JP2008189797A - Resin composition containing hydrogen-storage alloy - Google Patents

Resin composition containing hydrogen-storage alloy Download PDF

Info

Publication number
JP2008189797A
JP2008189797A JP2007025326A JP2007025326A JP2008189797A JP 2008189797 A JP2008189797 A JP 2008189797A JP 2007025326 A JP2007025326 A JP 2007025326A JP 2007025326 A JP2007025326 A JP 2007025326A JP 2008189797 A JP2008189797 A JP 2008189797A
Authority
JP
Japan
Prior art keywords
resin composition
liquid
hydrogen
weight
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007025326A
Other languages
Japanese (ja)
Other versions
JP4145339B2 (en
Inventor
Tetsuji Tokiwa
哲司 常盤
Takashi Iwamoto
隆志 岩本
Yoshinori Kawarasaki
芳徳 河原崎
Yasuhiro Fujita
泰宏 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Asahi Kasei Chemicals Corp
Original Assignee
Japan Steel Works Ltd
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2007025326A priority Critical patent/JP4145339B2/en
Application filed by Japan Steel Works Ltd, Asahi Kasei Chemicals Corp filed Critical Japan Steel Works Ltd
Priority to CN2008800041447A priority patent/CN101636451B/en
Priority to CA2675266A priority patent/CA2675266C/en
Priority to KR1020097016333A priority patent/KR101215136B1/en
Priority to US12/524,247 priority patent/US8607969B2/en
Priority to TW097104580A priority patent/TWI440664B/en
Priority to EP08710800.7A priority patent/EP2110411B1/en
Priority to PCT/JP2008/051868 priority patent/WO2008096758A1/en
Publication of JP2008189797A publication Critical patent/JP2008189797A/en
Application granted granted Critical
Publication of JP4145339B2 publication Critical patent/JP4145339B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin composition of a hydrogen-storage alloy powder having a large amount of hydrogen-storage alloy powder filled per unit volume and a resin. <P>SOLUTION: The resin composition comprises a curable silicone (A) having a liquid viscosity at 25°C of 500-10,000 mPa s and a hydrogen-storage alloy powder (B) and includes 0.1-50 pts.wt. of the curable silicone (A) based on 100 pts.wt. of the total of the components (A) and (B). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は主に水素燃料電池に用いられる、水素吸蔵合金粉末と樹脂の組成物に関する   The present invention relates to a composition of a hydrogen storage alloy powder and a resin mainly used for a hydrogen fuel cell.

水素は化石燃料に代わる新たなエネルギー源として注目されつつあり、そのための水素ガス貯蔵方法に関する研究開発も盛んに進められている。大量の水素ガスを効率よく貯蔵する手法として、水素ガスを繰り返し吸放出できる合金(水素吸蔵合金)を利用する方法が挙げられる。この合金を用いると比較的低い圧力下でも大量の水素ガスを吸放出することができるため、水素ガスを直接容器に貯蔵する方法に比べて利便性が大きい。しかし水素吸蔵合金は水素ガスの吸放出に伴って最大30%膨張、収縮するため、その際に生じる応力が貯蔵容器にひずみを与え、容器の耐久性に悪影響を及ぼす。その対策として水素吸蔵合金を弾力性のあるゴム性の樹脂と複合化させて水素ガスの吸放出時に生じるひずみ応力を緩和させる手法が提案されてきた。例えば特許文献1、特許文献2では水素吸蔵合金をシリコーンゴムと直接あるいは、シリコーンゴムを溶剤に溶かした溶液と混合する方法が開示されているが、シリコーンゴムと直接混合する場合は一般に該ゴムは粘性が高いため、樹脂に対し合金粒子を均一かつ高密度で充填することが困難であった。一方、シリコーンゴムを溶液にした場合は粘性の問題は解決されるものの、組成物に残留する微量の溶剤成分が、貯蔵される水素ガスに不純物として混入することが課題としてあった。   Hydrogen is attracting attention as a new energy source to replace fossil fuels, and research and development on hydrogen gas storage methods for this purpose is also being actively pursued. As a method for efficiently storing a large amount of hydrogen gas, a method using an alloy capable of repeatedly absorbing and releasing hydrogen gas (hydrogen storage alloy) can be mentioned. When this alloy is used, it is possible to absorb and release a large amount of hydrogen gas even under a relatively low pressure, so that the convenience is greater than the method of storing hydrogen gas directly in a container. However, since the hydrogen storage alloy expands and contracts by up to 30% as hydrogen gas is absorbed and released, the stress generated at that time distorts the storage container and adversely affects the durability of the container. As a countermeasure, a technique has been proposed in which a hydrogen storage alloy is combined with an elastic rubber resin to relieve the strain stress generated when hydrogen gas is absorbed and released. For example, Patent Document 1 and Patent Document 2 disclose a method of mixing a hydrogen storage alloy directly with silicone rubber or a solution obtained by dissolving silicone rubber in a solvent. Due to the high viscosity, it is difficult to uniformly and densely fill the alloy particles with the resin. On the other hand, when silicone rubber is used as a solution, the problem of viscosity is solved, but a problem is that a trace amount of solvent components remaining in the composition are mixed as impurities in the stored hydrogen gas.

特許出願公開2005−262065号公報Japanese Patent Application Publication No. 2005-262065 特許出願公開2001−200159号公報Japanese Patent Application Publication No. 2001-200159

本発明の課題は、水素貯蔵合金粉末と樹脂の樹脂組成物において、該合金粒子を均一かつ高い密度で樹脂に分散させ、該合金粒子の充填量が高く均一な樹脂組成物を得ることである。   An object of the present invention is to obtain a uniform resin composition having a high filling amount of the alloy particles by dispersing the alloy particles in the resin at a uniform and high density in a resin composition of hydrogen storage alloy powder and resin. .

本発明者は前記課題を解決するために水素吸蔵合金と樹脂の樹脂組成物について鋭意検討した結果、25℃における液粘度が500〜10,000mPasの硬化性シリコーン(A)と水素吸蔵合金粉末(B)を含む樹脂組成物は組成物の単位体積当たりの水素貯蔵合金粉末の充填量が高く、その該硬化性シリコーン(A)を硬化させた水素ガス透過性であるシリコーン架橋体と水素貯蔵性合金粉末の樹脂組成物も高い水素貯蔵容性を有することを見出し、本発明に至った。
即ち、本発明は以下のとおりである。
In order to solve the above-mentioned problems, the present inventor has intensively studied a resin composition of a hydrogen storage alloy and a resin. As a result, the curable silicone (A) having a liquid viscosity at 25 ° C. of 500 to 10,000 mPas and a hydrogen storage alloy powder ( The resin composition containing B) has a high filling amount of the hydrogen storage alloy powder per unit volume of the composition, and is a hydrogen gas permeable silicone crosslinked product obtained by curing the curable silicone (A) and a hydrogen storage property. The resin composition of the alloy powder was found to have a high hydrogen storage capacity, and the present invention was achieved.
That is, the present invention is as follows.

1.25℃における液粘度が500〜10,000mPasの硬化性シリコーン(A)と水素吸蔵合金粉末(B)を含み、(A)と(B)の合計100重量部に対して、該硬化性シリコーン(A)を0.1〜50重量部含む樹脂組成物。
2.該硬化性シリコーン(A)の25℃における液粘度が800〜3,000mPasであることを特徴とする上記1に記載の樹脂組成物。
3.上記1または2の樹脂組成物において、該硬化性シリコーン(A)が架橋することで得られるシリコーン架橋体(C)である樹脂組成物。
4.上記3に記載の樹脂組成物の成形体。
5.上記3の樹脂組成物または上記4の成形体を充填した水素貯蔵容器。
It contains a curable silicone (A) having a liquid viscosity at 1.25 ° C. of 500 to 10,000 mPas and a hydrogen storage alloy powder (B), and the curability is 100 parts by weight in total of (A) and (B). A resin composition containing 0.1 to 50 parts by weight of silicone (A).
2. 2. The resin composition as described in 1 above, wherein the curable silicone (A) has a liquid viscosity at 25 ° C. of 800 to 3,000 mPas.
3. 3. The resin composition according to 1 or 2, wherein the curable silicone (A) is a crosslinked silicone product (C) obtained by crosslinking.
4). 4. A molded article of the resin composition as described in 3 above.
5. A hydrogen storage container filled with the resin composition of 3 or the molded article of 4.

本発明より、単位体積当たりの水素貯蔵合金粉末の充填量が高い樹脂組成物が得られる。   According to the present invention, a resin composition having a high filling amount of hydrogen storage alloy powder per unit volume can be obtained.

本発明について、以下、具体的に説明する。
本発明は、25℃の液粘度が500〜10,000mPasのシリコーン(A)と水素吸蔵合金粉末(B)を含む樹脂組成物である。
本発明に用いる硬化性シリコーン(A)は液状のオルガノポリシロキサンであり、一般には式(RR’SiO)n(R、R’は有機置換基、nは自然数)で表されるものが使用される。R,R’の具体例としてはメチル基、エチル基等のアルキル基、フェニル基、フルオロアルキル基のいずれかを用いることができ、分子鎖末端には水酸基、アルコキシ基、ビニル基等の官能基を有してもよい。
The present invention will be specifically described below.
The present invention is a resin composition comprising a silicone (A) having a liquid viscosity at 25 ° C. of 500 to 10,000 mPas and a hydrogen storage alloy powder (B).
The curable silicone (A) used in the present invention is a liquid organopolysiloxane, and generally used is one represented by the formula (RR′SiO) n (R and R ′ are organic substituents, n is a natural number). The As specific examples of R and R ′, any of an alkyl group such as a methyl group and an ethyl group, a phenyl group, and a fluoroalkyl group can be used, and a functional group such as a hydroxyl group, an alkoxy group, and a vinyl group is used at the molecular chain end. You may have.

本発明に用いる硬化性シリコーン(A)(以下、単に(A)ということがある。)は25℃における液粘度が500〜10,000mPasであり、より好ましくは800〜3,000mPas、特に好ましくは800〜1,000mPasである。液粘度が上記範囲内にあると、水素吸蔵合金粉末(B)(以下、単に(B)ということがある。)がシリコーンで均一に覆われ、それに起因する潤滑効果によって粉末粒子間の摩擦抵抗力が減少し、粉末が最密充填構造をとりやすい。液粘度が500mPas以上では、樹脂組成物としたときに粉末粒子間に留まりやすく、(A)を硬化させた後の組成も均一性が保てる。一方、10,000mPas以下では、(A)は(B)の粒子間に均一に分散することができるため、硬化後の樹脂組成物の均一性が良く好ましい。
本発明に用いる硬化性シリコーン(A)の液粘度は25℃で、B型回転粘度計を使って測定した値である。
The curable silicone (A) used in the present invention (hereinafter sometimes simply referred to as (A)) has a liquid viscosity at 25 ° C. of 500 to 10,000 mPas, more preferably 800 to 3,000 mPas, particularly preferably. 800 to 1,000 mPas. When the liquid viscosity is within the above range, the hydrogen storage alloy powder (B) (hereinafter sometimes referred to simply as (B)) is uniformly covered with silicone, and the frictional resistance between the powder particles due to the lubricating effect resulting therefrom. The force is reduced and the powder tends to have a close-packed structure. When the liquid viscosity is 500 mPas or more, the resin composition tends to stay between the powder particles, and the composition after curing (A) can maintain uniformity. On the other hand, at 10,000 mPas or less, (A) can be uniformly dispersed between the particles of (B), and thus the uniformity of the cured resin composition is good.
The liquid viscosity of the curable silicone (A) used in the present invention is 25 ° C. and is a value measured using a B-type rotational viscometer.

本発明に用いる硬化性シリコーン(A)の組成は、樹脂組成物全量100重量部に対して、0.1〜50重量部であることが好ましく、より好ましくは0.1〜10重量部で、特に好ましくは1〜5重量部である。0.1重量部以上では(B)の膨張、収縮に伴う応力を十分に緩和することができ、50重量部以下では(B)を50重量%以上配合することができるため、水素ガスの吸放出量を多くすることができる。
本発明に用いる硬化性シリコーン(A)は取り扱い性と長期信頼性の観点から2液付加反応硬化型が好ましいが、その場合、2液を混合した段階での25℃の液粘度が500〜10,000mPasであればよい。
The composition of the curable silicone (A) used in the present invention is preferably 0.1 to 50 parts by weight, more preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the total amount of the resin composition. Particularly preferred is 1 to 5 parts by weight. If the amount is 0.1 parts by weight or more, the stress associated with the expansion and contraction of (B) can be sufficiently relaxed, and if it is 50 parts by weight or less, 50% by weight or more of (B) can be blended. The amount of release can be increased.
The curable silicone (A) used in the present invention is preferably a two-component addition reaction curable type from the viewpoint of handleability and long-term reliability. In that case, the liquid viscosity at 25 ° C. at the stage where the two components are mixed is 500 to 10%. , 000 mPas.

水素吸蔵合金の粉末(B)は、可逆的に大量の水素ガスを吸放出することができる水素吸蔵合金の塊を粉砕したものである。(B)の化学構造は特に限定されるものではないが、AB、AB、AB、AB構造やBCC構造の合金を用いることができる。AB合金のA成分は、La単独、または一種以上の希土類元素とLaとの混合物である。具体的には、LaまたはLaの一部をCe、Pr、Nd又はその他の希土類元素で置換したミッシュメタル(Mm)が挙げられる。一方B成分の元素としては、Ni、Mn、Co、Alなどが挙げられる。AB合金のA成分は、Ti、Zrが挙げられ、B成分はMn、Cr、V、Feなどから選ばれる。なお、AB合金のA:B比は、1:2に限らず、1:1〜1:2の広い範囲から選択される。AB合金はTiFeあるいはTiCoを代表組成とし、B成分は多種の元素で部分置換可能である。AB合金はMgNiを代表組成とした合金である。BCC合金はTi、Cr、V、Moなどからなる体心立方型結晶構造を有する合金である。水素吸蔵合金の粉末(B)の平均粒径は1μm〜1mmのものを使用することができ、その好ましい範囲は10μm〜500μmである。1μm以上では取り扱い性が良く、樹脂組成物における分散性の観点から1mm以下が好ましい。 The hydrogen storage alloy powder (B) is obtained by pulverizing a lump of hydrogen storage alloy capable of reversibly absorbing and releasing a large amount of hydrogen gas. The chemical structure of (B) is not particularly limited, but an alloy of AB 5 , AB 2 , AB, A 2 B structure or BCC structure can be used. The A component of the AB 5 alloy is La alone or a mixture of one or more rare earth elements and La. Specifically, Misch metal (Mm) in which part of La or La is substituted with Ce, Pr, Nd, or other rare earth elements can be used. On the other hand, Ni, Mn, Co, Al, etc. are mentioned as an element of B component. Examples of the A component of the AB 2 alloy include Ti and Zr, and the B component is selected from Mn, Cr, V, Fe, and the like. The A: B ratio of the AB 2 alloy is not limited to 1: 2, but is selected from a wide range of 1: 1 to 1: 2. The AB alloy has a typical composition of TiFe or TiCo, and the B component can be partially substituted with various elements. The A 2 B alloy is an alloy having a representative composition of Mg 2 Ni. The BCC alloy is an alloy having a body-centered cubic crystal structure made of Ti, Cr, V, Mo or the like. The hydrogen storage alloy powder (B) having an average particle diameter of 1 μm to 1 mm can be used, and a preferable range thereof is 10 μm to 500 μm. If it is 1 μm or more, the handleability is good, and 1 mm or less is preferable from the viewpoint of dispersibility in the resin composition.

本発明の樹脂組成物は、硬化性シリコーン(A)と水素吸蔵合金粉末(B)を十分に攪拌、混合することにより製造することができる。攪拌、混合器に用いる装置としては、攪拌翼を有する混合器や、(B)を振動させることができるものを用いることができる。
本発明で用いるシリコーン架橋体(C)は水素ガス透過性である硬化性シリコーン(A)と水素吸蔵合金粉末(B)を混合させた後、(A)を硬化反応させることで製造することができる。ここで(A)を硬化させる温度は0〜200℃でよいが、より好ましくは10〜150℃、特に好ましくは20〜100℃である。0℃以上では硬化反応が進行し、200℃以下ではシリコーン架橋体(C)における水素吸蔵合金粉末(B)の均一分散性が良い。
本発明に用いるシリコーン架橋体(C)は単独ではゲル状、またはゴム状であるが、水素吸蔵合金粉末(B)の応力緩和の観点からゲル状が好ましい。
The resin composition of the present invention can be produced by sufficiently stirring and mixing the curable silicone (A) and the hydrogen storage alloy powder (B). As an apparatus used for stirring and a mixer, a mixer having a stirring blade or a device capable of vibrating (B) can be used.
The crosslinked silicone (C) used in the present invention can be produced by mixing a curable silicone (A) that is permeable to hydrogen gas and a hydrogen storage alloy powder (B) and then subjecting (A) to a curing reaction. it can. Here, the temperature for curing (A) may be 0 to 200 ° C, more preferably 10 to 150 ° C, and particularly preferably 20 to 100 ° C. The curing reaction proceeds at 0 ° C. or higher, and the uniform dispersibility of the hydrogen storage alloy powder (B) in the silicone crosslinked body (C) is good at 200 ° C. or lower.
The crosslinked silicone (C) used in the present invention is in the form of a gel or a rubber alone, but a gel is preferable from the viewpoint of stress relaxation of the hydrogen storage alloy powder (B).

本発明の樹脂組成物には、水素ガスの吸放出速度を上げることを目的として、熱伝導性の高いフィラーを添加する事ができ、具体的には炭素繊維が好ましい。
本発明の樹脂組成物は、硬化性シリコーン(A)と水素吸蔵合金の粉末(B)が均一に混合されていれば形状は限定されないが、シート、フィルムを始めとする任意の形態の成形体に加工することができる。加工法としては、射出成形、Tダイ成形、押出し成形、カレンダー成形、トランスファー成形、圧縮成形、ゴムラバー成形が挙げられる。
本発明の水素貯蔵容器は上記樹脂組成物の成形体を所定の容器に充填させて得られる。
本発明の水素貯蔵容器に用いられる容器は、水素ガスを簡便に貯蔵、運搬し、必要に応じて水素ガスを取り出すことができる。
A filler having high thermal conductivity can be added to the resin composition of the present invention for the purpose of increasing the absorption / release rate of hydrogen gas. Specifically, carbon fiber is preferred.
The shape of the resin composition of the present invention is not limited as long as the curable silicone (A) and the hydrogen-absorbing alloy powder (B) are uniformly mixed. Can be processed. Examples of processing methods include injection molding, T-die molding, extrusion molding, calendar molding, transfer molding, compression molding, and rubber rubber molding.
The hydrogen storage container of the present invention is obtained by filling a predetermined container with the molded body of the resin composition.
The container used for the hydrogen storage container of the present invention can store and transport hydrogen gas easily and take out the hydrogen gas as needed.

本発明の水素貯蔵容器の材質は無機材料、有機材料、有機−無機複合体のいずれでもよい。無機材料としては機械的強度、水素バリアー性、重量軽減の観点からアルミニウムが好ましい。有機材料では加工性や経済性の観点から樹脂材料が好ましく用いられ、具体的にはポリアミド、ポリフェニレンスルフィド、ポリオキシメチレン等の熱可組成樹脂やエポキシ樹脂等の熱硬化性樹脂が用いられる。さらに、上記樹脂に水素バリアー性や機械強度を付与することを目的として、無機化合物や炭素繊維を複合化させることもできる。
本発明の樹脂組成物は水素ガス貯蔵用容器の他にも例えば、Ni−水素電池の電極に用いることができる。
本発明の樹脂組成物が充填された水素貯蔵容器は直接水素型燃料電池の水素源として好ましく用いられ、燃料電池で駆動する自動車、自動二輪車、パソコン、デジタルカメラ、携帯電話に好ましく用いられる。
The material of the hydrogen storage container of the present invention may be any of an inorganic material, an organic material, and an organic-inorganic composite. As the inorganic material, aluminum is preferable from the viewpoints of mechanical strength, hydrogen barrier properties, and weight reduction. As the organic material, a resin material is preferably used from the viewpoint of processability and economy, and specifically, a thermosetting resin such as a polyamide, polyphenylene sulfide, polyoxymethylene, or an epoxy resin is used. Furthermore, for the purpose of imparting hydrogen barrier properties and mechanical strength to the resin, an inorganic compound and carbon fiber can be combined.
The resin composition of the present invention can be used for, for example, an electrode of a Ni-hydrogen battery in addition to a hydrogen gas storage container.
The hydrogen storage container filled with the resin composition of the present invention is preferably used as a hydrogen source of a direct hydrogen fuel cell, and is preferably used for automobiles, motorcycles, personal computers, digital cameras and mobile phones driven by fuel cells.

〔使用した原料〕
・ゲル状物質の原料
(A−1):WACKER SilGel「612」のA液及びB液(旭化成ワッカーシリコーン株式会社製)。2液付加硬化型シリコーン。A液とB液の液粘度をB型回転粘度計で測定した結果、両方ともに25℃で1,000mPasで、A液とB液を重量比1:1で混合した液体の粘度は25℃で1,000mPasであった。
[Raw materials used]
-Raw material of gel-like substance (A-1): A liquid and B liquid (made by Asahi Kasei Wacker Silicone Co., Ltd.) of WACKER SilGel "612". Two-component addition-curable silicone. As a result of measuring the liquid viscosities of A liquid and B liquid with a B-type rotational viscometer, both were 1,000 mPas at 25 ° C., and the viscosity of the liquid in which A liquid and B liquid were mixed at a weight ratio of 1: 1 was 25 ° C. 1,000 mPas.

・ゴム状樹脂の原料
(A−2)ELASTOSIL M4648 のA液及びB液(旭化成ワッカーシリコーン株式会社製)。2液付加硬化型シリコーン。A液とB液の液粘度をB型回転粘度計で測定した結果、25℃でA液は20,000mPas、B液は700mPasで、A液とB液を重量比10:1で混合した液体の粘度は25℃で15,000mPasであった。・水素吸蔵合金
(B−1)AB合金粉末で化学構造はMmNi4.4Mn0.1Co0.5(MmはミッシュメタルでLa、Ce、Pr、Ndから構成される)、粒径は30〜400mes
h。
-Raw material of rubber-like resin (A-2) Liquid A and liquid B of ELASTOSIL M4648 (manufactured by Asahi Kasei Wacker Silicone Co., Ltd.). Two-component addition-curable silicone. As a result of measuring the liquid viscosities of liquid A and liquid B using a B-type rotational viscometer, liquid A was 20,000 mPas, liquid B was 700 mPas, and liquid A and liquid B were mixed at a weight ratio of 10: 1 at 25 ° C. The viscosity of was 15,000 mPas at 25 ° C.・ Hydrogen occlusion alloy (B-1) AB 5 alloy powder, chemical structure is MmNi 4.4 Mn 0.1 Co 0.5 (Mm is misch metal and consists of La, Ce, Pr, Nd), particle size 30 ~ 400mes
h.

〔樹脂組成物の活性化処理方法〕
(1)樹脂組成物を秤量して図1に示す容器1に充填し、水素導入管付きの蓋で容器1を密閉する。
(2)密閉容器1を恒温槽で80℃に加温し、真空ポンプで容器内を真空とした状態を5時間以上維持する。
(3)容器1に水素ガスを1MPaGで導入し、水槽で20℃まで冷却する。
[Method of activation treatment of resin composition]
(1) The resin composition is weighed and filled into the container 1 shown in FIG. 1, and the container 1 is sealed with a lid with a hydrogen introduction tube.
(2) The airtight container 1 is heated to 80 ° C. in a thermostatic bath, and the state in which the inside of the container is evacuated with a vacuum pump is maintained for 5 hours or more.
(3) Hydrogen gas is introduced into the container 1 at 1 MPaG and cooled to 20 ° C. in a water tank.

〔樹脂組成物の水素吸放出試験〕
(1)上記方法で脱Oして活性化処理を施した後、容器1(内容積V1=18.64cc)を8
0℃に加熱しながら真空ポンプで3時間、容器内を真空に保ち、合金中に含まれる水素を除去する。
(2)上記、真空状態の容器1を20℃の水槽に入れる。
(3)20℃に保たれた容器2(内容積V2=104.91cc)に約5MPaGの水素を導入し、このときの内圧(P2)を測定する。
(4)容器1と容器2の間のバルブBを開放し、容器1に水素ガスを導入する。両方の容器内圧が一定になったら、そのときの各容器の圧力、容器1(P1’)、容器2(P2’)を測定する。
(5)バルブ開放前後の各容器の内圧変化から、気体の状態方程式を用いて試料が吸収した水素量を求めることができる。
[Hydrogen absorption / release test of resin composition]
(1) After performing de-O 2 and activation treatment by the above method, the container 1 (internal volume V1 = 18.64 cc) was placed in 8
While heating to 0 ° C., the inside of the container is kept in a vacuum for 3 hours with a vacuum pump to remove hydrogen contained in the alloy.
(2) The above-described vacuum vessel 1 is placed in a 20 ° C. water tank.
(3) About 5 MPaG hydrogen is introduced into the container 2 (internal volume V2 = 104.91 cc) maintained at 20 ° C., and the internal pressure (P2) at this time is measured.
(4) The valve B between the container 1 and the container 2 is opened, and hydrogen gas is introduced into the container 1. When both container internal pressures become constant, the pressure of each container at that time, container 1 (P1 ′), and container 2 (P2 ′) are measured.
(5) From the change in the internal pressure of each container before and after the valve is opened, the amount of hydrogen absorbed by the sample can be obtained using the gas equation of state.

[実施例1]
(A−1)のA液を3.75g、B液を3.75g秤量し、両者を良く混合した後、ここに(B−1)92.70gを徐々に添加しながら、良く攪拌混合し、(A−1)と(B−1)を含む樹脂組成物を得た。この樹脂組成物における(B−1)の組成は樹脂組成物全量100重量部に対して92.7重量部である。この樹脂組成物を、重さ5Kgの鉄棒で平面状に押しならし、厚み2mmのシート形状に整えたものを、25℃、12時間放置させることで、(A−1)架橋体と(B−1)を含む厚み2mmのシート状樹脂組成物を作成した。このシート状樹脂組成物の一部を切り取り、評価した結果を表1に示す。
[Example 1]
Weigh 3.75 g of liquid (A-1) and 3.75 g of liquid B, mix them well, then stir and mix well while gradually adding 92.70 g of (B-1). , (A-1) and a resin composition containing (B-1) were obtained. The composition of (B-1) in this resin composition is 92.7 parts by weight with respect to 100 parts by weight of the total amount of the resin composition. This resin composition was flattened with a 5 kg weight iron bar and prepared into a sheet shape with a thickness of 2 mm, and allowed to stand at 25 ° C. for 12 hours, whereby (A-1) the crosslinked product and (B A sheet-shaped resin composition having a thickness of 2 mm including -1) was prepared. Table 1 shows the results of cutting out and evaluating a part of this sheet-shaped resin composition.

[実施例2]
(A−1)のA液を2.50g、B液を2.50g、(B−1)を95.0gとした他は実施例1と同様に行い、シート状樹脂組成物を作成した。この樹脂組成物における(B−1)の組成は樹脂組成物全量100重量部に対して95.0重量部である。このシート状樹脂組成物の一部を切り取り評価した結果を表1に示す。
[実施例3]
(A−1)のA液を2.00g、B液を2.00g、(B−1)を96.0gとした他は実施例1と同様に行い、シート状樹脂組成物を作成した。この樹脂組成物における(B−1)の組成は樹脂組成物全量100重量部に対して96.0重量部である。このシート状樹脂組成物の一部を切り取り評価した結果を表1に示す。
[Example 2]
A sheet-shaped resin composition was prepared in the same manner as in Example 1 except that A liquid of (A-1) was 2.50 g, B liquid was 2.50 g, and (B-1) was 95.0 g. The composition of (B-1) in this resin composition is 95.0 parts by weight with respect to 100 parts by weight of the total amount of the resin composition. Table 1 shows the results of cutting out and evaluating a part of this sheet-shaped resin composition.
[Example 3]
A sheet-like resin composition was prepared in the same manner as in Example 1 except that the liquid A of (A-1) was 2.00 g, the liquid B was 2.00 g, and (B-1) was 96.0 g. The composition of (B-1) in this resin composition is 96.0 parts by weight with respect to 100 parts by weight of the total amount of the resin composition. Table 1 shows the results of cutting out and evaluating a part of this sheet-shaped resin composition.

[実施例4]
(A−1)のA液を1.50g、B液を1.50g、(B−1)を97.0gとした他は実施例1と同様に行い、シート状樹脂組成物を作成した。この樹脂組成物における(B−1)の組成は樹脂組成物全量100重量部に対して97.0重量部である。このシート状樹脂組成物の一部を切り取り評価した結果を表1に示す。
[実施例5]
(A−1)のA液を1.00g、B液を1.00g、(B−1)を98.0gとした他
は実施例1と同様に行い、シート状樹脂組成物を作成した。この樹脂組成物における(B−1)の組成は樹脂組成物全量100重量部に対して98.0重量部である。このシート状樹脂組成物の一部を切り取り評価した結果を表1に示す。
[Example 4]
A sheet-shaped resin composition was prepared in the same manner as in Example 1 except that A solution of (A-1) was 1.50 g, B solution was 1.50 g, and (B-1) was 97.0 g. The composition of (B-1) in this resin composition is 97.0 parts by weight with respect to 100 parts by weight of the total amount of the resin composition. Table 1 shows the results of cutting out and evaluating a part of this sheet-shaped resin composition.
[Example 5]
A sheet-shaped resin composition was prepared in the same manner as in Example 1, except that the liquid A of (A-1) was 1.00 g, the liquid B was 1.00 g, and (B-1) was 98.0 g. The composition of (B-1) in this resin composition is 98.0 parts by weight with respect to 100 parts by weight of the total amount of the resin composition. Table 1 shows the results of cutting out and evaluating a part of this sheet-shaped resin composition.

[比較例1]
(A−1)のA液とB液の代わりに、(A−2)のA液を6.64g、B液を0.66g用いた他は実施例1と同様に行い、シート状樹脂組成物を作成した。この樹脂組成物における(B−1)の組成は樹脂組成物全量100重量部に対して92.7重量部である。このシート状樹脂組成物の一部を切り取り評価した結果を表2に示す。
[比較例2]
(A−2)のA液を4.55g、B液を0.45g、(B−1)を95.0g用いた他は比較例1と同様に行い、シート状樹脂組成物を作成した。この樹脂組成物における(B−1)の組成は樹脂組成物全量100重量部に対して95.0重量部である。このシート状樹脂組成物の一部を切り取り評価した結果を表2に示す。
[Comparative Example 1]
A sheet-like resin composition was prepared in the same manner as in Example 1 except that 6.64 g of liquid A of (A-2) and 0.66 g of liquid B were used instead of liquids A and B of (A-1). I made a thing. The composition of (B-1) in this resin composition is 92.7 parts by weight with respect to 100 parts by weight of the total amount of the resin composition. Table 2 shows the results of cutting out and evaluating a part of this sheet-shaped resin composition.
[Comparative Example 2]
A sheet-like resin composition was prepared in the same manner as in Comparative Example 1 except that 4.55 g of A liquid (A-2), 0.45 g of B liquid, and 95.0 g of (B-1) were used. The composition of (B-1) in this resin composition is 95.0 parts by weight with respect to 100 parts by weight of the total amount of the resin composition. Table 2 shows the results of cutting out and evaluating a part of this sheet-shaped resin composition.

[比較例3]
(A−2)のA液を3.64g、B液を0.36g、(B−1)を96.0g用いた他は比較例1と同様に行い、シート状樹脂組成物を作成した。この樹脂組成物における(B−1)の組成は樹脂組成物全量100重量部に対して96.0重量部である。このシート状樹脂組成物の一部を切り取り評価した結果を表2に示す。
[比較例4]
(A−2)のA液を2.73g、B液を0.27g、(B−1)を97.0g用いた他は比較例1と同様に行い、シート状樹脂組成物を作成した。この樹脂組成物における(B−1)の組成は樹脂組成物全量100重量部に対して97.0重量部である。このシート状樹脂組成物の一部を切り取り評価した結果を表2に示す。
[比較例5]
(A−2)のA液を1.82g、B液を0.18g、(B−1)を98.0g用いた他は比較例1と同様に行い、シート状樹脂組成物を作成した。この樹脂組成物における(B−1)の組成は樹脂組成物全量100重量部に対して98.0重量部である。このシート状樹脂組成物の一部を切り取り評価した結果を表2に示す。
[Comparative Example 3]
A sheet-shaped resin composition was prepared in the same manner as in Comparative Example 1 except that 3.64 g of A liquid (A-2), 0.36 g of B liquid, and 96.0 g of (B-1) were used. The composition of (B-1) in this resin composition is 96.0 parts by weight with respect to 100 parts by weight of the total amount of the resin composition. Table 2 shows the results of cutting out and evaluating a part of this sheet-shaped resin composition.
[Comparative Example 4]
A sheet-like resin composition was prepared in the same manner as in Comparative Example 1 except that 2.73 g of liquid A of (A-2), 0.27 g of liquid B, and 97.0 g of (B-1) were used. The composition of (B-1) in this resin composition is 97.0 parts by weight with respect to 100 parts by weight of the total amount of the resin composition. Table 2 shows the results of cutting out and evaluating a part of this sheet-shaped resin composition.
[Comparative Example 5]
A sheet-shaped resin composition was prepared in the same manner as in Comparative Example 1 except that 1.82 g of liquid A of (A-2), 0.18 g of liquid B, and 98.0 g of (B-1) were used. The composition of (B-1) in this resin composition is 98.0 parts by weight with respect to 100 parts by weight of the total amount of the resin composition. Table 2 shows the results of cutting out and evaluating a part of this sheet-shaped resin composition.

Figure 2008189797
Figure 2008189797

Figure 2008189797
Figure 2008189797

本発明の樹脂樹脂組成物及び水素貯蔵容器は水素燃料電池用の水素貯蔵容器に好適に用いられる。   The resin resin composition and the hydrogen storage container of the present invention are suitably used as a hydrogen storage container for a hydrogen fuel cell.

本発明の水素貯蔵容器に用いた容器である。It is the container used for the hydrogen storage container of this invention.

Claims (5)

25℃における液粘度が500〜10,000mPasの硬化性シリコーン(A)と水素吸蔵合金粉末(B)を含み、(A)と(B)の合計100重量部に対して、該硬化性シリコーン(A)を0.1〜50重量部含む樹脂組成物。   A curable silicone (A) having a liquid viscosity at 25 ° C. of 500 to 10,000 mPas and a hydrogen storage alloy powder (B) are contained, and the curable silicone (A) and (B) are combined with 100 parts by weight of the curable silicone ( A resin composition containing 0.1 to 50 parts by weight of A). 該硬化性シリコーン(A)の25℃における液粘度が800〜3,000mPasであることを特徴とする請求項1に記載の樹脂組成物。   The resin composition according to claim 1, wherein the curable silicone (A) has a liquid viscosity at 25 ° C. of 800 to 3,000 mPas. 請求項1または2の樹脂組成物において、該硬化性シリコーン(A)が架橋することで得られるシリコーン架橋体(C)である樹脂組成物。   The resin composition according to claim 1 or 2, wherein the curable silicone (A) is a crosslinked silicone (C) obtained by crosslinking. 請求項3に記載の樹脂組成物の成形体。   A molded article of the resin composition according to claim 3. 請求項3の樹脂組成物または請求項4の成形体を充填した水素貯蔵容器。   A hydrogen storage container filled with the resin composition of claim 3 or the molded article of claim 4.
JP2007025326A 2007-02-05 2007-02-05 Hydrogen storage alloy-containing resin composition Active JP4145339B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2007025326A JP4145339B2 (en) 2007-02-05 2007-02-05 Hydrogen storage alloy-containing resin composition
CA2675266A CA2675266C (en) 2007-02-05 2008-02-05 Composition comprising hydrogen storage alloy and resin
KR1020097016333A KR101215136B1 (en) 2007-02-05 2008-02-05 Composition comprising hydrogen-absorbing alloy and resin
US12/524,247 US8607969B2 (en) 2007-02-05 2008-02-05 Composition comprising hydrogen storage alloy and resin
CN2008800041447A CN101636451B (en) 2007-02-05 2008-02-05 Composition comprising hydrogen-absorbing alloy and resin
TW097104580A TWI440664B (en) 2007-02-05 2008-02-05 Hydrogen storage alloy and resin composition
EP08710800.7A EP2110411B1 (en) 2007-02-05 2008-02-05 Composition comprising hydrogen-absorbing alloy and resin
PCT/JP2008/051868 WO2008096758A1 (en) 2007-02-05 2008-02-05 Composition comprising hydrogen-absorbing alloy and resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007025326A JP4145339B2 (en) 2007-02-05 2007-02-05 Hydrogen storage alloy-containing resin composition

Publications (2)

Publication Number Publication Date
JP2008189797A true JP2008189797A (en) 2008-08-21
JP4145339B2 JP4145339B2 (en) 2008-09-03

Family

ID=39750202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007025326A Active JP4145339B2 (en) 2007-02-05 2007-02-05 Hydrogen storage alloy-containing resin composition

Country Status (1)

Country Link
JP (1) JP4145339B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248053A (en) * 2009-04-16 2010-11-04 Ind Technol Res Inst Hydrogen supply device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248053A (en) * 2009-04-16 2010-11-04 Ind Technol Res Inst Hydrogen supply device

Also Published As

Publication number Publication date
JP4145339B2 (en) 2008-09-03

Similar Documents

Publication Publication Date Title
TWI440664B (en) Hydrogen storage alloy and resin composition
Lee et al. Combinatorial search for optimal hydrogen-storage nanomaterials based on polymers
Lu et al. Hydrogen storage properties of nanosized MgH2− 0.1 TiH2 prepared by ultrahigh-energy− high-pressure milling
Shim et al. Effective thermal conductivity of MgH2 compacts containing expanded natural graphite under a hydrogen atmosphere
CN111647116B (en) Preparation method of heat-conducting elastic shape-stabilized phase change energy storage material
Gao et al. Thermal property enhancement of paraffin-wax-based hydroxyl-terminated polybutadiene binder with a novel nanoSiO2-expanded graphite-PW ternary form-stable phase change material
Wang et al. Chitosan and multi-walled carbon nanotube composite rods
JP5148571B2 (en) Hydrogen supply device
CN114940829A (en) Two-dimensional graphene/liquid metal/PDMS composite membrane and preparation method thereof
JP4145339B2 (en) Hydrogen storage alloy-containing resin composition
Liang et al. Confinement of Mg− MgH2 systems into carbon nanotubes changes hydrogen sorption energetics
CN111205600A (en) Epoxy resin preparation, filler, pipeline repairing material and preparation method
Tavman Preparation and characterization of conductive polymer nanocomposites based on ethylene–vinylacetate copolymer (EVA) reinforced with expanded and unexpanded graphite
JP4180105B2 (en) Composition of hydrogen storage alloy and resin
CN106608616B (en) Hydrogen storage composition and method for producing hydrogen storage container
Ozkutlu et al. Controlling the foam morphology of supercritical CO2‐processed poly (methyl methacrylate) with CO2‐philic hybrid nanoparticles
WO2001034328A1 (en) Hydrogen storage composite formed article and method for preparing the same
TWI691456B (en) Hydrogen storage composition, hydrog storage container and method for producing hydrog storage container with hydrogen storage composition
JP2001200159A (en) Molded product of hydrogen storage composite and method for producing the same
Snijder et al. Some properties of LaNi5-xAlx metal alloys and the diffusion coefficient and solubility of hydrogen in cyclohexane
US11333303B2 (en) Hydrogen storage composition, hydrogen storage container and method for producing hydrogen storage container with hydrogen storage composition
CN118189041A (en) Energy storage element, and preparation method and application thereof
KR20130143342A (en) Method for manufacturing nano-particle including phase change material
CN117410627A (en) Solid superconducting material for lithium battery and lithium battery thermal management system
JPWO2020021959A1 (en) Resin compositions, heat storage materials, and articles

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4145339

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140627

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250