JP2001200159A - Molded product of hydrogen storage composite and method for producing the same - Google Patents

Molded product of hydrogen storage composite and method for producing the same

Info

Publication number
JP2001200159A
JP2001200159A JP2000342791A JP2000342791A JP2001200159A JP 2001200159 A JP2001200159 A JP 2001200159A JP 2000342791 A JP2000342791 A JP 2000342791A JP 2000342791 A JP2000342791 A JP 2000342791A JP 2001200159 A JP2001200159 A JP 2001200159A
Authority
JP
Japan
Prior art keywords
hydrogen storage
hydrogen
silicon resin
molded product
absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000342791A
Other languages
Japanese (ja)
Inventor
Tama Nakano
瑞 中野
Noriaki Hamaya
典明 浜谷
Satoshi Shima
聡 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2000342791A priority Critical patent/JP2001200159A/en
Publication of JP2001200159A publication Critical patent/JP2001200159A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Powder Metallurgy (AREA)
  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a molded product of a hydrogen storage composite, hardly causing pulverization and corruption even if the storage and emission of the hydrogen is repeated for a long period, and excellent in moldability and processability, and further to provide a method for producing the molded product of the hydrogen storage composite. SOLUTION: This molded product of the hydrogen storage composite comprises a silicon resin preferably of 0.5-50 wt.%, and a hydrogen storage material. The method for producing the molded product of the hydrogen storage composite is characterized in that the hydrogen storage material is pressure- molded, the molded product is immersed into a solution dissolving or dispersing the silicone resin, and the resultant product is cured. Further, the method for producing the molded product of the hydrogen storage composite is characterized in that one selected from the silicone resin itself, a silicon resin solution and a silicone resin dispersion is mixed with the hydrogen storage alloy, and the resultant mixture is molded and cured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、珪素樹脂含有水素
吸蔵複合成形体及びその製造方法に関し、さらに詳しく
は長期間水素の吸蔵放出を繰り返しても微粉化や変形が
起こらない、水素吸蔵材料とバインダーとしての珪素樹
脂を含む水素吸蔵複合成形体とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon resin-containing hydrogen-absorbing composite molded article and a method for producing the same, and more particularly, to a hydrogen-absorbing material which does not cause pulverization or deformation even if hydrogen is repeatedly absorbed and released for a long period of time. The present invention relates to a hydrogen storage composite article containing a silicon resin as a binder and a method for producing the same.

【0002】[0002]

【従来の技術】水素吸蔵合金は、水素の吸蔵材として定
置式タンク、燃料電池の水素供給源、水素自動車等での
利用、水素吸蔵放出時の発熱、吸熱を利用したエネルギ
ー変換材としての熱貯蔵システムでの利用等の他、水素
の分離精製材、触媒、センサ等で利用されるようになっ
てきた。多くの場合、水素吸蔵合金は数mm以下の粉体
にした状態で容器に充填して使用されるが、このような
使用方法の場合多くの問題点が指摘されている。その基
本的な問題は、水素吸蔵合金は水素吸蔵放出の際、最大
で30%の膨張収縮を起こしその応力により微粉化が進
行することである。それに伴って、体積膨張による容器
の破壊や容器に取り付けられたフィルターの目詰まり、
熱伝導率の低下による水素吸蔵放出能の低下等が起こり
実用化の障害となっている。また、特に燃料電池の水素
供給源、水素自動車等での利用の場合、走行時の振動に
より水素吸蔵合金がタンク底部に溜まってしまう問題が
発生する。このため、長期間繰り返し水素の吸蔵放出を
行っても微粉化しない水素吸蔵体が期待されている。
2. Description of the Related Art Hydrogen storage alloys are used as a hydrogen storage material in stationary tanks, hydrogen supply sources for fuel cells, use in hydrogen vehicles, etc., heat generated during hydrogen storage and release, and heat as an energy conversion material utilizing heat absorption. In addition to use in storage systems, they have been used in hydrogen separation and purification materials, catalysts, sensors, and the like. In many cases, the hydrogen storage alloy is used after being filled in a container in a state of powder of several mm or less, but many problems have been pointed out in such a usage method. The basic problem is that the hydrogen storage alloy expands and contracts by a maximum of 30% during hydrogen storage and release, and its stress causes the pulverization to proceed. Along with that, destruction of the container due to volume expansion and clogging of the filter attached to the container,
Hydrogen storage / release capacity is reduced due to a decrease in thermal conductivity, which is an obstacle to practical use. In particular, when the fuel cell is used in a hydrogen supply source of a fuel cell, a hydrogen vehicle, or the like, there is a problem that the hydrogen storage alloy accumulates at the bottom of the tank due to vibration during traveling. For this reason, a hydrogen storage material which does not become finely divided even when hydrogen is repeatedly stored and released for a long period of time is expected.

【0003】水素吸蔵合金を利用した水素吸蔵体として
は、特公昭58−20881号公報、特開昭57−14
5001号公報、特開平8−11241号公報等が提案
されている。いずれも合成樹脂を利用した技術であるが
その取り扱いが困難であったり、水素の吸蔵放出速度が
低下する問題があった。特に特開平8−11241にフ
ッ素樹脂を用いることが記載されているが、フッ素樹脂
による成形体では吸蔵体としての弾性に乏しく、ガス透
過性によるガス放出速度が遅い問題があった。
[0003] As hydrogen storage materials using a hydrogen storage alloy, Japanese Patent Publication No. 58-20881 and Japanese Patent Application Laid-Open No.
JP-A-5001 and JP-A-8-11241 have been proposed. Each of these techniques is a technique using a synthetic resin, but has problems in that it is difficult to handle and that the rate of absorbing and releasing hydrogen decreases. In particular, Japanese Patent Application Laid-Open No. HEI 8-11241 describes the use of a fluororesin. However, a molded article made of a fluororesin has a problem that the elasticity of the occlusion body is poor and the gas release rate is low due to gas permeability.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記の様な
従来技術に伴う問題点を解決しようとするものであっ
て、長期間繰り返し水素の吸蔵放出を行っても耐熱性、
耐候性に優れた、また成形性、加工性に優れ、特に合金
を用いた場合には崩壊しない、寸法安定性に優れた珪素
樹脂含有水素吸蔵複合成形体およびその製造方法に関す
る。
SUMMARY OF THE INVENTION The present invention aims to solve the problems associated with the prior art as described above, and has a high heat resistance even when hydrogen is repeatedly stored and released for a long period of time.
The present invention relates to a silicon resin-containing hydrogen-absorbing composite molded article having excellent dimensional stability, excellent in weather resistance, excellent in moldability and workability, and not particularly collapsed when an alloy is used, and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】本発明に係わる珪素樹脂
含有水素吸蔵複合成形体は、水素吸蔵材料が特に水素吸
蔵性の点からバインダーとしては珪素樹脂を用いること
を特徴とする。さらに水素吸蔵複合成形体はバインダー
としての珪素樹脂を複合成形体中に0.5〜50重量%
含むことが望ましい。本発明に係わる珪素樹脂含有水素
吸蔵複合成形体の製造方法は、水素吸蔵材料を加圧成形
し、珪素樹脂を溶媒に溶解又は分散した溶液に含浸した
後、硬化させるか、又は水素吸蔵合金粉と樹脂あるいは
樹脂を溶媒に溶解又は分散した溶液とを混合して成形後
硬化させることを特徴としている。本発明の珪素樹脂含
有水素吸蔵複合成形体の製造法によれば、角形状、円筒
状、円盤状、チューブ状、薄膜状等任意の形状の水素吸
蔵複合成形体を製造することができる。本発明の成形体
は成形体自体が水素を吸蔵放出する機能を有するもので
ある。特に本発明の珪素樹脂を含有することにより水素
吸蔵複合成形体は弾力性に優れた珪素樹脂をバインダー
として使用しているため、バインダー量が少ない領域で
も水素吸蔵放出による崩壊、変形が起こらず、また、珪
素樹脂の優れたガス透過性により水素吸収速度、水素吸
収量も使用した材料本来のものとほぼ同じ特性を得るこ
とができる。さらに珪素樹脂は−70℃から250℃の
広い温度範囲で安定したゴム弾性を有することから、低
温側では極寒の環境下でも水素吸蔵材料の崩壊、変形等
を防ぐことができ、又より高温での水素の吸収放出が可
能となり、放出効率の高い水素吸蔵複合成形体を得るこ
とができる。さらに本発明によれば、加圧成形、押出成
形等の成形法で任意の形状の水素吸蔵放出を繰り返して
も崩壊、変性の無い、ゴム弾性を有する水素吸蔵複合成
形体を提供することができ、又より高温での水素吸蔵放
出が可能となり、装置の設計の許容範囲を広げることが
できるものである。
The silicon resin-containing hydrogen-absorbing composite molded article according to the present invention is characterized in that the hydrogen-absorbing material uses a silicon resin as a binder particularly from the viewpoint of hydrogen-absorbing properties. Further, the hydrogen storage composite molded body contains 0.5 to 50% by weight of a silicone resin as a binder in the composite molded body.
It is desirable to include. The method for producing a silicon resin-containing hydrogen-absorbing composite molded article according to the present invention comprises the steps of: molding a hydrogen-absorbing material under pressure; impregnating the silicon resin with a solution in which a silicon resin is dissolved or dispersed in a solvent; And a resin or a solution in which the resin is dissolved or dispersed in a solvent, and the mixture is cured after molding. According to the method for producing a silicon resin-containing hydrogen storage composite molded article of the present invention, a hydrogen storage composite molded article having an arbitrary shape such as a square shape, a cylindrical shape, a disk shape, a tube shape, and a thin film shape can be produced. The molded article of the present invention has a function of absorbing and releasing hydrogen by itself. In particular, by containing the silicon resin of the present invention, the hydrogen storage composite molded article uses a silicon resin excellent in elasticity as a binder, so that collapse and deformation due to hydrogen storage and release do not occur even in a region where the amount of the binder is small, Further, due to the excellent gas permeability of the silicon resin, it is possible to obtain almost the same characteristics as those of the material using the hydrogen absorption rate and hydrogen absorption amount. Further, since silicon resin has stable rubber elasticity in a wide temperature range from -70 ° C to 250 ° C, it is possible to prevent the hydrogen storage material from collapsing and deforming even in an extremely cold environment on a low temperature side, and at a higher temperature. Of hydrogen can be absorbed and released, and a hydrogen storage composite article having a high release efficiency can be obtained. Further, according to the present invention, it is possible to provide a hydrogen-absorbing composite molded article having rubber elasticity, which does not collapse or denature even if hydrogen absorption and release of an arbitrary shape is repeated by molding methods such as pressure molding and extrusion molding. In addition, it becomes possible to store and release hydrogen at a higher temperature, so that the allowable range of the device design can be expanded.

【0006】[0006]

【発明の実施の形態】本発明に係る珪素樹脂含有水素吸
蔵複合成形体及びその製造方法について、その実施の形
態を詳細に説明する。本発明に用いる水素吸蔵材料は、
好ましくは、水素吸蔵能を有する金属、炭素材料及び合
金から選ばれる。炭素材料としては、ナノチューブ、フ
ラーレン、グラファイト、ナノファイバー等が挙げられ
る。本発明に用いる水素吸蔵材料としては、MmNi5
系(Mmはミッシュメタルを表し、Laの一部をCe、
Pr、Ndその他の希土類元素で置換したものであ
る。)等の水素吸蔵合金を用いることが最も好ましい
が、そのほかにLi、Na、Ca、Ti、Zr、V、A
l、Ga、Sn、As、B、Si、Ge、Pd、Pt、
La等の希土類元素から選ばれる少なくとも1種の金
属、またはLi−B,Na−B,Li−Al,Na−A
l、ミッシュメタル等の複合化合物等の水素吸蔵放出能
を有する金属が挙げられ、用いる水素吸蔵材料の形状は
所望の複合成形体において珪素樹脂中に分散可能である
粒径のものを用いる。先ず、本発明で用いる水素吸蔵合
金粉末について説明する。水素吸蔵合金粉末に用いる水
素吸蔵合金塊の組成および製造方法については、特に限
定されるものではなく、ABn(nは0.5〜6の正数
を表す。)の構造、例えばMmNi5系、Mg−Ni系
や、BCC−ラーベス構造、例えばTi−V系、Ti−
Cr系を有する水素吸蔵合金を使用することができる。
ここでは例として、AB5系(MmNi5)水素吸蔵合金
組成の場合について詳細に説明する。AB5系におい
て、A側元素は、La単独、または一種以上の希土類元
素とLaとの混合物である。具体的には、La、Mm、
Lm(Lmは、Laリッチな50重量%以上のLaを含
むミッシュメタルをいう。)、又はこれらの混合物に他
の希土類元素を添加した混合物が挙げられる。また、希
土類元素混合物中にLaを20モル%以上含むことが好
ましい。B側元素としては、(Ni)a(Co)b(Al)c(M
n)d(M)eからなる組成が好ましい。ここでaは1.8
〜6.0の正数であり、bは0または1.0以下の正
数、cは0または1.0以下の正数、dは0または1.
0以下の正数、eは0または0.5以下の正数である。
Mは、Si、Fe、Pb、Ti、Ca、Mg、Cu、I
n、Zn、Cr及びZrからなる一群から選ばれた少な
くとも一種の元素である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a silicon resin-containing hydrogen-absorbing composite molded article and a method for producing the same according to the present invention will be described in detail. The hydrogen storage material used in the present invention,
Preferably, it is selected from metals, carbon materials and alloys having a hydrogen storage capacity. Examples of the carbon material include nanotubes, fullerenes, graphite, and nanofibers. As the hydrogen storage material used in the present invention, MmNi 5
System (Mm represents misch metal, part of La is Ce,
It is substituted with Pr, Nd or other rare earth elements. ) Is most preferable, but other than these, Li, Na, Ca, Ti, Zr, V, A
1, Ga, Sn, As, B, Si, Ge, Pd, Pt,
At least one metal selected from rare earth elements such as La, or Li-B, Na-B, Li-Al, Na-A
l, a metal having a hydrogen storage / release capability such as a complex compound such as misch metal, and the shape of the hydrogen storage material to be used is a particle having a particle size that can be dispersed in a silicon resin in a desired composite molded product. First, the hydrogen storage alloy powder used in the present invention will be described. The composition and production method of the hydrogen storage alloy mass used for the hydrogen storage alloy powder are not particularly limited, and the structure of AB n (n represents a positive number of 0.5 to 6 ), for example, MmNi 5 series , Mg-Ni or BCC-Laves structure such as Ti-V, Ti-
A hydrogen storage alloy having a Cr system can be used.
Here, as an example, a case of an AB 5 (MmNi 5 ) hydrogen storage alloy composition will be described in detail. In AB 5 type, A side element, a mixture of La alone or one or more rare earth elements and La,. Specifically, La, Mm,
Lm (Lm refers to a La-rich misch metal containing 50% by weight or more of La), or a mixture obtained by adding another rare earth element to a mixture thereof. Further, it is preferable that the rare earth element mixture contains La in an amount of 20 mol% or more. As the B-side element, (Ni) a (Co) b (Al) c (M
A composition consisting of n) d (M) e is preferred. Where a is 1.8
B is a positive number of 0 or 1.0 or less, c is a positive number of 0 or 1.0 or less, d is 0 or 1.
E is a positive number of 0 or less, and e is a positive number of 0 or 0.5 or less.
M is Si, Fe, Pb, Ti, Ca, Mg, Cu, I
It is at least one element selected from the group consisting of n, Zn, Cr and Zr.

【0007】上記組成の各金属元素を混合した後、アル
ゴン等の不活性ガスの雰囲気中、1300〜1600℃
の温度で高周波溶解炉やアーク溶解炉等を用いて合金を
溶湯化させた後、冷却することによって水素吸蔵合金塊
を作製する。この場合、ロール急冷法等の急冷法により
得られた水素吸蔵合金薄帯、ディスクアトマイズ法によ
り得られた水素吸蔵合金球状粉を用いてもよい。また必
要に応じてAr等の不活性雰囲気中、1000℃前後の
温度で熱処理を行っても良い。
After mixing the metal elements having the above composition, the mixture is heated to 1300 to 1600 ° C. in an atmosphere of an inert gas such as argon.
After the alloy is melted by using a high-frequency melting furnace or an arc melting furnace at the temperature described above, a hydrogen storage alloy lump is produced by cooling. In this case, a hydrogen storage alloy ribbon obtained by a quenching method such as a roll quenching method, or a spherical hydrogen storage alloy powder obtained by a disk atomization method may be used. If necessary, the heat treatment may be performed at a temperature of about 1000 ° C. in an inert atmosphere such as Ar.

【0008】次に、水素吸蔵合金塊を粉砕して水素吸蔵
合金粉末を作製する。粉砕方法としては、ジェットミ
ル、アトライター、ジョークラッシャー、ローラーミ
ル、ボールミル、ブラウンミル等を用いてアルゴンや窒
素ガス等の不活性ガス雰囲気中で平均粒径500μm以
下に粉砕することが好ましい。あるいは、水素化粉砕に
より粉砕してもよい。また、ディスクアトマイズ法によ
り得られた水素吸蔵合金球状粉の場合は球状粉の状態で
使用しても良いし、さらに粉砕して使用しても良い。平
均粒径500μm以下の水素吸蔵合金粉末とするのは、
初期段階での反応面積が小さく、水素ガス吸収速度を小
さくしないためである。なお、水素吸蔵合金粉末の平均
粒子径は、複合成形体の形状にもよるが、成形性等から
細かい方がよく、好ましくは100μm以下である。こ
の際、シランカップリング材等で水素吸蔵材料表面に前
処理を施してもよい。
Next, the hydrogen storage alloy block is pulverized to produce a hydrogen storage alloy powder. As a pulverizing method, it is preferable to use a jet mill, an attritor, a jaw crusher, a roller mill, a ball mill, a brown mill, or the like to pulverize the particles to an average particle diameter of 500 μm or less in an inert gas atmosphere such as argon or nitrogen gas. Alternatively, pulverization may be performed by hydrogenation pulverization. In the case of a hydrogen storage alloy spherical powder obtained by a disk atomizing method, it may be used in the form of a spherical powder or may be further pulverized and used. The hydrogen storage alloy powder having an average particle diameter of 500 μm or less is
This is because the reaction area in the initial stage is small and the hydrogen gas absorption rate is not reduced. The average particle size of the hydrogen storage alloy powder depends on the shape of the composite molded product, but is preferably finer from the viewpoint of moldability, and is preferably 100 μm or less. At this time, a pretreatment may be performed on the surface of the hydrogen storage material with a silane coupling material or the like.

【0009】こうして得られた水素吸蔵材料を、珪素樹
脂をバインダーとして成形して水素吸蔵複合成形体を得
る。さらに水素吸蔵放出する観点から水素の吸蔵放出に
よる寸法形状変化の小さい寸法安定性に優れた珪素樹脂
を成形体のバインダーとしても用いることが好ましい。
本発明で、特にバインダーとして用いる珪素樹脂は、架
橋硬化後、弾性を有すること以外、特に制限はなく、シ
リコーンゴム、シリコーンエラストプラスチック、ジャ
ンクションコーティングレジン等として知られる材料が
幅広く包含される。それらの中で本願では成形体の形状
の観点からシリコーンゴムを用いることが好ましい。シ
リコーンゴムは、その形態、硬化機構等により種々のグ
レードがあり、高重合度のジオルガノポリシロキサン
(粘度数百万cpの線状ポリマー)を主成分としたミラ
ブル型シリコーンゴムと低重合度のジオルガノポリシロ
キサン(粘度100〜100000cpの線状ポリマ
ー)を主成分とした液状シリコーンゴムとに大別され、
特に本願では、液状シリコーンゴム、さらに形態により
一成分系、二成分系に分類される珪素樹脂を用いること
が好ましい。また、硬化機構にはラジカル硬化系、付加
硬化系、縮合硬化系等があり、夫々に加熱硬化タイプ、
室温硬化タイプ等幅広い製品群が実用化されており、本
発明のバインダーとしてはこれら例示した製品全てが適
応可能である。また、当該珪素樹脂には、主成分のジオ
ルガノポリシロキサンの他に充填材、湿潤剤、架橋剤、
硬化触媒等を添加することが可能であり、さらに必要に
応じ、補強材としての網状シロキサン、低硬度化のため
の無官能シロキサン、接着助材、耐熱助材、導電性付与
のためのカーボンブラック等を目的に応じ添加すること
も可能である。主成分としてのジオルガノポリシロキサ
ンとしては、ジメチルポリシロキサンが最も一般的であ
るが、メチル基の他、目的に応じエチル基等のアルキル
基、フェニル基、フルオロアルキル基等を用いることが
でき、末端基としては、官能性を有する水酸基、アルコ
キシ基、ビニル基等を付与したものを使用することが一
般的である。また、線状オルガノポリシロキサンは、目
的に応じ、シルアルキレン結合部やポリエーテル、ポリ
エステル、ウレタン等の変性部位を含むことも可能であ
る。硬化機構別には、有機過酸化物を触媒とする加熱硬
化タイプを除いた他の硬化系においては架橋ゴム弾性体
化のための架橋剤が必要である。縮合硬化反応系では、
縮合硬化反応時の副生成物に旧来した脱酢酸型、脱アル
コール型、脱アミン型、脱オキシム型等があり、夫々に
対応した多官能性のシラン、シロキサン類が架橋剤とし
て用いられ、硬化触媒としては金属有機酸塩、アミン
類、チタネート類が例示される。また付加硬化系では不
飽和基含有ジオルガノポリシロキサンに≡SiH基を2
個以上有するハイドロジェンシラン、シロキサン類を架
橋剤とし、さらに白金系硬化触媒を併用することが一般
的である。これらの珪素樹脂の硬化条件としては、使用
する樹脂のタイプにより異なるが、室温で硬化するタイ
プも含まれ、室温〜350℃程度で加熱させ、架橋硬化
させるものである。具体的には縮合硬化系では室温〜8
0℃の加熱で、付加硬化系では室温〜200℃での加熱
で、ラジカル硬化系では100〜300℃の加熱によ
り、硬化させることが可能である。本発明においては、
これらいずれのタイプの珪素樹脂も使用することができ
るが、作業性、生産性等を考慮し、水素吸蔵材料への含
浸、材料への混練等のための作業時間のコントロールが
比較的容易であり、加熱により急速短時間で硬化するこ
とができる付加硬化系、ラジカル硬化系を選択すること
が有利である。バインダーとしての珪素樹脂は、そのま
ま使用することができるが、後述する水素吸蔵複合成形
体の製造法からはトルエン、キシレン等の溶剤に溶解し
た溶液タイプまたはエマルジョン化した分散液タイプと
して使用することが望ましい。さらに、本願の水素吸蔵
放出性を有するためには耐久性及び耐候性の点から珪素
樹脂の特性を考慮する必要があり、硬さ(デューロメー
タA)0〜100、好ましくは0〜70、伸びについて
も20〜1000%、好ましくは50〜700%程度で
ある樹脂を使用することがよい。樹脂の硬度が硬すぎる
と吸蔵材料が水素を吸蔵放出した際における成形体の形
状が変化してしまい、硬度が低すぎると、所望の成形体
の形状が得られないことがある。また伸びについも同様
に伸びが小さすぎたり、大きすぎるとゴム弾性効果がな
くなり、成形体の寸法安定性が悪くなる。水素吸蔵複合
成形体に含まれる珪素樹脂の含有量は、バインダーとし
て、好ましくは0.5〜50重量%、より好ましくは
0.5〜20重量%、さらに好ましくは1〜10重量%
程度である。この範囲のバインダーからなる成形体は弾
力性があり、さらに水素吸蔵材料の含有比率が大きく水
素吸蔵量が大きい特徴を持つ。0.5重量%未満ではバ
インダーとしては少なく水素吸蔵放出時の膨張収縮によ
る水素吸蔵複合成形体の形状を保持できにくく、50重
量%をこえると水素吸蔵体としての単位体積当たりの水
素貯蔵量が減少するからである。特に珪素樹脂をそのま
ま使用する方法もあるが、珪素樹脂を溶液として又は分
散液として使用する方法もある。溶液として使用する場
合には、溶媒として、トルエン、ヘキサン、水が挙げら
れる。分散液として使用する場合には、分散媒として、
水、アルコール等が挙げられる。
The thus obtained hydrogen storage material is molded using a silicon resin as a binder to obtain a hydrogen storage composite molded product. Further, from the viewpoint of hydrogen storage and release, it is preferable to use a silicon resin having a small dimensional change due to hydrogen storage and release and excellent in dimensional stability also as a binder of the molded body.
In the present invention, in particular, the silicone resin used as the binder is not particularly limited except that it has elasticity after crosslinking and curing, and widely includes materials known as silicone rubber, silicone elastomer plastic, junction coating resin, and the like. Among them, in the present application, it is preferable to use silicone rubber from the viewpoint of the shape of the molded body. Silicone rubber is available in various grades depending on its form, curing mechanism, etc., and is a millable silicone rubber containing diorganopolysiloxane of high degree of polymerization (linear polymer having a viscosity of several million cp) as a main component and low degree of polymerization. It is roughly classified into a liquid silicone rubber containing diorganopolysiloxane (a linear polymer having a viscosity of 100 to 100,000 cp) as a main component.
In particular, in the present application, it is preferable to use a liquid silicone rubber, and a silicon resin classified into a one-component system and a two-component system depending on the form. The curing mechanism includes a radical curing system, an addition curing system, a condensation curing system, and the like.
A wide variety of products such as a room temperature curing type have been put into practical use, and all of the exemplified products can be applied as the binder of the present invention. In addition, in addition to the diorganopolysiloxane of the main component, a filler, a wetting agent, a crosslinking agent,
It is possible to add a curing catalyst, etc., and if necessary, mesh siloxane as a reinforcing material, non-functional siloxane for lowering hardness, bonding aid, heat-resistant aid, carbon black for imparting conductivity And the like can be added according to the purpose. As the diorganopolysiloxane as the main component, dimethylpolysiloxane is most common, but in addition to a methyl group, an alkyl group such as an ethyl group, a phenyl group, a fluoroalkyl group, or the like can be used according to the purpose. As the terminal group, it is common to use a terminal group to which a hydroxyl group, an alkoxy group, a vinyl group or the like having a functional property is provided. Further, the linear organopolysiloxane may contain a silalkylene bond or a modified site such as polyether, polyester, or urethane, depending on the purpose. According to the curing mechanism, a crosslinking agent for making a crosslinked rubber elastic body is required in other curing systems except for a heat curing type using an organic peroxide as a catalyst. In the condensation curing reaction system,
By-products during the condensation curing reaction include the conventional de-acetic acid type, de-alcohol type, de-amine type, de-oxime type, etc.Polyfunctional silanes and siloxanes corresponding to each are used as cross-linking agents and cured. Examples of the catalyst include metal organic acid salts, amines and titanates. In addition-curing systems, an unsaturated group-containing diorganopolysiloxane contains two SiH groups.
It is common to use hydrogen silanes or siloxanes having at least one of them as a crosslinking agent, and further use a platinum-based curing catalyst in combination. The curing conditions for these silicon resins vary depending on the type of resin used, but include those that cure at room temperature, and include heating at room temperature to about 350 ° C. for crosslinking and curing. Specifically, room temperature to 8 for the condensation curing system
Curing can be performed by heating at 0 ° C., by heating at room temperature to 200 ° C. in an addition curing system, and by heating at 100 to 300 ° C. in a radical curing system. In the present invention,
Although any of these types of silicone resin can be used, it is relatively easy to control the working time for impregnation into the hydrogen storage material, kneading into the material, etc., in consideration of workability, productivity, etc. It is advantageous to select an addition curing system and a radical curing system which can be cured quickly and in a short time by heating. The silicon resin as a binder can be used as it is, but from the method for producing a hydrogen storage composite molded article described later, it can be used as a solution type dissolved in a solvent such as toluene or xylene or an emulsified dispersion type. desirable. Further, in order to have the hydrogen absorbing and releasing properties of the present application, it is necessary to consider the characteristics of the silicone resin from the viewpoint of durability and weather resistance, and the hardness (durometer A) is 0 to 100, preferably 0 to 70, and elongation. It is also preferable to use a resin having about 20 to 1000%, preferably about 50 to 700%. If the hardness of the resin is too hard, the shape of the molded body when the occlusion material absorbs and releases hydrogen changes, and if the hardness is too low, the desired shape of the molded body may not be obtained. Similarly, if the elongation is too small or too large, the rubber elasticity effect is lost, and the dimensional stability of the molded article is deteriorated. The content of the silicon resin contained in the hydrogen storage composite molded product is preferably 0.5 to 50% by weight, more preferably 0.5 to 20% by weight, and still more preferably 1 to 10% by weight as a binder.
It is about. A molded body made of a binder in this range has characteristics of being elastic, and having a large content ratio of the hydrogen storage material and a large hydrogen storage amount. If the amount is less than 0.5% by weight, it is difficult to maintain the shape of the hydrogen storage composite molded article due to expansion and contraction at the time of hydrogen storage and release as a binder, and if it exceeds 50% by weight, the hydrogen storage amount per unit volume as the hydrogen storage body is reduced. It is because it decreases. In particular, there is a method in which the silicon resin is used as it is, and a method in which the silicon resin is used as a solution or a dispersion. When used as a solution, examples of the solvent include toluene, hexane, and water. When used as a dispersion, as a dispersion medium,
Water, alcohol and the like can be mentioned.

【0010】水素吸蔵複合成形体の製造方法としては、
水素吸蔵材料を加圧成形例えば0.05MPa以上で加
圧成形した後、得られた複合成形体を珪素樹脂を溶媒に
溶解又は分散して所定の珪素樹脂濃度になるように調製
した溶液中に含浸してから硬化させる方法がある。これ
により、複合成形体の空孔部分にある珪素樹脂がバイン
ダーとして水素吸蔵材料同士を固定し、しかも珪素樹脂
の持つ弾力性により水素吸蔵放出時の特に合金の膨張収
縮を吸収するため長期間水素吸蔵放出サイクルを繰り返
しても水素吸蔵材料が微粉化、崩壊することがない。ま
た、加圧成形した後でバインダーを含浸する方法によ
り、水素吸蔵材料の粉末同士の接触がそのまま保持され
るため、複合成形体の熱伝導性が向上する。
As a method for producing a hydrogen storage composite molded article,
After pressure-molding the hydrogen storage material, for example, at a pressure of 0.05 MPa or more, the obtained composite molded body is dissolved or dispersed in a solvent of a silicon resin in a solution prepared to have a predetermined silicon resin concentration. There is a method of curing after impregnation. As a result, the silicon resin in the pores of the composite molded body fixes the hydrogen storage materials as a binder, and furthermore, due to the elasticity of the silicon resin, absorbs the expansion and contraction of the alloy particularly during hydrogen storage and release. Even if the storage / release cycle is repeated, the hydrogen storage material is not pulverized and disintegrated. Further, by the method of impregnating the binder after the pressure molding, the contact between the powders of the hydrogen storage material is maintained as it is, so that the thermal conductivity of the composite molded body is improved.

【0011】水素吸蔵複合成形体の他の製造方法として
は、得られた水素吸蔵材料、特に水素吸蔵合金粉と珪素
樹脂又は珪素樹脂を溶媒に溶解又は分散した液の所定量
とよく混合した後成形し硬化させる方法が挙げられる。
この場合は、珪素樹脂が水素吸蔵合金粉体の表面を被覆
した状態で成形することから、水素吸蔵合金粉同士はバ
インダーとしての珪素樹脂を挟んで固定されるため、さ
らに水素吸蔵複合成形体の弾力性を強化することがで
き、水素吸蔵放出の繰り返しに対する寸法安定性及び耐
久性が向上する。この製造方法では水素吸蔵複合成形体
に含まれる珪素樹脂の割合を任意に設定できるが、0.
5〜50重量%が好ましい。また、使用する珪素樹脂の
種類、含有量により加圧成形や押し出し成形、薄膜化等
任意の成型方法を選ぶことができる。
Another method for producing the hydrogen-absorbing composite molded article is to mix well the obtained hydrogen-absorbing material, particularly the hydrogen-absorbing alloy powder, and a predetermined amount of a silicon resin or a liquid obtained by dissolving or dispersing the silicon resin in a solvent. A method of molding and curing is used.
In this case, since the silicon resin is molded in a state of covering the surface of the hydrogen storage alloy powder, the hydrogen storage alloy powder is fixed with the silicon resin as a binder sandwiched therebetween. The elasticity can be enhanced, and the dimensional stability and durability against repeated hydrogen storage and release can be improved. In this production method, the ratio of the silicon resin contained in the hydrogen storage composite molded article can be arbitrarily set.
5 to 50% by weight is preferred. Further, an arbitrary molding method such as pressure molding, extrusion molding, thinning, and the like can be selected depending on the type and content of the silicon resin to be used.

【0012】本発明により得られた珪素樹脂含有水素吸
蔵複合成形体は、水素吸蔵材料表面に珪素樹脂が部分的
に付着していたり表面全てを被覆しているが、珪素樹脂
は非常にガス透過性に優れているため合金の持つ水素吸
蔵放出能をほとんど低下させず、また水素吸蔵放出速度
を低下させることなく、さらに珪素樹脂のもつ弾力性の
ため水素吸蔵放出を繰り返しても微粉化や崩壊すること
なく、すなわち長期間使用可能である。さらに珪素樹脂
の種類により成型方法、硬化法を任意に選択することが
できるため、角形状、円筒状、円盤状、チューブ状、薄
膜状等あらゆる形の水素吸蔵複合成形体を得ることがで
きる。
In the silicon resin-containing hydrogen-absorbing composite molded article obtained by the present invention, the silicon resin partially adheres to the surface of the hydrogen-absorbing material or covers the entire surface, but the silicon resin has a very high gas permeability. Excellent hydrogen absorption and desorption ability of the alloy due to its excellent qualities.No reduction in hydrogen storage and desorption speed.Furthermore, due to the elasticity of silicon resin, even if hydrogen storage and desorption are repeated, it can be pulverized and disintegrated. It can be used without long-term use. Further, since a molding method and a curing method can be arbitrarily selected depending on the type of the silicon resin, it is possible to obtain a hydrogen storage composite molded article having any shape such as a square shape, a cylindrical shape, a disk shape, a tube shape, and a thin film shape.

【0013】[0013]

【実施例】以下、本発明を実施例により更に詳細に説明
するが、本発明はこれに限定されるものではない。 実施例1 高周波溶解炉にて製造された水素吸蔵合金インゴット
(La34重量%,Ce45重量%,Pr6重量%,Nd
15重量%を原子比1.0に対し、Niを3.75、C
oを0.75、Mnを0.20、Alを0.30)をア
ルゴン中で熱処理し、均一な水素吸蔵合金インゴットを
準備した。その合金インゴットを窒素雰囲気中で粗粉砕
した。更に、ブラウンミルで1mm以下になるように粉
砕し、ジェットミル用の原料を得た。更に本発明では、
ジェットミルによりガス圧5.8kgf/cm2、窒素ガス雰
囲気下で水素吸蔵合金を乾式粉砕し、平均粒径6μm、
粒度分布幅1〜30μmの水素吸蔵合金微粉末を得た。
次に粉砕された微粉末約2.6gを金型に入れ、圧力2
00MPaで外径11mm、内径7mm、長さ10mm
の円筒状に成形した。この水素吸蔵合金成形体を珪素樹
脂(信越化学工業社製KE1820、両末端ビニル基封
鎖ジメチルポリシロキサン(粘度10000cp:20
℃)を主成分とする付加1液型珪素珪素樹脂、硬度(デ
ュロメータA)40、伸び650%、引張強度5.4M
Pa)をトルエンに溶解した20重量%溶液の中に入
れ、一定時間脱気し、1時間浸漬させて十分にバインダ
ー溶液が成形体内部に浸透したことを確認した後、取り
出して乾燥させた。その後この成形体をアルゴン雰囲気
下120℃で2時間加熱硬化させて珪素樹脂含有水素吸
蔵複合成形体を得た。バインダー含浸量(固形分)は水
素吸蔵複合成形体重量の約2重量%であった。また、得
られた成形体をJIS K 6255に準拠し、反撥弾
性を測定したところ、反撥弾性が16%であった。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto. Example 1 Hydrogen storage alloy ingot (La 34 wt%, Ce 45 wt%, Pr 6 wt%, Nd
15 wt% to atomic ratio 1.0, Ni 3.75, C
(0.75 for O, 0.20 for Mn, and 0.30 for Al) were heat-treated in argon to prepare a uniform hydrogen storage alloy ingot. The alloy ingot was coarsely pulverized in a nitrogen atmosphere. Further, the mixture was pulverized to a size of 1 mm or less with a brown mill to obtain a raw material for a jet mill. Furthermore, in the present invention,
The hydrogen storage alloy is dry-pulverized by a jet mill under a gas pressure of 5.8 kgf / cm 2 and a nitrogen gas atmosphere to obtain an average particle size of 6 μm.
A hydrogen storage alloy fine powder having a particle size distribution width of 1 to 30 μm was obtained.
Next, about 2.6 g of the pulverized fine powder was placed in a mold, and a pressure of 2 g was applied.
Outer diameter 11mm, inner diameter 7mm, length 10mm at 00MPa
Into a cylindrical shape. This hydrogen-absorbing alloy molded product was treated with a silicon resin (KE1820 manufactured by Shin-Etsu Chemical Co., Ltd., dimethylpolysiloxane having a vinyl group blocked at both ends (viscosity of 10,000 cp: 20).
C) as a main component, an additional one-component silicon-silicon resin, hardness (durometer A) 40, elongation 650%, tensile strength 5.4M
Pa) was placed in a 20% by weight solution of toluene, degassed for a certain period of time, and immersed for one hour to confirm that the binder solution had sufficiently penetrated into the molded body, and then taken out and dried. Thereafter, the molded body was heated and cured at 120 ° C. for 2 hours under an argon atmosphere to obtain a silicon resin-containing hydrogen storage composite molded body. The binder impregnation amount (solid content) was about 2% by weight based on the weight of the hydrogen storage composite molded article. When the rebound resilience of the obtained molded article was measured in accordance with JIS K 6255, the rebound resilience was 16%.

【0014】実施例2 実施例1と同様にして作成した水素吸蔵合金成形体を珪
素樹脂(信越化学工業社製KE45TS、両末端シラノ
ール基封鎖ジメチルポリシロキサン(粘度20000c
p)を主成分とする脱オキシム型1液型縮合硬化型珪素
樹脂、硬度20、伸び300%、引張強度2.0MP
a)をトルエンに溶解した20重量%溶液の中に入れ、
一定時間脱気し、1時間浸漬させて十分にバインダー溶
液が成形体内部に浸透したことを確認した後取り出し
て、大気中で7日間縮合硬化させて珪素樹脂含有水素吸
蔵成形体を得た。バインダー含浸量(固形分)は水素吸
蔵成形体重量の約2.5重量%であった。実施例1と同
様に反撥弾性は19%であった。
Example 2 A hydrogen-absorbing alloy molded article prepared in the same manner as in Example 1 was prepared using a silicone resin (KE45TS manufactured by Shin-Etsu Chemical Co., Ltd., dimethylpolysiloxane having silanol groups at both ends and having a viscosity of 20,000 c.
Deoxime type one-component condensation-curable silicone resin containing p) as a main component, hardness 20, elongation 300%, tensile strength 2.0MP
a) is placed in a 20% by weight solution in toluene,
After degassing for a certain period of time and immersing for 1 hour, it was confirmed that the binder solution had sufficiently penetrated into the inside of the molded body, and then taken out, followed by condensation curing in the air for 7 days to obtain a silicon resin-containing hydrogen absorbing molded body. The binder impregnation amount (solid content) was about 2.5% by weight based on the weight of the hydrogen storage molded article. Similar to Example 1, the rebound resilience was 19%.

【0015】実施例3 実施例1と同様の合金組成になるように秤量した各元素
をアルゴン雰囲気中で溶解後溶湯温度1450℃に保ち
ながらジルコニア製のノズル(孔径5mm)から窒化ホ
ウ素製の回転ディスクに供給して得られた球形の水素吸
蔵合金アトマイズ粉と珪素樹脂(信越化学工業社製KE
1820)を9:1(重量)の割合で混合した。この時
充分混合するように珪素樹脂をトルエンで40重量%ま
で希釈して混合を行った。大気中でトルエンを乾燥除去
後、得られた混合物を1g、直径10mmの円形の金型
にいれて圧力715MPaで加圧成形後アルゴン中12
0℃で2時間加熱硬化させて珪素樹脂含有水素吸蔵成形
体を得た。実施例1と同様に反撥弾性は23%であっ
た。
Example 3 Each element weighed so as to have the same alloy composition as in Example 1 was melted in an argon atmosphere, and then rotated at a temperature of 1450 ° C. from a zirconia nozzle (pore diameter: 5 mm). Spherical hydrogen-absorbing alloy atomized powder obtained by supplying to a disk and silicon resin (KE manufactured by Shin-Etsu Chemical Co., Ltd.)
1820) was mixed at a ratio of 9: 1 (weight). At this time, the silicon resin was diluted with toluene to 40% by weight so as to be sufficiently mixed, and mixed. After drying and removing toluene in the air, 1 g of the obtained mixture was placed in a circular mold having a diameter of 10 mm, and pressure-molded at a pressure of 715 MPa.
It was cured by heating at 0 ° C. for 2 hours to obtain a silicon resin-containing hydrogen storage molded article. As in Example 1, the rebound resilience was 23%.

【0016】実施例4 実施例1と同様にして製作した水素吸蔵合金塊を窒素雰
囲気中ジョークラッシャーで粒径2mm程度まで粗粉砕
後、同じく窒素雰囲気中衝撃式ピンミルで平均粒径60
μmまで粉砕して水素吸蔵合金粉末を得た。得られた水
素吸蔵合金粉と珪素樹脂(信越化学工業社製KE182
0)を8:2(重量)の割合で混合した。この時充分混
合するように珪素樹脂をトルエンで40重量%まで希釈
して混合を行った。大気中でトルエンを乾燥除去後、ペ
ースト状になった混合物を押し出し成形して直径5mm
のひも状にしたものをアルゴン中120℃で2時間加熱
硬化させて珪素樹脂含有水素吸蔵複合成形体を得た。実
施例1と同様に反撥弾性は30%であった。
Example 4 A hydrogen-absorbing alloy mass produced in the same manner as in Example 1 was roughly pulverized to a particle size of about 2 mm in a nitrogen atmosphere with a jaw crusher, and then subjected to an impact-type pin mill in a nitrogen atmosphere.
It was pulverized to μm to obtain a hydrogen storage alloy powder. The obtained hydrogen storage alloy powder and silicon resin (KE182 manufactured by Shin-Etsu Chemical Co., Ltd.)
0) was mixed at a ratio of 8: 2 (weight). At this time, the silicon resin was diluted with toluene to 40% by weight so as to be sufficiently mixed, and mixed. After drying and removing the toluene in the air, the mixture in the form of a paste is extruded and shaped to a diameter of 5 mm.
The string was heat-cured at 120 ° C. for 2 hours in argon to obtain a silicon resin-containing hydrogen-absorbing composite molded article. As in Example 1, the rebound resilience was 30%.

【0017】比較例1 実施例1において加圧成形しただけのバインダーを使用
しない成形体を比較例1とする。実施例1と同様に反撥
弾性を測定したが、合金だけの形成体であるので、測定
不能であった。
COMPARATIVE EXAMPLE 1 A molded article in Example 1 which is obtained by simply pressing and using no binder is referred to as Comparative Example 1. The rebound resilience was measured in the same manner as in Example 1. However, it was impossible to measure the rebound resilience because the formed body was made only of the alloy.

【0018】比較例2 実施例1と同様にして作成した水素吸蔵合金成形体に5
重量%PVA水溶液(PVA重合度2000)中で一定
時間脱気し、1時間浸漬させて十分にバインダー溶液が
成形体内部に浸透したことを確認した後、取り出して乾
燥させた。この時のバインダー含浸量(固形分)は水素
吸蔵材重量の約0.4重量%であった。実施例1と同様
に反撥弾性を測定したが、バインダーを含浸したのみで
あるので、比較例1と同様に反撥弾性を測定することが
だきなたかった。
Comparative Example 2 A hydrogen-absorbing alloy molded body prepared in the same manner as in Example 1
After degassing for a certain period of time in a weight% PVA aqueous solution (PVA polymerization degree: 2000) and immersing for one hour, it was confirmed that the binder solution had sufficiently penetrated into the inside of the molded body, and then taken out and dried. At this time, the binder impregnation amount (solid content) was about 0.4% by weight of the weight of the hydrogen storage material. Although the rebound resilience was measured in the same manner as in Example 1, it was difficult to measure the rebound resilience in the same manner as in Comparative Example 1 because the resin was only impregnated with the binder.

【0019】見かけ密度の測定 実施例1〜4、比較例1〜2で得られた水素吸蔵成形体
の寸法、重量を測定し、水素吸蔵合金当たりの見かけ密
度を算出した。 水素吸収速度の測定 実施例1〜4、比較例1〜2で得られた水素吸蔵成形材
の水素吸蔵特性を測定した。水素貯蔵材をPCT測定装
置(レスカ社製)にセットし、室温で1時間真空排気後
80℃、3MPaの水素ガスを導入し試料を活性化させ
た。活性化所要時間はどれも30分から1時間程度であ
った。活性化した試料を1時間真空排気後3MPaの水
素を導入し、水素吸収量を合金に対して0.9重量%ま
で吸蔵する時間を測定した。 PCT特性の測定 活性化した試料を1時間真空排気したのち80℃の温度
でPCT(圧力、組成、温度)特性を測定した。尚、こ
のPCT特性は水素吸蔵合金当たりの水素吸蔵放出量に
換算した。PCT特性測定後80℃で1時間真空排気し
て試料を取り出し形状を観察し、崩壊状態を見た。その
結果を表1に示し、図1に実施例1の水素吸蔵成形体の
PCT特性曲線を示す。なお、得られたPCT特性曲線
の圧力1MPaでの水素吸蔵量(重量%)を最大吸蔵量
とした。
Measurement of Apparent Density The dimensions and weight of the hydrogen storage molded articles obtained in Examples 1 to 4 and Comparative Examples 1 and 2 were measured, and the apparent density per hydrogen storage alloy was calculated. Measurement of hydrogen absorption rate The hydrogen storage properties of the hydrogen storage molded materials obtained in Examples 1 to 4 and Comparative Examples 1 and 2 were measured. The hydrogen storage material was set in a PCT measuring apparatus (manufactured by Resca), evacuated at room temperature for 1 hour, and then hydrogen gas at 80 ° C and 3 MPa was introduced to activate the sample. The activation time required was about 30 minutes to 1 hour. After evacuating the activated sample for 1 hour, 3 MPa of hydrogen was introduced, and the time for absorbing hydrogen up to 0.9% by weight with respect to the alloy was measured. Measurement of PCT characteristics The activated sample was evacuated for 1 hour, and then the PCT (pressure, composition, temperature) characteristics were measured at a temperature of 80 ° C. The PCT characteristic was converted into a hydrogen storage / release amount per hydrogen storage alloy. After the PCT characteristic measurement, the sample was taken out by evacuating to vacuum at 80 ° C. for 1 hour, the shape was observed, and the collapsed state was observed. The results are shown in Table 1, and FIG. 1 shows a PCT characteristic curve of the hydrogen storage molded article of Example 1. The hydrogen storage amount (% by weight) at a pressure of 1 MPa in the obtained PCT characteristic curve was defined as the maximum storage amount.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【発明の効果】本発明の珪素樹脂含有水素吸蔵複合成形
体は弾力性に優れた珪素樹脂をバインダーとして使用し
ているためバインダー量が少ない領域でも水素吸蔵放出
による崩壊、変形等が起こらず、また、珪素樹脂の優れ
たガス透過性により水素吸収速度、水素吸収量も使用し
た合金本来のものとほぼ同じ特性が得られた。さらに本
発明によれば加圧成形、押し出し成形等の成型法で任意
の形状の、水素吸蔵放出を繰り返しても崩壊、変形の無
い水素吸蔵複合成形体を提供できる。
The silicon resin-containing hydrogen storage composite molded article of the present invention uses a silicon resin having excellent elasticity as a binder, so that collapse and deformation due to hydrogen storage and release do not occur even in a region where the amount of the binder is small, In addition, due to the excellent gas permeability of the silicon resin, almost the same characteristics as those of the original alloy using the hydrogen absorption rate and hydrogen absorption amount were obtained. Further, according to the present invention, it is possible to provide a hydrogen-absorbing composite molded article having an arbitrary shape by a molding method such as pressure molding and extrusion molding, which does not collapse or deform even when hydrogen absorption and release are repeated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の水素吸蔵成形体のPCT特性曲線を
示す。
FIG. 1 shows a PCT characteristic curve of a hydrogen storage molded article of Example 1.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C01B 3/00 C01B 3/00 B C08J 3/24 C08J 3/24 Z 5/00 CFH 5/00 CFH C08K 3/00 C08K 3/00 // H01M 8/04 H01M 8/04 J ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C01B 3/00 C01B 3/00 B C08J 3/24 C08J 3/24 Z 5/00 CFH 5/00 CFH C08K 3/00 C08K 3/00 // H01M 8/04 H01M 8/04 J

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵材料と珪素樹脂とを含有する水
素吸蔵複合成形体。
1. A hydrogen storage composite molded article containing a hydrogen storage material and a silicon resin.
【請求項2】 上記水素吸蔵材料が、水素吸蔵放出能を
有する金属、炭素材料及び合金から選ばれる請求項1に
記載の水素吸蔵複合成形体。
2. The hydrogen storage composite article according to claim 1, wherein the hydrogen storage material is selected from a metal, a carbon material, and an alloy having a hydrogen storage and release capability.
【請求項3】 上記水素吸蔵材料が、水素吸蔵合金であ
る請求項1又は請求項2に記載の水素吸蔵複合成形体。
3. The hydrogen storage composite article according to claim 1, wherein the hydrogen storage material is a hydrogen storage alloy.
【請求項4】 上記珪素樹脂が、ラジカル硬化型ゴム、
付加硬化型ゴム、縮合型ゴムの中から選ばれる請求項1
〜3のいずれかに記載の水素吸蔵複合成形体。
4. The method according to claim 1, wherein the silicon resin is a radical-curable rubber,
2. The rubber composition according to claim 1, which is selected from addition-curable rubbers and condensation-type rubbers.
4. The hydrogen storage composite molded article according to any one of items 1 to 3,
【請求項5】 上記珪素樹脂が、0.5〜50重量%含
有される請求項1〜4のいずれかに記載の水素吸蔵複合
成形体。
5. The hydrogen storage composite article according to claim 1, wherein said silicon resin is contained in an amount of 0.5 to 50% by weight.
【請求項6】 水素吸蔵材料を加圧成形後、珪素樹脂溶
液又は珪素樹脂分散液に含浸し、硬化させることを特徴
とする水素吸蔵複合成形体の製造方法。
6. A method for producing a hydrogen-absorbing composite molded body, comprising: molding a hydrogen-absorbing material under pressure, impregnating it with a silicon resin solution or a silicon resin dispersion, and curing.
【請求項7】 珪素樹脂自体と珪素樹脂溶液と珪素樹脂
分散液とからなる一群から選ばれるいずれかと水素吸蔵
材料とを混合後、成形し、硬化させることを特徴とする
水素吸蔵複合成形体の製造方法。
7. A hydrogen-absorbing composite molded article characterized by mixing a hydrogen-absorbing material with one selected from the group consisting of a silicon resin itself, a silicon resin solution and a silicon resin dispersion, and then molding and curing the mixture. Production method.
JP2000342791A 1999-11-10 2000-11-10 Molded product of hydrogen storage composite and method for producing the same Pending JP2001200159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000342791A JP2001200159A (en) 1999-11-10 2000-11-10 Molded product of hydrogen storage composite and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-319040 1999-11-10
JP31904099 1999-11-10
JP2000342791A JP2001200159A (en) 1999-11-10 2000-11-10 Molded product of hydrogen storage composite and method for producing the same

Publications (1)

Publication Number Publication Date
JP2001200159A true JP2001200159A (en) 2001-07-24

Family

ID=26569581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000342791A Pending JP2001200159A (en) 1999-11-10 2000-11-10 Molded product of hydrogen storage composite and method for producing the same

Country Status (1)

Country Link
JP (1) JP2001200159A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005239973A (en) * 2004-02-27 2005-09-08 Ideal Star Inc Fluorinated fullerene-containing rubber composition and molded product therefrom
WO2008096758A1 (en) 2007-02-05 2008-08-14 Asahi Kasei E-Materials Corporation Composition comprising hydrogen-absorbing alloy and resin
JP2010215487A (en) * 2009-03-13 2010-09-30 Ind Technol Res Inst Solid-state hydrogen fuel with polymer matrix and fabrication method thereof
JP2010248053A (en) * 2009-04-16 2010-11-04 Ind Technol Res Inst Hydrogen supply device
JP2014080560A (en) * 2012-09-28 2014-05-08 Mitsuboshi Belting Ltd Rubber molded article containing inorganic particles and its manufacturing method
WO2015133378A1 (en) * 2014-03-07 2015-09-11 株式会社日本製鋼所 Process for loading hydrogen-absorbing alloy
CN115785508A (en) * 2022-11-30 2023-03-14 江苏金材科技有限公司 Hydrogen storage bottle composite material and preparation method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005239973A (en) * 2004-02-27 2005-09-08 Ideal Star Inc Fluorinated fullerene-containing rubber composition and molded product therefrom
KR101215136B1 (en) 2007-02-05 2012-12-24 더 재팬 스틸 워크스 엘티디 Composition comprising hydrogen-absorbing alloy and resin
WO2008096758A1 (en) 2007-02-05 2008-08-14 Asahi Kasei E-Materials Corporation Composition comprising hydrogen-absorbing alloy and resin
US20100108543A1 (en) * 2007-02-05 2010-05-06 Asahi Kasei E-Materials Corporation Composition comprising hydrogen storage alloy and resin
US8607969B2 (en) * 2007-02-05 2013-12-17 Asahi Kasei E-Materials Corporation Composition comprising hydrogen storage alloy and resin
JP2010215487A (en) * 2009-03-13 2010-09-30 Ind Technol Res Inst Solid-state hydrogen fuel with polymer matrix and fabrication method thereof
US8658055B2 (en) 2009-03-13 2014-02-25 Industrial Technology Research Institute Solid-state hydrogen fuel with polymer matrix and fabrication methods thereof
JP2010248053A (en) * 2009-04-16 2010-11-04 Ind Technol Res Inst Hydrogen supply device
JP2014080560A (en) * 2012-09-28 2014-05-08 Mitsuboshi Belting Ltd Rubber molded article containing inorganic particles and its manufacturing method
WO2015133378A1 (en) * 2014-03-07 2015-09-11 株式会社日本製鋼所 Process for loading hydrogen-absorbing alloy
JP2015169269A (en) * 2014-03-07 2015-09-28 株式会社日本製鋼所 Method for charging hydrogen storage alloy
US10247360B2 (en) 2014-03-07 2019-04-02 The Japan Steel Works, Ltd. Method for filling hydrogen storage alloy
CN115785508A (en) * 2022-11-30 2023-03-14 江苏金材科技有限公司 Hydrogen storage bottle composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
Sivanathan et al. Phase change materials for building construction: An overview of nano-/micro-encapsulation
CN101203454B (en) Composite hydrogen storage material and methods related thereto
CN105190948B (en) The complex carbon material of electrochemical modification agent comprising lithium alloyage
US4433063A (en) Hydrogen sorbent composition
US4385019A (en) Production of a polymeric active composition
Wu et al. A review of three-dimensional graphene networks for use in thermally conductive polymer composites: construction and applications
JP2001514154A (en) Pitch-derived carbon foam and composites
CN111040736B (en) Low-melting-point metal shaping phase-change material and preparation method thereof
US20120193568A1 (en) Electrostrictive composite and method for making the same
JP2001200159A (en) Molded product of hydrogen storage composite and method for producing the same
JP2000297334A (en) Manufacture of sintered porous body, and sintered porous body
WO2001034328A1 (en) Hydrogen storage composite formed article and method for preparing the same
JPH01246101A (en) Hydrogen occlusion porous body and production thereof
CN107074535A (en) Hydrogen reservoir and its manufacture method comprising composite body
CN113045884B (en) Carbon fiber polyethylene glycol phase change composite material
WO2007043600A1 (en) Separator material for fuel cell and process for producing the same
JP4956866B2 (en) Silica gel electrolyte membrane, method for producing the same, and fuel cell
JP3008519B2 (en) Hydrogen storage electrode, method for producing the same, and metal oxide-hydrogen storage battery using the same
JP2002030360A (en) Method for producing hydrogen occluding material formed body
US11688871B2 (en) Electrode for membrane-electrode assembly, method of manufacturing same and membrane-electrode assembly using same
CN113248790B (en) Heat-conducting composite filler, high-heat-conducting composite material and preparation method thereof
CN116063731B (en) High-heat-conductivity silica gel material, preparation method and application
JP2003172499A (en) Hydrogen storage device
JPH05221601A (en) Hydrogen occluding porous material and its production
JP2003147473A (en) Hydrogen storage material, its manufacturing method, and hydrogen generator

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20031225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040921

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050117

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050210