JP2008189939A - Method for solid phase polymerization of polyamide - Google Patents

Method for solid phase polymerization of polyamide Download PDF

Info

Publication number
JP2008189939A
JP2008189939A JP2008122129A JP2008122129A JP2008189939A JP 2008189939 A JP2008189939 A JP 2008189939A JP 2008122129 A JP2008122129 A JP 2008122129A JP 2008122129 A JP2008122129 A JP 2008122129A JP 2008189939 A JP2008189939 A JP 2008189939A
Authority
JP
Japan
Prior art keywords
polyamide
solid phase
phase polymerization
polymerization
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008122129A
Other languages
Japanese (ja)
Inventor
Hideyuki Kurose
英之 黒瀬
Kazumi Tanaka
一實 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2008122129A priority Critical patent/JP2008189939A/en
Publication of JP2008189939A publication Critical patent/JP2008189939A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polyamides (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for solid phase polymerization of polyamide, by which an increase in the yellowing degree is small upon the solid phase polymerization of the polyamide that comprises a diamine containing 70 mol% or more of xylylene diamine and a dicarboxylic acid containing 70 mol% or more of adipic acid. <P>SOLUTION: The method for the solid phase polymerization of the polyamide comprises obtaining a raw material polyamide by polycondensation of the diamine containing 70 mol% or more of xylylene diamine and the dicarboxylic acid containing 70 mol% or more of adipic acid via melt polymerization, storing the raw material polyamide once, and then further increasing the degree of polymerization of the polyamide by the solid phase polymerization, wherein the raw material polyamide is stored in air under conditions of relative humidity of 5%RH or less and a temperature less than Tg (the glass transition point of the raw material polyamide) while shielding light and the solid phase polymerization is performed within 20 days including days for storage after obtaining the raw material polyamide. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ポリアミドの固相重合体を製造する方法に関するものである。更に詳しくはキシリレンジアミンを70モル%以上含むジアミンとアジピン酸を70モル%以上含むジカルボン酸から成るポリアミドを固相重合するに際し、黄色度の増加が少ないポリアミドの固相重合体を得る方法に関するものである。 The present invention relates to a method for producing a solid phase polymer of polyamide. More particularly, the present invention relates to a method for obtaining a solid phase polymer of a polyamide having a small increase in yellowness in solid phase polymerization of a polyamide comprising a diamine containing 70 mol% or more of xylylenediamine and a dicarboxylic acid containing 70 mol% or more of adipic acid. Is.

ポリアミドは、耐熱性、耐薬品性、機械的特性および成形加工性に優れた材料であり、合成繊維、自動車部品などの成形材料、フィルムなどの包装材料として幅広く用いられている。近年、ポリアミドが展開している各分野において更なる高機能化を目指した製品の開発が行われており、より高耐熱性、高強度、高ガスバリヤー性および吸水時の機械的特性が低下しないポリアミドが望まれている。 Polyamide is a material excellent in heat resistance, chemical resistance, mechanical properties, and moldability, and is widely used as a molding material for synthetic fibers and automobile parts, and a packaging material for films. In recent years, products aimed at further enhancement of functionality have been developed in various fields where polyamides are deployed, and higher heat resistance, higher strength, higher gas barrier properties, and mechanical properties during water absorption will not deteriorate. Polyamide is desired.

一般に、低吸水性、高強度かつ高ガスバリヤー性のポリアミドとしてはメタキシリレンジアミンとアジピン酸を重縮合して得られるナイロンMXD6が知られている。また特開平6-192416号公報には成形性、吸水時の機械的特性に優れたポリアミドとしてパラキシリレンジアミンおよびヘキサメチレンジアミンとアジピン酸を重縮合して得られるポリアミドが提案されている。これらキシリレンジアミンから得られるポリアミドは高耐熱性、高強度、高ガスバリヤー性および吸水時の機械的特性が低下しないポリアミドとして注目されている。 In general, nylon MXD6 obtained by polycondensation of metaxylylenediamine and adipic acid is known as a polyamide having low water absorption, high strength, and high gas barrier properties. JP-A-6-192416 proposes a polyamide obtained by polycondensation of paraxylylenediamine, hexamethylenediamine and adipic acid as a polyamide having excellent moldability and mechanical properties upon water absorption. Polyamides obtained from these xylylenediamines are attracting attention as polyamides that do not deteriorate in high heat resistance, high strength, high gas barrier properties, and mechanical properties upon water absorption.

ポリアミドは吸水性の熱可塑性樹脂であり、溶融時の飽和水分以上に固体状態で吸水あるいは吸湿するため、成形加工前に乾燥処理される。あるいは乾燥処理されたものが防湿包装袋に充填されたうえで製品として出荷され、成形加工に供される。乾燥処理は溶融重合によって得られたペレット等を固相状態で処理するのが一般的であり、押し出し機等を用いる溶融乾燥方法は、生産性および熱履歴による着色の点で不利である。 Polyamide is a water-absorbing thermoplastic resin that absorbs or absorbs moisture in a solid state in excess of the saturated moisture at the time of melting, and is therefore dried before molding. Alternatively, the dried product is filled in a moisture-proof packaging bag and then shipped as a product for use in molding. In the drying process, pellets obtained by melt polymerization are generally processed in a solid phase, and a melt drying method using an extruder or the like is disadvantageous in terms of productivity and coloring due to heat history.

成形材料に用いられるポリアミドは射出成形により成形されるため溶融時の流動性が高いことが求められ、低粘度のポリアミドが用いられる。一方、ボトル、シート、フィルム及び繊維等に用いられるポリアミドは射出成形の他に押し出し成形によっても成形されるため、溶融時の流動性は成形材料用途の場合より低いことが求められ、低粘度から、中、高粘度のポリアミドが用いられる。中粘度または高粘度ポリアミドを溶融重合で得ようとすると、溶融状態にて重合反応を続ける必要があり、反応時間の延長にともなう熱履歴の増加により熱分解を起こす可能性が高い。また一般的な撹拌装置では重合槽内のポリアミドの溶融状態を均一に保つための十分な動力が得られず、特殊な重合装置が必要である。しかも溶融状態の中粘度または高粘度ポリアミドを重合槽から取り出すことは低粘度ポリアミドの場合と比較して作業的に困難であり、重合槽内壁への付着残存量も低粘度ポリアミドの場合と比較して多くなる。このため、中粘度または高粘度ポリアミドを溶融重合により製造するのは好ましくない。 Since the polyamide used for the molding material is molded by injection molding, it is required to have high fluidity at the time of melting, and a low-viscosity polyamide is used. On the other hand, polyamides used for bottles, sheets, films, fibers, etc. are molded not only by injection molding but also by extrusion molding. Middle, high viscosity polyamides are used. In order to obtain a medium or high viscosity polyamide by melt polymerization, it is necessary to continue the polymerization reaction in a molten state, and there is a high possibility that thermal decomposition will occur due to an increase in heat history accompanying the extension of the reaction time. In addition, a general stirring apparatus cannot provide sufficient power for maintaining the molten state of the polyamide in the polymerization tank uniformly, and a special polymerization apparatus is required. Moreover, it is difficult to remove the melted medium-viscosity or high-viscosity polyamide from the polymerization tank compared to the low-viscosity polyamide, and the amount of residual adhesion to the inner wall of the polymerization tank is also lower than that of the low-viscosity polyamide. And increase. For this reason, it is not preferable to produce a medium or high viscosity polyamide by melt polymerization.

このため、一般的に中粘度または高粘度ポリアミドを得る方法としては、溶融重合で低粘度ポリアミドを重合した後、固相状態にて加熱処理するいわゆる固相重合が知られている。固相重合は、融点以下の温度にて高重合度化できるため熱劣化による着色がない点において溶融重合より有利であり、様々な形態で実施されている。 For this reason, generally known as a method for obtaining a medium or high viscosity polyamide is so-called solid phase polymerization in which a low viscosity polyamide is polymerized by melt polymerization and then heat-treated in a solid phase. Solid-phase polymerization is advantageous over melt polymerization in that the degree of polymerization can be increased at a temperature below the melting point, so that there is no coloration due to thermal deterioration, and it is carried out in various forms.

ポリアミドの特性として成形加工時に酸化劣化や熱劣化を起こして黄色く着色しやすいため、成形加工に用いられる原料ポリアミドはなるべく着色していないものが望まれる。そのため固相乾燥および固相重合時の酸化劣化による着色を抑制するため、減圧下にて装置伝熱面からの加熱により処理する方法や、加熱した乾燥窒素などの不活性ガス雰囲気下で処理する方法が知られている。一般的には原料となるポリアミドを溶融重合等により得た後、比較的速やかに(長期保存することなく)固相乾燥もしくは固相重合処理されるが、この様な場合には上記の様な固相乾燥および固相重合時における酸素の排除に留意すれば良い。しかしながら、固相乾燥もしくは固相重合設備のトラブル等により原料となるポリアミドを製造した後、速やかに固相乾燥もしくは固相重合できない場合、固相乾燥もしくは固相重合後に吸湿等の理由により再度固相乾燥を行う場合、固相乾燥もしくは固相重合後に更に高分子量化するために固相重合を行う場合、あるいは原料となるポリアミドの溶融重合等の製造サイトと、固相乾燥もしくは固相重合サイトが離れている場合等、原料となるポリアミドを長期に保存せざるをえないとき、上記対応だけでは酸化劣化を十分に抑制することは難しい。 As a characteristic of polyamide, since it is easy to be colored yellow due to oxidative degradation and thermal degradation during molding processing, it is desirable that the raw material polyamide used in the molding processing is not colored as much as possible. Therefore, in order to suppress coloring due to oxidative degradation during solid-phase drying and solid-phase polymerization, treatment is performed by heating from the heat transfer surface of the apparatus under reduced pressure, or in an inert gas atmosphere such as heated dry nitrogen. The method is known. Generally, after the polyamide as a raw material is obtained by melt polymerization or the like, it is subjected to solid phase drying or solid phase polymerization treatment relatively quickly (without long-term storage). It should be noted that oxygen is excluded during solid-phase drying and solid-state polymerization. However, after the production of a polyamide as a raw material due to problems with solid-phase drying or solid-state polymerization equipment, etc., if solid-phase drying or solid-phase polymerization cannot be performed quickly, solidification again after solid-phase drying or solid-phase polymerization for reasons such as moisture absorption. When performing phase drying, when performing solid phase polymerization in order to further increase the molecular weight after solid phase drying or solid phase polymerization, or manufacturing sites such as melt polymerization of polyamide as a raw material, and solid phase drying or solid phase polymerization sites When the polyamide as the raw material has to be stored for a long period of time, such as when they are separated from each other, it is difficult to sufficiently suppress the oxidative degradation only by the above measures.

特開2000-129119号公報には溶融重合により得られたポリアミドの表面に水を噴霧する方法が開示されている。これは、水分率を高めることにより余剰の水分がポリアミドの表面を覆って空気と接触するのを防ぐことを目的としている。しかしながら、効果を持続させるには水膜を維持する必要があり、ポリアミドの飽和水分以上の水をポリアミドに与えなければならず、長期の保存においては現実的ではない。また、このような過剰な水は後の固相乾燥もしくは固相重合工程において非常に高い熱負荷と工程時間の延長を強いることになり、工業的には不利な操作と言える。 Japanese Patent Application Laid-Open No. 2000-129119 discloses a method of spraying water on the surface of polyamide obtained by melt polymerization. This is intended to prevent excess moisture from covering the polyamide surface and coming into contact with air by increasing the moisture content. However, in order to maintain the effect, it is necessary to maintain a water film, and it is necessary to provide the polyamide with water above the saturated moisture of the polyamide, which is not practical for long-term storage. In addition, such excessive water imposes a very high heat load and an extended process time in the subsequent solid-phase drying or solid-state polymerization process, which is an industrially disadvantageous operation.

また熱劣化や酸化劣化を抑制するため、安定剤としてリン酸、亜リン酸、次亜リン酸およびこれらの塩や化合物をポリアミドに添加することが知られている(特公昭48-23199号公報)。しかしこれら安定剤を添加しても固相乾燥もしくは固相重合時の着色を十分に抑制することはできない。また、これらの安定剤はポリアミドの重合促進剤としても作用するため、必要以上の安定剤量を添加することは重合度を制御するうえで好ましくない。 It is also known to add phosphoric acid, phosphorous acid, hypophosphorous acid, and salts and compounds thereof as stabilizers to polyamide in order to suppress thermal deterioration and oxidative deterioration (Japanese Patent Publication No. 48-23199). ). However, even when these stabilizers are added, coloring during solid phase drying or solid phase polymerization cannot be sufficiently suppressed. Further, since these stabilizers also act as a polymerization accelerator for polyamide, it is not preferable to add an amount of stabilizer more than necessary for controlling the degree of polymerization.

本発明の目的は、黄色度の増加が少ないポリアミドの固相重合方法を提供することにある。 An object of the present invention is to provide a solid phase polymerization method of polyamide with little increase in yellowness.

本発明者らは、上記課題を解決するため鋭意検討した結果、溶融重合により重縮合して得られた原料ポリアミドを特定の条件下で保存した後に固相重合することにより、黄色度の増加が少ない固相重合ポリアミドが得られることを見出し、本発明を完成させた。 As a result of diligent investigations to solve the above problems, the inventors of the present invention have increased the yellowness by solid-phase polymerization after the raw material polyamide obtained by polycondensation by melt polymerization is stored under specific conditions. The inventors have found that a small amount of solid phase polymerized polyamide can be obtained, and completed the present invention.

すなわち本発明は、キシリレンジアミンを70モル%以上含むジアミンとアジピン酸を70モル%以上含むジカルボン酸を溶融重合により重縮合して得られた原料ポリアミドを一旦保存したのち固相重合によりさらに高重合度化する方法において、原料ポリアミドを、空気中、遮光状態で、相対湿度5%RH以下、Tg(原料ポリアミドのガラス転移点)未満の温度にて保存し、かつ原料ポリアミドを得てから保存日数を含め20日以内に固相重合を行うことを特徴とするポリアミドの固相重合方法、に関する発明である。 That is, the present invention is a method in which a raw material polyamide obtained by polycondensation by melt polymerization of a diamine containing 70 mol% or more of xylylenediamine and a dicarboxylic acid containing 70 mol% or more of adipic acid is once stored and then further solidified by solid phase polymerization. In the method of increasing the degree of polymerization, the raw material polyamide is stored in air, in a light-shielded state, at a relative humidity of 5% RH or less and at a temperature less than Tg (the glass transition point of the raw material polyamide) and stored after obtaining the raw material polyamide. The invention relates to a solid phase polymerization method for polyamide, characterized in that solid phase polymerization is carried out within 20 days including the number of days.

本発明に係わるポリアミドの固相重合方法によって、黄色度が低い固相重合ポリアミドを製造することができる。 By the solid phase polymerization method of polyamide according to the present invention, a solid phase polymerized polyamide having a low yellowness can be produced.

以下に本発明を詳しく説明する。本発明で固相乾燥もしくは固相重合の原料として使用するポリアミドは、キシリレンジアミンを70モル%以上含むジアミンとアジピン酸を70モル%以上含むジカルボン酸から得られるポリアミドである。溶融重合により得られたポリアミドを原料とする他に、再乾燥もしくは更なる高分子量化を目的に、溶融重合後に固相乾燥もしくは固相重合されたポリアミドを原料とする場合もある。キシリレンジアミンとしては、メタキシリレンジアミン、パラキシリレンジアミンおよびオルソキシリレンジアミンを挙げることができ、これらの一種もしくは二種以上を含むものであってもよい。 The present invention is described in detail below. The polyamide used as a raw material for solid phase drying or solid phase polymerization in the present invention is a polyamide obtained from a diamine containing 70 mol% or more of xylylenediamine and a dicarboxylic acid containing 70 mol% or more of adipic acid. In addition to using the polyamide obtained by melt polymerization as a raw material, there may be a case where a polyamide solid-phase dried or solid-phase polymerized after melt polymerization is used as a raw material for the purpose of re-drying or further increasing the molecular weight. Examples of xylylenediamine include metaxylylenediamine, paraxylylenediamine, and orthoxylylenediamine, which may include one or more of these.

キシリレンジアミンとアジピン酸以外のポリアミド形成化合物としては、特に限定されないが、カプロラクタム、バレロラクタム、ラウロラクタム、ウンデカラクタムなどのラクタム;1,1−アミノウンデカン酸、1,2−アミノドデカン酸などのアミノカルボン酸;トリメチレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、1,7−ジアミノヘプタン、1,8−ジアミノオクタン、1,9−ジアミノノナン、1,10−ジアミノデカン、1,2−(ビスアミノメチル)シクロヘキサン、1,3−ビス(ビスアミノメチル)シクロヘキサン、1,4−ビス(ビスアミノメチル)シクロヘキサン、オルソフェニレンジアミン、メタフェニレンジアミン、パラフェニレンジアミンなどのジアミン;コハク酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、フタル酸、イソフタル酸、テレフタル酸、2,6−ナフタレンジカルボン酸などのジカルボン酸を挙げることが出来る。 Polyamide-forming compounds other than xylylenediamine and adipic acid are not particularly limited, but lactams such as caprolactam, valerolactam, laurolactam, undecalactam; 1,1-aminoundecanoic acid, 1,2-aminododecanoic acid, etc. An aminocarboxylic acid of trimethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1, Diamines such as 2- (bisaminomethyl) cyclohexane, 1,3-bis (bisaminomethyl) cyclohexane, 1,4-bis (bisaminomethyl) cyclohexane, orthophenylenediamine, metaphenylenediamine, paraphenylenediamine; Haq acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, phthalic acid, isophthalic acid, terephthalic acid, may be mentioned dicarboxylic acids such as 2,6-naphthalene dicarboxylic acid.

本発明は、ベンジルメチレンなど熱分解を比較的受けやすい構造部位を有するポリアミド、すなわちキシリレンジアミンを70モル%以上含むジアミンとアジピン酸を70モル%以上含むジカルボン酸を重縮合して得られるポリアミドについて効果を認めることができる。また、少なくとも70モル%以上がメタキシリレンジアミンであるキシリレンジアミンを70モル%以上含むジアミンとアジピン酸を70モル%以上含むジカルボン酸を重縮合して得られるポリアミドについてより顕著な効果を認めることができる。また、本発明はポリアミドへの酸素の収着現象に関する知見に基づくものであり、酸素に対する透過性が低い、つまり拡散・溶解速度が遅いキシリレンジアミンを70モル%以上含むジアミンとアジピン酸を70モル%以上含むジカルボン酸を重縮合して得られるポリアミドについて特に効果を認めることができる。ナイロン6やナイロン66等、本発明以外のポリアミドは酸素の透過性が高い、つまり拡散・溶解速度が速いため、酸素の収着量を制御することは実質的に非常に困難であるとともに、本発明以外のポリアミドでは、一旦ポリマー内部に入り込んだ酸素を排除することもまた容易であるため本発明の効果はあまり認められない。 The present invention relates to a polyamide obtained by polycondensation of a polyamide having a structural part relatively susceptible to thermal decomposition such as benzylmethylene, that is, a diamine containing 70 mol% or more of xylylenediamine and a dicarboxylic acid containing 70 mol% or more of adipic acid. The effect can be recognized. In addition, a more remarkable effect is recognized with respect to a polyamide obtained by polycondensation of a diamine containing 70 mol% or more of xylylenediamine, which is at least 70 mol% or more of xylylenediamine, and a dicarboxylic acid containing 70 mol% or more of adipic acid. be able to. Further, the present invention is based on the knowledge about the sorption phenomenon of oxygen to polyamide, and 70% of diamine and adipic acid containing 70 mol% or more of xylylenediamine having low oxygen permeability, that is, slow diffusion / dissolution rate. The effect can be recognized particularly for polyamides obtained by polycondensation of dicarboxylic acids containing at least mol%. Since polyamides other than the present invention, such as nylon 6 and nylon 66, have high oxygen permeability, that is, high diffusion and dissolution rates, it is practically very difficult to control the oxygen sorption amount. With the polyamides other than the invention, it is also easy to exclude oxygen once entering the inside of the polymer, so that the effect of the present invention is not recognized so much.

溶融および固相重合工程での重合反応の促進のため、ポリアミドにリン化合物を添加することも出来る。リン化合物としては、リン酸、亜リン酸、次亜リン酸、及びこれらの塩またはエステル化合物を使用できる。これらのリン化合物は単独、または組み合わせて用いてもよい。これらのリン化合物の添加方法は、ポリアミドの原料であるナイロン塩水溶液、ジアミンもしくはジカルボン酸に添加する方法、溶融重合中に添加する方法、などが挙げられる本発明はこれらに限定されるものではない。 In order to accelerate the polymerization reaction in the melting and solid phase polymerization steps, a phosphorus compound may be added to the polyamide. As the phosphorus compound, phosphoric acid, phosphorous acid, hypophosphorous acid, and salts or ester compounds thereof can be used. These phosphorus compounds may be used alone or in combination. The method for adding these phosphorus compounds includes, but is not limited to, the present invention including a method for adding to a polyamide salt raw material, an aqueous nylon salt solution, a diamine or dicarboxylic acid, a method for adding during melt polymerization, and the like. .

工業的にポリアミドの固相乾燥体および固相重合体を製造する場合、原料となるポリアミドを溶融重合等により得た後、比較的速やかに同一もしくは近接する工場サイトで固相乾燥もしくは固相重合処理される。原料ポリアミド製造から次の固相乾燥もしくは固相重合処理への速やかな移行が確実に行われる場合には、原料となるポリアミドの保存条件に関する本発明の知見には、あまり有用性は認められない。しかし、固相乾燥もしくは固相重合設備のトラブル等により、原料となるポリアミドを製造した後、速やかに固相乾燥もしくは固相重合できない場合、固相乾燥もしくは固相重合後に吸湿等の理由により再度固相乾燥を行う場合、あるいは固相乾燥もしくは固相重合後に更に高分子量化するために固相重合を行う場合、等において本発明は有効な知見を与える。また、原料となるポリアミドの溶融重合等の製造サイトと、固相乾燥もしくは固相重合サイトが離れている場合、委託生産を行なう場合、あるいはポリアミドの製造サイトには無い特殊な設備で添加剤等添加し固相乾燥もしくは固相重合する場合等、近年の市場ニーズの多様化や製造サイトのグローバル化等により、本発明は非常に有効な知見を与える。すなわち、原料となるポリアミドを重合してから20日以上経った後に固相乾燥もしくは固相重合する際に、本発明は特に顕著な効果を与える。 When industrially producing a solid phase dried product and solid phase polymer of polyamide, after obtaining the polyamide as a raw material by melt polymerization, etc., solid phase drying or solid phase polymerization at the same or close factory site relatively quickly It is processed. When the rapid transition from the production of the raw material polyamide to the next solid-phase drying or solid-state polymerization treatment is surely performed, the knowledge of the present invention relating to the storage conditions of the raw material polyamide is not so useful. . However, after manufacturing the polyamide as a raw material due to problems such as solid-phase drying or solid-phase polymerization equipment, if solid-phase drying or solid-phase polymerization cannot be carried out quickly, again after solid-phase drying or solid-phase polymerization for reasons such as moisture absorption In the case of performing solid phase drying, or in the case of performing solid phase polymerization to further increase the molecular weight after solid phase drying or solid phase polymerization, the present invention provides effective knowledge. In addition, if the production site for melt polymerization of polyamide, which is the raw material, is separated from the solid phase drying or solid phase polymerization site, the case where consignment production is performed, or additives etc. with special equipment not available at the polyamide production site Due to diversification of market needs in recent years, globalization of production sites, etc., such as when solid phase drying or solid phase polymerization is added, the present invention provides very useful knowledge. That is, the present invention provides a particularly remarkable effect when solid-phase drying or solid-phase polymerization is carried out after 20 days or more after polymerization of the raw material polyamide.

本発明において、原料となるポリアミドの保存方法は直射日光があたらないような遮光条件下で、かつTg(原料ポリアミドのガラス転移点)未満の温度にて保存されていることが望ましい。原料となるポリアミドの保存中に光を当てると、原料となるポリアミドの黄色度が増加しなくても、固相乾燥および固相重合体の黄色度が増加することが多々ある。可視的な変化が現れなくてもラジカル生成等、光がポリマー分子に影響を及ぼしていることが容易に推測される。温度は保存中の酸化劣化による着色を避ける目的から、Tg未満の温度にて保存されることが望ましい。また、非晶状態のポリアミドを保存する場合は、Tg未満の温度において保存中のポリアミドの融着等ブロッキングを防ぐことができる。 In the present invention, it is desirable that the polyamide as a raw material is stored under a light-shielding condition that is not exposed to direct sunlight and at a temperature lower than Tg (glass transition point of the raw material polyamide). When light is applied during storage of the raw material polyamide, the yellowness of the solid phase drying and the solid phase polymer often increases even if the yellowness of the raw material polyamide does not increase. Even if no visible change appears, it is easily assumed that light affects the polymer molecule, such as radical generation. The temperature is preferably stored at a temperature lower than Tg for the purpose of avoiding coloring due to oxidative deterioration during storage. Further, when storing an amorphous polyamide, blocking such as fusion of the polyamide during storage can be prevented at a temperature lower than Tg.

原料となるポリアミドが保存される条件、つまり暴露される条件は、原料となるポリアミドに収着する酸素濃度に密接に依存する。表面に収着した酸素は、更に酸素濃度の低い中心部に向かって拡散・溶解する。このようなポリマー内部に入り込んだ酸素の排除,もしくは他の気体での置換は容易ではない。従って、固相乾燥もしくは固相重合時の酸化劣化による黄色度の増加を抑えるには、原料となるポリアミドへの酸素の収着量を抑えることが必要である。酸素分子の様な低分子物のポリマー中への拡散・溶解現象は、酸素濃度,時間,温度,更にはポリマー分子の状態、結晶化度,ポリマーに溶存する水分つまりポリアミドが暴露される雰囲気の相対湿度に影響を受ける。従って、固相乾燥体もしくは固相重合体の原料となるポリアミドを重合した後は、(A)式を満足する条件で保存することが望ましい。当然、温度,湿度等の保存条件は一定では無く、保存期間の間で変動することが予想されるが、(A)式に平均値を入力することで条件の規定は可能である。また、保存期間中に1日の平均温度で5℃以上、平均湿度で20%RH以上の変動を与える場合には、平均温度で5℃未満、平均湿度で20%RH未満の変動を与える特定の期間毎に区切って、(A)式に平均温度および平均湿度を入力し、(A)式から求められる値を加算し、累積値で判断する方が望ましい。
0.8×10-9≧P×D0.5×exp{−6002/T+(1−2×C/100)×(a×(h/100−0.6)2+0.62)} ・・・・・・・・・・・・・・・・・ (A)式P:ポリアミドが暴露される雰囲気の酸素分圧(MPa)
h:ポリアミドが暴露される雰囲気の相対湿度(%RH)
D:保存時間(日)
T:ポリアミドが暴露される雰囲気の温度(K)
C:原料ポリアミドの結晶化度(%)
a:上記hが60%RH未満のとき、2.9上記hが60%RH以上のとき、18.8
The conditions under which the raw material polyamide is stored, that is, the conditions under which it is exposed, are closely dependent on the oxygen concentration sorbed to the raw material polyamide. Oxygen sorbed on the surface diffuses and dissolves toward the central part where the oxygen concentration is lower. It is not easy to eliminate oxygen introduced into the polymer or replace it with another gas. Therefore, in order to suppress an increase in yellowness due to oxidative degradation during solid phase drying or solid phase polymerization, it is necessary to suppress the amount of oxygen sorbed onto the polyamide as a raw material. The diffusion and dissolution phenomenon of low molecular weight substances such as oxygen molecules into the polymer is caused by the oxygen concentration, time and temperature, as well as the state of the polymer molecules, the degree of crystallinity, the moisture dissolved in the polymer, that is, the atmosphere exposed to the polyamide. It is affected by relative humidity. Therefore, after polymerizing a polyamide as a raw material for a solid phase dried body or a solid phase polymer, it is desirable to store under conditions satisfying the formula (A). Naturally, the storage conditions such as temperature and humidity are not constant and are expected to vary during the storage period, but the conditions can be defined by inputting an average value in the equation (A). In addition, when the average temperature of the day is 5 ° C or higher and the average humidity is 20% RH or more during the storage period, the average temperature is less than 5 ° C and the average humidity is less than 20% RH. It is preferable that the average temperature and the average humidity are input to the equation (A), values obtained from the equation (A) are added, and the cumulative value is determined.
0.8 × 10 −9 ≧ P × D 0.5 × exp {−6002 / T + (1-2 × C / 100) × (a × (h / 100−0.6) 2 +0.62)} ... (A) Formula P: Oxygen partial pressure (MPa) of the atmosphere to which the polyamide is exposed
h: Relative humidity (% RH) of the atmosphere to which the polyamide is exposed
D: Storage time (days)
T: Temperature of the atmosphere to which the polyamide is exposed (K)
C: Crystallinity of raw material polyamide (%)
a: When h is less than 60% RH, 2.9 When h is 60% RH or more, 18.8

原料となるポリアミドが暴露される雰囲気の温度(T)は、(A)式からわかる様に他の保存条件と密接に関係するため一概には言えないが、酸素の拡散・溶解速度を抑えるため、50℃以下での保存が望ましく、より好ましくは40℃以下である。 The temperature (T) of the atmosphere to which the polyamide used as the raw material is exposed is closely related to other storage conditions as can be seen from the formula (A). Storage at 50 ° C. or lower is desirable, more preferably 40 ° C. or lower.

原料となるポリアミドが暴露される雰囲気の酸素分圧(P)は、(A)式からわかる様に他の保存条件と密接に関係するため一概には言えないが、酸素の拡散・溶解速度を抑えるため、0.01MPa以下に抑えることが望ましい。特に原料となるポリアミドを重合した後、数ヶ月以上経ってから固相乾燥もしくは固相重合処理する様な場合には、0.001MPa以下に抑えることがより望ましく、窒素雰囲気での保存もしくは保存容器内に脱酸素剤を存在させる等の処置が望ましい。 The oxygen partial pressure (P) of the atmosphere to which the polyamide as the raw material is exposed is not related to other storage conditions as can be seen from the formula (A). In order to suppress, it is desirable to suppress to 0.01 MPa or less. In particular, in the case of solid phase drying or solid phase polymerization after polymerizing the polyamide as a raw material after several months or more, it is more desirable to suppress it to 0.001 MPa or less, and storage or storage container in a nitrogen atmosphere Treatment such as the presence of an oxygen scavenger is desirable.

原料となるポリアミドの結晶化度(C)は、(A)式からわかる様に他の保存条件と密接に関係するため一概には言えないが、結晶領域では酸素の拡散・溶解は起こらず、酸素の拡散・溶解に対する障壁と見なせるため、結晶化度は20%以上であることが望ましい。より好ましくは25%以上である。結晶化度は、DSC測定(示差走査熱量測定)において認められる測定中の結晶化に起因する発熱ピークと融解に起因する吸熱ピークから求められる。 As can be seen from the formula (A), the crystallinity (C) of the polyamide used as a raw material is closely related to other storage conditions, so it cannot be said unconditionally, but oxygen diffusion / dissolution does not occur in the crystalline region, Since it can be regarded as a barrier against oxygen diffusion / dissolution, the crystallinity is preferably 20% or more. More preferably, it is 25% or more. The degree of crystallinity is obtained from an exothermic peak caused by crystallization during measurement and an endothermic peak caused by melting, which are recognized in DSC measurement (differential scanning calorimetry).

原料となるポリアミドが暴露される雰囲気の湿度(h)は、(A)式からわかる様に他の保存条件と密接に関係するため一概には言えないが、本発明のポリアミド中の酸素の拡散・溶解速度は湿度が100%RHに近づくほど、また0%RHに近づくほど高くなるため、20%RH以上、80%RH以下での保存が望ましく、より好ましくは、30%RH以上、70%RH以下である。 Although the humidity (h) of the atmosphere to which the polyamide as the raw material is exposed is closely related to other storage conditions as can be seen from the formula (A), it cannot be generally stated, but oxygen diffusion in the polyamide of the present invention -Since the dissolution rate increases as the humidity approaches 100% RH and also approaches 0% RH, storage at 20% RH or more and 80% RH or less is desirable, more preferably 30% RH or more and 70%. RH or less.

原料となるポリアミドの保存時間(D)は、(A)式からわかる様に他の保存条件と密接に関係するため一概には言えないが、原料となるポリアミドを重合してから1年以内が望ましく、より好ましくは、3ヶ月以内である。 The storage time (D) of the polyamide used as a raw material is not generally known because it is closely related to other storage conditions as can be seen from the formula (A), but within one year from the polymerization of the polyamide used as a raw material. Desirably, more preferably, within 3 months.

ポリアミド内部の酸素濃度に対しポリアミドが暴露される雰囲気の酸素濃度が高いとき、酸素はポリアミドに収着し、酸素は酸素濃度の低い中心部に向かって拡散・溶解する。一方、ポリアミド内部の酸素濃度に対しポリアミドが暴露される雰囲気の酸素濃度が低いとき、ポリアミド表面に収着した酸素は、ポリアミドから脱着し、雰囲気に拡散していく。またポリアミドの内部に拡散・溶解した酸素もまた、濃度の低いポリアミド表面に向かって拡散・溶解する。ポリマー内部に収着された酸素の容易なる排除,他の気体での置換は困難であるが、表面に収着した酸素は、減圧操作を行うか、他の気体例えば窒素や水等で比較的容易に置換できる。従って、固相乾燥および固相重合するまえに、ポリアミドが暴露される雰囲気の酸素濃度をポリアミド内部より低くすることにより、保存中に収着した酸素を除去することができ、黄色度の低い固相乾燥体および固相重合体を得ることができる。この脱着は基本的に、収着と同じ要因に影響される。つまり、ポリアミドが暴露される雰囲気の酸素濃度をポリアミド内部より低くした上で、時間を長く,温度を高く,結晶化度を低く,ポリアミドが暴露される雰囲気の相対湿度を20%RH以下に、あるいは80%RH以上にすることで、保存中に収着した酸素を効率的に除去することができる。但し、実質的に表面に収着した酸素の脱着を目的とするとき、ポリマー分子の状態、つまり結晶化度,ポリアミドが暴露される雰囲気の相対湿度の影響は軽微であり、温度と時間の制御が効果的である。つまり、ポリアミドを固相乾燥もしくは固相重合するに際し、ポリアミドを酸素分圧が1kPa以下の雰囲気に、120℃以下の温度で2時間以上暴露した後、脱水操作を開始することが望ましい。酸素分圧は0.5kPa以下の雰囲気がより望ましい。温度は120℃を超えると酸化劣化が激しくなるため、120℃以下での処理が望ましい。本操作は固相乾燥もしくは固相重合を行う同じ装置内で、固相乾燥もしくは固相重合を行う前に実施することが効率的であり望ましい。固相乾燥もしくは固相重合前に、装置内の酸素を排除することは、従来普通に行われているが、あくまでも雰囲気中の酸素を除くことにより固相乾燥もしくは固相重合中の酸化劣化を防ぐことを視点に実施されており、本発明の様にポリアミドに収着した酸素を排除する目的からは行われていない。 When the oxygen concentration in the atmosphere to which the polyamide is exposed is higher than the oxygen concentration inside the polyamide, the oxygen is absorbed by the polyamide, and the oxygen diffuses and dissolves toward the central portion where the oxygen concentration is low. On the other hand, when the oxygen concentration in the atmosphere to which the polyamide is exposed is lower than the oxygen concentration inside the polyamide, the oxygen sorbed on the polyamide surface desorbs from the polyamide and diffuses into the atmosphere. Further, oxygen diffused and dissolved in the polyamide also diffuses and dissolves toward the polyamide surface having a low concentration. Oxygen sorbed inside the polymer can be easily removed and replaced with other gases, but the oxygen sorbed on the surface can be decompressed, or can be relatively removed with other gases such as nitrogen and water. Can be easily replaced. Therefore, before solid-phase drying and solid-state polymerization, the oxygen concentration in the atmosphere to which the polyamide is exposed is made lower than the inside of the polyamide, so that the sorbed oxygen can be removed during storage and the solidity with low yellowness can be removed. Phase dried and solid state polymers can be obtained. This desorption is basically affected by the same factors as sorption. In other words, the oxygen concentration of the atmosphere to which the polyamide is exposed is lower than that inside the polyamide, and the time is increased, the temperature is increased, the crystallinity is decreased, and the relative humidity of the atmosphere to which the polyamide is exposed is 20% RH or less. Alternatively, by setting it to 80% RH or more, oxygen sorbed during storage can be efficiently removed. However, when the purpose is to desorb oxygen substantially sorbed on the surface, the influence of the polymer molecule state, that is, the crystallinity, and the relative humidity of the atmosphere to which the polyamide is exposed is negligible, and the temperature and time are controlled. Is effective. That is, when the polyamide is solid-phase dried or solid-phase polymerized, it is desirable to start the dehydration operation after exposing the polyamide to an atmosphere having an oxygen partial pressure of 1 kPa or less at a temperature of 120 ° C. or less for 2 hours or more. The oxygen partial pressure is more preferably an atmosphere of 0.5 kPa or less. When the temperature exceeds 120 ° C., the oxidative deterioration becomes severe, and therefore treatment at 120 ° C. or lower is desirable. It is efficient and desirable to perform this operation in the same apparatus that performs solid-phase drying or solid-state polymerization before performing solid-phase drying or solid-state polymerization. Excluding oxygen in the apparatus before solid-phase drying or solid-state polymerization is conventionally performed. However, oxidative degradation during solid-phase drying or solid-state polymerization is eliminated only by removing oxygen in the atmosphere. It is carried out from the viewpoint of prevention, and is not performed for the purpose of eliminating oxygen sorbed on the polyamide as in the present invention.

本発明で用いられる固相乾燥および固相重合装置は、特に制限がなく加熱装置として用いることができる構造を有するものであれば、回分式でも連続式でも行うことができる。回分式加熱装置を用いる場合、装置伝熱面から加熱を行い窒素の様な不活性気体を流通させるか減圧下に処理するのが一般的である。タンブルドライヤー、コニカルドライヤー、ロータリードライヤーなどと称される回転ドラム式の加熱装置およびナウタミキサーなどと称される内部に回転翼を備えた円錐形の加熱装置などが挙げられる。また連続式加熱装置を用いる場合、加熱した乾燥窒素の流通下に処理するホッパードライヤーなどと称される縦型気流乾燥機や、装置伝熱面から加熱を行い窒素を流通させるパドルドライヤーなどと称される横型伝熱式乾燥機などが挙げられる。 The solid-phase drying and solid-state polymerization apparatus used in the present invention is not particularly limited and can be performed batchwise or continuously as long as it has a structure that can be used as a heating apparatus. In the case of using a batch heating device, heating is generally performed from the heat transfer surface of the device and an inert gas such as nitrogen is circulated or processed under reduced pressure. Examples thereof include a rotating drum type heating device called a tumble dryer, a conical dryer, a rotary dryer and the like, and a conical heating device having a rotary blade inside called a nauta mixer. Also, when using a continuous heating device, it is called a vertical airflow dryer called a hopper dryer that processes under the flow of heated dry nitrogen, or a paddle dryer that heats from the heat transfer surface and distributes nitrogen. Horizontal heat transfer dryers.

固相乾燥条件は、ポリアミドの重合反応が進行しない温度で、充分にポリアミド中に存在する水分が排除される温度、時間条件から選択されることが望ましく、Tg以上150℃以下の温度域から選択される。また乾燥中の酸化劣化を抑制するため、窒素などの乾燥した不活性ガス気流下もしくは減圧下にて固相乾燥を行うことが望ましい。減圧下にて行う場合は、40kPa以下の減圧条件から選択される。乾燥時間は、ポリアミド中の水分が目的とする水分量に到達するように設定されるが、上記のような温度域、減圧条件においては少なくとも30分以上が望ましい。 The solid-phase drying conditions are preferably selected from the temperature and time conditions at which the water present in the polyamide is sufficiently removed at a temperature at which the polymerization reaction of the polyamide does not proceed. Is done. In order to suppress oxidative deterioration during drying, it is desirable to perform solid phase drying under a dry inert gas stream such as nitrogen or under reduced pressure. When performing under reduced pressure, it selects from the pressure reduction conditions of 40 kPa or less. The drying time is set so that the moisture in the polyamide reaches the target moisture content, but is preferably at least 30 minutes in the above temperature range and reduced pressure conditions.

固相重合温度はポリアミドの重合反応が容易に進行し、かつ融点より低い温度が望ましく、140℃以上、融点より20℃以上低い温度域から選択される。また酸化劣化を抑制するため、窒素などの不活性ガス気流下もしくは減圧下にて固相重合を行うことが望ましい。減圧下にて行う場合は重合反応により生成する縮合水を素早く除去できる圧力が望ましく、40kPa以下の減圧条件から選択される。重合反応時間は、ポリアミドが目的とする分子量に到達するように設定されるが、上記のような温度域、減圧条件においては少なくとも30分以上が望ましい。 The solid-phase polymerization temperature is preferably selected from a temperature range in which the polyamide polymerization reaction proceeds easily and lower than the melting point, and 140 ° C. or higher and 20 ° C. or lower than the melting point. In order to suppress oxidative degradation, it is desirable to perform solid phase polymerization under an inert gas stream such as nitrogen or under reduced pressure. When performing under reduced pressure, the pressure which can remove rapidly the condensed water produced | generated by a polymerization reaction is desirable, and it selects from the pressure reduction conditions of 40 kPa or less. The polymerization reaction time is set so that the polyamide reaches the target molecular weight, but at least 30 minutes or more is desirable in the above temperature range and reduced pressure conditions.

以下に実施例および比較例を示し、本発明を具体的に説明する。なお、本発明における評価のための測定は以下の方法によった。 The present invention will be specifically described below with reference to examples and comparative examples. In addition, the measurement for evaluation in this invention was based on the following method.

(イ)黄色度(YI)
色差計(日本電色工業(株)製、Σ80型)を用い、試料の反射によるXYZ表色系の三刺激値X、Y、ZをJIS-K7103に従い測定し、次式から求めた。
YI=100(1.28X−1.06Z)/Y
(ロ)結晶化度
マック・サイエンス(株)製、DSC(3100型)を用い、昇温速度10℃/分で窒素気流下にDSC測定(示差走査熱量測定)を行い、測定中の結晶化に起因する発熱ピークと融解に起因する吸熱ピークから、結晶融解熱をもとに求めた。
(I) Yellowness (YI)
Using a color difference meter (manufactured by Nippon Denshoku Industries Co., Ltd., Σ80 type), tristimulus values X, Y, and Z of the XYZ color system due to reflection of the sample were measured according to JIS-K7103 and determined from the following equation.
YI = 100 (1.28X-1.06Z) / Y
(B) Crystallinity degree DSC measurement (differential scanning calorimetry) was performed under a nitrogen stream at a temperature increase rate of 10 ° C./min using a DSC (3100 type) manufactured by Mac Science Co., Ltd. It was determined based on the heat of crystal fusion from the exothermic peak due to melting and the endothermic peak due to melting.

実施例
溶融重合により合成したポリメタキシリレンアジパミド(以下ナイロンMXD6という)のペレット(結晶化度5%)を、空気中,遮光状態で5%RH,23℃の恒温恒湿槽に入れ、3日から45日間保存した。その後、回分式固相重合装置に入れ、内部の空気を窒素で置換し、重合装置を室温から昇温して固相重合を開始した。ペレット温度が135℃に到達した時点で減圧操作を開始して1.33kPa以下まで減圧した。さらに昇温を続けてペレット温度が200℃に到達したら重合装置の昇温を中止し、内部を窒素常圧にして冷却を開始した。ペレット温度が80℃まで下がった後、重合装置から固相重合体を取り出して黄色度(YI)を測定した。これら固相重合中の熱履歴は一定とした。また、溶融重合しペレットを得た後、速やかに固相重合して得られた固相重合体のYIを基準として、その値との差をΔYIとし図1に示した。
Example Pellets (crystallinity 5%) of polymetaxylylene adipamide (hereinafter referred to as nylon MXD6) synthesized by melt polymerization were placed in a constant temperature and humidity chamber at 5% RH and 23 ° C. in the light-shielded state. Stored for 3 to 45 days. Then, it was put into a batch type solid phase polymerization apparatus, the inside air was replaced with nitrogen, and the polymerization apparatus was heated from room temperature to start solid phase polymerization. When the pellet temperature reached 135 ° C., the pressure reduction operation was started and the pressure was reduced to 1.33 kPa or less. When the temperature was further increased and the pellet temperature reached 200 ° C., the temperature of the polymerization apparatus was stopped and the inside was cooled to normal pressure with nitrogen. After the pellet temperature dropped to 80 ° C., the solid phase polymer was taken out from the polymerization apparatus, and the yellowness (YI) was measured. The thermal history during these solid phase polymerizations was constant. Moreover, after obtaining melt-polymerized pellets, the difference from the YI of the solid phase polymer obtained by rapid solid phase polymerization as a reference is shown as FIG. 1 as ΔYI.

図1から明らかな様に、本発明の保存条件以外の条件で保存した場合、保存日数が20日を越えたあたりからΔYIが高くなり、得られる固相重合体の黄色度が急激に悪化することがわかる。 As is apparent from FIG. 1, when stored under conditions other than the storage conditions of the present invention, ΔYI increases from the time when the storage days exceed 20 days, and the yellowness of the resulting solid phase polymer rapidly deteriorates. I understand that.

参考例1〜2、比較例1〜2
実施例と同じ溶融重合により合成したナイロンMXD6のペレット(結晶化度5%)を、遮光状態の恒温恒湿槽に入れ、表1に示す条件下に保存した。その後、実施例と同じ方法で固相重合を行い、得られた固相重合体の黄色度(YI)を測定した。結果を表1に示す。
Reference Examples 1-2, Comparative Examples 1-2
Nylon MXD6 pellets (crystallinity of 5%) synthesized by the same melt polymerization as in the examples were placed in a light and temperature controlled humidity chamber and stored under the conditions shown in Table 1. Thereafter, solid phase polymerization was performed in the same manner as in Examples, and the yellowness (YI) of the obtained solid phase polymer was measured. The results are shown in Table 1.

参考例3
実施例と同じ溶融重合により合成したナイロンMXD6のペレットを、脱酸素剤(三菱瓦斯化学(株)製:エージレスSA)とともに、ステンレス製の密閉容器に入れ、内部を無酸素状態に保った。表1に示す条件下に保存した後、実施例と同じ方法で固相重合を行い、得られた固相重合体の黄色度(YI)を測定した。表1の湿度は保存終了時にステンレス製の密閉容器内を測定した値である。結果を表1に示す。
Reference example 3
Nylon MXD6 pellets synthesized by the same melt polymerization as in the examples were placed in a stainless steel sealed container together with an oxygen scavenger (manufactured by Mitsubishi Gas Chemical Co., Ltd .: Ageless SA) to keep the interior in an oxygen-free state. After storing under the conditions shown in Table 1, solid phase polymerization was performed in the same manner as in the Examples, and the yellowness (YI) of the obtained solid phase polymer was measured. The humidity in Table 1 is a value measured in a stainless steel sealed container at the end of storage. The results are shown in Table 1.

参考例4
実施例と同じ溶融重合により合成したナイロンMXD6のペレットを、溶融重合後速やかに減圧下140℃に6時間加熱し、結晶化させ、結晶度33%のペレットを得た。遮光状態の恒温恒湿槽に入れ、表1に示す条件下に保存した後、参考例1と同じ方法で固相重合を行い、得られた固相重合体の黄色度(YI)を測定した。ペレットを結晶化させた後、速やかに固相重合して得られた固相重合体のYIを基準として、その値との差をΔYIとし表1に示した。
Reference example 4
Nylon MXD6 pellets synthesized by the same melt polymerization as in Examples were immediately heated to 140 ° C. under reduced pressure for 6 hours after melt polymerization to crystallize to obtain pellets having a crystallinity of 33%. After putting it in a thermostatic and humidity chamber in a light-shielded state and storing it under the conditions shown in Table 1, solid phase polymerization was performed in the same manner as in Reference Example 1, and the yellowness (YI) of the obtained solid phase polymer was measured. . Table 1 shows the difference from the YI of the solid phase polymer obtained by rapidly solid-phase polymerization after crystallizing the pellet as a reference, and ΔYI.

Figure 2008189939
Figure 2008189939

表1から明な様に、ナイロンMXD6が暴露される雰囲気の酸素分圧,温度,相対湿度、保存時間、およびペレットの結晶化度を制御することにより、得られる固相重合体の黄色度を低下させることができることがわかる。 As is clear from Table 1, by controlling the oxygen partial pressure, temperature, relative humidity, storage time, and crystallinity of the pellet in the atmosphere to which nylon MXD6 is exposed, the yellowness of the resulting solid phase polymer is controlled. It can be seen that it can be lowered.

比較例3
1,3-ビスアミノメチルシクロヘキサンとアジピン酸から溶融重合により合成したポリアミド(以下ナイロン1,3BAC6という)のペレット(結晶化度1%)を、遮光状態の恒温恒湿槽に入れ、表2に示す条件下に保存した後、実施例と同じ方法で固相重合を行い、得られた固相重合体の黄色度(YI)を測定した。溶融重合しペレットを得た後、速やかに固相重合して得られた固相重合体のYIを基準として、その値との差をΔYIとし表2に示した。
Comparative Example 3
Polyamide (hereinafter referred to as nylon 1,3BAC6) synthesized by melt polymerization from 1,3-bisaminomethylcyclohexane and adipic acid (hereinafter referred to as nylon 1,3BAC6) is placed in a thermostatic and humidity chamber in a light-shielded state. After storage under the conditions shown, solid phase polymerization was performed in the same manner as in the Examples, and the yellowness (YI) of the obtained solid phase polymer was measured. Table 2 shows the difference from the YI of the solid phase polymer obtained by melt polymerization to obtain pellets and then rapidly solid phase polymerization, and ΔYI.

Figure 2008189939
Figure 2008189939

表2から明らかな様に、ナイロン1,3BAC6の固相重合体の黄色度は、原料となるペレットの保存条件に依存しないことがわかる。すなわち、本発明はキシリレンジアミンを主体とするジアミンを構成成分とするポリアミドにおいて有効に働く。 As is clear from Table 2, it can be seen that the yellowness of the solid phase polymer of nylon 1,3BAC6 does not depend on the storage conditions of the raw material pellets. That is, the present invention works effectively in a polyamide having a diamine mainly composed of xylylenediamine as a constituent component.

参考例5,比較例4
実施例と同じ方法により合成したナイロンMXD6のペレット(結晶化度=5%)を、遮光状態の恒温恒湿槽に入れ、保存日数=36日,酸素分圧=0.02MPa,温度=23℃,湿度=5%RHの条件下に保存した。その後、回分式固相重合装置に入れ、内部の空気を窒素で置換した(酸素分圧=0.5kPa)。その後、重合装置を室温から昇温して固相重合を開始した。ペレット温度が135℃に到達した時点で減圧操作を開始して1.33kPa以下まで減圧した。さらに昇温を続けてペレット温度が200℃に到達したら重合装置の昇温を中止し、内部を窒素常圧にして冷却を開始した。ペレット温度が80℃まで下がった後、重合装置から固相重合体を取り出して黄色度(YI)を測定した。上記の操作において、ペレットを固相重合装置に入れ内部を窒素置換してから、内温が120℃に到達するまでの昇温時間を、2.5時間(参考例5)、30分(比較例4)に変えて行った。得られた固相重合体のYIを表3に示した。
Reference Example 5 and Comparative Example 4
Nylon MXD6 pellets (crystallinity = 5%) synthesized by the same method as in the examples were placed in a light-and-temperature-controlled constant temperature and humidity chamber, storage days = 36 days, oxygen partial pressure = 0.02 MPa, temperature = 23 ° C. , And humidity = 5% RH. Then, it put into the batch type solid phase polymerization apparatus, and the inside air was substituted with nitrogen (oxygen partial pressure = 0.5 kPa). Thereafter, the polymerization apparatus was heated from room temperature to initiate solid phase polymerization. When the pellet temperature reached 135 ° C., the pressure reduction operation was started and the pressure was reduced to 1.33 kPa or less. When the temperature was further increased and the pellet temperature reached 200 ° C., the temperature of the polymerization apparatus was stopped and the inside was cooled to normal pressure with nitrogen. After the pellet temperature dropped to 80 ° C., the solid phase polymer was taken out from the polymerization apparatus, and the yellowness (YI) was measured. In the above operation, the temperature rising time from putting the pellet into the solid phase polymerization apparatus and replacing the inside with nitrogen until the internal temperature reaches 120 ° C. is 2.5 hours (Reference Example 5), 30 minutes (comparison) The procedure was changed to Example 4). YI of the obtained solid phase polymer is shown in Table 3.

Figure 2008189939
Figure 2008189939

表3から明らかな様に、ナイロンMXD6ペレットの固相重合を行う前に、ペレットに収着した酸素を所定条件下に除去することで、得られる固相重合の黄色度を低下させることができることがわかる。 As is clear from Table 3, before solid-phase polymerization of nylon MXD6 pellets, the yellowness of the resulting solid-phase polymerization can be reduced by removing oxygen sorbed on the pellets under predetermined conditions. I understand.

図1は実施例におけるΔYIと固相重合までの日数(ポリアミド製造から固相重合処理するまでの保存日数)の関係を示すグラフである。FIG. 1 is a graph showing the relationship between ΔYI and the number of days until solid-phase polymerization (the number of storage days from polyamide production to solid-phase polymerization) in the examples.

Claims (7)

キシリレンジアミンを70モル%以上含むジアミンとアジピン酸を70モル%以上含むジカルボン酸を溶融重合により重縮合して得られた原料ポリアミドを一旦保存したのち固相重合によりさらに高重合度化する方法において、原料ポリアミドを、空気中、遮光状態で、相対湿度5%RH以下、Tg(原料ポリアミドのガラス転移点)未満の温度にて保存し、かつ原料ポリアミドを得てから保存日数を含め20日以内に固相重合を行うことを特徴とするポリアミドの固相重合方法。 A method in which a raw material polyamide obtained by polycondensation of a diamine containing 70 mol% or more of xylylenediamine and a dicarboxylic acid containing 70 mol% or more of adipic acid by melt polymerization is once stored and then further increased in the degree of polymerization by solid phase polymerization The raw material polyamide is stored in air, in a light-shielded state, at a relative humidity of 5% RH or less and at a temperature lower than Tg (the glass transition point of the raw material polyamide), and 20 days including the storage days after obtaining the raw material polyamide. Solid phase polymerization of polyamide, characterized in that solid phase polymerization is carried out within. キシリレンジアミンの内、少なくとも70モル%以上がメタキシリレンジアミンであることを特徴とする請求項1記載のポリアミドの固相重合方法。 2. The method for solid phase polymerization of polyamide according to claim 1, wherein at least 70 mol% of xylylenediamine is metaxylylenediamine. 原料ポリアミドの結晶化度が5%以下であることを特徴とする請求項1及び2記載のポリアミドの固相重合方法。 3. The method for solid phase polymerization of polyamide according to claim 1 or 2, wherein the raw material polyamide has a crystallinity of 5% or less. 原料ポリアミドを保存するTg(原料ポリアミドのガラス転移点)未満の温度が室温であることを特徴とする請求項1ないし3のいずれかに記載のポリアミドの固相重合方法。 The method for solid-phase polymerization of polyamide according to any one of claims 1 to 3, wherein a temperature lower than Tg (glass transition point of the starting polyamide) for storing the starting polyamide is room temperature. 固相重合装置が回分式加熱装置であることを特徴とする請求項1ないし4のいずれかに記載のポリアミドの固相重合方法。 The method for solid phase polymerization of polyamide according to any one of claims 1 to 4, wherein the solid phase polymerization apparatus is a batch heating apparatus. 固相重合装置が連続式加熱装置であることを特徴とする請求項1ないし4のいずれかに記載のポリアミドの固相重合方法。 The method for solid phase polymerization of polyamide according to any one of claims 1 to 4, wherein the solid phase polymerization apparatus is a continuous heating apparatus. 固相重合が減圧または/および窒素通気下で、かつ温度135℃以上200℃以下で行われることを特徴とする請求項1ないし4のいずれかに記載のポリアミドの固相重合方法。 The method for solid-phase polymerization of polyamide according to any one of claims 1 to 4, wherein the solid-phase polymerization is carried out under reduced pressure or / and nitrogen flow and at a temperature of 135 ° C or higher and 200 ° C or lower.
JP2008122129A 2008-05-08 2008-05-08 Method for solid phase polymerization of polyamide Pending JP2008189939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008122129A JP2008189939A (en) 2008-05-08 2008-05-08 Method for solid phase polymerization of polyamide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008122129A JP2008189939A (en) 2008-05-08 2008-05-08 Method for solid phase polymerization of polyamide

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002053935A Division JP2003252987A (en) 2002-02-28 2002-02-28 Method for solid-phase drying and solid-phase polymerization of polyamide

Publications (1)

Publication Number Publication Date
JP2008189939A true JP2008189939A (en) 2008-08-21

Family

ID=39750314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008122129A Pending JP2008189939A (en) 2008-05-08 2008-05-08 Method for solid phase polymerization of polyamide

Country Status (1)

Country Link
JP (1) JP2008189939A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011088944A (en) * 2009-10-20 2011-05-06 Mitsubishi Engineering Plastics Corp Manufacturing method for polyamide resin composition pellet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0873587A (en) * 1994-09-08 1996-03-19 Mitsubishi Gas Chem Co Inc Method of drying polyamide and method of solid state polymerization
JP2001233958A (en) * 2000-02-24 2001-08-28 Mitsubishi Gas Chem Co Inc Solid-phase polymer of polyamide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0873587A (en) * 1994-09-08 1996-03-19 Mitsubishi Gas Chem Co Inc Method of drying polyamide and method of solid state polymerization
JP2001233958A (en) * 2000-02-24 2001-08-28 Mitsubishi Gas Chem Co Inc Solid-phase polymer of polyamide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011088944A (en) * 2009-10-20 2011-05-06 Mitsubishi Engineering Plastics Corp Manufacturing method for polyamide resin composition pellet

Similar Documents

Publication Publication Date Title
KR100633206B1 (en) Solid phase-polymerized polyamide polymer
JP3412657B2 (en) Method for drying polyamide and method for solid-state polymerization
JP5200335B2 (en) Polyamide resin composition
KR101289551B1 (en) Method for making polyamide
US8501900B2 (en) Nylon resins and process
JP5531409B2 (en) Polyamide resin composition
JP2008081634A (en) Polyamide prepolymer and method for producing polyamide
JP5819404B2 (en) Process for producing polyamide
JP2008189939A (en) Method for solid phase polymerization of polyamide
JP2003252987A (en) Method for solid-phase drying and solid-phase polymerization of polyamide
US6693163B2 (en) Solid-phase drying and solid-phase polymerization of polyamide
JP4329292B2 (en) Method for producing polyamide prepolymer and method for producing polyamide
JP2010215682A (en) Method for solid state polymerization of polyamide
JP6272866B2 (en) Process for producing polyamide by polycondensation
US9534083B2 (en) Production of polyamides by polycondensation
JP4906015B2 (en) Solid-phase polymerization method of polymetaxylylene adipamide
JP2000234022A (en) Polymer from solid-phase polymerization of polyamide
JP4258152B2 (en) Method for producing polyamide
JP5098187B2 (en) Method for producing polyamide
EP1347007B1 (en) Solid-phase drying and solid-phase polymerization of polyamide
CN100343307C (en) Solid phase polymerization and solid phase drying of polyamide
AU782861B2 (en) Solid-phase drying and solid-phase polymerization of polyamide
JP2005350616A (en) Polyamide having good heat stability and its production method
JP2008274086A (en) Method for producing polyamide
JP2014218550A (en) Polyamide resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080515

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110209

RD02 Notification of acceptance of power of attorney

Effective date: 20110406

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A131 Notification of reasons for refusal

Effective date: 20110726

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111122