to the second aspect of the present invention will be described with reference to FIG.
FIG. 4 is a sketch drawing of a box used for the throwing power test of electrodeposition coating (four-sheet box test).
 図4に示すように、4枚ボックス1の組み立ては、まず、縦150mm、横70mmの大きさで、横方向中央の下端から50mmの位置に直径8mmの穴を有する第1から第3の表面処理金属材料12~14、および、縦150mm、横70mmの大きさの第4の表面処理金属材料15を、それぞれ平行にこの順で20mmの間隔をおいて設置した。
 次いで、表面処理金属材料12~15の両側面および下面を塩ビ板21~23にて塞ぎ、塩ビ板21~23と表面処理金属材料12~15を粘着テープによって固定し、4枚ボックス1を組み立てた。
 なお、4枚ボックス1では、第1から第4の4枚の表面処理金属材料12~15は、同種の金属材料に同様の表面処理を施したものを用いているが、表面未処理状態の金属材料を用いて同様に組み立てたボックスに対して表面処理を施したものであってもよい。
As shown in FIG. 4, the four-box 1 is assembled by first to third surfaces having a length of 150 mm and a width of 70 mm, and a hole having a diameter of 8 mm at a position 50 mm from the lower end of the center in the horizontal direction. The treated metal materials 12 to 14 and the fourth surface treated metal material 15 having a size of 150 mm in length and 70 mm in width were arranged in parallel in this order with an interval of 20 mm.
Next, the both sides and lower surface of the surface-treated metal materials 12 to 15 are closed with the vinyl chloride plates 21 to 23, and the vinyl chloride plates 21 to 23 and the surface-treated metal materials 12 to 15 are fixed with the adhesive tape. It was.
In the four-box 1, the first to fourth four surface-treated metal materials 12 to 15 are the same kind of metal material that has been subjected to the same surface treatment, but the surface is not yet treated. A surface treatment may be applied to a box similarly assembled using a metal material.
 また、対極(図示せず)は片面を絶縁テープでシールしたステンレス鋼板(SUS304)70×150×0.55mmを用い、電着塗料の液面は表面処理金属材料12~15と対極が95mm浸漬される位置に制御した。 The counter electrode (not shown) is a stainless steel plate (SUS304) 70 × 150 × 0.55 mm sealed on one side with an insulating tape. The surface of the electrodeposition paint is immersed in a surface treated metal material 12-15 and the counter electrode is 95 mm. Controlled to a position.
 電着塗装は、上記(a)~(c)に示すように、電着塗料の温度を28℃に保持し、スターラーにて撹拌した状態で行った。4枚の表面処理金属材料12~15の全てを短絡させた上で、対極を陽極として整流器にて陰極電解法により塗膜を電解析出させた。また、電解は、30秒かけて0Vから230Vまで直線的に電圧を陰極方向に印加し、その後150秒間230Vを保持して行った。
 電解後、それぞれの表面処理金属材料12~15を水洗し、170℃で20分間焼き付け、塗膜を形成させた。対極に一番近い表面処理金属材料12の対極側をA面、対極に一番遠い表面処理金属材料15の対極側をG面とし、A面とG面の塗膜厚を測定し、A/Gの比率を算出した。
As shown in the above (a) to (c), the electrodeposition coating was performed while maintaining the temperature of the electrodeposition paint at 28 ° C. and stirring with a stirrer. All of the four surface-treated metal materials 12 to 15 were short-circuited, and a coating film was electrolytically deposited by a cathode electrolysis method using a rectifier with the counter electrode as an anode. The electrolysis was performed by applying a voltage linearly from 0V to 230V over 30 seconds in the cathode direction and then maintaining 230V for 150 seconds.
After the electrolysis, each of the surface-treated metal materials 12 to 15 was washed with water and baked at 170 ° C. for 20 minutes to form a coating film. The counter electrode side of the surface-treated metal material 12 closest to the counter electrode is the A surface, the counter electrode side of the surface-treated metal material 15 furthest from the counter electrode is the G surface, and the coating thickness of the A surface and the G surface is measured. The ratio of G was calculated.
 本発明の第2の態様に係る表面処理金属材料は、上記塗膜厚の比(A/G)が3.0以下となるものである。
 ここで、少なくとも上述した本発明の第1の態様に係る表面処理金属材料は、上記塗膜厚の比(A/G)が3.0以下となるものであるが、本発明者は、第1の態様によらず、上記塗膜厚の比(A/G)が3.0以下となるものであれば、耐食性および電着塗装付き廻り性のいずれにも優れる表面処理金属材料となることを見出した。
The surface-treated metal material according to the second aspect of the present invention has a coating thickness ratio (A / G) of 3.0 or less.
Here, at least the surface-treated metal material according to the first aspect of the present invention described above has a coating film thickness ratio (A / G) of 3.0 or less. Regardless of the aspect 1, if the coating film thickness ratio (A / G) is 3.0 or less, the surface-treated metal material is excellent in both corrosion resistance and reversibility with electrodeposition coating. I found.
 〔本発明の処理方法〕
 本発明の処理方法は、金属材料に、Zr、TiおよびHfからなる群から選択される少なくとも1つの元素を含有し、かつ、Sn、In、TeおよびCuからなる群から選択される少なくとも1つの元素を含有する表面処理液(以下、形式的に「本発明の処理液」という。)を流速1~10cm/秒で接触させて、上述した本発明の表面処理金属材料を得る金属表面処理方法である。
 ここで、流速とは、金属材料の表面に接触させる表面処理液の流速をいうが、例えば、浸漬処理による場合は浸漬させる際の速度により調節することができる。
 具体的には、本発明の処理液を循環させるポンプや、被処理体である金属材料を揺動させることにより、接触界面の表面処理液の速度を調整することができる。
[Treatment method of the present invention]
The treatment method of the present invention contains at least one element selected from the group consisting of Zr, Ti and Hf in the metal material, and at least one selected from the group consisting of Sn, In, Te and Cu Metal surface treatment method for obtaining the surface-treated metal material of the present invention described above by contacting a surface treatment liquid containing an element (hereinafter referred to formally as "treatment liquid of the present invention") at a flow rate of 1 to 10 cm / second. It is.
Here, the flow rate refers to the flow rate of the surface treatment liquid brought into contact with the surface of the metal material. For example, in the case of dipping treatment, the flow rate can be adjusted by the dipping rate.
Specifically, the speed of the surface treatment liquid at the contact interface can be adjusted by oscillating the pump for circulating the treatment liquid of the present invention or the metal material that is the object to be treated.
 <金属材料>
 上記金属材料としては、上述したように、鉄系金属材料、亜鉛系金属材料、アルミニウム系金属材料が好適に例示される。
 また、上記金属材料は、本発明の処理液を接触させる表面を予め清浄し、磨耗や成形などにより生じる金属粉や、油や汚れ等を除去しておくことが望ましい。
 清浄する方法は特に限定されず、脱脂処理、アルカリ洗浄等の従来公知の方法を用いることができる。
<Metal material>
As the metal material, as described above, an iron-based metal material, a zinc-based metal material, and an aluminum-based metal material are preferably exemplified.
In addition, it is desirable that the surface of the metal material to be brought into contact with the treatment liquid of the present invention is previously cleaned to remove metal powder, oil, dirt, and the like generated by wear or molding.
The cleaning method is not particularly limited, and a conventionally known method such as degreasing treatment or alkali cleaning can be used.
 <接触方法>
 上記金属材料に本発明の処理液を接触させる方法は、表面処理液の流速が流速1~10cm/秒の範囲内であれば特に限定されず、例えば、浸せき処理が挙げられる。
 ここで、接触させる際の本発明の処理液の温度(処理温度)は30~60℃であるが好ましい。
 また、接触させる時間は、金属材料の材質や構造、本発明の処理液の濃度、処理温度にもよるが、概ね2~600秒程度であるのが好ましい。例えば、自動車車体に代表される複雑構造物の場合には、袋構造物内部の液置換が必要なため、30~120秒間接触させるのが好ましい。
<Contact method>
The method of bringing the treatment liquid of the present invention into contact with the metal material is not particularly limited as long as the flow rate of the surface treatment liquid is in the range of 1 to 10 cm / second, and examples include immersion treatment.
Here, the temperature of the treatment liquid of the present invention at the time of contact (treatment temperature) is preferably 30 to 60 ° C.
The contact time is preferably about 2 to 600 seconds, although it depends on the material and structure of the metal material, the concentration of the treatment liquid of the present invention, and the treatment temperature. For example, in the case of a complex structure typified by an automobile body, liquid replacement inside the bag structure is necessary, and therefore it is preferable that the contact is made for 30 to 120 seconds.
 本発明の処理方法により表面処理された金属材料は、耐食性および電着塗装付き廻り性に優れた上述した表面処理皮膜が形成される。
 これは、表面処理液の流速が1~10cm/秒であることにより、本発明の処理液と金属材料との界面におけるpHを比較的高めの範囲(3.5以上)に維持することができ、それによりこの界面で生起するエッチング反応が穏やかに進行するためであると考えられる。
 また、表面処理皮膜が形成された後に、必要に応じて水洗や脱イオン水洗がなされた後に、乾燥させることなく電着塗装に供することができる。
The metal material surface-treated by the treatment method of the present invention forms the above-mentioned surface-treated film excellent in corrosion resistance and electrodeposition with electrodeposition coating.
This is because when the flow rate of the surface treatment liquid is 1 to 10 cm / second, the pH at the interface between the treatment liquid of the present invention and the metal material can be maintained in a relatively high range (3.5 or more). This is considered to be because the etching reaction occurring at this interface proceeds gently.
Moreover, after a surface treatment film is formed, it can be subjected to electrodeposition coating without being dried after being washed with water or deionized water as needed.
 <本発明の処理液>
 本発明の処理液は、Zr、TiおよびHfからなる群から選択される少なくとも1つの元素を含有し、かつ、Sn、In、TeおよびCuからなる群から選択される少なくとも1つの元素を含有する表面処理液である。
<The treatment liquid of the present invention>
The treatment liquid of the present invention contains at least one element selected from the group consisting of Zr, Ti and Hf, and contains at least one element selected from the group consisting of Sn, In, Te and Cu. It is a surface treatment liquid.
 また、本発明の処理液は、耐食性および電着塗装付き廻り性をより向上させる観点から、Zr、TiおよびHfからなる群から選択される少なくとも1つの元素を1~10000ppm含有し、かつ、Sn、In、TeおよびCuからなる群から選択される少なくとも1つの元素を1~5000ppm含有するのが好ましい。 In addition, the treatment liquid of the present invention contains 1 to 10,000 ppm of at least one element selected from the group consisting of Zr, Ti and Hf from the viewpoint of further improving the corrosion resistance and the ability of electrodeposition coating, and Sn. It is preferable to contain 1 to 5000 ppm of at least one element selected from the group consisting of In, Te and Cu.
 本発明においては、均一で緻密なアモルファス皮膜を析出させる観点から、本発明の処理液が含有するZrが、硫酸ジルコニウム、オキシ硫酸ジルコニウム、硫酸ジルコニウムアンモニウム、硝酸ジルコニウム、オキシ硝酸ジルコニウム、硝酸ジルコニウムアンモニウム、硫酸ジルコニウム、オキシ硫酸ジルコニウム、硫酸ジルコニウムアンモニウム、硝酸ジルコニウム、オキシ硝酸ジルコニウム、硝酸ジルコニウムアンモニウム、フルオロジルコニウム酸およびフルオロジルコニウム錯塩からなる群から選択される少なくとも1種として含有しているのが好ましい。
 これらのうち、フルオロジルコニウム酸およびフルオロジルコニウム錯塩であるのが、本発明の処理液の安定性を高める理由からより好ましい。
In the present invention, from the viewpoint of depositing a uniform and dense amorphous film, Zr contained in the treatment liquid of the present invention is zirconium sulfate, zirconium oxysulfate, zirconium ammonium sulfate, zirconium nitrate, zirconium oxynitrate, ammonium zirconium nitrate, It is preferably contained as at least one selected from the group consisting of zirconium sulfate, zirconium oxysulfate, ammonium zirconium sulfate, zirconium nitrate, zirconium oxynitrate, ammonium zirconium nitrate, fluorozirconic acid, and fluorozirconium complex salt.
Of these, fluorozirconic acid and fluorozirconium complex salts are more preferable for the reason of improving the stability of the treatment liquid of the present invention.
 同様に、均一で緻密なアモルファス皮膜を析出させる観点から、本発明の処理液が含有するTiが、硫酸チタン、オキシ硫酸チタン、硫酸チタンアンモニウム、硝酸チタン、オキシ硝酸チタン、硝酸チタンアンモニウム、硫酸チタン、オキシ硫酸チタン、硫酸チタンアンモニウム、硝酸チタン、オキシ硝酸チタン、硝酸チタンアンモニウム、フルオロチタン酸およびフルオロチタン錯塩からなる群から選択される少なくとも1種として含有しているのが好ましい。
 これらのうち、フルオロチタン酸およびフルオロチタン錯塩であるのが、本発明の処理液の安定性を高める理由からより好ましい。
Similarly, from the viewpoint of depositing a uniform and dense amorphous film, Ti contained in the treatment liquid of the present invention is titanium sulfate, titanium oxysulfate, ammonium titanium sulfate, titanium nitrate, titanium oxynitrate, ammonium titanium nitrate, titanium sulfate. It is preferably contained as at least one selected from the group consisting of titanium oxysulfate, ammonium ammonium sulfate, titanium nitrate, titanium oxynitrate, ammonium ammonium nitrate, fluorotitanic acid and fluorotitanium complex.
Of these, fluorotitanic acid and fluorotitanium complex salts are more preferable for the reason of improving the stability of the treatment liquid of the present invention.
 また、上記半導体粒子を上記表面処理皮膜の表面から均一に露出させ分散させやすくなる観点から、本発明の処理液が含有するSnが、硝酸スズ、硫酸スズおよびフッ化スズからなる群から選択される少なくとも1種として含有しているのが好ましい。 Further, from the viewpoint of easily exposing and dispersing the semiconductor particles from the surface of the surface treatment film, Sn contained in the treatment liquid of the present invention is selected from the group consisting of tin nitrate, tin sulfate and tin fluoride. It is preferable to contain as at least one kind.
 同様に、上記半導体粒子を上記表面処理皮膜の表面から均一に露出させ分散させやすくなる観点から、本発明の処理液が含有するInが、硝酸インジウム、硫酸インジウム、スルファミン酸インジウム、フッ化インジウム、酸化インジウムおよび水酸化インジウムからなる群から選択される少なくとも1種として含有しているのが好ましい。 Similarly, from the viewpoint of easily exposing and dispersing the semiconductor particles from the surface of the surface treatment film, In contained in the treatment liquid of the present invention is indium nitrate, indium sulfate, indium sulfamate, indium fluoride, It is preferably contained as at least one selected from the group consisting of indium oxide and indium hydroxide.
 同様に、上記半導体粒子を上記表面処理皮膜の表面から均一に露出させ分散させやすくなる観点から、本発明の処理液が含有するTeが、テルル酸、テルル酸カリウム、テルル酸ナトリウム、亜テルル酸、亜テルル酸カリウム、亜テルル酸ナトリウムおよび二酸化テルルからなる群から選択される少なくとも1種として含有しているのが好ましい。 Similarly, from the viewpoint of easily exposing and dispersing the semiconductor particles from the surface of the surface treatment film, Te contained in the treatment liquid of the present invention is telluric acid, potassium tellurate, sodium tellurate, tellurite. And at least one selected from the group consisting of potassium tellurite, sodium tellurite and tellurium dioxide.
 同様に、上記半導体粒子を上記表面処理皮膜の表面から均一に露出させ分散させやすくなる観点から、本発明の処理液が含有するCuが、硝酸銅、硫酸銅、塩化銅、炭酸銅、塩基性炭酸銅、酸化銅、酢酸銅、水酸化銅、フッ化銅および硫化銅からなる群から選択される少なくとも1種として含有しているのが好ましい。 Similarly, from the viewpoint of easily exposing and dispersing the semiconductor particles from the surface of the surface treatment film, Cu contained in the treatment liquid of the present invention is copper nitrate, copper sulfate, copper chloride, copper carbonate, basic It is preferably contained as at least one selected from the group consisting of copper carbonate, copper oxide, copper acetate, copper hydroxide, copper fluoride and copper sulfide.
 (フッ素化合物)
 本発明においては、本発明の処理液と金属材料との界面で生起するエッチング反応を促進させる観点から、本発明の処理液がフッ素化合物を含有するのが好ましい。
 フッ素化合物としては、具体的には、例えば、フッ化水素酸、フッ化アンモニウム、フッ化水素アンモニウム、フッ化ゲルマニウム、フッ化カリウム、フッ化水素カリウム、フッ化鉄、フッ化ナトリウム、フッ化水素ナトリウム等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
(Fluorine compound)
In the present invention, the treatment liquid of the present invention preferably contains a fluorine compound from the viewpoint of promoting an etching reaction occurring at the interface between the treatment liquid of the present invention and the metal material.
Specific examples of the fluorine compound include hydrofluoric acid, ammonium fluoride, ammonium hydrogen fluoride, germanium fluoride, potassium fluoride, potassium hydrogen fluoride, iron fluoride, sodium fluoride, and hydrogen fluoride. Sodium etc. are mentioned, These may be used individually by 1 type and may use 2 or more types together.
 また、同様の観点から、本発明の処理液が、フッ素化合物とともに、比較的に還元されやすいイオンを含有するのが好ましい。
 更に、同様の観点から、本発明の処理液に酸化性物質、例えば、硝酸イオンを共存させて、比較的高めのpH範囲(3.5以上)で処理するのが好ましい。
 これは、高めのpHでは、本発明の処理液と金属材料との界面で生起するエッチング反応が穏やかに進行することになり、アモルファス皮膜が生成されやすくなる。また、このエッチング反応に伴う電子放出により、SnやCuの還元が生じ、表面に金属核ができる形となる。すなわち、エッチング反応を抑制し、酸化性物質を共存させることにより、アモルファス皮膜の成長、金属核の周囲での酸化物や水酸化物質の成長が進行するため、図2に示す断面構造の表面処理金属材料を得ることができる。
From the same viewpoint, it is preferable that the treatment liquid of the present invention contains ions that are relatively easily reduced together with the fluorine compound.
Further, from the same viewpoint, it is preferable to treat the treatment liquid of the present invention in the relatively high pH range (3.5 or more) in the presence of an oxidizing substance such as nitrate ions.
This is because, at a high pH, the etching reaction occurring at the interface between the treatment liquid of the present invention and the metal material proceeds gently, and an amorphous film is likely to be formed. Further, due to the electron emission accompanying this etching reaction, Sn or Cu is reduced, and a metal nucleus is formed on the surface. That is, by suppressing the etching reaction and allowing an oxidizing substance to coexist, the growth of the amorphous film and the growth of oxides and hydroxides around the metal core proceed, so the surface treatment of the cross-sectional structure shown in FIG. A metal material can be obtained.
 (金属イオン)
 また、本発明においては、本発明の処理液が、表面処理の連続操業中に、金属材料から溶出する金属イオンを含有しても問題とならない。
 具体的には、本発明の処理液と金属材料との界面で生起するエッチング反応にて溶出する金属イオン、例えば、Fe、Zn、Al等が含有することになるが、ZrやSn等の含有量が上述した範囲に制御することにより、スラッジ発生等の問題を抑制することができる。
 また、積極的には金属イオンを添加し、その金属を共析させることで更に耐食性を向上させることができる場合もある。例えば、Mg、Si、Ca、V、Mn、Co、Ni、Y、Ag、Ba、BiおよびCe等の多価の金属イオンを添加することができる。
(Metal ions)
Moreover, in this invention, even if the process liquid of this invention contains the metal ion which elutes from a metal material during the continuous operation of surface treatment, it does not become a problem.
Specifically, metal ions eluted by the etching reaction occurring at the interface between the treatment liquid of the present invention and the metal material, for example, Fe, Zn, Al, etc., are contained, but contain Zr, Sn, etc. By controlling the amount within the above-described range, problems such as sludge generation can be suppressed.
In some cases, the corrosion resistance can be further improved by positively adding metal ions and eutectating the metal. For example, polyvalent metal ions such as Mg, Si, Ca, V, Mn, Co, Ni, Y, Ag, Ba, Bi, and Ce can be added.
 (金属キレート剤)
 更に、本発明においては、本発明の処理液が金属キレート剤を含有するのが好ましい。
 金属キレート剤は、基本的に本発明の処理液の安定性を高める効果を有する。
 特に、本発明の金属処理方法における処理液接触工程の前工程(例えば、脱脂等)からの液の持ち込みが多い場合(例えば、水洗工程や水量が不足がちなライン等)には、pHが上昇傾向にあり処理液の安定性が損なわれる場合がある。
 そのため、このような場合に金属キレート剤を含有するのが好ましい。
(Metal chelating agent)
Furthermore, in this invention, it is preferable that the processing liquid of this invention contains a metal chelating agent.
The metal chelating agent basically has the effect of increasing the stability of the treatment liquid of the present invention.
In particular, when the amount of liquid brought in from the previous step (for example, degreasing, etc.) of the treatment liquid contact step in the metal treatment method of the present invention (for example, a washing step or a line where the amount of water tends to be insufficient), the pH increases. The stability of the processing solution may be impaired due to the tendency.
Therefore, it is preferable to contain a metal chelating agent in such a case.
 上記金属キレート剤としては、具体的には、例えば、シュウ酸、酒石酸、クエン酸、リンゴ酸、マロン酸、有機フォスフォン酸、ニトリロ2酢酸(NTA)、エチレンジアミン4酢酸(EDTA)、ヒドロシエチレンジアミン3酢酸(HEDTA)、これらの塩類等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
 これらのうち、ZrやSn等の析出、すなわち、上述した表面処理皮膜の形成に影響のない、リンゴ酸、マロン酸、有機フォスフォン酸、HEDTA、これらの塩類であるのが好ましい。
Specific examples of the metal chelating agent include oxalic acid, tartaric acid, citric acid, malic acid, malonic acid, organic phosphonic acid, nitrilodiacetic acid (NTA), ethylenediaminetetraacetic acid (EDTA), and hydroxyethylenediamine. Examples include triacetic acid (HEDTA) and salts thereof. These may be used alone or in combination of two or more.
Of these, malic acid, malonic acid, organic phosphonic acid, HEDTA, and salts thereof, which do not affect the precipitation of Zr, Sn, etc., that is, the formation of the above-described surface treatment film, are preferable.
 本発明においては、上記キレート剤の含有量が、5~5000mg/Lであるのが好ましく、10~1000mg/Lであるのがより好ましい。 In the present invention, the content of the chelating agent is preferably 5 to 5000 mg / L, and more preferably 10 to 1000 mg / L.
 (その他の有機物)
 本発明の処理液は、耐食性をより向上させ、塗料密着性を向上させる観点から、本発明の目的を損なわない範囲で、樹脂等の有機物を添加することも可能である。
 有機物としては、具体的には、例えば、アミノ基含有化合物(例えば、ビニルアミン、ポリビニルアミン、アリルアミン、ポリアリルアミン、ポリエチレンイミン等)、ビニルアルコール、ポリビニルアルコール、ウレタン樹脂、ポリエステル、アクリル酸、ポリアクリル酸、フェノール、ポリフェノール、ビスフェノール、糖類およびこれらの誘導体等が挙げられる。
(Other organic substances)
From the viewpoint of further improving the corrosion resistance and improving the paint adhesion, the treatment liquid of the present invention can be added with an organic substance such as a resin within the range that does not impair the object of the present invention.
Specific examples of organic substances include amino group-containing compounds (for example, vinylamine, polyvinylamine, allylamine, polyallylamine, polyethyleneimine, etc.), vinyl alcohol, polyvinyl alcohol, urethane resin, polyester, acrylic acid, and polyacrylic acid. , Phenol, polyphenol, bisphenol, saccharides and derivatives thereof.
 本発明の処理液のpHは、2.0~6.0であるのが好ましく、2.5~5.0であるのがより好ましく、3.0~4.5であるのが更に好ましい。
 pHがこの範囲であると、ZrやSn等の析出効率が良好となり、また、表面処理の連続操業時のスラッジの発生を抑制することができる。
The pH of the treatment liquid of the present invention is preferably 2.0 to 6.0, more preferably 2.5 to 5.0, and still more preferably 3.0 to 4.5.
When the pH is within this range, the deposition efficiency of Zr, Sn, etc. is improved, and the generation of sludge during continuous operation of the surface treatment can be suppressed.
 本発明においては、処理液のpHを調整する必要がある場合、用いられる薬剤は特に限定されない。
 このような薬剤としては、具体的には、例えば、塩酸、硫酸、硝酸、フッ化水素酸、ホウ酸、有機酸等の酸;水酸化リチウム、水酸化カリウム、水酸化ナトリウム、水酸化カルシウム、水酸化マグネシウム、水酸化バリウム、アルカリ金属塩、アンモニア水、炭酸水素アンモニウム、アンモニウム塩、アミン類等のアルカリが挙げられる。
In the present invention, when it is necessary to adjust the pH of the treatment liquid, the chemical used is not particularly limited.
Specific examples of such agents include acids such as hydrochloric acid, sulfuric acid, nitric acid, hydrofluoric acid, boric acid, and organic acids; lithium hydroxide, potassium hydroxide, sodium hydroxide, calcium hydroxide, Examples include alkalis such as magnesium hydroxide, barium hydroxide, alkali metal salts, aqueous ammonia, ammonium hydrogen carbonate, ammonium salts, and amines.
 以下に実施例を示して本発明を具体的に説明する。ただし、本発明はこれらに限られるものではない。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these.
 まず、金属材料、金属材料の表面処理方法における清浄化および処理液の接触ならびにその後の電着塗装について説明する。
 なお、各金属表面処理用処理液の調製および各金属表面処理用処理液を用いた表面処理後の各金属材料の各種試験方法(評価方法)については後述し、各種試験方法(評価方法)の結果は下記第1表~第3表に示す。
First, the metal material, the cleaning in the surface treatment method of the metal material, the contact with the treatment liquid, and the subsequent electrodeposition coating will be described.
In addition, various test methods (evaluation methods) of each metal material after the surface treatment using each metal surface treatment solution and the preparation of each metal surface treatment solution will be described later. The results are shown in Tables 1 to 3 below.
 〔金属材料〕
 金属材料としては、冷延鋼板(サイズ:70×150×0.8mm、商品名:SPCC(JIS 3141)、パルテック社製)、合金化溶融亜鉛めっき鋼板(サイズ:70×150×0.8mm、商品名:SGCC F06 MO(JIS G3302)、パルテック社製)、および、アルミニウム合金板(サイズ:70×150×1.0mm、商品名:A5052P(JIS 4000)、パルテック社製)の3種を用いた。
 以下、冷延鋼板を「SPC」、合金化溶融亜鉛めっき鋼板を「GA」、アルミニウム合金板を「AL」と略記する。
〔Metal material〕
As the metal material, cold-rolled steel plate (size: 70 × 150 × 0.8 mm, trade name: SPCC (JIS 3141), manufactured by Partec), alloyed hot-dip galvanized steel plate (size: 70 × 150 × 0.8 mm, Product name: SGCC F06 MO (JIS G3302), manufactured by Partec Co., Ltd.) and aluminum alloy plate (size: 70 x 150 x 1.0 mm, product name: A5052P (JIS 4000), manufactured by Partec Co., Ltd.) It was.
Hereinafter, the cold-rolled steel sheet is abbreviated as “SPC”, the galvannealed steel sheet as “GA”, and the aluminum alloy sheet as “AL”.
 〔清浄化〕
 脱脂剤(商品名:ファインクリーナーE2001(A剤13g/L、B剤7g/L)、日本パーカライジング社製)を使用して、液温40℃で120秒間スプレーすることにより各金属材料の表面を脱脂した。
 その後、30秒間スプレー水洗した。
 なお、電着塗装付き廻り性の評価に用いた後述するボックスについては、上記と同様の脱脂剤を用いて、液温40℃で180秒間浸漬させて脱脂した。また、この場合の水洗も60秒間浸漬させ、よく揺動させて行った。
[Cleaning]
Using a degreasing agent (trade name: Fine Cleaner E2001 (A agent 13g / L, B agent 7g / L), manufactured by Nippon Parkerizing Co., Ltd.), spray the surface of each metal material at a liquid temperature of 40 ° C for 120 seconds. Degreased.
Thereafter, it was washed with spray water for 30 seconds.
In addition, about the box mentioned later used for the evaluation of the circulation property with electrodeposition coating, it was degreased by immersing for 180 seconds at a liquid temperature of 40 ° C. using the same degreasing agent as described above. In this case, the washing with water was also performed by immersing for 60 seconds and rocking well.
 〔処理液接触〕
 後述する組成の各金属表面処理用処理液を調製し、pH等の安定度合いや沈殿等の発生を確認するために所定の温度で1時間攪拌した後に放置し、処理液の外観(初期外観)を観察した。
 その後、以下の表面処理条件1または2により、各金属材料および後述するボックスの表面処理を行った。
 表面処理後、各金属材料の表面を水道水を用いて常温下で30秒間水洗し、更に常温下で30秒間脱イオン水洗した。
[Processing liquid contact]
Prepare a treatment solution for each metal surface treatment having the composition described later, and stir at a predetermined temperature for 1 hour to confirm the degree of stability such as pH and the occurrence of precipitation, and leave the treatment solution to appear (initial appearance). Was observed.
Then, the surface treatment of each metal material and the box described later was performed under the following surface treatment conditions 1 or 2.
After the surface treatment, the surface of each metal material was washed with tap water at room temperature for 30 seconds, and further washed with deionized water at room temperature for 30 seconds.
 <表面処理条件1>
 (1)処理温度:35℃
 (2)処理時間:90秒
 (3)接触方法:浸漬
 (4)接触時流速:10cm/秒
 <表面処理条件2>
 (1)処理温度:40℃
 (2)処理時間:90秒
 (3)接触方法:浸漬
 (4)接触時流速:2cm/秒
<Surface treatment condition 1>
(1) Processing temperature: 35 ° C
(2) Treatment time: 90 seconds (3) Contact method: Immersion (4) Flow rate during contact: 10 cm / second <Surface treatment condition 2>
(1) Processing temperature: 40 ° C
(2) Treatment time: 90 seconds (3) Contact method: Immersion (4) Flow rate during contact: 2 cm / second
 〔電着塗装〕
 上述した脱イオン水洗後、乾燥していない金属材料に、電着塗料(商品名:GT-10HT、関西ペイント社製)を用い、180秒間定電圧陰極電解を施し、塗膜を析出させた。
 その後、水洗し、170℃で20分間加熱焼き付けすることにより電着塗装を施し、塗膜を形成した。電圧の制御により塗膜の膜厚を20μmに調整した。
[Electrodeposition coating]
After the above deionized water washing, an electrodeposition paint (trade name: GT-10HT, manufactured by Kansai Paint Co., Ltd.) was applied to a metal material that was not dried, and constant voltage cathode electrolysis was performed for 180 seconds to deposit a coating film.
Thereafter, it was washed with water and baked at 170 ° C. for 20 minutes to perform electrodeposition coating to form a coating film. The film thickness of the coating film was adjusted to 20 μm by controlling the voltage.
 (実施例1)
 金属表面処理用処理液1を調製し、上述した方法で清浄化した3種の金属材料および後述のボックスの表面処理を行い、表面処理皮膜層を形成した。
 ここで、金属表面処理用処理液1の調製は、まず、下記成分(A)~(C)をこの順に下記濃度となるように添加し、常温で20分間攪拌した。次いで、所定温度(35℃)に加温し、アンモニア水を用いてpHを4.5に調整し、金属表面処理用処理液1を得た。
 また、金属表面処理用処理液1を用いた表面処理は、上述した表面処理条件1により行った。
 その後、上述した方法で、表面処理後の金属材料を水洗し、脱イオン水洗し、乾燥することなく、電着塗装を行い、塗膜を形成した。
Example 1
A treatment liquid 1 for metal surface treatment was prepared, and the surface treatment film layer was formed by performing surface treatment of the three kinds of metal materials cleaned by the above-described method and a box described later.
Here, in preparing the metal surface treatment solution 1, the following components (A) to (C) were first added in this order so as to have the following concentrations, followed by stirring at room temperature for 20 minutes. Subsequently, it heated to predetermined temperature (35 degreeC), pH was adjusted to 4.5 using aqueous ammonia, and the metal surface treatment processing liquid 1 was obtained.
Further, the surface treatment using the metal surface treatment solution 1 was performed under the surface treatment condition 1 described above.
Thereafter, the metal material after the surface treatment was washed with water, deionized water, and electrodeposition coating was performed without drying, thereby forming a coating film.
 <金属表面処理用処理液1>
 (A)フルオロジルコニウム酸:Zrとして100ppm
 (B)硝酸銅:Cuとして30ppm
 (C)硝酸亜鉛:Znとして500ppm
<Metal surface treatment liquid 1>
(A) Fluorozirconic acid: 100 ppm as Zr
(B) Copper nitrate: 30 ppm as Cu
(C) Zinc nitrate: 500 ppm as Zn
 (実施例2)
 金属表面処理用処理液2を調製し、上述した方法で清浄化した3種の金属材料および後述のボックスの表面処理を行い、表面処理皮膜層を形成した。
 ここで、金属表面処理用処理液2の調製は、まず、下記成分(A)~(D)をこの順に下記濃度となるように添加し、常温で20分間攪拌した。次いで、所定温度(40℃)に加温し、アンモニア水を用いてpHを3.0に調整し、金属表面処理用処理液2を得た。
 また、金属表面処理用処理液2を用いた表面処理は、上述した表面処理条件2により行った。
 その後、上述した方法で、表面処理後の金属材料を水洗し、脱イオン水洗し、乾燥することなく、電着塗装を行い、塗膜を形成した。
(Example 2)
A treatment liquid 2 for metal surface treatment was prepared, and the surface treatment film layer was formed by performing the surface treatment of the three kinds of metal materials cleaned by the above-described method and the box described below.
Here, in preparing the metal surface treatment solution 2, the following components (A) to (D) were first added in this order so as to have the following concentrations, followed by stirring at room temperature for 20 minutes. Subsequently, it heated to predetermined temperature (40 degreeC), pH was adjusted to 3.0 using aqueous ammonia, and the metal surface treatment processing liquid 2 was obtained.
The surface treatment using the metal surface treatment solution 2 was performed under the surface treatment condition 2 described above.
Thereafter, the metal material after the surface treatment was washed with water, deionized water, and electrodeposition coating was performed without drying, thereby forming a coating film.
 <金属表面処理用処理液2>
 (A)フルオロチタニウム酸:Tiとして50ppm
 (B)亜テルル酸カリウム:Teとして50ppm
 (C)硝酸亜鉛:Znとして200ppm
 (D)硝酸アルミニウム:Alとして20ppm
<Metal surface treatment liquid 2>
(A) Fluorotitanic acid: 50 ppm as Ti
(B) Potassium tellurite: 50 ppm as Te
(C) Zinc nitrate: 200 ppm as Zn
(D) Aluminum nitrate: 20 ppm as Al
 (実施例3)
 金属表面処理用処理液3を調製し、上述した方法で清浄化した3種の金属材料および後述のボックスの表面処理を行い、表面処理皮膜層を形成した。
 ここで、金属表面処理用処理液3の調製は、まず、下記成分(A)~(F)をこの順に下記濃度となるように添加し、常温で20分間攪拌した。次いで、所定温度(35℃)に加温し、アンモニア水を用いてpHを4.0に調整し、金属表面処理用処理液3を得た。
 また、金属表面処理用処理液3を用いた表面処理は、上述した表面処理条件1により行った。
 その後、上述した方法で、表面処理後の金属材料を水洗し、脱イオン水洗し、乾燥することなく、電着塗装を行い、塗膜を形成した。
(Example 3)
A metal surface treatment solution 3 was prepared, and surface treatment was performed on the three types of metal materials cleaned by the above-described method and a box described later to form a surface treatment film layer.
Here, in preparing the metal surface treatment solution 3, the following components (A) to (F) were first added in this order so as to have the following concentrations, followed by stirring at room temperature for 20 minutes. Subsequently, it heated to predetermined temperature (35 degreeC), pH was adjusted to 4.0 using ammonia water, and the metal surface treatment processing liquid 3 was obtained.
Further, the surface treatment using the metal surface treatment liquid 3 was performed under the surface treatment condition 1 described above.
Thereafter, the metal material after the surface treatment was washed with water, deionized water, and electrodeposition coating was performed without drying, thereby forming a coating film.
 <金属表面処理用処理液3>
 (A)フルオロジルコニウム酸:Zrとして300ppm
 (B)硝酸チタニウム:Tiとして50ppm
 (C)硝酸銅:Cuとして10ppm
 (D)硝酸アルミニウム:Alとして200ppm
 (E)硝酸亜鉛:Znとして2000ppm
 (F)硫酸第一鉄:Feとして100ppm
<Metal surface treatment liquid 3>
(A) Fluorozirconic acid: 300 ppm as Zr
(B) Titanium nitrate: 50 ppm as Ti
(C) Copper nitrate: 10 ppm as Cu
(D) Aluminum nitrate: 200 ppm as Al
(E) Zinc nitrate: 2000 ppm as Zn
(F) Ferrous sulfate: 100 ppm as Fe
 (実施例4)
 金属表面処理用処理液4を調製し、上述した方法で清浄化した3種の金属材料および後述のボックスの表面処理を行い、表面処理皮膜層を形成した。
 ここで、金属表面処理用処理液4の調製は、まず、下記成分(A)~(E)をこの順に下記濃度となるように添加し、常温で20分間攪拌した。次いで、所定温度(35℃)に加温し、アンモニア水を用いてpHを3.5に調整し、金属表面処理用処理液4を得た。
 また、金属表面処理用処理液4を用いた表面処理は、上述した表面処理条件1により行った。
 その後、上述した方法で、表面処理後の金属材料を水洗し、脱イオン水洗し、乾燥することなく、電着塗装を行い、塗膜を形成した。
Example 4
A metal surface treatment treatment solution 4 was prepared, and surface treatment was performed on the three types of metal materials cleaned by the above-described method and a box described later to form a surface treatment film layer.
Here, in preparing the metal surface treatment solution 4, the following components (A) to (E) were first added in this order so as to have the following concentrations, followed by stirring at room temperature for 20 minutes. Subsequently, it heated to predetermined temperature (35 degreeC), pH was adjusted to 3.5 using aqueous ammonia, and the metal surface treatment processing liquid 4 was obtained.
Further, the surface treatment using the metal surface treatment solution 4 was performed under the surface treatment condition 1 described above.
Thereafter, the metal material after the surface treatment was washed with water, deionized water, and electrodeposition coating was performed without drying, thereby forming a coating film.
 <金属表面処理用処理液4>
 (A)フルオロチタニウム酸:Tiとして100ppm
 (B)硝酸ジルコニウム:Zrとして100ppm
 (C)塩化錫:Snとして20ppm
 (D)硝酸亜鉛:Znとして500ppm
 (E)硝酸アルミニウム:Alとして10ppm
<Metal surface treatment liquid 4>
(A) Fluorotitanic acid: 100 ppm as Ti
(B) Zirconium nitrate: 100 ppm as Zr
(C) Tin chloride: 20 ppm as Sn
(D) Zinc nitrate: 500 ppm as Zn
(E) Aluminum nitrate: 10 ppm as Al
 (実施例5)
 金属表面処理用処理液5を調製し、上述した方法で清浄化した3種の金属材料および後述のボックスの表面処理を行い、表面処理皮膜層を形成した。
 ここで、金属表面処理用処理液5の調製は、まず、下記成分(A)~(E)をこの順に下記濃度となるように添加し、常温で20分間攪拌した。次いで、所定温度(40℃)に加温し、アンモニア水を用いてpHを4.0に調整し、金属表面処理用処理液5を得た。
 また、金属表面処理用処理液5を用いた表面処理は、上述した表面処理条件2により行った。
 その後、上述した方法で、表面処理後の金属材料を水洗し、脱イオン水洗し、乾燥することなく、電着塗装を行い、塗膜を形成した。
(Example 5)
A treatment liquid 5 for metal surface treatment was prepared, and the surface treatment film layer was formed by performing surface treatment of the three kinds of metal materials cleaned by the above-described method and a box described later.
Here, in preparation of the metal surface treatment solution 5, first, the following components (A) to (E) were added in this order so as to have the following concentrations, followed by stirring at room temperature for 20 minutes. Subsequently, it heated to predetermined temperature (40 degreeC), pH was adjusted to 4.0 using aqueous ammonia, and the metal surface treatment processing liquid 5 was obtained.
Further, the surface treatment using the metal surface treatment solution 5 was performed under the surface treatment condition 2 described above.
Thereafter, the metal material after the surface treatment was washed with water, deionized water, and electrodeposition coating was performed without drying, thereby forming a coating film.
 <金属表面処理用処理液5>
 (A)フルオロジルコニウム酸:Zrとして100ppm
 (B)塩基性炭酸銅:Cuとして50ppm
 (C)硝酸亜鉛:Znとして500ppm
 (D)硝酸アルミ:Alとして20ppm
 (E)コロイダルシリカ(スノーテックスO、日産化学社製):200ppm
<Metal surface treatment liquid 5>
(A) Fluorozirconic acid: 100 ppm as Zr
(B) Basic copper carbonate: 50 ppm as Cu
(C) Zinc nitrate: 500 ppm as Zn
(D) Aluminum nitrate: 20 ppm as Al
(E) Colloidal silica (Snowtex O, manufactured by Nissan Chemical Industries): 200 ppm
 (実施例6)
 金属表面処理用処理液6を調製し、上述した方法で清浄化した3種の金属材料および後述のボックスの表面処理を行い、表面処理皮膜層を形成した。
 ここで、金属表面処理用処理液6の調製は、まず、下記成分(A)~(E)をこの順に下記濃度となるように添加し、常温で20分間攪拌した。次いで、所定温度(35℃)に加温し、アンモニア水を用いてpHを4.0に調整し、金属表面処理用処理液6を得た。
 また、金属表面処理用処理液6を用いた表面処理は、上述した表面処理条件1により行った。
 その後、上述した方法で、表面処理後の金属材料を水洗し、脱イオン水洗し、乾燥することなく、電着塗装を行い、塗膜を形成した。
(Example 6)
A treatment liquid 6 for metal surface treatment was prepared, and the surface treatment film layer was formed by performing surface treatment of the three kinds of metal materials cleaned by the above-described method and a box described later.
Here, in preparation of the metal surface treatment solution 6, first, the following components (A) to (E) were added in this order so as to have the following concentrations, followed by stirring at room temperature for 20 minutes. Subsequently, it heated to predetermined temperature (35 degreeC), pH was adjusted to 4.0 using ammonia water, and the metal surface treatment processing liquid 6 was obtained.
Further, the surface treatment using the metal surface treatment liquid 6 was performed under the surface treatment condition 1 described above.
Thereafter, the metal material after the surface treatment was washed with water, deionized water, and electrodeposition coating was performed without drying, thereby forming a coating film.
 <金属表面処理用処理液6>
 (A)フルオロチタニウム酸:Tiとして100ppm
 (B)硝酸インジウム:Inとして20ppm
 (C)硝酸銅:Cuとして30ppm
 (D)硝酸亜鉛:亜鉛として2000ppm
 (E)硫酸第一鉄:Feとして50ppm
<Metal surface treatment liquid 6>
(A) Fluorotitanic acid: 100 ppm as Ti
(B) Indium nitrate: 20 ppm as In
(C) Copper nitrate: 30 ppm as Cu
(D) Zinc nitrate: 2000 ppm as zinc
(E) Ferrous sulfate: 50 ppm as Fe
 (実施例7)
 金属表面処理用処理液7を調製し、上述した方法で清浄化した3種の金属材料および後述のボックスの表面処理を行い、表面処理皮膜層を形成した。
 ここで、金属表面処理用処理液7の調製は、まず、下記成分(A)~(D)をこの順に下記濃度となるように添加し、常温で20分間攪拌した。次いで、所定温度(35℃)に加温し、アンモニア水を用いてpHを4.0に調整し、金属表面処理用処理液7を得た。
 また、金属表面処理用処理液7を用いた表面処理は、上述した表面処理条件1により行った。
 その後、上述した方法で、表面処理後の金属材料を水洗し、脱イオン水洗し、乾燥することなく、電着塗装を行い、塗膜を形成した。
(Example 7)
A metal surface treatment solution 7 was prepared, and the surface treatment film layer was formed by performing the surface treatment of the three types of metal materials cleaned by the above-described method and the box described below.
Here, in preparing the metal surface treatment solution 7, the following components (A) to (D) were first added in this order so as to have the following concentrations, followed by stirring at room temperature for 20 minutes. Subsequently, it heated to predetermined temperature (35 degreeC), pH was adjusted to 4.0 using ammonia water, and the metal surface treatment processing liquid 7 was obtained.
Further, the surface treatment using the metal surface treatment solution 7 was performed under the surface treatment condition 1 described above.
Thereafter, the metal material after the surface treatment was washed with water, deionized water, and electrodeposition coating was performed without drying, thereby forming a coating film.
 <金属表面処理用処理液7>
 (A)フルオロジルコニウム酸:Zrとして200ppm
 (B)硝酸銅:Cuとして20ppm
 (C)硝酸亜鉛:Znとして2000ppm
 (D)ジアリルアミン塩重合体(PAS‐20CL、日東紡社製):50ppm
<Metal surface treatment liquid 7>
(A) Fluorozirconic acid: 200 ppm as Zr
(B) Copper nitrate: 20 ppm as Cu
(C) Zinc nitrate: 2000 ppm as Zn
(D) Diallylamine salt polymer (PAS-20CL, manufactured by Nittobo): 50 ppm
 (実施例8)
 金属表面処理用処理液8を調製し、上述した方法で清浄化した3種の金属材料および後述のボックスの表面処理を行い、表面処理皮膜層を形成した。
 ここで、金属表面処理用処理液8の調製は、まず、下記成分(A)~(C)をこの順に下記濃度となるように添加し、常温で20分間攪拌した。次いで、所定温度(35℃)に加温し、アンモニア水を用いてpHを3.0に調整し、金属表面処理用処理液8を得た。
 また、金属表面処理用処理液8を用いた表面処理は、上述した表面処理条件1により行った。
 その後、上述した方法で、表面処理後の金属材料を水洗し、脱イオン水洗し、乾燥することなく、電着塗装を行い、塗膜を形成した。
(Example 8)
A surface treatment film 8 was prepared by preparing a metal surface treatment solution 8 and subjecting the three kinds of metal materials cleaned by the above-described method and a surface treatment of a box to be described later.
Here, in preparation of the metal surface treatment solution 8, first, the following components (A) to (C) were added in this order so as to have the following concentrations, followed by stirring at room temperature for 20 minutes. Subsequently, it heated to predetermined temperature (35 degreeC), pH was adjusted to 3.0 using aqueous ammonia, and the metal surface treatment processing liquid 8 was obtained.
Further, the surface treatment using the metal surface treatment solution 8 was performed under the surface treatment condition 1 described above.
Thereafter, the metal material after the surface treatment was washed with water, deionized water, and electrodeposition coating was performed without drying, thereby forming a coating film.
 <金属表面処理用処理液8>
 (A)フルオロジルコニウム酸:Zrとして200ppm
 (B)テルル酸ナトリウム:Teとして50ppm
 (C)ジアリルジメチルアンモニウム塩重合体(PAS-H1L、日東紡社製):50ppm
<Metal surface treatment liquid 8>
(A) Fluorozirconic acid: 200 ppm as Zr
(B) Sodium tellurate: 50 ppm as Te
(C) Diallyldimethylammonium salt polymer (PAS-H1L, manufactured by Nittobo): 50 ppm
 (実施例9)
 金属表面処理用処理液9を調製し、上述した方法で清浄化した3種の金属材料および後述のボックスの表面処理を行い、表面処理皮膜層を形成した。
 ここで、金属表面処理用処理液9の調製は、まず、下記成分(A)~(D)をこの順に下記濃度となるように添加し、常温で20分間攪拌した。次いで、所定温度(35℃)に加温し、アンモニア水を用いてpHを4.5に調整し、金属表面処理用処理液9を得た。
 また、金属表面処理用処理液9を用いた表面処理は、上述した表面処理条件1により行った。
 その後、上述した方法で、表面処理後の金属材料を水洗し、脱イオン水洗し、乾燥することなく、電着塗装を行い、塗膜を形成した。
Example 9
A metal surface treatment treatment liquid 9 was prepared, and surface treatment was performed on the three types of metal materials cleaned by the above-described method and a box described below to form a surface treatment film layer.
Here, in preparation of the metal surface treatment solution 9, the following components (A) to (D) were first added in this order so as to have the following concentrations, followed by stirring at room temperature for 20 minutes. Subsequently, it heated to predetermined temperature (35 degreeC), pH was adjusted to 4.5 using aqueous ammonia, and the metal surface treatment processing liquid 9 was obtained.
Further, the surface treatment using the metal surface treatment liquid 9 was performed under the surface treatment condition 1 described above.
Thereafter, the metal material after the surface treatment was washed with water, deionized water, and electrodeposition coating was performed without drying, thereby forming a coating film.
 <金属表面処理用処理液9>
 (A)フルオロチタニウム酸:Tiとして100ppm
 (B)塩基性炭酸銅:Cuとして50ppm
 (C)エチレンジアミン四酢酸ナトリウム:50ppm
 (D)タンニン酸:100ppm
<Metal surface treatment liquid 9>
(A) Fluorotitanic acid: 100 ppm as Ti
(B) Basic copper carbonate: 50 ppm as Cu
(C) Sodium ethylenediaminetetraacetate: 50 ppm
(D) Tannic acid: 100 ppm
 (実施例10)
 金属表面処理用処理液10を調製し、上述した方法で清浄化した3種の金属材料および後述のボックスの表面処理を行い、表面処理皮膜層を形成した。
 ここで、金属表面処理用処理液10の調製は、まず、下記成分(A)~(C)をこの順に下記濃度となるように添加し、常温で20分間攪拌した。次いで、所定温度(35℃)に加温し、アンモニア水を用いてpHを3.5に調整し、金属表面処理用処理液10を得た。
 また、金属表面処理用処理液10を用いた表面処理は、上述した表面処理条件1により行った。
 その後、上述した方法で、表面処理後の金属材料を水洗し、脱イオン水洗し、乾燥することなく、電着塗装を行い、塗膜を形成した。
(Example 10)
A treatment liquid 10 for metal surface treatment was prepared, and surface treatment of the three types of metal materials cleaned by the above-described method and a box described later was performed to form a surface treatment film layer.
Here, in preparation of the metal surface treatment solution 10, the following components (A) to (C) were first added in this order so as to have the following concentrations, followed by stirring at room temperature for 20 minutes. Subsequently, it heated to predetermined temperature (35 degreeC), pH was adjusted to 3.5 using aqueous ammonia, and the metal surface treatment processing liquid 10 was obtained.
Further, the surface treatment using the metal surface treatment solution 10 was performed under the surface treatment condition 1 described above.
Thereafter, the metal material after the surface treatment was washed with water, deionized water, and electrodeposition coating was performed without drying, thereby forming a coating film.
 <金属表面処理用処理液10>
 (A)フルオロジルコニウム酸:Zrとして100ppm
 (B)亜テルル酸カリウム:Teとして50ppm
 (C)ニトリロ三酢酸ナトリウム:100ppm
<Treatment solution 10 for metal surface treatment>
(A) Fluorozirconic acid: 100 ppm as Zr
(B) Potassium tellurite: 50 ppm as Te
(C) Sodium nitrilotriacetate: 100 ppm
 (実施例11)
 金属表面処理用処理液11を調製し、上述した方法で清浄化した3種の金属材料および後述のボックスの表面処理を行い、表面処理皮膜層を形成した。
 ここで、金属表面処理用処理液11の調製は、まず、下記成分(A)~(D)をこの順に下記濃度となるように添加し、常温で20分間攪拌した。次いで、所定温度(35℃)に加温し、アンモニア水を用いてpHを4.0に調整し、金属表面処理用処理液11を得た。
 また、金属表面処理用処理液11を用いた表面処理は、上述した表面処理条件1により行った。
 その後、上述した方法で、表面処理後の金属材料を水洗し、脱イオン水洗し、乾燥することなく、電着塗装を行い、塗膜を形成した。
Example 11
A metal surface treatment solution 11 was prepared, and surface treatment was performed on the three types of metal materials cleaned by the above-described method and a box described later, thereby forming a surface treatment film layer.
Here, in preparation of the metal surface treatment solution 11, the following components (A) to (D) were first added in this order so as to have the following concentrations, followed by stirring at room temperature for 20 minutes. Subsequently, it heated to predetermined temperature (35 degreeC), pH was adjusted to 4.0 using aqueous ammonia, and the metal surface treatment processing liquid 11 was obtained.
Further, the surface treatment using the metal surface treatment solution 11 was performed under the surface treatment condition 1 described above.
Thereafter, the metal material after the surface treatment was washed with water, deionized water, and electrodeposition coating was performed without drying, thereby forming a coating film.
 <金属表面処理用処理液11>
 (A)フルオロジルコニウム酸:Zrとして100ppm
 (B)フルオロチタニウム酸:Tiとして20ppm
 (C)硝酸銅:Cuとして50ppm
 (D)γ‐アミノプロピルトリエトキシシラン:100ppm
<Treatment solution 11 for metal surface treatment>
(A) Fluorozirconic acid: 100 ppm as Zr
(B) Fluorotitanic acid: 20 ppm as Ti
(C) Copper nitrate: 50 ppm as Cu
(D) γ-aminopropyltriethoxysilane: 100 ppm
 (実施例12)
 金属表面処理用処理液12を調製し、上述した方法で清浄化した3種の金属材料および後述のボックスの表面処理を行い、表面処理皮膜層を形成した。
 ここで、金属表面処理用処理液12の調製は、まず、下記成分(A)~(D)をこの順に下記濃度となるように添加し、常温で20分間攪拌した。次いで、所定温度(35℃)に加温し、アンモニア水を用いてpHを3.0に調整し、金属表面処理用処理液12を得た。
 また、金属表面処理用処理液12を用いた表面処理は、上述した表面処理条件1により行った。
 その後、上述した方法で、表面処理後の金属材料を水洗し、脱イオン水洗し、乾燥することなく、電着塗装を行い、塗膜を形成した。
(Example 12)
A treatment liquid 12 for metal surface treatment was prepared, and surface treatment of the three types of metal materials cleaned by the above-described method and a box described later was performed to form a surface treatment film layer.
Here, in preparing the metal surface treatment solution 12, the following components (A) to (D) were first added in this order so as to have the following concentrations, followed by stirring at room temperature for 20 minutes. Subsequently, it heated to predetermined temperature (35 degreeC), pH was adjusted to 3.0 using ammonia water, and the metal surface treatment processing liquid 12 was obtained.
Further, the surface treatment using the metal surface treatment liquid 12 was performed under the surface treatment condition 1 described above.
Thereafter, the metal material after the surface treatment was washed with water, deionized water, and electrodeposition coating was performed without drying, thereby forming a coating film.
 <金属表面処理用処理液12>
 (A)フルオロジルコニウム酸:Zrとして100ppm
 (B)亜テルル酸ナトリウム:Teとして50ppm
 (C)硝酸銅:Cuとして20ppm
 (D)ポリエチレンイミン(SP‐006、日本触媒社製):20ppm
<Metal surface treatment liquid 12>
(A) Fluorozirconic acid: 100 ppm as Zr
(B) Sodium tellurite: 50 ppm as Te
(C) Copper nitrate: 20 ppm as Cu
(D) Polyethyleneimine (SP-006, manufactured by Nippon Shokubai Co., Ltd.): 20 ppm
 (比較例1)
 金属表面処理用処理液13を調製し、上述した方法で清浄化した3種の金属材料および後述のボックスの表面処理を行い、表面処理皮膜層を形成した。
 ここで、金属表面処理用処理液13の調製は、まず、下記成分(A)~(D)をこの順に下記濃度となるように添加し、常温で20分間攪拌した。次いで、所定温度(35℃)に加温し、アンモニア水を用いてpHを3.5に調整し、金属表面処理用処理液13を得た。
 また、金属表面処理用処理液13を用いた表面処理は、上述した表面処理条件1により行った。
 その後、上述した方法で、表面処理後の金属材料を水洗し、脱イオン水洗し、乾燥することなく、電着塗装を行い、塗膜を形成した。
(Comparative Example 1)
A metal surface treatment treatment liquid 13 was prepared, and the surface treatment film layer was formed by performing the surface treatment of the three types of metal materials cleaned by the above-described method and the box described below.
Here, in preparing the metal surface treatment solution 13, the following components (A) to (D) were first added in this order so as to have the following concentrations, followed by stirring at room temperature for 20 minutes. Subsequently, it heated to predetermined temperature (35 degreeC), pH was adjusted to 3.5 using aqueous ammonia, and the metal surface treatment processing liquid 13 was obtained.
Further, the surface treatment using the metal surface treatment liquid 13 was performed under the surface treatment condition 1 described above.
Thereafter, the metal material after the surface treatment was washed with water, deionized water, and electrodeposition coating was performed without drying, thereby forming a coating film.
 <金属表面処理用処理液13>
 (A)フルオロジルコニウム酸:Zrとして100ppm
 (B)硝酸チタニウム:Tiとして100ppm
 (C)硝酸亜鉛:Znとして2000ppm
 (D)硝酸アルミニウム:Alとして200ppm
<Treatment liquid 13 for metal surface treatment>
(A) Fluorozirconic acid: 100 ppm as Zr
(B) Titanium nitrate: 100 ppm as Ti
(C) Zinc nitrate: 2000 ppm as Zn
(D) Aluminum nitrate: 200 ppm as Al
 (比較例2)
 金属表面処理用処理液14を調製し、上述した方法で清浄化した3種の金属材料および後述のボックスの表面処理を行い、表面処理皮膜層を形成した。
 ここで、金属表面処理用処理液14の調製は、まず、下記成分(A)および(B)をこの順に下記濃度となるように添加し、常温で20分間攪拌した。次いで、所定温度(40℃)に加温し、アンモニア水を用いてpHを3.5に調整し、金属表面処理用処理液14を得た。
 また、金属表面処理用処理液14を用いた表面処理は、上述した表面処理条件2により行った。
 その後、上述した方法で、表面処理後の金属材料を水洗し、脱イオン水洗し、乾燥することなく、電着塗装を行い、塗膜を形成した。
(Comparative Example 2)
A metal surface treatment solution 14 was prepared, and the surface treatment film layer was formed by performing the surface treatment of the three types of metal materials cleaned by the above-described method and the box described below.
Here, in preparation of the metal surface treatment solution 14, first, the following components (A) and (B) were added in this order so as to have the following concentrations, followed by stirring at room temperature for 20 minutes. Subsequently, it heated to predetermined temperature (40 degreeC), pH was adjusted to 3.5 using aqueous ammonia, and the metal surface treatment processing liquid 14 was obtained.
The surface treatment using the metal surface treatment solution 14 was performed under the surface treatment condition 2 described above.
Thereafter, the metal material after the surface treatment was washed with water, deionized water, and electrodeposition coating was performed without drying, thereby forming a coating film.
 <金属表面処理用処理液14>
 (A)硝酸ジルコニウム:Zrとして1000ppm
 (B)硝酸マグネシウム:Mgとして2000ppm
<Metal surface treatment liquid 14>
(A) Zirconium nitrate: 1000 ppm as Zr
(B) Magnesium nitrate: 2000 ppm as Mg
 (比較例3)
 金属表面処理用処理液15を調製し、上述した方法で清浄化した3種の金属材料および後述のボックスの表面処理を行い、表面処理皮膜層を形成した。
 ここで、金属表面処理用処理液15の調製は、まず、下記成分(A)を下記濃度となるように添加し、常温で20分間攪拌した。次いで、所定温度(40℃)に加温し、硝酸水を用いてpHを7.0に調整し、金属表面処理用処理液15を得た。
 また、金属表面処理用処理液15を用いた表面処理は、上述した表面処理条件1により行った。
 その後、上述した方法で、表面処理後の金属材料を水洗いすることなく乾燥させた後に電着塗装を行い、塗膜を形成した。
(Comparative Example 3)
A metal surface treatment solution 15 was prepared, and the surface treatment film layer was formed by performing the surface treatment of the three types of metal materials cleaned by the above-described method and the box described below.
Here, preparation of the metal surface treatment solution 15 was performed by first adding the following component (A) so as to have the following concentration and stirring at room temperature for 20 minutes. Subsequently, it heated to predetermined temperature (40 degreeC), pH was adjusted to 7.0 using nitric acid water, and the metal surface treatment processing liquid 15 was obtained.
Further, the surface treatment using the metal surface treatment solution 15 was performed under the surface treatment condition 1 described above.
Thereafter, the metal material after the surface treatment was dried without being washed with water by the method described above, and then electrodeposition coating was performed to form a coating film.
 <金属表面処理用処理液15>
 (A)亜テルル酸ナトリウム:Teとして2000ppm
<Metal surface treatment liquid 15>
(A) Sodium tellurite: 2000 ppm as Te
 (比較例4)
 金属表面処理用処理液16を調製し、上述した方法で清浄化した3種の金属材料および後述のボックスの表面処理を行い、表面処理皮膜層を形成した。
 ここで、金属表面処理用処理液16の調製は、まず、下記成分(A)~(D)をこの順に下記濃度となるように添加し、常温で20分間攪拌した。次いで、所定温度(35℃)に加温し、アンモニア水を用いてpHを7.0に調整し、金属表面処理用処理液16を得た。
 また、金属表面処理用処理液16を用いた表面処理は、上述した表面処理条件1により行った。
 その後、上述した方法で、表面処理後の金属材料を水洗し、脱イオン水洗し、乾燥することなく、電着塗装を行い、塗膜を形成した。
(Comparative Example 4)
A treatment liquid 16 for metal surface treatment was prepared, and the surface treatment film layer was formed by performing the surface treatment of the three types of metal materials cleaned by the above-described method and the box described below.
Here, in preparing the metal surface treatment solution 16, the following components (A) to (D) were first added in this order so as to have the following concentrations, followed by stirring at room temperature for 20 minutes. Subsequently, it heated to predetermined temperature (35 degreeC), pH was adjusted to 7.0 using aqueous ammonia, and the metal surface treatment processing liquid 16 was obtained.
Further, the surface treatment using the metal surface treatment liquid 16 was performed under the surface treatment condition 1 described above.
Thereafter, the metal material after the surface treatment was washed with water, deionized water, and electrodeposition coating was performed without drying, thereby forming a coating film.
 <金属表面処理用処理液16>
 (A)フルオロジルコニウム酸:Zrとして100ppm
 (B)亜テルル酸ナトリウム:Teとして50ppm
 (C)コロイダルシリカ(スノーテックスC、日産化学社製):200ppm
 (D)硝酸亜鉛:Znとして2000ppm
<Metal surface treatment liquid 16>
(A) Fluorozirconic acid: 100 ppm as Zr
(B) Sodium tellurite: 50 ppm as Te
(C) Colloidal silica (Snowtex C, manufactured by Nissan Chemical Co., Ltd.): 200 ppm
(D) Zinc nitrate: 2000 ppm as Zn
 (比較例5)
 金属表面処理用処理液13を用いて、上述した方法で清浄化した3種の金属材料および後述のボックスの表面処理を行い、表面処理皮膜層を形成した。
 金属表面処理用処理液13を用いた表面処理は、上述した表面処理条件1により行った後に、更に0.1%の微粒子酸化スズの分散液を塗布し、乾燥させることにより行った。
 その後、上述した方法で、表面処理後の金属材料を水洗し、脱イオン水洗し、乾燥することなく、電着塗装を行い、塗膜を形成した。
(Comparative Example 5)
Using the metal surface treatment liquid 13, three types of metal materials cleaned by the above-described method and a surface treatment of a box described later were performed to form a surface treatment film layer.
The surface treatment using the metal surface treatment solution 13 was performed by applying the above-described surface treatment condition 1 and then applying a 0.1% fine particle tin oxide dispersion and drying.
Thereafter, the metal material after the surface treatment was washed with water, deionized water, and electrodeposition coating was performed without drying, thereby forming a coating film.
 (比較例6)
 上述した金属表面処理用処理液12および14を用いし、上述した方法で清浄化した3種の金属材料および後述のボックスの表面処理を行い、表面処理皮膜層を形成した。
 まず、金属表面処理用処理液12を用いた表面処理を上述した表面処理条件2により行い、銅およびテルルを粒子状に析出させた。
 次いで、金属表面処理用処理液14を用いて、以下の条件で表面処理を行った。
 その後、上述した方法で、表面処理後の金属材料を水洗いすることなく乾燥させた後に電着塗装を行い、塗膜を形成した。
 (1)処理温度:50℃
 (2)処理時間:300秒
 (3)接触方法:浸漬
 (4)接触時流速:5cm/秒
(Comparative Example 6)
Using the above-described metal surface treatment liquids 12 and 14, the surface treatment film layer was formed by performing surface treatment of the three types of metal materials cleaned by the above-described method and the box described below.
First, the surface treatment using the metal surface treatment solution 12 was performed under the surface treatment condition 2 described above, and copper and tellurium were precipitated in the form of particles.
Next, surface treatment was performed using the metal surface treatment solution 14 under the following conditions.
Thereafter, the metal material after the surface treatment was dried without being washed with water by the method described above, and then electrodeposition coating was performed to form a coating film.
(1) Processing temperature: 50 ° C
(2) Treatment time: 300 seconds (3) Contact method: Immersion (4) Flow velocity during contact: 5 cm / second
 (比較例7)
 金属表面処理用処理液17を調製し、上述した方法で清浄化した3種の金属材料および後述のボックスの表面処理を行い、表面処理皮膜層を形成した。
 ここで、金属表面処理用処理液17の調製は、まず、下記成分(A)を下記濃度となるように添加し、常温で20分間攪拌した。次いで、所定温度(35℃)に加温し、pHを調整せずに、pH8.0の金属表面処理用処理液17を得た。
 また、金属表面処理用処理液17を用いた表面処理は、上述した表面処理条件1により行った。
 その後、上述した方法で、表面処理後の金属材料を水洗いすることなく乾燥させた後に電着塗装を行い、塗膜を形成した。
(Comparative Example 7)
A metal surface treatment solution 17 was prepared, and the surface treatment film layer was formed by performing the surface treatment of the three types of metal materials cleaned by the above-described method and the box described below.
Here, in preparation of the metal surface treatment solution 17, first, the following component (A) was added so as to have the following concentration, followed by stirring at room temperature for 20 minutes. Subsequently, it heated to predetermined temperature (35 degreeC), and the metal surface treatment process liquid 17 of pH 8.0 was obtained, without adjusting pH.
Further, the surface treatment using the metal surface treatment liquid 17 was performed under the surface treatment condition 1 described above.
Thereafter, the metal material after the surface treatment was dried without being washed with water by the method described above, and then electrodeposition coating was performed to form a coating film.
 <金属表面処理用処理液17>
 (A)ジルコニアゾル(ZR‐40BL、日産化学社製):1000ppm
<Metal surface treatment liquid 17>
(A) Zirconia sol (ZR-40BL, manufactured by Nissan Chemical Industries): 1000 ppm
 (比較例8)
 リン酸亜鉛化成処理剤(パルボンド(登録商標)L3020、日本パーカライジング社製)の5%水溶液を用いて、以下の条件で表面処理を行った。
 その後、上述した方法で、表面処理後の金属材料を水洗いすることなく乾燥させた後に電着塗装を行い、塗膜を形成した。
 (1)処理温度:35℃
 (2)処理時間:120秒
 (3)接触方法:浸漬
 (4)接触時流速:10cm/秒
(Comparative Example 8)
Using a 5% aqueous solution of a zinc phosphate chemical conversion treatment agent (Palbond (registered trademark) L3020, manufactured by Nihon Parkerizing Co., Ltd.), surface treatment was performed under the following conditions.
Thereafter, the metal material after the surface treatment was dried without being washed with water by the method described above, and then electrodeposition coating was performed to form a coating film.
(1) Processing temperature: 35 ° C
(2) Treatment time: 120 seconds (3) Contact method: Immersion (4) Flow velocity during contact: 10 cm / second
 〔表面処理後の金属付着量〕
 表面処理後の表面処理金属材料における金属付着量(mg/m2)を蛍光X線分析装置(ZSX Primus、リガク社製)にて定量した。
 測定に供した金属材料は表面処理後に水洗し、脱イオン水洗し、これを冷風乾燥したものを用いた。
[Metal adhesion after surface treatment]
The metal adhesion amount (mg / m 2 ) in the surface-treated metal material after the surface treatment was quantified with a fluorescent X-ray analyzer (ZSX Primus, manufactured by Rigaku Corporation).
The metal material used for the measurement was washed with water after the surface treatment, washed with deionized water, and dried in cold air.
 〔表面処理皮膜の表面状態〕
 電界放射型走査電子顕微鏡(S-4700-TYPEII、日立製作所社製)を用いて、表面処理後の表面処理金属材料の表面分析を行い、表面処理皮膜(アモルファス皮膜)中の半導体粒子の最大平均粒径、表面被覆率および密度を測定した。
 図3(A)~(C)に、それぞれ比較例1、実施例1および実施例2で測定した表面処理皮膜のSEM画像(30000倍)を示す。
 また、X線光電子分光分析(ESCA-850M、島津製作所社製)により、半導体粒子における金属と酸化物(水酸化物)の比率を測定した。
 なお、下記第1表~第3表中、比較例4では、半導体粒子が確認できなかったため最大平均粒径を「なし」と記載し、比較例5では、アモルファス皮膜の上に半導体粒子が形成されていたため被覆率を「皮膜上 90%超」と記載し、比較例6では、アモルファス皮膜の中に半導体粒子が隠れていたため被覆率を「隠蔽」と記載している。
[Surface condition of surface treatment film]
Using a field emission scanning electron microscope (S-4700-TYPEII, manufactured by Hitachi, Ltd.), surface analysis of the surface-treated metal material after surface treatment was performed, and the maximum average of semiconductor particles in the surface-treated film (amorphous film) Particle size, surface coverage and density were measured.
3A to 3C show SEM images (30000 times) of the surface treatment films measured in Comparative Example 1, Example 1 and Example 2, respectively.
Further, the ratio of metal to oxide (hydroxide) in the semiconductor particles was measured by X-ray photoelectron spectroscopy (ESCA-850M, manufactured by Shimadzu Corporation).
In Tables 1 to 3 below, in Comparative Example 4, since the semiconductor particles could not be confirmed, the maximum average particle diameter was described as “None”, and in Comparative Example 5, the semiconductor particles were formed on the amorphous film. Therefore, the coverage is described as “over 90% on the film”, and in Comparative Example 6, since the semiconductor particles were hidden in the amorphous film, the coverage was described as “concealment”.
 〔電着塗膜の膜厚〕
 電着塗装後の金属材料の塗膜の膜厚を、金属材料がSPCまたはGAの場合は電磁式膜厚計(LZ-200、ケット科学研究所社製)、金属材料がALの場合は渦電流式膜厚計を用いて測定し、20μmであることを確認した。
[Film thickness of electrodeposition coating]
The film thickness of the metal material after electrodeposition coating is shown as follows: when the metal material is SPC or GA, an electromagnetic film thickness meter (LZ-200, manufactured by Kett Science Laboratory), and when the metal material is AL, the vortex It measured using the electric current type film thickness meter, and confirmed that it was 20 micrometers.
 〔塗料密着性(密着性)〕
 電着塗装した金属材料の塗装面を、枡目が100個となるように碁盤目にカットした。
 次いで、沸騰水に1時間浸漬させた後、水をワイピングし、テープ剥離を行った。
 塗料密着性は、剥離後の碁盤目の状態を観察し、剥離しなかった枡目数で評価した。100個に近いほど塗料密着性に優れると評価できる。
[Paint adhesion (adhesion)]
The painted surface of the electrodeposited metal material was cut into a grid so that there were 100 grids.
Subsequently, after immersing in boiling water for 1 hour, water was wiped and tape peeling was performed.
The paint adhesion was evaluated by observing the state of the grid after peeling and the number of grids that were not peeled. It can be evaluated that the closer to 100, the better the paint adhesion.
 〔耐食性〕
 電着塗装した金属材料の塗装面にクロスカットを施し、塩水噴霧試験(JIS-Z2371)を行い、1000時間後のクロスカット部の片側膨れ幅を測定した。
 一般に、冷延鋼板では3mm以下であれば良好、合金化亜鉛めっき鋼板では3mm以下であれば良好、アルミニウム合金板では2mm以下であれば良好と評価できる。
[Corrosion resistance]
The coated surface of the electrodeposited metal material was cross-cut and subjected to a salt spray test (JIS-Z2371), and the one-side swollen width of the cross-cut portion after 1000 hours was measured.
In general, it can be evaluated as good if it is 3 mm or less for a cold-rolled steel sheet, good if it is 3 mm or less for an galvannealed steel sheet, and good if it is 2 mm or less for an aluminum alloy sheet.
 〔電着塗装付き廻り性〕
 図4は、電着塗装の付き廻り性試験(4枚ボックス試験)に使用するボックスの見取り図である。
 図4に示すように、同種の金属板12~15を4枚用意し、その内の金属板12~14の3枚に直径8mmの穴10を開けた。穴10の位置は横方向中央、下端から50mmとした。
 4枚の金属板12~15を図4に示すようにそれぞれ20mmのクリアランスを取って組み付けた。
 金属板12~15の両側面および下面を塩ビ板21~23にて塞ぎ、塩ビ板21~23と金属板12~15を粘着テープによって固定し、4枚ボックス1を組み立てた。
[Circuitability with electrodeposition coating]
FIG. 4 is a sketch drawing of a box used for the throwing power test of electrodeposition coating (four-sheet box test).
As shown in FIG. 4, four metal plates 12 to 15 of the same kind were prepared, and a hole 10 having a diameter of 8 mm was formed in three of the metal plates 12 to 14 among them. The position of the hole 10 was 50 mm from the center in the lateral direction and from the lower end.
The four metal plates 12 to 15 were assembled with a clearance of 20 mm as shown in FIG.
The both sides and the lower surface of the metal plates 12 to 15 were closed with the vinyl chloride plates 21 to 23, and the vinyl chloride plates 21 to 23 and the metal plates 12 to 15 were fixed with the adhesive tape, and the four-sheet box 1 was assembled.
 この組み立てたボックスに対して、上述した各実験例で示す表面処理を施し、乾燥なしで電着塗装を行った。
 ここで、対極は片面を絶縁テープでシールしたステンレス鋼板(SUS304)70×150×0.55mmを用いた。また、電着塗料の液面は金属板12~15と対極が90mm浸漬される位置に制御した。
 電着塗装は、電着塗料の温度を28℃に保持し、スターラーにて撹拌した状態で行った。4枚の金属板12~15の全てを短絡させた上で、対極を陽極として整流器にて陰極電解法により塗膜を電解析出させた。また、電解は、30秒かけて0Vから230Vまで直線的に電圧を陰極方向に印加し、その後150秒間230Vを保持して行った。
 電解後、それぞれの金属板12~15を水洗し、170℃で20分間焼き付け、塗膜を形成させた。対極に一番近い金属板12の対極側をA面、対極に一番遠い金属板15の対極側をG面とし、A面とG面の塗膜厚を測定し、A/Gの比率を電着塗装の付き廻り性の指標とした。
 ここで、4枚ボックス試験における塗膜の膜厚は、金属材料がSPCまたはGAの場合は電磁式膜厚計(LZ-200、ケット科学研究所社製)、金属材料がALの場合は渦電流式膜厚計を用いて測定した。
 本塗料では、G面塗膜膜厚は7μm以上であることが好ましく、A/Gの比が2.0~2.5が良好と判断される。
The assembled box was subjected to the surface treatment shown in each of the above experimental examples, and electrodeposition coating was performed without drying.
Here, as the counter electrode, a stainless steel plate (SUS304) 70 × 150 × 0.55 mm whose one surface was sealed with an insulating tape was used. The liquid level of the electrodeposition paint was controlled at a position where the metal plates 12 to 15 and the counter electrode were immersed 90 mm.
Electrodeposition coating was carried out with the temperature of the electrodeposition paint maintained at 28 ° C. and stirring with a stirrer. After all of the four metal plates 12 to 15 were short-circuited, a coating film was electrolytically deposited by a cathode electrolysis method using a rectifier with the counter electrode as an anode. The electrolysis was performed by applying a voltage linearly from 0 V to 230 V in the direction of the cathode over 30 seconds, and then maintaining 230 V for 150 seconds.
After the electrolysis, each of the metal plates 12 to 15 was washed with water and baked at 170 ° C. for 20 minutes to form a coating film. The counter electrode side of the metal plate 12 closest to the counter electrode is the A surface, the counter electrode side of the metal plate 15 furthest from the counter electrode is the G surface, the coating thickness of the A surface and the G surface is measured, and the ratio of A / G is determined. It was used as an indicator of the throwing power of electrodeposition coating.
Here, the film thickness of the coating film in the four-box test is as follows. When the metal material is SPC or GA, the electromagnetic film thickness meter (LZ-200, manufactured by Kett Science Laboratory Co., Ltd.) is used. It measured using the electric current type film thickness meter.
In this coating material, the G-side coating film thickness is preferably 7 μm or more, and an A / G ratio of 2.0 to 2.5 is judged to be good.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記第1表~第3表に示す結果から、アモルファス皮膜中に所定の被覆率、粒子径および密度で所定の形態(露出)で半導体粒子が存在する表面処理皮膜を有する表面処理金属材料(実施例1~12)は、耐食性および電着塗装付き廻り性のいずれにも優れ、塗料密着性にも優れることが分かる。 From the results shown in Tables 1 to 3 above, a surface-treated metal material having a surface-treated film in which semiconductor particles are present in a predetermined form (exposed) with a predetermined coverage, particle diameter and density in the amorphous film (implementation) It can be seen that Examples 1 to 12) are excellent in both corrosion resistance and reversibility with electrodeposition coating, and excellent in paint adhesion.
 1  ボックス
 10 穴
 12 試験板(塗装後の金属板)No.1(外側:A面)
 13 試験板(塗装後の金属板)No.2
 14 試験板(塗装後の金属板)No.3
 15 試験板(塗装後の金属板)No.4(内側:G面)
 21 側面仕切板
 22 側面仕切板
 23 底面仕切板
 30 表面処理金属材料
 31 金属材料
 32 アモルファス皮膜
 33 半導体粒子
 34 表面処理皮膜
 35 中核
1 Box 10 Hole 12 Test plate (metal plate after painting) No. 1 1 (outside: A side)
13 Test plate (metal plate after painting) No. 2
14 Test plate (metal plate after painting) No. 3
15 Test plate (metal plate after painting) No. 4 (Inside: G side)
21 Side partition plate 22 Side partition plate 23 Bottom partition plate 30 Surface treatment metal material 31 Metal material 32 Amorphous film 33 Semiconductor particle 34 Surface treatment film 35 Core

Claims (13)

  1.  金属材料を表面処理して得られる表面処理金属材料であって、
     前記金属材料の表面に、アモルファス皮膜および最大平均粒径が5~300nmの半導体粒子を含有する表面処理皮膜を有し、
     前記表面処理皮膜における前記半導体粒子の表面被覆率が10~90%であり、
     前記半導体粒子が前記表面処理皮膜の表面から露出しており、
     前記半導体粒子の密度が5~10000個/μm2である表面処理金属材料。
    A surface-treated metal material obtained by surface-treating a metal material,
    The surface of the metal material has an amorphous film and a surface-treated film containing semiconductor particles having a maximum average particle size of 5 to 300 nm,
    The surface coverage of the semiconductor particles in the surface treatment film is 10 to 90%,
    The semiconductor particles are exposed from the surface of the surface treatment film,
    A surface-treated metal material, wherein the semiconductor particles have a density of 5 to 10,000 particles / μm 2 .
  2.  前記アモルファス皮膜がZr、TiおよびHfからなる群から選択される少なくとも1種の元素を含有し、
     前記半導体粒子がSn、In、TeおよびCuからなる群から選択される少なくとも1種の元素を含有する請求項1に記載の表面処理金属材料。
    The amorphous film contains at least one element selected from the group consisting of Zr, Ti and Hf;
    The surface-treated metal material according to claim 1, wherein the semiconductor particles contain at least one element selected from the group consisting of Sn, In, Te, and Cu.
  3.  前記アモルファス皮膜に含有する前記元素の元素換算の付着量が5~200mg/m2であり、
     前記半導体粒子に含有する前記元素の元素換算の付着量が1~100mg/m2である請求項2に記載の表面処理金属材料。
    The amount of the element-converted adhesion of the element contained in the amorphous film is 5 to 200 mg / m 2 ;
    The surface-treated metal material according to claim 2 , wherein the amount of the element-converted adhesion of the element contained in the semiconductor particles is 1 to 100 mg / m 2 .
  4.  前記金属材料が、鉄系金属材料、亜鉛系金属材料およびアルミニウム系金属材料からなる群から選択される少なくとも1種の金属材料である請求項1~3のいずれかに記載の表面処理金属材料。 The surface-treated metal material according to any one of claims 1 to 3, wherein the metal material is at least one metal material selected from the group consisting of iron-based metal materials, zinc-based metal materials, and aluminum-based metal materials.
  5.  縦150mm、横70mmの大きさで、横方向中央の下端から50mmの位置に直径8mmの穴を有する第1から第3の表面処理金属材料、および、縦150mm、横70mmの大きさの第4の表面処理金属材料を、それぞれ平行にこの順で20mmの間隔をおいて設置し、
     前記第1から第4の各表面処理金属材料を下端から95mmの位置まで電着塗装浴に浸漬し、
     前記第1表面処理金属材料の前記第2表面処理金属材料が設置されていない側の面側に対極を設置して下記(a)~(c)の条件で電着塗装を施し、
     前記第1表面処理金属材料の前記対極側の面(A面)および前記第4表面処理金属材料の前記対極側の面(G面)の塗膜厚の比(A/G)を3.0以下とすることができる、表面処理金属材料。
     (a)電着塗料温度:28℃
     (b)電解条件:30秒かけて0Vから230Vまで直線的に電圧を陰極方向に印加した後150秒間230Vで保持
     (c)焼成条件:170℃、20分間
    First to third surface-treated metal materials having a length of 150 mm and a width of 70 mm and having a hole with a diameter of 8 mm at a position 50 mm from the lower end of the center in the horizontal direction, and a fourth having a length of 150 mm and a width of 70 mm The surface-treated metal materials are installed in parallel in this order with an interval of 20 mm,
    Each of the first to fourth surface-treated metal materials is immersed in an electrodeposition coating bath from the lower end to a position of 95 mm,
    A counter electrode is installed on the surface side of the first surface-treated metal material where the second surface-treated metal material is not installed, and electrodeposition coating is performed under the following conditions (a) to (c):
    The coating thickness ratio (A / G) of the surface on the counter electrode side (A surface) of the first surface-treated metal material and the surface on the counter electrode side (G surface) of the fourth surface-treated metal material is 3.0. A surface-treated metal material that can be:
    (A) Electrodeposition paint temperature: 28 ° C
    (B) Electrolytic conditions: A voltage is applied linearly from 0 V to 230 V over 30 seconds and then held at 230 V for 150 seconds. (C) Firing conditions: 170 ° C., 20 minutes
  6.  金属材料に、Zr、TiおよびHfからなる群から選択される少なくとも1つの元素を含有し、かつ、Sn、In、TeおよびCuからなる群から選択される少なくとも1つの元素を含有する表面処理液を流速1~10cm/秒で接触させて、請求項1~5のいずれかに記載の表面処理金属材料を得る金属表面処理方法。 Surface treatment liquid containing at least one element selected from the group consisting of Zr, Ti and Hf in the metal material and containing at least one element selected from the group consisting of Sn, In, Te and Cu The metal surface treatment method for obtaining the surface-treated metal material according to any one of claims 1 to 5, wherein the surface-treated metal material is contacted at a flow rate of 1 to 10 cm / sec.
  7.  前記表面処理液が、Zr、TiおよびHfからなる群から選択される少なくとも1つの元素を1~10000ppm含有し、かつ、Sn、In、TeおよびCuからなる群から選択される少なくとも1つの元素を1~5000ppm含有し、pHが2.0~6.0である請求項6に記載の金属表面処理方法。 The surface treatment liquid contains 1 to 10,000 ppm of at least one element selected from the group consisting of Zr, Ti and Hf, and contains at least one element selected from the group consisting of Sn, In, Te and Cu The metal surface treatment method according to claim 6, which contains 1 to 5000 ppm and has a pH of 2.0 to 6.0.
  8.  前記表面処理液が含有するZrが、硫酸ジルコニウム、オキシ硫酸ジルコニウム、硫酸ジルコニウムアンモニウム、硝酸ジルコニウム、オキシ硝酸ジルコニウム、硝酸ジルコニウムアンモニウム、硫酸ジルコニウム、オキシ硫酸ジルコニウム、硫酸ジルコニウムアンモニウム、硝酸ジルコニウム、オキシ硝酸ジルコニウム、硝酸ジルコニウムアンモニウム、フルオロジルコニウム酸およびフルオロジルコニウム錯塩からなる群から選択される少なくとも1種として含有している請求項6または7に記載の金属表面処理方法。 Zr contained in the surface treatment solution is zirconium sulfate, zirconium oxysulfate, ammonium zirconium sulfate, zirconium nitrate, zirconium oxynitrate, zirconium nitrate ammonium, zirconium sulfate, zirconium oxysulfate, ammonium zirconium sulfate, zirconium nitrate, zirconium oxynitrate, The metal surface treatment method according to claim 6 or 7, comprising at least one selected from the group consisting of ammonium zirconium nitrate, fluorozirconic acid, and fluorozirconium complex salt.
  9.  前記表面処理液が含有するTiが、硫酸チタン、オキシ硫酸チタン、硫酸チタンアンモニウム、硝酸チタン、オキシ硝酸チタン、硝酸チタンアンモニウム、硫酸チタン、オキシ硫酸チタン、硫酸チタンアンモニウム、硝酸チタン、オキシ硝酸チタン、硝酸チタンアンモニウム、フルオロチタン酸およびフルオロチタン錯塩からなる群から選択される少なくとも1種として含有している請求項6~8のいずれかに記載の金属表面処理方法。 Ti contained in the surface treatment liquid is titanium sulfate, titanium oxysulfate, titanium ammonium sulfate, titanium nitrate, titanium oxynitrate, titanium ammonium nitrate, titanium sulfate, titanium oxysulfate, ammonium titanium sulfate, titanium nitrate, titanium oxynitrate, The metal surface treatment method according to any one of claims 6 to 8, which is contained as at least one selected from the group consisting of titanium ammonium nitrate, fluorotitanic acid and fluorotitanium complex salt.
  10.  前記表面処理液が含有するSnが、硝酸スズ、硫酸スズおよびフッ化スズからなる群から選択される少なくとも1種として含有している請求項6~9のいずれかに記載の金属表面処理方法。 10. The metal surface treatment method according to claim 6, wherein Sn contained in the surface treatment liquid is contained as at least one selected from the group consisting of tin nitrate, tin sulfate and tin fluoride.
  11.  前記表面処理液が含有するInが、硝酸インジウム、硫酸インジウム、スルファミン酸インジウム、フッ化インジウム、酸化インジウムおよび水酸化インジウムからなる群から選択される少なくとも1種として含有している請求項6~10のいずれかに記載の金属表面処理方法。 The In contained in the surface treatment liquid is contained as at least one selected from the group consisting of indium nitrate, indium sulfate, indium sulfamate, indium fluoride, indium oxide, and indium hydroxide. The metal surface treatment method according to any one of the above.
  12.  前記表面処理液が含有するTeが、テルル酸、テルル酸カリウム、テルル酸ナトリウム、亜テルル酸、亜テルル酸カリウム、亜テルル酸ナトリウムおよび二酸化テルルからなる群から選択される少なくとも1種として含有している請求項6~11のいずれかに記載の金属表面処理方法。 Te contained in the surface treatment liquid is contained as at least one selected from the group consisting of telluric acid, potassium tellurate, sodium tellurite, telluric acid, potassium tellurite, sodium tellurite and tellurium dioxide. The metal surface treatment method according to any one of claims 6 to 11.
  13.  前記表面処理液が含有するCuが、硝酸銅、硫酸銅、塩化銅、炭酸銅、塩基性炭酸銅、酸化銅、酢酸銅、水酸化銅、フッ化銅および硫化銅からなる群から選択される少なくとも1種として含有している請求項6~12のいずれかに記載の金属表面処理方法。 Cu contained in the surface treatment liquid is selected from the group consisting of copper nitrate, copper sulfate, copper chloride, copper carbonate, basic copper carbonate, copper oxide, copper acetate, copper hydroxide, copper fluoride and copper sulfide. The metal surface treatment method according to any one of claims 6 to 12, which is contained as at least one kind.
PCT/JP2009/070658 2009-01-13 2009-12-10 Surface-treated metallic material and method of treating metal surface WO2010082415A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-005088 2009-01-13
JP2009005088A JP5671210B2 (en) 2009-01-13 2009-01-13 Metal surface treatment method

Publications (1)

Publication Number Publication Date
WO2010082415A1 true WO2010082415A1 (en) 2010-07-22

Family

ID=42339672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070658 WO2010082415A1 (en) 2009-01-13 2009-12-10 Surface-treated metallic material and method of treating metal surface

Country Status (2)

Country Link
JP (1) JP5671210B2 (en)
WO (1) WO2010082415A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10006861B2 (en) 2013-06-28 2018-06-26 Streck, Inc. Devices for real-time polymerase chain reaction

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5776630B2 (en) 2012-06-01 2015-09-09 日立金属株式会社 Copper-based material and method for producing the same
JP5742859B2 (en) 2013-01-30 2015-07-01 日立金属株式会社 High-speed transmission cable conductor, manufacturing method thereof, and high-speed transmission cable
JP6287126B2 (en) 2013-11-29 2018-03-07 日立金属株式会社 Printed wiring board and manufacturing method thereof
JP6123655B2 (en) 2013-11-29 2017-05-10 日立金属株式会社 Copper foil and manufacturing method thereof
JP2015052168A (en) * 2014-10-20 2015-03-19 日本パーカライジング株式会社 Surface-treated metal material

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04301082A (en) * 1991-03-28 1992-10-23 Nippon Parkerizing Co Ltd Chemical conversion treatment of aluminum metal plate with zinc phosphate
JPH05163584A (en) * 1991-12-12 1993-06-29 Nippon Parkerizing Co Ltd Surface treating liquid for di can of tin plate
JPH09195061A (en) * 1996-01-18 1997-07-29 Nippon Steel Corp Metallic material excellent in antibacterial property
JP2004218073A (en) * 2002-12-24 2004-08-05 Nippon Paint Co Ltd Chemical conversion coating agent and surface-treated metal
JP2006241579A (en) * 2005-03-07 2006-09-14 Nippon Paint Co Ltd Chemical conversion treatment agent and surface-treated metal
JP2008088552A (en) * 2006-09-08 2008-04-17 Nippon Paint Co Ltd Method of treating surface of metal base, metallic material treated by the surface treatment method, and method of coating the metallic material
JP2008189962A (en) * 2007-02-02 2008-08-21 Nippon Paint Co Ltd Cathodic electrodeposition coating method
JP2008214705A (en) * 2007-03-06 2008-09-18 Nippon Paint Co Ltd Cation electrodeposition coating method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174832A (en) * 2006-12-20 2008-07-31 Nippon Paint Co Ltd Surface treatment liquid for metal to be coated by cationic electrodeposition
JP4276689B2 (en) * 2006-12-20 2009-06-10 日本ペイント株式会社 Cationic electrodeposition coating method and metal substrate coated with cationic electrodeposition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04301082A (en) * 1991-03-28 1992-10-23 Nippon Parkerizing Co Ltd Chemical conversion treatment of aluminum metal plate with zinc phosphate
JPH05163584A (en) * 1991-12-12 1993-06-29 Nippon Parkerizing Co Ltd Surface treating liquid for di can of tin plate
JPH09195061A (en) * 1996-01-18 1997-07-29 Nippon Steel Corp Metallic material excellent in antibacterial property
JP2004218073A (en) * 2002-12-24 2004-08-05 Nippon Paint Co Ltd Chemical conversion coating agent and surface-treated metal
JP2006241579A (en) * 2005-03-07 2006-09-14 Nippon Paint Co Ltd Chemical conversion treatment agent and surface-treated metal
JP2008088552A (en) * 2006-09-08 2008-04-17 Nippon Paint Co Ltd Method of treating surface of metal base, metallic material treated by the surface treatment method, and method of coating the metallic material
JP2008189962A (en) * 2007-02-02 2008-08-21 Nippon Paint Co Ltd Cathodic electrodeposition coating method
JP2008214705A (en) * 2007-03-06 2008-09-18 Nippon Paint Co Ltd Cation electrodeposition coating method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10006861B2 (en) 2013-06-28 2018-06-26 Streck, Inc. Devices for real-time polymerase chain reaction

Also Published As

Publication number Publication date
JP2010163641A (en) 2010-07-29
JP5671210B2 (en) 2015-02-18

Similar Documents

Publication Publication Date Title
EP2280094B1 (en) Metallic material and manufacturing method thereof
WO2010001861A1 (en) Chemical conversion liquid for metal structure and surface treating method
JP5643484B2 (en) Metal surface treatment liquid, metal surface treatment method and metal material
TWI435949B (en) Metal material with a bismuth coating and production method thereof, surface treating solution used therefor and metal material with cationic electrodeposition and production method thereof
JP5671210B2 (en) Metal surface treatment method
JP5462467B2 (en) Chemical treatment solution for metal material and treatment method
JP2010090407A (en) Liquid for treating metal surface, and method for treating metal surface
JP2008261035A (en) Surface treating solution for zinc-based metal material and surface treating method of zinc-based metal material
JP2008202149A (en) Treatment liquid for metal surface treatment, and surface treatment method
JP5661238B2 (en) Surface-treated galvanized steel sheet
JP2010090409A (en) Surface-treated metallic material, liquid for treating metallic surface, coated metallic material, and method of manufacturing them
WO2018042980A1 (en) Surface-treated steel sheet, organic resin-coated steel sheet, and container using same
WO2013153682A1 (en) Method for chemically converting steel member, method for manufacturing coated steel member having been electrodeposition-coated, and coated steel member
EP1518944A1 (en) Tin-plated steel plate and method for production thereof
JP2015052168A (en) Surface-treated metal material
JP2011241436A (en) Chemical conversion-treated ferrous material
JP4492254B2 (en) Phosphate-treated galvanized steel sheet with excellent corrosion resistance and blackening resistance
JP2011127141A (en) Metallic material whose surface is treated for electrodeposition coating and method for conversion coating
JP5332543B2 (en) Surface-treated steel sheet and manufacturing method thereof
JP4661627B2 (en) Surface-treated zinc-based plated metal material and method for producing the same
JP4635638B2 (en) Phosphate-treated electrogalvanized steel sheet with excellent corrosion resistance and blackening resistance
JPS59123796A (en) Production of electrogalvanized steel sheet having high corrosion resistance
JPH025839B2 (en)
JPS6154880B2 (en)
JP3330423B2 (en) Cathode electrolytic resin chromate type metal surface treatment method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09838380

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09838380

Country of ref document: EP

Kind code of ref document: A1