JP2010215682A - Method for solid state polymerization of polyamide - Google Patents

Method for solid state polymerization of polyamide Download PDF

Info

Publication number
JP2010215682A
JP2010215682A JP2009060548A JP2009060548A JP2010215682A JP 2010215682 A JP2010215682 A JP 2010215682A JP 2009060548 A JP2009060548 A JP 2009060548A JP 2009060548 A JP2009060548 A JP 2009060548A JP 2010215682 A JP2010215682 A JP 2010215682A
Authority
JP
Japan
Prior art keywords
polyamide
solid phase
phase polymerization
polymerization
solid state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009060548A
Other languages
Japanese (ja)
Inventor
Hisafumi Oda
尚史 小田
Tomonori Kato
智則 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2009060548A priority Critical patent/JP2010215682A/en
Publication of JP2010215682A publication Critical patent/JP2010215682A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyamides (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for solid state polymerization efficiently producing a high molecular weight polyamide having extremely high homogeneity to overcome the problems of the conventional solid state polymerization of polyamide in that, for example, a method, wherein temperature is raised to a predetermined temperature by external heat radiation and heat conduction, results in uneven heating in a solid state polymerization reactor and uneven degree of solid state polycondensation reaction and requires longer reaction time, thus generating a large amount of low molecular weight components which adhere to a wall of the solid state polymerization reactor and reduce heat conductivity, and further degrade the performance of the resulting high molecular weight polyamide and reduce productivity of bottles, fibers, films and the like. <P>SOLUTION: This solid state polymerization method includes a solid polycondensation step of polyamide carried out by directly irradiating the polyamide with microwave. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は高品質の高分子量ポリアミドを短時間で重合可能な固相重合方法に関するものである。さらに、ポリアミド粉砕物もしくは、加熱により生ずる低分子量成分が重合装置の壁面に融着および固着するのを防止するポリアミドの固相重合方法に関するものである。   The present invention relates to a solid phase polymerization method capable of polymerizing high quality high molecular weight polyamide in a short time. Furthermore, the present invention relates to a solid phase polymerization method for polyamide which prevents a polyamide pulverized product or a low molecular weight component generated by heating from being fused and fixed to the wall surface of the polymerization apparatus.

塩素を含まないガスバリヤー性樹脂としては、ナイロン6やポリメタキシリレンアジパミド(以下、N−MXD6と略することがある)といったポリアミド樹脂やエチレンビニル共重合体(以下EVOHと略することがある)が知られており、なかでもポリメタキシリレンアジパミドは酸素バリヤー性、特に高湿度環境下やボイルやレトルト処理といった加熱殺菌処理後の酸素バリヤー性に優れ、且つ高い機械的性能を有しているので、食品包装用材料として好適であり、ポリエチレンテレフタレートとメタキシリレンアジパミドとの多層ボトルやブレンドボトルとしてや、延伸フィルム、ポリオレフィンといったベースフィルムと積層したものや、ナイロン6といった他材と混合して利用されている。   Examples of the gas barrier resin not containing chlorine include polyamide resins such as nylon 6 and polymetaxylylene adipamide (hereinafter sometimes abbreviated as N-MXD6) and ethylene vinyl copolymers (hereinafter abbreviated as EVOH). Among them, polymetaxylylene adipamide is excellent in oxygen barrier properties, especially in high humidity environments and after heat sterilization treatment such as boil and retort treatment, and has high mechanical performance. Therefore, it is suitable as a food packaging material, as a multi-layer bottle or blend bottle of polyethylene terephthalate and metaxylylene adipamide, laminated with a base film such as stretched film or polyolefin, and other such as nylon 6 Used in combination with wood.

一般に、成形材料用途に用いられるポリアミドは射出成形等により成形され、溶融時の流動性が高いことが求められ、いわゆる低粘度品が用いられる。一方、ボトル、シート、フィルム、繊維等の用途に用いられるポリアミドは、射出成形の他に押し出し成形によっても成形される。押し出し成形においては、溶融時の流動性は射出成形材の場合より低いことが求められ、主に中、高粘度品が用いられる。 Generally, polyamides used for molding materials are molded by injection molding or the like, and are required to have high fluidity when melted, so-called low viscosity products are used. On the other hand, polyamides used for bottles, sheets, films, fibers and the like are molded by extrusion molding as well as injection molding. In extrusion molding, the fluidity at the time of melting is required to be lower than in the case of an injection-molded material, and a medium or high viscosity product is mainly used.

主に射出成形材料用途に用いられる低粘度ポリアミドとしては、溶融状態で重縮合して得られたポリアミドがそのまま用いられるか、又は更に乾燥したものが用いられる。しかし、ボトル、シート、フィルム、繊維等の用途に主に用いられる中、高粘度ポリアミドを、溶融状態における重縮合で得ようとするとき、一般的な攪拌装置では重合槽内の溶融状態を均一に保つための充分な攪拌動力が得られず、特殊な重合装置が必要となる。また、低粘度から中、高粘度に到達するまで重縮合反応を続けると、溶融状態を維持する時間(反応時間)が長くなり、ポリアミド分子が損傷(ラジカルの発生などによるポリマー分子の劣化)を受けたり、非直鎖の分子成長等の異常反応(三次元ポリマー化)が起こり、ゲル又はフィッシュアイの生成が多くなり、実用上不都合を生ずる。ゲル又はフィッシュアイを多量に含むポリアミドがボトル、シート、フィルム、繊維等の用途に用いられたとき、欠陥の発生率が極めて高くなり生産性の低下を招く。成形加工時にゲル又はフィッシュアイを除去するフィルターを設置したとしても、完全な除去は難しく、またフィルター交換頻度が増加し連続生産時間が短くなるため、ポリアミド中のゲル又はフィッシュアイは出来る限り少ないことが望ましい。 As the low-viscosity polyamide mainly used for injection molding materials, polyamide obtained by polycondensation in a molten state is used as it is, or further dried one is used. However, when it is mainly used for applications such as bottles, sheets, films, fibers, etc., when trying to obtain high-viscosity polyamide by polycondensation in the molten state, the general molten state in the polymerization tank is uniform with a general stirring device. In this case, sufficient stirring power for maintaining the temperature is not obtained, and a special polymerization apparatus is required. In addition, if the polycondensation reaction is continued until low viscosity, medium viscosity and high viscosity are reached, the time for maintaining the molten state (reaction time) becomes longer and the polyamide molecules are damaged (deterioration of polymer molecules due to generation of radicals, etc.). Or abnormal reactions such as non-linear molecular growth (three-dimensional polymerization) occur, resulting in increased production of gels or fish eyes, which is practically inconvenient. When a polyamide containing a large amount of gel or fish eye is used for bottles, sheets, films, fibers, etc., the rate of occurrence of defects becomes extremely high, leading to a decrease in productivity. Even if a filter that removes gels or fish eyes during the molding process is installed, complete removal is difficult, and the frequency of filter replacement increases and the continuous production time is shortened. Therefore, the gel or fish eyes in the polyamide should be as small as possible. Is desirable.

ゲル又はフィッシュアイの少ない中、高粘度ポリアミドを得るには、一旦溶融状態で重縮合して低粘度ポリアミドを得た後、固相状態で加熱処理するいわゆる固相重合を行うことが知られている。溶融状態と固相状態の重縮合でゲル又はフィッシュアイの生成量に差が現れるのは、反応温度差に起因するポリアミド分子の損傷、あるいは異常反応の発生頻度の差と考えられる。固相重合により得られた中、高粘度ポリアミドは、溶融重合単独で得られた中、高粘度ポリアミドと比較して、ゲル又はフィッシュアイが低減できる。しかし、ボトル、シート、フィルム、繊維等の用途では、わずかなゲル又はフィッシュアイも生産性に著しく影響を与えることから、更に低減することができる改良された固相重合方法が望まれている。 In order to obtain a high-viscosity polyamide with little gel or fish eye, it is known to perform so-called solid-phase polymerization in which a low-viscosity polyamide is obtained once by polycondensation in a molten state, followed by heat treatment in a solid-phase state. Yes. The difference in the amount of gel or fish eye produced due to the polycondensation between the molten state and the solid state is considered to be due to damage of the polyamide molecules due to the difference in reaction temperature or the difference in the frequency of occurrence of abnormal reactions. Among high-viscosity polyamides obtained by solid-phase polymerization, gels or fish eyes can be reduced compared to high-viscosity polyamides obtained by melt polymerization alone. However, in applications such as bottles, sheets, films, fibers, etc., even a small amount of gel or fish eye can significantly affect productivity, so an improved solid state polymerization method that can be further reduced is desired.

ゲル又はフィッシュアイはポリアミドを製造する際に生成する以外に、当然成形品に成形加工する際の溶融時においても生成する。ポリアミド製造後にゲル又はフィッシュアイの生成量に顕著な差が無なかったとしても、成形加工した際に差が現れる場合がある。この原因の一つとして、製造後には観測されない様な僅かなポリアミド分子の損傷の差、あるいは異常反応の発生頻度の差が成形加工の際に、フィルターあるいはダイ等の滞留部分で増幅されたためと推定される。つまり、ゲル又はフィッシュアイの少ない成形加工品を得るには、滞留部分の極めて少ない成形加工装置の設計が必要であると同時に、溶融重合および固相重合において分子レベルでの損傷および異常反応のない高品位なポリアミドの製造も不可欠である。 Gels or fish eyes are generated not only when the polyamide is produced, but naturally also when melted when being molded into a molded product. Even if there is no significant difference in the amount of gel or fish eye produced after the polyamide is produced, there may be a difference when molding. One reason for this is that a slight difference in the damage to the polyamide molecules, which is not observed after production, or a difference in the frequency of occurrence of abnormal reactions was amplified in the staying part of the filter or die during the molding process. Presumed. In other words, in order to obtain a molded product with less gel or fish eye, it is necessary to design a molding device with very few staying parts, and at the same time, there is no damage or abnormal reaction at the molecular level in melt polymerization and solid phase polymerization. The production of high-quality polyamide is also essential.

ところで、結晶化度が13%以下であるポリメタキシリレンアジパミドのような非晶状態にある結晶性ポリアミドを、ガラス転移温度を越えて更に加熱するとき、非晶状態は結晶状態へ転移する。非晶状態ではガラス転移温度付近から粘着性が急激に発現
し、結晶化するまでこの粘着現象が見られる。固相重合は、当然ポリアミドより高温の熱媒からの伝熱により実施されるが、このとき加熱装置内壁の伝熱面においてポリアミドの移動が損なわれ滞留すると、加熱装置の壁面への融着が生じる。あるいは、ポリアミドの塊状化のような、粒子相互間で融着する現象が認められる。融着したポリアミドが崩れることなく、そのまま結晶化すると固着という不都合が生じる。結晶化後も固着塊が崩れることなくそのまま固相重合処理がなされると、均質な重合度を有する固相重合体が得られないばかりか、局所加熱によりポリアミド分子の損傷および異常反応を招きゲル又はフィッシュアイの生成が誘発される。
By the way, when a crystalline polyamide in an amorphous state such as polymetaxylylene adipamide having a crystallinity of 13% or less is further heated beyond the glass transition temperature, the amorphous state transitions to a crystalline state. . In the amorphous state, adhesiveness rapidly develops from around the glass transition temperature, and this adhesive phenomenon is observed until crystallization occurs. Solid-phase polymerization is naturally carried out by heat transfer from a heat medium having a temperature higher than that of polyamide. At this time, if the movement of the polyamide is impaired and stays on the heat transfer surface of the inner wall of the heating device, fusion to the wall surface of the heating device is caused. Arise. Alternatively, a phenomenon of fusion between particles such as agglomeration of polyamide is observed. If the fused polyamide is crystallized as it is without collapsing, there is a problem of fixation. If solid phase polymerization is performed as it is without losing the fixed mass after crystallization, a solid phase polymer having a homogeneous degree of polymerization cannot be obtained, and gelation can cause damage and abnormal reaction of polyamide molecules due to local heating. Or the generation of fish eyes is triggered.

このような不都合をさけるため、ポリアミドを固相重合するため、一般に次の様な方法が実施されている。
(イ)回転ドラム等の回分式加熱装置を用いて、不活性ガス中もしくは減圧下で穏やかに加熱し、融着を回避しつつ結晶化させた後、更に加熱し固相重合を同一装置で行うバッチ方式。(特許文献1)
(ロ)溝型攪拌加熱装置を用いて、不活性ガス流通下で加熱し、結晶化させた後(予備結晶化処理)、ホッパー形状の加熱装置を用いて、不活性ガス流通下で固相重合する連続方式。
(ハ)溝型攪拌加熱装置を用いて結晶化させた後、回転ドラム等の回分式加熱装置を用いて固相重合を行う半連続方式。
In order to avoid such inconvenience, the following method is generally carried out for solid-phase polymerization of polyamide.
(B) Using a batch-type heating device such as a rotating drum, heat gently in an inert gas or under reduced pressure, crystallize while avoiding fusion, and further heat to solid phase polymerization in the same device Batch method to perform. (Patent Document 1)
(B) After heating and crystallizing using a grooved stirring and heating device (preliminary crystallization treatment) under a inert gas flow, solid phase under an inert gas flow using a hopper-shaped heating device A continuous method of polymerization.
(C) A semi-continuous system in which solid-state polymerization is performed using a batch-type heating device such as a rotating drum after crystallization using a groove type stirring and heating device.

従来行なわれているこれらの方法では、低分子量ポリアミドを所定の温度まで昇温する手段として、外部からの熱輻射、熱伝導で所定の温度まで昇温させるため、固相重合装置内部に熱ムラが生じ、固相重縮合の反応度合が不均一になることや、反応時間が長いため、低分子量成分が多く発生し、この低分子量成分が、固相重合装置壁面に付着することで、さらに固相重合中のポリアミドへの熱伝導が低下する、装置内壁に付着した膜は熱を常に受けることから皮膜が製品ペレットに混入することによりゲル又はフィッシュアイを増加させるという問題がある。 In these conventional methods, as a means for raising the temperature of the low molecular weight polyamide to a predetermined temperature, the temperature is raised to the predetermined temperature by external heat radiation and heat conduction. As the reaction degree of solid phase polycondensation becomes non-uniform and the reaction time is long, many low molecular weight components are generated, and this low molecular weight component adheres to the wall surface of the solid phase polymerization apparatus. There is a problem that the heat conduction to the polyamide during the solid phase polymerization is lowered, and the film attached to the inner wall of the apparatus is always subjected to heat, so that the film is mixed with the product pellets to increase gel or fish eye.

また、反応時間が長いと、十分な窒素雰囲気下でも、ナイロンペレットの酸化により、黄色度が増すため、フィルムやPETボトルのガスバリヤー材として用いる場合には、外観上の問題が発生する。 In addition, when the reaction time is long, yellowness increases due to oxidation of nylon pellets even under a sufficient nitrogen atmosphere, so that when used as a gas barrier material for a film or a PET bottle, an appearance problem occurs.

近年、ポリエステルやポリアミドなどの重縮合系ポリマーの溶融重合及び固相重合行程において、2.45GHzのマイクロ波を照射して、短時間で、分子量を上げる方法が知られている(特許文献2、3、4)。マイクロ波は、誘電体であるポリエステル及びポリアミドの粉砕物並びに粉砕物内部の水に直接作用して、誘電緩和に基づく、発熱により、内部の水分除去並びに、ポリエステル及びポリアミドの粉砕物の温度を上昇させる。 In recent years, a method of increasing the molecular weight in a short time by irradiating 2.45 GHz microwaves in the melt polymerization and solid phase polymerization processes of a polycondensation polymer such as polyester and polyamide is known (Patent Document 2, 3, 4). Microwaves directly act on the pulverized polyester and polyamide and water inside the pulverized material, heat generation based on dielectric relaxation, and increase the temperature of the pulverized polyester and polyamide by heat generation. Let

しかしながら、マイクロ波が、ポリエステル及びポリアミドの粉砕物へ作用すると、速い速度で温度上昇が行われるため、連続して同一粉砕物へマイクロ波が照射すると、粉砕物同士の融着、粉砕物の溶融や、粉砕物のコゲ等が発生するため、粉砕物を均質に攪拌し続ける必要があるが、前記特許文献では、これを十二分に考慮していない。   However, when microwaves act on the pulverized product of polyester and polyamide, the temperature rises at a high speed. Therefore, when microwaves are continuously irradiated to the same pulverized product, the crushed product is fused and the pulverized product is melted. In addition, since the kogation of the pulverized product is generated, it is necessary to keep the pulverized product uniformly stirred. However, in the above-mentioned patent document, this is not fully considered.

特開平08−073587号公報Japanese Patent Laid-Open No. 08-073587 特開2006−225591号公報JP 2006-225591 A 特開2006−104305号公報JP 2006-104305 A 特開2007−2087号公報JP 2007-2087 A

本発明の目的は、ポリアミドの固相重合行程において、短時間で極めて均一性の高い、高分子量ポリアミドを効率的に得る固相重合方法を提案することにある。 An object of the present invention is to propose a solid phase polymerization method for efficiently obtaining a high molecular weight polyamide having a very high uniformity in a short time in a solid phase polymerization process of polyamide.

本発明は、上記課題を解決すべく鋭意検討した結果、ポリアミドの固相重縮合工程において、十二分に均一攪拌されたポリアミド粉砕物にマイクロ波を照射して行うことにより課題を解決できることを見出し、本発明に至った。 As a result of intensive studies to solve the above-mentioned problems, the present invention can solve the problems by irradiating microwaves to a polyamide pulverized product that has been sufficiently uniformly stirred in a polyamide solid-phase polycondensation step. The headline, the present invention has been reached.

即ち本発明は、攪拌型固相重合装置内でマイクロ波をポリアミド樹脂ペレットに照射することを特徴とするポリアミドの固相重合方法に関するものである。   That is, the present invention relates to a polyamide solid phase polymerization method characterized by irradiating a polyamide resin pellet with microwaves in a stirring type solid phase polymerization apparatus.

本発明の固相重合方法によれば、短時間でかつ高品質の高分子量ポリアミドを効率的に得ることができる。  According to the solid phase polymerization method of the present invention, a high-quality high-molecular weight polyamide can be efficiently obtained in a short time.

本発明は、主として、溶融重合ポリアミドを更に固相重合して重合度(分子量)を上げる方法に関する。固相重合ポリアミドの重合度を更に上げるために本発明を用いてもよい。   The present invention mainly relates to a method for increasing the degree of polymerization (molecular weight) by further solid-phase polymerization of a melt-polymerized polyamide. The present invention may be used to further increase the degree of polymerization of the solid phase polymerized polyamide.

本発明で用いるポリアミドは、キシリレンジアミン又はビス(アミノメチル)シクロヘキサンを70モル%以上含むジアミン成分と、炭素数4〜20の脂肪族ジカルボン酸を70モル%以上含むジカルボン酸成分から形成されたポリアミド(以下、「ポリアミドX」と称す場合がある)である。キシリレンジアミンとしては、メタキシリレンジアミン、パラキシリレンジアミンが例示されるが、メタキシリレンジアミンが好ましい。ビス(アミノメチル)シクロヘキサンとしては、1,3−ビス(アミノメチル)シクロヘキサン、1,4−ビス(アミノメチル)シクロヘキサンが例示される。キシリレンジアミンとビス(アミノメチル)シクロヘキサンは合計で70モル%以上となる範囲で併用してもよい。   The polyamide used in the present invention was formed from a diamine component containing 70 mol% or more of xylylenediamine or bis (aminomethyl) cyclohexane and a dicarboxylic acid component containing 70 mol% or more of an aliphatic dicarboxylic acid having 4 to 20 carbon atoms. Polyamide (hereinafter sometimes referred to as “polyamide X”). Examples of xylylenediamine include metaxylylenediamine and paraxylylenediamine, with metaxylylenediamine being preferred. Examples of bis (aminomethyl) cyclohexane include 1,3-bis (aminomethyl) cyclohexane and 1,4-bis (aminomethyl) cyclohexane. Xylylenediamine and bis (aminomethyl) cyclohexane may be used in combination in a range of 70 mol% or more in total.

本発明において、キシリレンジアミン、ビス(アミノメチル)シクロヘキサン以外のジアミンとして、テトラメチレンジアミン、ペンタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン等の脂肪族ジアミン、パラフェニレンジアミン、メタキシリレンジアミン、パラキシリレンジアミン等の芳香族ジアミン等が例示できるが、これらに限定されるものではない。 In the present invention, as diamines other than xylylenediamine and bis (aminomethyl) cyclohexane, aliphatic diamines such as tetramethylenediamine, pentamethylenediamine, octamethylenediamine, and nonamethylenediamine, paraphenylenediamine, metaxylylenediamine, para Although aromatic diamines, such as xylylenediamine, can be illustrated, it is not limited to these.

本発明において、使用される炭素数4〜20の脂肪族ジカルボン酸の例としては、コハク酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、アジピン酸、セバシン酸、ウンデカン二酸、ドデカン二酸等の脂肪族ジカルボン酸が例示できるが、これら中でもアジピン酸が好ましい。本発明では、30モル%を超えない範囲で上記以外のジカルボン酸、例えば、イソフタル酸、テレフタル酸、2、6−ナフタレンジカルボン酸等の芳香族ジカルボン酸を使用することができる。   Examples of the aliphatic dicarboxylic acid having 4 to 20 carbon atoms used in the present invention include succinic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, adipic acid, sebacic acid, undecanedioic acid, dodecanedioic acid. Examples thereof include aliphatic dicarboxylic acids such as adipic acid. In the present invention, dicarboxylic acids other than the above, for example, aromatic dicarboxylic acids such as isophthalic acid, terephthalic acid and 2,6-naphthalenedicarboxylic acid can be used within a range not exceeding 30 mol%.

上記以外のポリアミド形成化合物としては、特に限定されないが、カプロラクタム、バレロラクタム、ラウロラクタム、ウンデカラクタム等のラクタム、11−アミノウンデカン酸、12−アミノドデカン酸等のアミノカルボン酸を挙げることが出来る。 The polyamide-forming compound other than the above is not particularly limited, and examples thereof include lactams such as caprolactam, valerolactam, laurolactam, and undecalactam, and aminocarboxylic acids such as 11-aminoundecanoic acid and 12-aminododecanoic acid. .

本発明で用いるポリアミドXは分子間水素結合を有する他の結晶性ポリマーと同様、その非晶部分に水が取り込まれるとガラス転移温度が低下し、それにともない結晶化開始温度が低下し結晶化速度が速くなる。水分を含まなくても極端に結晶化速度の速いポリマー(ナイロン6、ナイロン66等)、結晶化速度が水分の影響を受け難いポリマー、吸水率が低いポリマー(ポリエステル)、あるいは水分を含まなくてもガラス転移温度と結晶化温度が近接したポリマーでは、これら水分の影響が大きすぎるかあるいは小さ過ぎるため、水分濃度の調整による効果はほとんど認められない。しかし、ポリアミドXが水分濃度の調整により受ける影響は、ナイロン6より穏やかでありポリエチレンテレフタレートよりは大きく、本発明の効果が顕著に現れる。つまり、結晶化度が13%以下のポリアミドXを特定の水分濃度に調整すると、加熱による粘着性の発現する温度域が低下すると共に粘着性の現れている時間が短縮する。そのため、融着が抑えられ、その結果固着が生じない。   Polyamide X used in the present invention, like other crystalline polymers having intermolecular hydrogen bonds, decreases the glass transition temperature when water is incorporated into the amorphous part, and accordingly, the crystallization start temperature decreases and the crystallization rate. Will be faster. Even if it does not contain moisture, it has an extremely fast crystallization rate (nylon 6, nylon 66, etc.), a polymer whose crystallization rate is hardly affected by moisture, a polymer with low water absorption (polyester), or no moisture However, in the case of a polymer having a glass transition temperature and a crystallization temperature close to each other, the effect of adjusting the moisture concentration is hardly recognized because the influence of the moisture is too large or too small. However, the influence of the polyamide X on the adjustment of the moisture concentration is milder than that of nylon 6 and greater than that of polyethylene terephthalate, and the effects of the present invention are remarkably exhibited. That is, when the polyamide X having a crystallinity of 13% or less is adjusted to a specific moisture concentration, the temperature range in which the stickiness due to heating is reduced and the time during which the stickiness appears is shortened. Therefore, fusion is suppressed, and as a result, no sticking occurs.

ポリアミドXはDSC測定(示差走査熱量測定)において融解に起因する明瞭な吸熱ピークが確認される結晶性ポリアミドであり、固相重合後の結晶化度は20%以上に達する。溶融状態で重縮合して得られるポリアミドXの結晶化度は13%以下であるのが好ましい。ポリアミドは重合後、水冷槽によって造粒されるのが一般的であり、そのときの結晶化度は13%以下である。なお、本発明において、結晶化度は、DSC測定における結晶融解熱量より求めることができる。   Polyamide X is a crystalline polyamide in which a clear endothermic peak due to melting is confirmed in DSC measurement (differential scanning calorimetry), and the degree of crystallinity after solid-phase polymerization reaches 20% or more. The crystallinity of polyamide X obtained by polycondensation in the molten state is preferably 13% or less. Polyamide is generally granulated in a water-cooled tank after polymerization, and the crystallinity at that time is 13% or less. In the present invention, the degree of crystallinity can be determined from the amount of heat of crystal melting in DSC measurement.

本発明で用いるポリアミドXの相対粘度は1.83以上、2.28以下が好ましく、更に好ましくは1.87以上、2.24以下である。相対粘度を1.83以上とすることにより溶融状態に於ける適当な粘度を維持でき、重合槽から取り出される際のストランドの形成が容易になり、作業性を良好に保つことができる。一方、相対粘度を2.28以下とすることにより、重合槽内の溶融状態を均一に保つことができ、均一な重合度を有するポリアミドを得ることが可能となる。更に溶融状態の熱履歴の増加に伴い、ポリアミド分子が損傷を受けるのを防止でき、非直鎖の分子成長等の異常反応を抑制できる。   The relative viscosity of the polyamide X used in the present invention is preferably 1.83 or more and 2.28 or less, more preferably 1.87 or more and 2.24 or less. By setting the relative viscosity to 1.83 or more, it is possible to maintain an appropriate viscosity in a molten state, it becomes easy to form a strand when taken out from the polymerization tank, and workability can be kept good. On the other hand, when the relative viscosity is 2.28 or less, the molten state in the polymerization tank can be kept uniform, and a polyamide having a uniform degree of polymerization can be obtained. Furthermore, it is possible to prevent the polyamide molecules from being damaged as the heat history in the molten state increases, and to suppress abnormal reactions such as non-linear molecular growth.

ポリアミドXの末端基バランス、つまり、末端カルボキシル基濃度と末端アミノ基濃度のバランスは、末端カルボキシル基濃度が末端アミノ基濃度より高く、その差が8μeq/g以上、82μeq/g以下であるのが好ましい。該差が零のとき、アミド基生成速度は最も速くなるので、溶融状態および固相状態での重合時間が最も短くポリアミド分子の損傷は最低限に抑えられると一般に予想される。しかし、検討の結果、本発明に使用するポリアミドXでは、該差が8μeq/g未満のとき、言い替えれば本発明で規定する濃度よりも末端アミノ基濃度が過剰になると、固相重合において、通常のアミド基生成反応以外の反応に起因すると考えられる粘度増加が観測された。これは、非直鎖の分子成長によるものと推定され、ゲル又はフィッシュアイの主たる原因になる。また、該差を82μeq/g以下とすることにより、アミド基生成速度を実用的な速度に維持でき、溶融状態および固相状態での重合時間が相当に長くなるのを防止でき、ポリアミド分子が損傷を受けるのを防止でき、ゲル又はフィッシュアイの発生を低減化することが可能となる。すなわち、ゲル又はフィッシュアイの少ないポリアミドXを得るためには、上記のようなこれまで開示されていない最適な末端基バランスの範囲が存在することを見出されている。   The terminal group balance of polyamide X, that is, the balance between the terminal carboxyl group concentration and the terminal amino group concentration is such that the terminal carboxyl group concentration is higher than the terminal amino group concentration, and the difference is 8 μeq / g or more and 82 μeq / g or less. preferable. When the difference is zero, the amide group formation rate is the fastest, so that it is generally expected that the polymerization time in the molten state and the solid phase is the shortest and the damage to the polyamide molecule is minimized. However, as a result of investigation, in the polyamide X used in the present invention, when the difference is less than 8 μeq / g, in other words, if the terminal amino group concentration is excessive than the concentration defined in the present invention, An increase in viscosity was observed that was attributed to reactions other than the amide group formation reaction. This is presumed to be due to non-linear molecular growth and is the main cause of gels or fish eyes. In addition, by setting the difference to 82 μeq / g or less, the amide group generation rate can be maintained at a practical rate, the polymerization time in the melted state and the solid phase can be prevented from becoming considerably long, and the polyamide molecule Damage can be prevented and the occurrence of gel or fish eye can be reduced. That is, in order to obtain polyamide X with less gel or fish eye, it has been found that there exists an optimum end group balance range not disclosed so far.

上記の特性を有するポリアミドXは少なくとも一の工程が溶融状態で進行する重縮合方法により製造される。例えば、メタキシリレンジアミンとアジピン酸とのナイロン塩の水溶液を加圧下で加熱し、水及び縮合水を除きながら溶融状態で直接重縮合させる方法、メタキシリレンジアミンを溶融状態のアジピン酸に直接加えて、常圧下で重縮合する方法等により製造される。重合条件は特に限定されず、ポリマー製造分野において通常知られている知識に基づいて、原料化合物の仕込み比、重合触媒、重合温度、重合時間を適宜選択することにより、上記の特性、特に相対粘度及び末端基バランスを有するポリアミドXを製造することができる。   The polyamide X having the above characteristics is produced by a polycondensation method in which at least one step proceeds in a molten state. For example, a method in which an aqueous solution of a nylon salt of metaxylylenediamine and adipic acid is heated under pressure and polycondensed directly in a molten state while removing water and condensed water, and metaxylylenediamine is directly converted into molten adipic acid. In addition, it is produced by a method such as polycondensation under normal pressure. The polymerization conditions are not particularly limited, and the above properties, particularly relative viscosity, can be selected by appropriately selecting the raw material compound charge ratio, polymerization catalyst, polymerization temperature, and polymerization time based on knowledge generally known in the polymer production field. And polyamide X having end group balance can be produced.

水分濃度は、固着防止を目的とすれば、ポリアミドXの0.2質量%以上が好ましく、固着防止のみならず融着防止をも目的とすれば、0.3質量%以上が好ましい。結晶化後の乾燥工程と固相重合工程における脱水操作を考えれば、0.3〜5質量%が好ましい。 The moisture concentration is preferably 0.2% by mass or more of polyamide X for the purpose of preventing sticking, and is preferably 0.3% by weight or more for the purpose of preventing fusion as well as preventing sticking. Considering the dehydration operation in the drying step and the solid phase polymerization step after crystallization, 0.3 to 5% by mass is preferable.

水分濃度の調整方法としては、ポリアミドXの吸水性を利用して予めポリアミドX粒子に吸湿あるいは吸水させて目的とする水分濃度となるよう調整した後、重合装置に供給する方法が挙げられる。また、加熱装置にポリアミドX粒子とともに氷、水あるいはスチームを仕込んで水分濃度を調整する方法等が挙げられる。このときポリアミドに吸収されない過剰の水分が重合装置内に存在してもかまわない。本発明はこれらの水分濃度の調整方法に限定されるものではない。 As a method for adjusting the water concentration, there is a method in which the polyamide X particles are preliminarily absorbed or absorbed by using the water absorption of the polyamide X so as to obtain a target water concentration and then supplied to the polymerization apparatus. In addition, a method of adjusting the water concentration by charging ice, water, or steam together with the polyamide X particles in a heating device may be used. At this time, excessive water that is not absorbed by the polyamide may be present in the polymerization apparatus. The present invention is not limited to these methods for adjusting the water concentration.

水分濃度を調整した後、ポリアミドXを固相重合する。本発明では、固相重合は2段階の工程で実施されることが好ましい。 After adjusting the water concentration, polyamide X is solid-phase polymerized. In the present invention, the solid phase polymerization is preferably carried out in a two-stage process.

第一の工程はポリアミドXの結晶化度が少なくとも15%以上に到達するまでの前処理工程である。第一工程では、水分により結晶化を促進すると共に融着を抑える。従って、重合装置内部の水分が装置外部に容易に散逸するのを防ぐために、減圧操作は避けるべきである。また、この温度域での熱伝導を有利にして、短時間で固相重合温度に到達させるためにも減圧状態は好ましくない。重合装置の内部は常圧であっても加圧であってもかまわないが、水分濃度を調整するために加えた水分が装置外に容易に散逸しないような構造であれば、特に加圧は必要としない。また、重合装置伝熱面の熱媒温度は融着を避けるために抑える必要はなく、目標とする最高の熱媒温度に等しく設定可能である。 The first step is a pretreatment step until the crystallinity of polyamide X reaches at least 15%. In the first step, crystallization is promoted by moisture and fusion is suppressed. Therefore, the decompression operation should be avoided to prevent the water inside the polymerization apparatus from being easily dissipated outside the apparatus. Also, the reduced pressure state is not preferable in order to make heat conduction in this temperature range advantageous and reach the solid phase polymerization temperature in a short time. The inside of the polymerization apparatus may be normal pressure or pressurized, but if the structure is such that the water added to adjust the moisture concentration is not easily dissipated outside the apparatus, the pressurization is particularly effective. do not need. Moreover, it is not necessary to suppress the heat medium temperature on the heat transfer surface of the polymerization apparatus in order to avoid fusion, and it can be set equal to the target maximum heat medium temperature.

上記したように、第一工程では減圧にしないため、ポリアミドXと酸素との接触が避けられず、酸素による劣化が生じやすい。これを避けるために、加熱装置内部の雰囲気の酸素濃度を低く保つ必要がある。従って、重合装置内部の酸素濃度は5容量%以下が好ましい。更に好ましくは1容量%以下であり、0.1容量%以下が特に好ましい。同様の理由から、ポリアミドXのペレット温度は60℃以上160℃以下に保たれる。 As described above, since the pressure is not reduced in the first step, the contact between the polyamide X and oxygen is unavoidable, and deterioration due to oxygen tends to occur. In order to avoid this, it is necessary to keep the oxygen concentration in the atmosphere inside the heating device low. Therefore, the oxygen concentration inside the polymerization apparatus is preferably 5% by volume or less. More preferably, it is 1 volume% or less, and 0.1 volume% or less is especially preferable. For the same reason, the pellet temperature of polyamide X is kept at 60 ° C. or higher and 160 ° C. or lower.

第二の工程は、第一工程により結晶化度が少なくとも15%に到達した後、ポリアミドXの乾燥と固相重合を行う工程である。第二工程では、ポリアミドXの付着水分と重縮合により生成した縮合水を積極的に取り除き、更に酸素による劣化を避けるため、重合装置内部は減圧状態に保たれる。このときの圧力は500Torr以下が好ましく、更に好ましくは100Torr以下であり、30Torr以下が特に好ましい。また融着を避けるため、ポリアミドXの温度は融点より15℃以上低い温度が好ましく、更に好ましくは210℃以下である。 The second step is a step in which the polyamide X is dried and solid-phase polymerized after the crystallinity reaches at least 15% in the first step. In the second step, the inside of the polymerization apparatus is kept in a reduced pressure state in order to positively remove the water adhering to the polyamide X and the condensed water produced by polycondensation, and further avoid deterioration due to oxygen. The pressure at this time is preferably 500 Torr or less, more preferably 100 Torr or less, and particularly preferably 30 Torr or less. In order to avoid fusion, the temperature of polyamide X is preferably 15 ° C. or more lower than the melting point, more preferably 210 ° C. or less.

上記いずれの工程でも、ポリアミドXを加熱する際の重合装置伝熱面の最高温度は120℃以上230℃以下が好ましい。なお、ポリアミドXの共重合体の場合は、その融点に合わせて最高温度を調節する。当該120℃以上とすることにより全工程の所要時間が相当に長くなるのを防止でき、当該230℃以下とすることによりポリアミドXの融点に近くなるのを回避でき、装置内壁にポリアミドX粒子の融着が生ずるのを防止できる。 In any of the above steps, the maximum temperature of the heat transfer surface of the polymerization apparatus when the polyamide X is heated is preferably 120 ° C. or higher and 230 ° C. or lower. In the case of a polyamide X copolymer, the maximum temperature is adjusted according to the melting point. By setting the temperature to 120 ° C. or higher, it is possible to prevent the time required for the entire process from becoming considerably long. By setting the temperature to 230 ° C. or lower, it can be avoided that the melting point of the polyamide X is approached. The occurrence of fusion can be prevented.

第二工程の反応時間には特に制限はないが、上述の方法によって得られるポリアミドX固相重合体の末端カルボキシル基濃度と末端アミノ基濃度のバランスは、末端カルボキシル基濃度が末端アミノ基より高く、その差は8μeq/g以上、82μeq/g以下であるのが望ましい。その理由は上記したと同様である。更に、本発明のポリアミド固相重合体の相対粘度が2.30以上、4.20以下になるのに十分な反応時間であるのが好ましい。当該4.20を相当越えると、末端基バランスが上記の範囲内であっても、固相状態での重合時間が長くなるので、当該4.20以下とすることにより、固相状態での重合時間を実用的な範囲とすることができ、かつポリアミド分子の損傷を少なくでき、通常のアミド基生成反応以外の反応を抑制できる。 The reaction time in the second step is not particularly limited, but the balance between the terminal carboxyl group concentration and the terminal amino group concentration of the polyamide X solid phase polymer obtained by the above-described method is such that the terminal carboxyl group concentration is higher than the terminal amino group. The difference is desirably 8 μeq / g or more and 82 μeq / g or less. The reason is the same as described above. Furthermore, it is preferable that the reaction time is sufficient for the relative viscosity of the polyamide solid phase polymer of the present invention to be 2.30 or more and 4.20 or less. If the above 4.20 is considerably exceeded, the polymerization time in the solid phase becomes long even if the end group balance is within the above range. Time can be within a practical range, damage to the polyamide molecule can be reduced, and reactions other than the usual amide group formation reaction can be suppressed.

本発明の固相重合で用いられる重合装置としては、バッチ式もしくは連続式の重合装置により、気密性に優れポリアミドXと酸素との接触を高度に絶つことができる回分式重合装置が好ましい。タンブルドライヤー、コニカルドライヤー、ロータリードライヤー等と称される回転ドラム式の加熱装置およびナウタミキサーと称される内部に回転翼を備えた円錐型及び円筒型の重合装置が好適に使用できるが、これらに限定されるものではない。特に、円筒状容器と回転軸に取り付けられている混合羽根からなる分散型混合重合装置が、マイクロ波を照射するには、好適であり、太平洋機工株式会社製のプロシェアミキサーやさらに混合性に優れるアペックスグラニュエーターなどが良い。 As the polymerization apparatus used in the solid phase polymerization of the present invention, a batch polymerization apparatus that is excellent in airtightness and highly capable of interrupting the contact between polyamide X and oxygen by a batch or continuous polymerization apparatus is preferable. A rotary drum type heating device called a tumble dryer, a conical dryer, a rotary dryer, etc. and a conical type and a cylindrical type polymerization device with rotary blades inside called a Nauta mixer can be suitably used. It is not limited. In particular, a dispersion type mixing polymerization apparatus composed of a cylindrical vessel and a mixing blade attached to a rotating shaft is suitable for irradiating microwaves, and is suitable for Proshare mixer manufactured by Taiheiyo Kiko Co., Ltd. Good apex granulator is good.

回分式重合装置の運転条件、つまり装置内のポリアミド樹脂ペレットの移動速度は、ポリアミド樹脂ペレットが均一に加熱される範囲で任意に選択され、融着防止を目的として特に速い移動速度を与える必要はない。ポリアミド樹脂ペレットの移動速度は充填率および撹拌速度に依存するため、ポリアミド樹脂ペレットが均一な加熱を受けるためには、充填率が高くなれば撹拌速度を速くする必要があり、充填率が低くなれば撹拌速度を遅くできる。例えば、回転ドラムの場合、充填率が40%未満のときには0.5rpm〜30rpmの回転数が好ましく、充填量が40%以上のときには2rpm〜60rpmが好ましい。しかし、前述したように、ポリアミド樹脂ペレットが均一に加熱される運転条件であれば特にこの条件に限定されるものではない。特に、円筒状容器と回転軸に取り付けられている混合羽根からなる分散型混合重合装置の場合、分散混合性に優れるため、充填率は、40%以上90%以下でも良く、混合羽根の周速度は、0.1m/s〜10m/sが好ましく、特に、ポリアミド樹脂ペレットに損傷を与えないようにするには、5m/s以下が最適である。 The operating conditions of the batch polymerization apparatus, that is, the moving speed of the polyamide resin pellets in the apparatus is arbitrarily selected within a range where the polyamide resin pellets are uniformly heated, and it is necessary to provide a particularly high moving speed for the purpose of preventing fusion. Absent. Since the movement speed of the polyamide resin pellets depends on the filling rate and the stirring speed, in order for the polyamide resin pellets to receive uniform heating, it is necessary to increase the stirring speed if the filling ratio is high, and the filling rate can be lowered. If so, the stirring speed can be reduced. For example, in the case of a rotating drum, when the filling rate is less than 40%, a rotational speed of 0.5 rpm to 30 rpm is preferable, and when the filling amount is 40% or more, 2 rpm to 60 rpm is preferable. However, as described above, the operating conditions are not particularly limited as long as the polyamide resin pellets are uniformly heated. In particular, in the case of a dispersion type mixing polymerization apparatus composed of a cylindrical vessel and a mixing blade attached to a rotating shaft, the mixing rate may be 40% or more and 90% or less because of excellent dispersion mixing properties. Is preferably 0.1 m / s to 10 m / s, and in particular, 5 m / s or less is optimal in order not to damage the polyamide resin pellets.

本発明で照射するマイクロ波は、マグネトロンなどのマイクロ波発生装置によって発生させることができ、周波数が、0.3GHzから30GHzの電磁波をいう。市販の電子レンジなどで使用している2.45GHzが入手できる。固相重合装置は、マイクロ波を吸収したり、反射しない材料が好ましい。また、マイクロ波は、人体へ悪影響を及ぼすため、マイクロ波の漏洩がないようにする必要がある。   The microwave irradiated in the present invention can be generated by a microwave generator such as a magnetron, and refers to an electromagnetic wave having a frequency of 0.3 GHz to 30 GHz. 2.45 GHz used in commercially available microwave ovens can be obtained. The solid phase polymerization apparatus is preferably made of a material that does not absorb or reflect microwaves. In addition, since microwaves adversely affect the human body, it is necessary to prevent leakage of microwaves.

本発明で照射するマイクロ波は、装置内のポリアミド樹脂ペレットの昇温速度に合わせて、照射量の調節を行うのが好ましく、連続照射でも、断続照射でも構わない。また、固相重合行程の全行程で、マイクロ波のみを利用しなくてもよく、熱媒との併用や、重合前半は、マイクロ波を利用し、重合後半は、熱媒のみといった利用方法でも良い。なお、熱媒と併用することで、重合装置の結露を防げるので、熱媒も併用するのが好ましい。さらに、マイクロ波の照射は、重合装置内の一か所からだけでなく、重合装置の容量や効率を鑑みて、数か所から照射しても構わない。   It is preferable to adjust the irradiation amount of the microwave irradiated in the present invention in accordance with the heating rate of the polyamide resin pellets in the apparatus, and it may be continuous irradiation or intermittent irradiation. In addition, it is not necessary to use only microwaves in the entire process of the solid phase polymerization process. In combination with a heat medium, the first half of polymerization uses microwaves, and the second half of polymerization uses only a heat medium. good. In addition, since the dew condensation of a polymerization apparatus can be prevented by using together with a heat medium, it is preferable to also use a heat medium together. Furthermore, microwave irradiation may be performed not only from one place in the polymerization apparatus but also from several places in view of the capacity and efficiency of the polymerization apparatus.

以下に実施例、および比較例を示し、本発明を具体的に説明する。なお本発明における評価のための測定は以下の方法によった。
(イ)相対粘度
ペレット1gを精秤し、96%硫酸100ccに20〜30℃で攪拌溶解した。完全に溶解した後、速やかにキャノンフェンスケ型粘度計に溶液
5ccを取り、25℃±0.03℃の恒温槽中で10分間放置後、落下時間(t)を測定した。また、96%硫酸そのものの落下時間(t0 )も同様に測定した。tおよびt0 の測定値から式(D)により相対粘度を求めた。
式(D) 相対粘度=t/t0
(ロ)水分濃度(ppm)
ペレット1gを、平沼産業株式会社製、平沼微量水分滴定装置(AQ−2000)を用い、融点温度で30分の気化条件で水分量を定量し、水分濃度を求めた。
(ハ)フィルムのフィッシュアイ数
ペレットを単軸押出機(プラスチック工学研究所製PTM−25)から260℃で溶融押出して、Tダイ−冷却ロール法により50μm厚みの単層無延伸フィルムを作製し、このフィルムのフィッシュアイ数を、インライン式のフィッシュアイ検査機で測定した。フィッシュアイ検査機は、美鈴エリー製GX70Wを用いた。
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. In addition, the measurement for evaluation in this invention was based on the following method.
(A) 1 g of a relative viscosity pellet was precisely weighed and dissolved in 100 cc of 96% sulfuric acid at 20-30 ° C. with stirring. After complete dissolution, 5 cc of the solution was quickly taken into a Cannon-Fenceke viscometer and allowed to stand in a thermostatic bath at 25 ° C. ± 0.03 ° C. for 10 minutes, and then the drop time (t) was measured. The drop time (t0) of 96% sulfuric acid itself was also measured in the same manner. The relative viscosity was obtained from the measured values of t and t0 by the formula (D).
Formula (D) Relative viscosity = t / t0
(B) Water concentration (ppm)
Using 1 g of pellets, Hiranuma Sangyo Co., Ltd., Hiranuma Trace Moisture Titrator (AQ-2000), the amount of water was quantified under the vaporization conditions at the melting point temperature for 30 minutes to determine the water concentration.
(C) A fisheye number pellet of the film is melt-extruded at 260 ° C. from a single-screw extruder (PTM-25 manufactured by Plastics Engineering Laboratory), and a single-layer unstretched film having a thickness of 50 μm is produced by a T-die-cooling roll method. The number of fish eyes of this film was measured with an in-line fish eye inspection machine. As the fish eye inspection machine, GX70W manufactured by Meiling Erie was used.

製造例1
[溶融重合ポリアミド(ポリアミド1)の調製]
撹拌機、分縮器、冷却器、温度計、滴下槽および窒素ガス導入管を備えたジャケット付反応缶に、アジピン酸を投入し、十分窒素置換した後、さらに窒素気流下で170℃まで昇温してアジピン酸を溶融状態とした後、メタキシリレンジアミンを撹拌下に滴下した。この間、内温を連続的に245℃まで昇温させ、またメタキシリレンジアミンの滴下とともに留出する水は分縮器および冷却器を通して系外に除いた。メタキシリレンジアミン滴下終了後、内温を連続的に255℃まで昇温し、15分間反応を継続した。その後、反応系内圧を600mmHgまで10分間で連続的に減圧し、その後、40分間反応を継続した。この間、反応温度を260℃まで連続的に昇温させた。反応終了後、反応缶内を窒素ガスにて0.2MPaの圧力を掛けポリマーを反応缶下部のノズルよりストランドとして取出し、水冷後に切断し、ペレット形状のポリマーを得た(ポリアミド1)。得られたポリアミド1の相対粘度は2.1、融点は237℃であった。
Production Example 1
[Preparation of Melt Polymerized Polyamide (Polyamide 1)]
Into a jacketed reactor equipped with a stirrer, a condenser, a cooler, a thermometer, a dripping tank, and a nitrogen gas introduction tube, adipic acid was charged, and after sufficient nitrogen substitution, the temperature was further raised to 170 ° C under a nitrogen stream. After heating to bring the adipic acid into a molten state, metaxylylenediamine was added dropwise with stirring. During this time, the internal temperature was continuously raised to 245 ° C., and the water distilled with the addition of metaxylylenediamine was removed out of the system through a condenser and a cooler. After the completion of the dropwise addition of metaxylylenediamine, the internal temperature was continuously raised to 255 ° C., and the reaction was continued for 15 minutes. Thereafter, the internal pressure of the reaction system was continuously reduced to 600 mmHg over 10 minutes, and then the reaction was continued for 40 minutes. During this time, the reaction temperature was continuously raised to 260 ° C. After completion of the reaction, the inside of the reaction vessel was pressurized with nitrogen gas at a pressure of 0.2 MPa, the polymer was taken out as a strand from the nozzle at the bottom of the reaction vessel, and was cooled after water cooling to obtain a pellet-shaped polymer (polyamide 1). The polyamide 1 obtained had a relative viscosity of 2.1 and a melting point of 237 ° C.

実施例1
[ポリアミド1の固相重合]
ポリアミド1 20kgを2.45GHzのマイクロ波照射装置とその導波管からなり、熱媒も流せるステンレス製50L容量の回転ドラム式の重合装置に仕込み、3KWでマイクロ波を連続的に照射させながら、5rpmで回転させた。十分窒素置換し、さらに少量の窒素気流下にて反応系内を室温から140℃まで昇温した。反応系内温度が140℃に達した時点で1Torr以下まで減圧を行い、更に系内温度を180℃まで昇温した。系内温度が180℃に達した時点から、同温度にて固相重合反応を継続した。反応終了後、減圧を終了し窒素気流下にて系内温度を下げ、60℃に達した時点でペレットを取り出した(ポリアミド2)。全反応時間は145分であった。得られたポリアミド2は、ペレット同士の溶着やコゲ等もなく、相対粘度は2.65、融点は237℃、ガラス転移点85℃であり、水分濃度は205ppm、フィルムのフィッシュアイ数は200であった。
Example 1
[Solid phase polymerization of polyamide 1]
20 kg of polyamide 1 consists of a 2.45 GHz microwave irradiation device and its waveguide, and is charged in a stainless steel 50 L capacity rotating drum type polymerization device that can also flow a heat medium, while continuously irradiating microwaves at 3 KW, Rotated at 5 rpm. The atmosphere in the reaction system was raised from room temperature to 140 ° C. under a small nitrogen flow. When the internal temperature of the reaction system reached 140 ° C, the pressure was reduced to 1 Torr or less, and the internal temperature was further increased to 180 ° C. From the time when the system temperature reached 180 ° C., the solid state polymerization reaction was continued at the same temperature. After completion of the reaction, the pressure reduction was terminated, the system temperature was lowered under a nitrogen stream, and the pellets were taken out when the temperature reached 60 ° C. (polyamide 2). The total reaction time was 145 minutes. The obtained polyamide 2 has no welding or burnt between pellets, has a relative viscosity of 2.65, a melting point of 237 ° C., a glass transition point of 85 ° C., a water concentration of 205 ppm, and a fish eye number of 200. there were.

比較例1
[ポリアミド1の固相重合]
ポリアミド1 20kgをステンレス製50L容量の回転ドラム式の重合加熱装置に仕込み、5rpmで回転させた。十分窒素置換し、さらに少量の窒素気流下にて反応系内を室温から140℃まで昇温した。反応系内温度が140℃に達した時点で1Torr以下まで減圧を行い、更に系内温度を180℃まで昇温した。系内温度が180℃に達した時点から、同温度にて固相重合反応を継続した。反応終了後、減圧を終了し窒素気流下にて系内温度を下げ、60℃に達した時点でペレットを取り出した(ポリアミド3)。全反応時間は300分であった。得られたポリアミド3の相対粘度は2.62、融点は237℃、ガラス転移点は85℃であり、水分濃度は432ppm、フィルムのフィッシュアイ数は600であった。
Comparative Example 1
[Solid phase polymerization of polyamide 1]
20 kg of polyamide 1 was charged in a stainless steel 50 L capacity rotating drum type polymerization heating apparatus and rotated at 5 rpm. The atmosphere in the reaction system was raised from room temperature to 140 ° C. under a small nitrogen flow. When the internal temperature of the reaction system reached 140 ° C, the pressure was reduced to 1 Torr or less, and the internal temperature was further increased to 180 ° C. From the time when the system temperature reached 180 ° C., the solid state polymerization reaction was continued at the same temperature. After completion of the reaction, the pressure reduction was terminated, the system temperature was lowered under a nitrogen stream, and the pellets were taken out when the temperature reached 60 ° C. (polyamide 3). The total reaction time was 300 minutes. Polyamide 3 obtained had a relative viscosity of 2.62, a melting point of 237 ° C., a glass transition point of 85 ° C., a moisture concentration of 432 ppm, and a fish eye number of 600.

実施例2
[ポリアミド1の固相重合]
ポリアミド1 20kgを2.45GHzのマイクロ波照射装置とその導波管からなり、熱媒も流せるステンレス製の円筒状容器と回転軸に取り付けられている混合羽根からなる50L容量の分散型混合重合装置に仕込み、3KWでマイクロ波を連続的に照射させながら、0.5m/sで回転させた。十分窒素置換し、さらに少量の窒素気流下にて反応系内を室温から140℃まで昇温した。反応系内温度が140℃に達した時点で1Torr以下まで減圧を行い、更に系内温度を180℃まで昇温した。系内温度が180℃に達した時点から、同温度にて固相重合反応を継続した。反応終了後、減圧を終了し窒素気流下にて系内温度を下げ、60℃に達した時点でペレットを取り出した(ポリアミド4)。全反応時間は140分であった。得られたポリアミド4は、ペレット同士の溶着やコゲ等もなく、相対粘度は2.70、融点は237℃、ガラス転移点は85℃であり、水分濃度は205ppm、フィルムのフィッシュアイ数は200であった。
Example 2
[Solid phase polymerization of polyamide 1]
Polyamide 1 20kg 2.45GHz microwave irradiation device and its waveguide, 50L capacity dispersion type mixing polymerization device consisting of stainless steel cylindrical container that can also flow heat medium and mixing blade attached to the rotating shaft And rotated at 0.5 m / s while continuously irradiating microwaves at 3 KW. The atmosphere in the reaction system was raised from room temperature to 140 ° C. under a small nitrogen flow. When the internal temperature of the reaction system reached 140 ° C, the pressure was reduced to 1 Torr or less, and the internal temperature was further increased to 180 ° C. From the time when the system temperature reached 180 ° C., the solid state polymerization reaction was continued at the same temperature. After completion of the reaction, the pressure reduction was terminated, the system temperature was lowered under a nitrogen stream, and the pellet was taken out when the temperature reached 60 ° C. (polyamide 4). The total reaction time was 140 minutes. The obtained polyamide 4 has no welding or burnt between pellets, has a relative viscosity of 2.70, a melting point of 237 ° C., a glass transition point of 85 ° C., a moisture concentration of 205 ppm, and a fish eye number of 200. Met.

比較例2
[ポリアミド1の固相重合]
ポリアミド1 20kgを、高温熱媒も流せるステンレス製の円筒状容器と回転軸に取り付けられている混合羽根からなる50L容量の分散型混合重合装置に仕込み、0.5m/sで回転させた。十分窒素置換し、さらに少量の窒素気流下にて反応系内を室温から140℃まで昇温した。反応系内温度が140℃に達した時点で1Torr以下まで減圧を行い、更に系内温度を40分間で180℃まで昇温した。系内温度が180℃に達した時点から、同温度にて180分間、固相重合反応を継続した。反応終了後、減圧を終了し窒素気流下にて系内温度を下げ、60℃に達した時点でペレットを取り出した(ポリアミド5)。全反応時間は300分であった。得られたポリアミド5は、相対粘度は2.62、融点は237℃、ガラス転移点は85℃であり、水分濃度は700ppm、フィルムのフィッシュアイ数は650であった。
Comparative Example 2
[Solid phase polymerization of polyamide 1]
20 kg of polyamide 1 was charged into a 50 L capacity dispersion type mixing polymerization apparatus composed of a stainless steel cylindrical container capable of flowing a high-temperature heat medium and a mixing blade attached to a rotating shaft, and rotated at 0.5 m / s. The atmosphere in the reaction system was raised from room temperature to 140 ° C. under a small nitrogen flow. When the reaction system temperature reached 140 ° C., the pressure was reduced to 1 Torr or less, and the system temperature was further increased to 180 ° C. in 40 minutes. From the time when the system temperature reached 180 ° C., the solid state polymerization reaction was continued at the same temperature for 180 minutes. After completion of the reaction, the pressure reduction was terminated, the system temperature was lowered under a nitrogen stream, and the pellet was taken out when the temperature reached 60 ° C. (polyamide 5). The total reaction time was 300 minutes. Polyamide 5 obtained had a relative viscosity of 2.62, a melting point of 237 ° C., a glass transition point of 85 ° C., a moisture concentration of 700 ppm, and a fisheye number of 650.

比較例3
[ポリアミド1の固相重合]
攪拌羽根を停止し、攪拌しない以外は実施例2と同様に実施した。内温が110℃まで上昇した際、マイクロ波の局所照射により、ポリアミド樹脂ペレットの温度が部分的に融点を超え溶融してしまった。
Comparative Example 3
[Solid phase polymerization of polyamide 1]
The same procedure as in Example 2 was performed except that the stirring blade was stopped and stirring was not performed. When the internal temperature rose to 110 ° C., the temperature of the polyamide resin pellets partially melted beyond the melting point due to local irradiation of microwaves.

本発明に関わる固相重合では、従来の固相重合と比較して、短時間でかつ高品質の高分子量ポリアミドを効率的に、ポリアミド同士の融着や、コゲ等の発生もなく得ることができる。短時間の熱処理時間で所定の高分子量ポリアミドを得ることが可能であることから、低分子量成分の発生も極めて少なく、食品包装などのフィルム生産時のフィッシュアイ数などの発生も抑えられ、生産性が大幅に向上でき、その効果は大きい。   In the solid phase polymerization according to the present invention, a high-quality high-molecular weight polyamide can be efficiently obtained in a short period of time and without the occurrence of fusion between polyamides or kogation, as compared with conventional solid-phase polymerization. it can. Because it is possible to obtain a given high molecular weight polyamide in a short heat treatment time, the occurrence of low molecular weight components is extremely low, and the number of fish eyes during production of films such as food packaging can be suppressed, resulting in productivity. Can be greatly improved, and the effect is great.

Claims (5)

攪拌型固相重合装置内でマイクロ波をポリアミド樹脂ペレットに照射することを特徴とするポリアミドの固相重合方法。   A method for solid-phase polymerization of polyamide, comprising irradiating a polyamide resin pellet with microwaves in a stirring type solid-phase polymerization apparatus. 前記ポリアミドが、キシリレンジアミン又はビス(アミノメチル)シクロヘキサンを70モル%以上含むジアミン成分と、炭素数4〜20の脂肪族ジカルボン酸を70モル%以上含むジカルボン酸成分から形成されるポリアミドである請求項1に記載の固相重合方法。   The polyamide is a polyamide formed from a diamine component containing 70 mol% or more of xylylenediamine or bis (aminomethyl) cyclohexane and a dicarboxylic acid component containing 70 mol% or more of an aliphatic dicarboxylic acid having 4 to 20 carbon atoms. The solid phase polymerization method according to claim 1. 攪拌型固相重合装置の熱源として、マイクロ波と熱媒を併用する請求項1又は2に記載の固相重合方法。   The solid phase polymerization method according to claim 1 or 2, wherein a microwave and a heat medium are used in combination as a heat source of the stirring type solid phase polymerization apparatus. 前記攪拌型固相重合装置が、回分式である請求項1から3のいずれかに記載の固相重合方法。   The solid phase polymerization method according to any one of claims 1 to 3, wherein the stirring type solid phase polymerization apparatus is a batch type. 前記攪拌型固相重合装置が、円筒状容器と回転軸に取り付けられている混合羽根からなる分散型混合重合装置である請求項1から4のいずれかに記載の固相重合方法。   The solid phase polymerization method according to any one of claims 1 to 4, wherein the stirring type solid phase polymerization apparatus is a dispersion type mixing polymerization apparatus including a cylindrical vessel and a mixing blade attached to a rotating shaft.
JP2009060548A 2009-03-13 2009-03-13 Method for solid state polymerization of polyamide Pending JP2010215682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009060548A JP2010215682A (en) 2009-03-13 2009-03-13 Method for solid state polymerization of polyamide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009060548A JP2010215682A (en) 2009-03-13 2009-03-13 Method for solid state polymerization of polyamide

Publications (1)

Publication Number Publication Date
JP2010215682A true JP2010215682A (en) 2010-09-30

Family

ID=42974857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009060548A Pending JP2010215682A (en) 2009-03-13 2009-03-13 Method for solid state polymerization of polyamide

Country Status (1)

Country Link
JP (1) JP2010215682A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014065594A1 (en) * 2012-10-23 2014-05-01 제일모직 주식회사 Polyamide production method
CN107189059A (en) * 2017-06-20 2017-09-22 华南理工大学 A kind of polyamide solid phase thickening control ball and application
US9840587B2 (en) 2012-10-23 2017-12-12 Lotte Advanced Materials Co., Ltd. Polyamide production method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0873587A (en) * 1994-09-08 1996-03-19 Mitsubishi Gas Chem Co Inc Method of drying polyamide and method of solid state polymerization
JP2004169027A (en) * 2002-11-08 2004-06-17 Asahi Kasei Chemicals Corp Manufacturing method of thermoplastic resin pellet containing additive
JP2005232281A (en) * 2004-02-19 2005-09-02 Mitsubishi Gas Chem Co Inc Method for producing polyamide resin composition
JP2006104305A (en) * 2004-10-04 2006-04-20 Nippon Petrochemicals Co Ltd Solid phase polycondensation method, solid phase polycondensation product and solid phase polycondensation apparatus
JP2006225591A (en) * 2005-02-21 2006-08-31 Asahi Kasei Chemicals Corp Manufacturing method of polyamide resin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0873587A (en) * 1994-09-08 1996-03-19 Mitsubishi Gas Chem Co Inc Method of drying polyamide and method of solid state polymerization
JP2004169027A (en) * 2002-11-08 2004-06-17 Asahi Kasei Chemicals Corp Manufacturing method of thermoplastic resin pellet containing additive
JP2005232281A (en) * 2004-02-19 2005-09-02 Mitsubishi Gas Chem Co Inc Method for producing polyamide resin composition
JP2006104305A (en) * 2004-10-04 2006-04-20 Nippon Petrochemicals Co Ltd Solid phase polycondensation method, solid phase polycondensation product and solid phase polycondensation apparatus
JP2006225591A (en) * 2005-02-21 2006-08-31 Asahi Kasei Chemicals Corp Manufacturing method of polyamide resin

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014065594A1 (en) * 2012-10-23 2014-05-01 제일모직 주식회사 Polyamide production method
US9840587B2 (en) 2012-10-23 2017-12-12 Lotte Advanced Materials Co., Ltd. Polyamide production method
CN107189059A (en) * 2017-06-20 2017-09-22 华南理工大学 A kind of polyamide solid phase thickening control ball and application
CN107189059B (en) * 2017-06-20 2023-05-09 华南理工大学 Polyamide solid-phase tackifying control ball and application thereof

Similar Documents

Publication Publication Date Title
AU758289B2 (en) Solid phase-polymerized polyamide polymer
CN106459423B (en) Process for preparing semi-crystalline semi-aromatic polyamides
JP5715415B2 (en) Process for producing polyamide in an extruder
WO2021197216A1 (en) Continuous nylon polymerization method
JP2010159334A (en) Polyamide resin composition
JP2001233958A (en) Solid-phase polymer of polyamide
TWI243185B (en) Process for production of polyamide
JP5787047B1 (en) Method for granulating polyamide or polyamide composition
JP2008081634A (en) Polyamide prepolymer and method for producing polyamide
JP2010215682A (en) Method for solid state polymerization of polyamide
JP5387069B2 (en) Method for drying and crystallizing polyamide
KR20130069386A (en) Method for producing polyamide
JP2013525555A (en) Process for producing polyamide
JP2011140620A (en) Polyamide resin composition
JP4906015B2 (en) Solid-phase polymerization method of polymetaxylylene adipamide
JP2000234022A (en) Polymer from solid-phase polymerization of polyamide
US9534083B2 (en) Production of polyamides by polycondensation
JPWO2019189145A1 (en) Semi-aromatic polyamide resin and its manufacturing method
JP2004051729A (en) Process for producing shaped product of glycolic acid copolymer
JPWO2020122170A1 (en) Semi-aromatic polyamide resin and its manufacturing method
KR20200061740A (en) Method for preparing polyamide resin
JP3175478B2 (en) Method for producing polyamide resin
JP6272866B2 (en) Process for producing polyamide by polycondensation
JPH07126381A (en) Production of polyamide
JP2003252987A (en) Method for solid-phase drying and solid-phase polymerization of polyamide

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20120118

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120201

A977 Report on retrieval

Effective date: 20121206

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20130122

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20130723

Free format text: JAPANESE INTERMEDIATE CODE: A02