JP2008189070A - Control device - Google Patents

Control device Download PDF

Info

Publication number
JP2008189070A
JP2008189070A JP2007023504A JP2007023504A JP2008189070A JP 2008189070 A JP2008189070 A JP 2008189070A JP 2007023504 A JP2007023504 A JP 2007023504A JP 2007023504 A JP2007023504 A JP 2007023504A JP 2008189070 A JP2008189070 A JP 2008189070A
Authority
JP
Japan
Prior art keywords
temperature
battery
gaseous fuel
tank
fuel tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007023504A
Other languages
Japanese (ja)
Other versions
JP4888141B2 (en
Inventor
Masanori Matsushita
正典 松下
Tomoaki Saito
智明 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2007023504A priority Critical patent/JP4888141B2/en
Publication of JP2008189070A publication Critical patent/JP2008189070A/en
Application granted granted Critical
Publication of JP4888141B2 publication Critical patent/JP4888141B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • B60L50/62Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles charged by low-power generators primarily intended to support the batteries, e.g. range extenders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To effectively suppress an increase in temperature of a battery regardless of an increase in temperature of gaseous fuel in a hybrid vehicle with a tank storing the gaseous fuel. <P>SOLUTION: A control device comprises: a tank storing gaseous fuel in a compressed state; an engine to be driven by the fuel stored in the tank; a motor for outputting drive force of the vehicle; a battery for supplying power to the motor; and a battery cooling means for blowing to the battery to cool it; and a threshold temperature setting means for setting the threshold temperature in response to the temperature selected by the tank temperature detection means. When the temperature detected by the detection means is high, the setting means sets the threshold temperature at a temperature lower than the case in which the temperature detected by the detection means is low. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はハイブリッド車両の制御装置に関する。   The present invention relates to a control device for a hybrid vehicle.

車両の駆動力を出力可能な走行用モータを搭載したハイブリッド車両のエンジンの燃料として、水素を用いたものが提案されている(特許文献1)。水素のような気体燃料を用いることで、より環境に優しい車両を提供することができる。気体燃料の貯蔵方法としては、タンクに貯蔵する方法や、貯蔵材料(水素の場合、水素吸蔵合金等)に貯蔵する方法等が挙げられる。また、バッテリはその放電により温度が上昇するが、バッテリの温度が過剰に高くなると、バッテリの劣化や効率悪化を招く畏れがある。そこで、ハイブリッド車両のバッテリの温度に応じて、当該バッテリに送風して冷却することが提案されている(特許文献2)。   As a fuel for an engine of a hybrid vehicle equipped with a traveling motor capable of outputting the driving force of the vehicle, a fuel using hydrogen has been proposed (Patent Document 1). By using a gaseous fuel such as hydrogen, a more environmentally friendly vehicle can be provided. Examples of the method for storing the gaseous fuel include a method for storing in a tank and a method for storing in a storage material (in the case of hydrogen, a hydrogen storage alloy or the like). In addition, the temperature of the battery rises due to the discharge, but if the temperature of the battery becomes excessively high, the battery may be deteriorated or the efficiency may be deteriorated. Thus, it has been proposed to blow and cool the battery according to the temperature of the battery of the hybrid vehicle (Patent Document 2).

特開2001−258105号公報JP 2001-258105 A 特開2005−63689号公報JP 2005-63689 A

気体燃料の貯蔵方法としてタンクを用いた場合、気体燃料のタンクへの補給回数をより少なくするために、気体燃料を圧縮(例えば35MPa)して貯蔵し、また、容量の大きなタンクが必要となる。ここで、気体は圧縮されると温度が上昇するため、タンクに圧縮状態で気体燃料を貯蔵すると、特に気体燃料の補給時(給燃時)に貯蔵されている気体燃料の温度が高くなり、タンク周囲の温度が高くなる。   When a tank is used as a method for storing gaseous fuel, in order to reduce the number of times the gaseous fuel is supplied to the tank, the gaseous fuel is compressed (for example, 35 MPa) and stored, and a large capacity tank is required. . Here, since the temperature rises when the gas is compressed, when the gaseous fuel is stored in the compressed state in the tank, the temperature of the gaseous fuel stored particularly during the replenishment of the gaseous fuel (at the time of fuel supply) increases. The temperature around the tank becomes high.

また、ハイブリッド車両では、走行用モータのバッテリの配設スペースとしてより広範なスペースが必要となるところ、エンジンルームや客室のスペースを確保することを踏まえると、タンクとバッテリとを近接配置するレイアウトを取らざる得ない場合が多い。この結果、気体燃料の温度上昇によりバッテリの周囲温度が上昇する場合がある。バッテリの周囲温度が上昇した環境下においては、当該バッテリに送風して冷却してもバッテリの冷却効率が悪く、放電により温度が上昇したバッテリを効果的に冷却できない。また、バッテリの冷却能力を一様に引き上げると電力等のエネルギを無駄に消費することになり、また、コストアップを招くことになる。   In addition, in hybrid vehicles, a wider space is required for the battery for the traction motor, and in consideration of securing space in the engine room and cabin, a layout in which the tank and battery are arranged close to each other is required. In many cases it must be taken. As a result, the ambient temperature of the battery may increase due to the temperature increase of the gaseous fuel. In an environment where the ambient temperature of the battery has risen, even if the battery is blown and cooled, the cooling efficiency of the battery is poor, and the battery whose temperature has risen due to discharge cannot be effectively cooled. In addition, if the cooling capacity of the battery is uniformly increased, energy such as electric power is wasted, and the cost is increased.

従って、本発明の目的は、気体燃料を貯蔵するタンクを備えたハイブリッド車両において、気体燃料の温度上昇に関わらず、バッテリの温度上昇をより効果的に抑制できる制御装置を提供することにある。   Therefore, an object of the present invention is to provide a control device that can more effectively suppress the temperature rise of the battery regardless of the temperature rise of the gas fuel in the hybrid vehicle including the tank for storing the gas fuel.

本発明によれば、気体燃料を圧縮状態で貯蔵する気体燃料タンクと、前記気体燃料タンクに貯蔵された前記気体燃料により駆動するエンジンと、車両の駆動力を出力可能なモータと、前記モータに電力を供給するバッテリと、を備えたハイブリッド車両の制御装置であって、前記気体燃料タンクの温度を検出するタンク温度検出手段と、前記バッテリの温度を検出するバッテリ温度検出手段と、前記バッテリ温度検出手段が検出した温度が閾値温度よりも高い場合に前記バッテリに送風して冷却するバッテリ冷却手段と、前記タンク温度検出手段が検出した温度に応じて前記閾値温度を設定する閾値温度設定手段と、を備え、前記閾値温度設定手段は、前記タンク温度検出手段が検出した温度が高い場合には低い場合よりも前記閾値温度を低く設定することを特徴とする制御装置が提供される。   According to the present invention, a gaseous fuel tank that stores gaseous fuel in a compressed state, an engine that is driven by the gaseous fuel stored in the gaseous fuel tank, a motor that can output a driving force of a vehicle, and the motor A control device for a hybrid vehicle, comprising: a battery that supplies electric power; tank temperature detection means for detecting the temperature of the gaseous fuel tank; battery temperature detection means for detecting the temperature of the battery; and the battery temperature Battery cooling means for blowing and cooling the battery when the temperature detected by the detection means is higher than a threshold temperature; threshold temperature setting means for setting the threshold temperature according to the temperature detected by the tank temperature detection means; The threshold temperature setting means lowers the threshold temperature when the temperature detected by the tank temperature detection means is higher than when the temperature is low. Control device is provided which is characterized in that setting.

この構成によれば、前記閾値温度設定手段により、前記タンク温度検出手段が検出した温度が高い場合には低い場合よりも前記閾値温度が低く設定される。このため、前記気体燃料タンクに貯蔵された前記気体燃料の温度上昇の影響により前記バッテリの周囲温度が高い場合には、前記バッテリ冷却手段による前記バッテリの冷却が当該バッテリの温度がより低い温度において開始されるので、気体燃料の温度上昇に関わらず、バッテリの温度上昇をより効果的に抑制できる。   According to this configuration, the threshold temperature setting unit sets the threshold temperature lower when the temperature detected by the tank temperature detection unit is high than when the temperature is low. For this reason, when the ambient temperature of the battery is high due to the rise in temperature of the gaseous fuel stored in the gaseous fuel tank, the cooling of the battery by the battery cooling means is performed at a temperature where the temperature of the battery is lower. Since it is started, the temperature rise of the battery can be more effectively suppressed regardless of the temperature rise of the gaseous fuel.

また、本発明によれば、気体燃料を圧縮状態で貯蔵する気体燃料タンクと、前記気体燃料タンクに貯蔵された前記気体燃料により駆動するエンジンと、車両の駆動力を出力可能なモータと、前記モータに電力を供給するバッテリと、を備えたハイブリッド車両の制御装置であって、前記気体燃料タンクの温度を検出するタンク温度検出手段と、前記バッテリの温度を検出するバッテリ温度検出手段と、前記バッテリ温度検出手段が検出した温度が閾値温度よりも高い場合に前記バッテリに送風して冷却するバッテリ冷却手段と、前記気体燃料タンクに対する前記気体燃料の給燃を検出する給燃検出手段と、を備え、前記バッテリ冷却手段は、前記給燃検出手段が前記給燃を検出した場合に前記バッテリに送風することを特徴とする制御装置が提供される。   Further, according to the present invention, a gaseous fuel tank for storing gaseous fuel in a compressed state, an engine driven by the gaseous fuel stored in the gaseous fuel tank, a motor capable of outputting a driving force of a vehicle, A hybrid vehicle control device comprising: a battery for supplying electric power to a motor; tank temperature detection means for detecting a temperature of the gaseous fuel tank; battery temperature detection means for detecting the temperature of the battery; Battery cooling means for blowing and cooling the battery when the temperature detected by the battery temperature detection means is higher than a threshold temperature; and fuel supply detection means for detecting fuel gas supply to the gas fuel tank; And the battery cooling means sends air to the battery when the fuel supply detecting means detects the fuel supply. It is subjected.

この構成によれば、前記バッテリ冷却手段は、前記給燃検出手段が前記給燃を検出した場合に前記バッテリに送風するので、前記給燃により生じる前記気体燃料の温度上昇に備えて前記バッテリを冷却でき、気体燃料の温度上昇に関わらず、バッテリの温度上昇をより効果的に抑制できる。   According to this configuration, the battery cooling unit blows air to the battery when the fuel supply detecting unit detects the fuel supply, and therefore the battery cooling unit is prepared in preparation for the temperature increase of the gaseous fuel caused by the fuel supply. It can cool and can suppress the temperature rise of a battery more effectively irrespective of the temperature rise of gaseous fuel.

また、本発明によれば、気体燃料を圧縮状態で貯蔵する気体燃料タンクと、前記気体燃料タンクに貯蔵された前記気体燃料により駆動するエンジンと、車両の駆動力を出力可能なモータと、前記モータに電力を供給するバッテリと、を備えたハイブリッド車両の制御装置であって、前記気体燃料タンクの温度を検出するタンク温度検出手段と、前記バッテリの温度を検出するバッテリ温度検出手段と、前記バッテリ温度検出手段が検出した温度が閾値温度よりも高い場合に前記バッテリに送風して冷却するバッテリ冷却手段と、を備え、前記バッテリ冷却手段は、前記バッテリ温度検出手段が検出した温度が高い場合には低い場合よりも風量を増大することを特徴とする制御装置が提供される。   Further, according to the present invention, a gaseous fuel tank for storing gaseous fuel in a compressed state, an engine driven by the gaseous fuel stored in the gaseous fuel tank, a motor capable of outputting a driving force of a vehicle, A hybrid vehicle control device comprising: a battery for supplying electric power to a motor; tank temperature detection means for detecting a temperature of the gaseous fuel tank; battery temperature detection means for detecting the temperature of the battery; Battery cooling means for blowing and cooling the battery when the temperature detected by the battery temperature detection means is higher than a threshold temperature, and the battery cooling means is high when the temperature detected by the battery temperature detection means is high Is provided with a control device characterized in that the air volume is increased as compared with a low case.

この構成によれば、前記バッテリ冷却手段は、前記バッテリ温度検出手段が検出した温度が高い場合には低い場合よりも風量を増大するので、前記バッテリの冷却能力が向上し、気体燃料の温度上昇に関わらず、バッテリの温度上昇をより効果的に抑制できる。   According to this configuration, when the temperature detected by the battery temperature detecting means is high, the battery cooling means increases the air volume as compared with the case where the temperature is low. Regardless, the temperature rise of the battery can be more effectively suppressed.

本発明において、前記バッテリ冷却手段は、電動ファンを備えた構成を採用できる。   In the present invention, the battery cooling means may employ a configuration including an electric fan.

また、本発明においては、前記ハイブリッド車両が、前記気体燃料タンクと前記エンジンとの間の燃料供給通路に設けた減圧弁を備え、前記バッテリ冷却手段は、前記電動ファンが送風する空気を取り入れるダクトを有し、前記ダクトの内部又は開口端部近傍に前記減圧弁が配置されている構成を採用できる。   In the present invention, the hybrid vehicle includes a pressure reducing valve provided in a fuel supply passage between the gaseous fuel tank and the engine, and the battery cooling means is a duct that takes in air blown by the electric fan. It is possible to adopt a configuration in which the pressure reducing valve is disposed in the duct or in the vicinity of the opening end.

この構成によれば、前記減圧弁による前記気体燃料の減圧に伴う冷熱を前記バッテリの冷却に活用でき、バッテリの温度上昇をより一層効果的に抑制できる。   According to this configuration, it is possible to utilize the cold heat accompanying the pressure reduction of the gaseous fuel by the pressure reducing valve for cooling the battery, and it is possible to more effectively suppress the temperature rise of the battery.

また、本発明においては、前記ハイブリッド車両が、液体燃料を貯蔵する液体燃料タンクを備え、前記エンジンが、前記気体燃料と、前記液体燃料タンクに貯蔵された前記液体燃料と、のいずれかを選択的に燃料として駆動するデュアルフューエルエンジンであり、前記制御装置は、前記電動ファンによる送風時に、前記エンジンの燃料として前記気体燃料を選択する燃料選択手段を更に備えた構成を採用できる。   In the present invention, the hybrid vehicle includes a liquid fuel tank that stores liquid fuel, and the engine selects any one of the gaseous fuel and the liquid fuel stored in the liquid fuel tank. The control device may further include a fuel selection unit that selects the gaseous fuel as the fuel for the engine when the electric fan blows air.

この構成によれば、前記減圧弁による前記気体燃料の減圧に伴う冷熱を前記バッテリの冷却に活用でき、バッテリの温度上昇をより一層効果的に抑制できる。   According to this configuration, it is possible to utilize the cold heat accompanying the pressure reduction of the gaseous fuel by the pressure reducing valve for cooling the battery, and it is possible to more effectively suppress the temperature rise of the battery.

以上述べた通り、本発明によれば、気体燃料を貯蔵するタンクを備えたハイブリッド車両において、気体燃料を貯蔵するタンクを備えたハイブリッド車両において、気体燃料の温度上昇に関わらず、バッテリの温度上昇をより効果的に抑制できる。   As described above, according to the present invention, in a hybrid vehicle having a tank for storing gaseous fuel, in a hybrid vehicle having a tank for storing gaseous fuel, the temperature of the battery rises regardless of the temperature rise of the gaseous fuel. Can be suppressed more effectively.

<第1実施形態>
図1は本発明の制御装置が適用可能なハイブリッド車両Aのブロック図である。ハイブリッド車両Aはシリーズハイブリッド形式のハイブリッド車両であるが、本発明は他の形式のハイブリッド車両にも適用可能である。ハイブリッド車両Aは左右2つの前輪1と、左右2つの後輪2と、前輪1の駆動軸1aに設けた差動装置3と、を備え、前輪1を駆動輪及び操舵輪として走行する。ハイブリッド車両Aの前部はエンジンルーム、中部は客室、後部はトランクとなっている。
<First Embodiment>
FIG. 1 is a block diagram of a hybrid vehicle A to which the control device of the present invention can be applied. Although the hybrid vehicle A is a series hybrid type hybrid vehicle, the present invention is also applicable to other types of hybrid vehicles. The hybrid vehicle A includes two left and right front wheels 1, two right and left rear wheels 2, and a differential device 3 provided on a drive shaft 1a of the front wheel 1, and travels with the front wheels 1 as drive wheels and steering wheels. The front part of the hybrid vehicle A is an engine room, the middle part is a cabin, and the rear part is a trunk.

ハイブリッド車両Aは気体燃料を圧縮状態で貯蔵する気体燃料タンク4を備える。気体燃料は例えば水素、天然ガスであり、例えば、満タンで35MPaの気圧で気体燃料タンク4に蓄積される。また、ハイブリッド車両Aは液体燃料を貯蔵する液体燃料タンク5を備える。液体燃料は例えばガソリン、軽油である。   The hybrid vehicle A includes a gaseous fuel tank 4 that stores gaseous fuel in a compressed state. The gaseous fuel is, for example, hydrogen or natural gas, and is accumulated in the gaseous fuel tank 4 at a full pressure of 35 MPa, for example. The hybrid vehicle A includes a liquid fuel tank 5 that stores liquid fuel. The liquid fuel is, for example, gasoline or light oil.

エンジン(内燃機関)6は、本実施形態の場合、気体燃料タンク4に貯蔵された気体燃料と、液体燃料タンク5に貯蔵された液体燃料と、のいずれかを選択的に燃料としてその燃焼により駆動するデュアルフューエルエンジンであり、ここではロータリーエンジンである。しかしながら、本発明は気体燃料のみを燃料とするエンジンを用いたハイブリッド車両にも適用可能である。   In the case of the present embodiment, the engine (internal combustion engine) 6 selectively burns either the gaseous fuel stored in the gaseous fuel tank 4 or the liquid fuel stored in the liquid fuel tank 5 as fuel. It is a dual fuel engine to be driven, here a rotary engine. However, the present invention is also applicable to a hybrid vehicle using an engine that uses only gaseous fuel as fuel.

気体燃料タンク4とエンジン6との間の燃料供給通路となる配管4bには減圧弁4aが設けられている。減圧弁4aは気体燃料タンク4に貯蔵された気体燃料を、例えば0.6MPaに減圧してエンジン6に供給する。   A pressure reducing valve 4 a is provided in a pipe 4 b serving as a fuel supply passage between the gaseous fuel tank 4 and the engine 6. The pressure reducing valve 4a depressurizes the gaseous fuel stored in the gaseous fuel tank 4 to 0.6 MPa, for example, and supplies it to the engine 6.

差動装置3には、ハイブリッド車両Aの駆動力を出力可能なモータM1が接続されている。モータM1は例えば同期電動機であり、バッテリ7から電力の供給を受けて駆動し、その出力により駆動軸1aに回転力を与える。なお、モータM1と差動装置3との間には減速機を設けることができる。   The differential device 3 is connected to a motor M1 that can output the driving force of the hybrid vehicle A. The motor M1 is, for example, a synchronous motor, is driven by receiving electric power from the battery 7, and gives a rotational force to the drive shaft 1a by its output. A reduction gear can be provided between the motor M1 and the differential 3.

エンジン6の出力軸にはモータM2が連結されている。モータM2は例えば同期電動機であり、エンジン6により駆動されて発電し、モータM1に対して電力を供給し、また、バッテリ7を充電する発電機として機能する。また、モータM2はエンジン6の始動時にはバッテリ7から電力の供給を受けて、スタータモータとして機能する。   A motor M <b> 2 is connected to the output shaft of the engine 6. The motor M2 is, for example, a synchronous motor, and is driven by the engine 6 to generate power, supply electric power to the motor M1, and function as a generator that charges the battery 7. The motor M2 receives power from the battery 7 when the engine 6 is started and functions as a starter motor.

インバータ8は、モータM1及びM2とバッテリ7とに電気的に接続されている。インバータ8は、バッテリ7からの直流電力を交流電力に変換してモータM1及びM2を駆動することが可能である。また、インバータ8はモータM2が発電した交流電力を直流電力に変換してバッテリ7を充電することが可能である。更に、インバータ8はモータM2が発電した交流電力を一旦直流電力に変換し、再び交流電力に変換してモータM1を駆動することが可能である。   The inverter 8 is electrically connected to the motors M1 and M2 and the battery 7. The inverter 8 can convert the DC power from the battery 7 into AC power and drive the motors M1 and M2. Further, the inverter 8 can charge the battery 7 by converting AC power generated by the motor M2 into DC power. Further, the inverter 8 can once convert the AC power generated by the motor M2 into DC power, and convert it again into AC power to drive the motor M1.

本実施形態の場合、エンジンルームと客室とを確保するために、気体燃料タンク4とバッテリ7とは近接して配置されており、気体燃料タンク4はハイブリッド車両Aの後部に、バッテリ7はハイブリッド車両Aの中部(後部座席の下)に、それぞれ配置されている。気体燃料タンク4とバッテリ7とが近接して配置とは、気体燃料タンク4に貯蔵された気体燃料の熱が、バッテリ7の温度上昇に影響を与える程度に気体燃料タンク4とバッテリ7とが配置されていることを意味する。例えば、ハイブリッド車両Aの前部、中部、後部のいずれか一つの部分に気体燃料タンク4とバッテリ7との双方が配置された場合、隣接した2つの部分(例えば、前部と中部、中部と後部)にそれぞれ気体燃料タンク4とバッテリ7とが配置される構成においては、一般に、気体燃料タンク4に貯蔵された気体燃料の熱が、バッテリ7の温度上昇に影響を与える構成であると評価でき、気体燃料タンク4とバッテリ7とが近接して配置された場合に該当する。   In the case of this embodiment, in order to secure an engine room and a guest room, the gaseous fuel tank 4 and the battery 7 are disposed close to each other, the gaseous fuel tank 4 is disposed at the rear of the hybrid vehicle A, and the battery 7 is disposed in the hybrid. The vehicle A is disposed in the middle (under the rear seat). The arrangement of the gaseous fuel tank 4 and the battery 7 close to each other means that the gaseous fuel tank 4 and the battery 7 are arranged so that the heat of the gaseous fuel stored in the gaseous fuel tank 4 affects the temperature rise of the battery 7. It means that it is arranged. For example, when both the gaseous fuel tank 4 and the battery 7 are arranged in any one of the front part, the middle part, and the rear part of the hybrid vehicle A, two adjacent parts (for example, the front part, the middle part, and the middle part) In the configuration in which the gaseous fuel tank 4 and the battery 7 are respectively disposed in the rear part), it is generally evaluated that the heat of the gaseous fuel stored in the gaseous fuel tank 4 affects the temperature rise of the battery 7. This corresponds to the case where the gaseous fuel tank 4 and the battery 7 are arranged close to each other.

バッテリ7はケース7aに収納されている。ケース7aには電動ファン9が設けられており、空気(外気)をケース7a内のバッテリ7に送風することでバッテリ7を冷却する。電動ファン9には電動ファン9がバッテリ7に送風する空気を取り入れる筒状のダクト9aが設けられている。   The battery 7 is accommodated in the case 7a. The case 7a is provided with an electric fan 9, and the battery 7 is cooled by blowing air (outside air) to the battery 7 in the case 7a. The electric fan 9 is provided with a cylindrical duct 9 a that takes in air that the electric fan 9 blows to the battery 7.

本実施形態の場合、ダクト9aの内部空間に減圧弁4aが配置されている。気体燃料をエンジン6の燃料として用いている場合、減圧弁4aによる気体燃料の減圧によって減圧弁4aには冷熱が生じる。このため、電動ファン9がバッテリ7に送風する空気が当該冷熱で冷却されることになり、バッテリ7をより効果的に冷却できる。こうして本実施形態では減圧弁4aによる気体燃料の減圧に伴う冷熱をバッテリ7の冷却に活用でき、バッテリ7の温度上昇をより一層効果的に抑制できる。なお、減圧弁4aはダクト9aの開口端部近傍に配置してもよく、この配置の場合も減圧弁4aの冷熱を利用した送風気の冷却効果が得られる。   In the case of this embodiment, the pressure reducing valve 4a is arranged in the internal space of the duct 9a. When the gaseous fuel is used as the fuel for the engine 6, cold pressure is generated in the pressure reducing valve 4a due to the pressure reduction of the gaseous fuel by the pressure reducing valve 4a. For this reason, the air blown to the battery 7 by the electric fan 9 is cooled by the cold heat, and the battery 7 can be cooled more effectively. Thus, in the present embodiment, the cold heat accompanying the decompression of the gaseous fuel by the pressure reducing valve 4a can be utilized for cooling the battery 7, and the temperature rise of the battery 7 can be further effectively suppressed. Note that the pressure reducing valve 4a may be disposed in the vicinity of the opening end of the duct 9a. In this case, the cooling effect of the blown air using the cold heat of the pressure reducing valve 4a can be obtained.

図2は本発明の一実施形態に係る制御装置100のブロック図である。PCM(パワートレインコントロールモジュール)101は、CPUや、CPUの演算結果等を格納するRAM及びCPUが実行するプログラムを格納するROMに代表される記憶手段、並びに、外部デバイスとのインターフェースを含み、CPUは後述する処理を実行し、インバータ8、エンジン6の燃料噴射弁6a及び6b、スロットル弁6c、点火プラグ6dを制御する。なお、燃料噴射弁6aは気体燃料を筒内噴射し、また、燃料噴射弁6bは液体燃料をポート噴射する。   FIG. 2 is a block diagram of the control device 100 according to an embodiment of the present invention. A PCM (powertrain control module) 101 includes a CPU, a RAM that stores CPU calculation results, a storage unit represented by a ROM that stores programs executed by the CPU, and an interface with an external device. Executes processing to be described later, and controls the inverter 8, the fuel injection valves 6a and 6b of the engine 6, the throttle valve 6c, and the spark plug 6d. The fuel injection valve 6a injects gaseous fuel into the cylinder, and the fuel injection valve 6b performs port injection of liquid fuel.

タンク温度センサ102は、例えば、気体燃料タンク4又は気体燃料タンク4の近傍に配置され、気体燃料タンク4内の気体燃料の温度により気体燃料タンク4から放出される温度を検出するサーミスタ、熱電対等であり、タンク温度検出手段として機能する。なお、気体燃料タンク4の温度は例えば気体燃料タンク4内の気体燃料の圧力から推定することもでき、このように温度以外の物理量から気体燃料タンク4の温度を推定する構成もタンク温度検出手段に含まれる。   The tank temperature sensor 102 is disposed, for example, in the vicinity of the gaseous fuel tank 4 or the gaseous fuel tank 4, and detects the temperature discharged from the gaseous fuel tank 4 by the temperature of the gaseous fuel in the gaseous fuel tank 4, a thermocouple, etc. And functions as a tank temperature detecting means. The temperature of the gaseous fuel tank 4 can be estimated from, for example, the pressure of the gaseous fuel in the gaseous fuel tank 4, and the configuration for estimating the temperature of the gaseous fuel tank 4 from physical quantities other than the temperature is also a tank temperature detecting means. include.

タンク圧力センサ103は、例えば、気体燃料タンク4の内部又は元弁に配置され、気体燃料タンク4内の気体燃料の気圧を検出するセンサである。バッテリ温度センサ104は、例えば、バッテリ7又はバッテリ7の近傍に配置され、バッテリ7の温度を検出するサーミスタ、熱電対等であり、バッテリ温度検出手段として機能する。なお、タンク温度検出手段と同様に、バッテリ温度検出手段には、温度以外の物理量からバッテリ7の温度を推定する構成も含まれる。   The tank pressure sensor 103 is, for example, a sensor that is disposed inside or at the main valve of the gaseous fuel tank 4 and detects the atmospheric pressure of the gaseous fuel in the gaseous fuel tank 4. The battery temperature sensor 104 is, for example, a battery 7 or a thermistor, a thermocouple, or the like that detects the temperature of the battery 7 and functions as battery temperature detection means. Similar to the tank temperature detecting means, the battery temperature detecting means includes a configuration for estimating the temperature of the battery 7 from a physical quantity other than the temperature.

バッテリ電流・電圧センサ105は、バッテリ7の蓄電量を演算するために用いられるセンサである。PCM101はバッテリ7の蓄電量をバッテリ7の開路電圧、充放電電流の時間積分値から演算することができる。燃料切換スイッチ106は運転席に設けられ、ドライバがエンジン6の燃料を気体燃料と液体燃料とで選択するためのスイッチである。   The battery current / voltage sensor 105 is a sensor used to calculate the amount of power stored in the battery 7. The PCM 101 can calculate the charged amount of the battery 7 from the open circuit voltage of the battery 7 and the time integration value of the charge / discharge current. The fuel changeover switch 106 is provided at the driver's seat, and is a switch for the driver to select the fuel for the engine 6 between gas fuel and liquid fuel.

車速センサ107は、ハイブリッド車両Aの走行速度を検出するためのセンサであり、例えば、駆動軸1aの回転速度を検出するセンサである。アクセル開度センサ108はドライバによるアクセルペダルの操作量を検出するセンサである。   The vehicle speed sensor 107 is a sensor for detecting the traveling speed of the hybrid vehicle A, for example, a sensor for detecting the rotational speed of the drive shaft 1a. The accelerator opening sensor 108 is a sensor that detects the amount of operation of the accelerator pedal by the driver.

PCM101はこれらの各センサの検出結果に基づいてインバータ8、電動ファン駆動回路109、燃料噴射弁6a及び6b、スロットル弁6c、及び、点火プラグ6dを制御する。電動ファン駆動回路109は、バッテリ7を電源として、電動ファン9の作動、停止、作動時の風量調整を行なう。   The PCM 101 controls the inverter 8, the electric fan drive circuit 109, the fuel injection valves 6a and 6b, the throttle valve 6c, and the spark plug 6d based on the detection results of these sensors. The electric fan drive circuit 109 uses the battery 7 as a power source to operate, stop, and adjust the air volume during operation.

PCM101はハイブリッド車両Aの走行制御として複数種類の走行モードの中から走行モードを選択して実行する。例えば、下記の第1乃至第3走行モードの中から走行モードを選択して実行する。
・第1走行モード(車両始動時、低要求トルク時)
モータM1に対してバッテリ7のみから電力供給を行なう走行モードであり、エンジン6は停止される。低回転・低負荷におけるエンジン6の駆動を停止し、より効率の高い領域でエンジン6を駆動するためである。
・第2走行モード(中要求トルク時)
エンジン6を駆動し、モータM2で発電した電力によりモータM1に対して電力供給を行なう走行モードである。この走行モードではモータM1に対してバッテリ7からの電力供給は行なわない。従って、バッテリ7の放電のない走行モードである。また、バッテリ7の蓄電量が少ない場合にはモータM2で発電した電力の一部をバッテリ7に供給してその充電を行なう。
・第3走行モード(高要求トルク時)
エンジン6を駆動し、モータM2で発電した電力と、バッテリ7との双方によりモータM1に対して電力供給を行う走行モードである。
The PCM 101 selects and executes a traveling mode from a plurality of types of traveling modes as the traveling control of the hybrid vehicle A. For example, the travel mode is selected from the following first to third travel modes and executed.
-1st driving mode (at the time of vehicle start-up, low demand torque)
This is a travel mode in which electric power is supplied from only the battery 7 to the motor M1, and the engine 6 is stopped. This is because the driving of the engine 6 at a low rotation and a low load is stopped and the engine 6 is driven in a more efficient region.
・ Second travel mode (medium required torque)
This is a traveling mode in which the engine 6 is driven and electric power is supplied to the motor M1 by the electric power generated by the motor M2. In this travel mode, power is not supplied from the battery 7 to the motor M1. Therefore, this is a travel mode in which the battery 7 is not discharged. When the amount of power stored in the battery 7 is small, a part of the power generated by the motor M2 is supplied to the battery 7 and charged.
・ Third travel mode (at high demand torque)
This is a traveling mode in which the engine 6 is driven and the electric power generated by the motor M2 and the battery 7 are used to supply electric power to the motor M1.

次に、制御装置100による制御内容のうち、特に、バッテリ7の冷却に関連する制御内容について説明する。図3(a)はPCM101のCPUが実行するバッテリ冷却処理を示すフローチャートである。S1ではタンク温度センサ102から気体燃料タンク4の温度の検出結果を、バッテリ温度センサ104からバッテリ7の温度の検出結果を、それぞれ取得する。S2では閾値温度tを設定する。閾値温度tはS1で取得したタンク温度センサ102が検出した温度に応じて図3(b)に示す関係に従い設定する。   Next, the control content related to cooling of the battery 7 among the control content by the control device 100 will be described. FIG. 3A is a flowchart showing battery cooling processing executed by the CPU of the PCM 101. In S1, the detection result of the temperature of the gaseous fuel tank 4 is acquired from the tank temperature sensor 102, and the detection result of the temperature of the battery 7 is acquired from the battery temperature sensor 104, respectively. In S2, a threshold temperature t is set. The threshold temperature t is set according to the relationship shown in FIG. 3B according to the temperature detected by the tank temperature sensor 102 acquired in S1.

図3(b)に示すように、閾値温度tは気体燃料タンク4の温度が相対的に高い場合にはこれが低い場合よりも、低くされている。具体的には、気体燃料タンク4の温度がT1までは一定であるが、その後、気体燃料タンク4の温度が高くなるにつれて低くなるように閾値温度tが設定されている。   As shown in FIG. 3B, the threshold temperature t is lower when the temperature of the gaseous fuel tank 4 is relatively higher than when it is low. Specifically, the temperature of the gaseous fuel tank 4 is constant until T1, but thereafter, the threshold temperature t is set so as to decrease as the temperature of the gaseous fuel tank 4 increases.

S2では図3(b)に示す閾値温度tと気体燃料タンク4の温度との関係からS1で取得したタンク温度センサ102が検出した温度に対応する閾値温度tを設定する。   In S2, the threshold temperature t corresponding to the temperature detected by the tank temperature sensor 102 acquired in S1 is set from the relationship between the threshold temperature t and the temperature of the gaseous fuel tank 4 shown in FIG.

S3ではS1で取得したバッテリ7の温度の検出結果が、S2で設定した閾値温度よりも高いか否かを判定する。該当する場合はS4へ進み、該当しない場合はS5へ進む。S4では電動ファン9を作動する。これにより電動ファン9がバッテリ7に送風して、バッテリ7を冷却する。S5では電動ファン9を停止する。以上により一単位の処理が終了する。   In S3, it is determined whether or not the detection result of the temperature of the battery 7 acquired in S1 is higher than the threshold temperature set in S2. If yes, go to S4, otherwise go to S5. In S4, the electric fan 9 is operated. Thereby, the electric fan 9 blows air to the battery 7 to cool the battery 7. In S5, the electric fan 9 is stopped. Thus, one unit of processing is completed.

このように本実施形態では気体燃料タンク4の温度が高い場合には低い場合よりも閾値温度tが低く設定される。このため、気体燃料タンク4に貯蔵された気体燃料の温度上昇の影響によりバッテリ7の周囲温度が高い場合には、電動ファン9によるバッテリ7の冷却がバッテリ7の温度がより低い温度において開始されるので、気体燃料の温度上昇に関わらず、バッテリ7の温度上昇をより効果的に抑制できる。つまり、気体燃料タンク4の温度が高い場合には早期にバッテリ7の冷却が開始されることになり、バッテリ7の温度上昇をより効果的に、無駄な電力消費をなくして必要な範囲で抑制できる。   Thus, in this embodiment, when the temperature of the gaseous fuel tank 4 is high, the threshold temperature t is set lower than when the temperature is low. For this reason, when the ambient temperature of the battery 7 is high due to the rise in temperature of the gaseous fuel stored in the gaseous fuel tank 4, the cooling of the battery 7 by the electric fan 9 is started at a lower temperature of the battery 7. Therefore, the temperature rise of the battery 7 can be more effectively suppressed regardless of the temperature rise of the gaseous fuel. In other words, when the temperature of the gaseous fuel tank 4 is high, the cooling of the battery 7 is started early, and the temperature rise of the battery 7 is more effectively suppressed to avoid unnecessary power consumption and within a necessary range. it can.

<第2実施形態>
図4はPCM101のCPUが実行する、本発明の第2実施形態に係るバッテリ冷却処理を示すフローチャートである。S11では給燃検出処理を実行する。ここでは、気体燃料タンク4に対する気体燃料の給燃を検出する。本実施形態の場合、一定期間(例えば数十秒、或いは数分間)内の、タンク圧力センサ103による気体燃料の気圧の検出結果を参照し、気体燃料の気圧が増加していた場合に給燃ありと判定する。一定期間の検出結果は、S11の処理の度にタンク圧力センサ103の検出結果を取得して保存し、最古の検出結果を削除して更新される。
Second Embodiment
FIG. 4 is a flowchart showing a battery cooling process according to the second embodiment of the present invention, which is executed by the CPU of the PCM 101. In S11, a fuel supply detection process is executed. Here, supply of gaseous fuel to the gaseous fuel tank 4 is detected. In the case of the present embodiment, referring to the detection result of the pressure of the gaseous fuel by the tank pressure sensor 103 within a certain period (for example, several tens of seconds or several minutes), fuel supply is performed when the pressure of the gaseous fuel has increased. Judge that there is. The detection result for a certain period is updated by acquiring and storing the detection result of the tank pressure sensor 103 every time the process of S11 is performed, and deleting the oldest detection result.

S12ではS11の給燃検出処理の結果、給燃ありの場合はS13へ進み、給燃なしの場合はS14へ進む。S13では電動ファン9を作動する。ここでは電動ファン9を予め定めた時間(例えば10分)だけ継続して作動するように設定する。予め定めた時間は、別途タイマ処理により管理することができる。これにより電動ファン9がバッテリ7に送風して、バッテリ7を冷却する。   In S12, as a result of the fuel supply detection process in S11, if there is fuel supply, the process proceeds to S13, and if there is no fuel supply, the process proceeds to S14. In S13, the electric fan 9 is operated. Here, the electric fan 9 is set to operate continuously for a predetermined time (for example, 10 minutes). The predetermined time can be managed separately by timer processing. Thereby, the electric fan 9 blows air to the battery 7 to cool the battery 7.

S14ではバッテリ温度センサ104からバッテリ7の温度の検出結果を取得する。S15ではS14で取得したバッテリ7の温度の検出結果が予め定めた閾値温度t(固定値)よりも高いか否かを判定する。該当する場合はS16へ進み、該当しない場合はS17へ進む。S16では電動ファン9を作動する。   In S14, the detection result of the temperature of the battery 7 is acquired from the battery temperature sensor 104. In S15, it is determined whether or not the detection result of the temperature of the battery 7 acquired in S14 is higher than a predetermined threshold temperature t (fixed value). If applicable, the process proceeds to S16, and if not, the process proceeds to S17. In S16, the electric fan 9 is operated.

S17では電動ファン9がS13の処理により継続作動中か否かを判定する。該当する場合は一単位の処理を終了し、該当しない場合はS18へ進む。S18では電動ファン9を停止する。以上により一単位の処理が終了する。   In S17, it is determined whether or not the electric fan 9 is continuously operated by the process in S13. If applicable, the process of one unit is terminated. If not, the process proceeds to S18. In S18, the electric fan 9 is stopped. Thus, one unit of processing is completed.

このように本実施形態では、気体燃料の給燃を検出した場合にバッテリ7に電動ファン9により送風するので、気体燃料の給燃により必然的に生じる気体燃料の温度上昇に備えてバッテリ7を冷却でき、気体燃料の温度上昇に関わらず、バッテリ7の温度上昇をより効果的に抑制できる。つまり、気体燃料タンク4の給燃時にはバッテリ7の温度が上昇し易くなることを見越して、先取り的にバッテリ7の冷却を開始することにより、バッテリ7の温度上昇をより効果的に、無駄な電力消費をなくして必要な範囲で抑制できる。   As described above, in this embodiment, when the fuel supply of the gaseous fuel is detected, the battery 7 is blown by the electric fan 9, so that the battery 7 is prepared in preparation for the temperature rise of the gaseous fuel inevitably caused by the fuel supply of the gaseous fuel. The temperature of the battery 7 can be more effectively suppressed regardless of the temperature rise of the gaseous fuel. That is, in anticipation that the temperature of the battery 7 is likely to rise when the gaseous fuel tank 4 is supplied, the cooling of the battery 7 is started in advance, so that the temperature rise of the battery 7 is more effectively and wasted. Electric power consumption can be eliminated and controlled within a necessary range.

なお、第2実施形態では閾値温度tを固定値としたが、第1実施形態と第2実施形態とを組み合わせ、第1実施形態のように閾値温度tを気体燃料タンク4の温度に応じて設定する構成としてもよい。   Although the threshold temperature t is a fixed value in the second embodiment, the first embodiment and the second embodiment are combined, and the threshold temperature t is set according to the temperature of the gaseous fuel tank 4 as in the first embodiment. It is good also as a structure to set.

<第3実施形態>
図5(a)はPCM101のCPUが実行する、本発明の第3実施形態に係るバッテリ冷却処理を示すフローチャートである。S21ではタンク温度センサ102から気体燃料タンク4の温度の検出結果を、バッテリ温度センサ104からバッテリ7の温度の検出結果を、それぞれ取得する。S22ではS21で取得したバッテリ7の温度の検出結果が予め定めた閾値温度t(固定値)よりも高いか否かを判定する。該当する場合はS23へ進み、該当しない場合はS24へ進む。
<Third Embodiment>
FIG. 5A is a flowchart showing a battery cooling process according to the third embodiment of the present invention, which is executed by the CPU of the PCM 101. In S21, the detection result of the temperature of the gaseous fuel tank 4 is acquired from the tank temperature sensor 102, and the detection result of the temperature of the battery 7 is acquired from the battery temperature sensor 104, respectively. In S22, it is determined whether or not the detection result of the temperature of the battery 7 acquired in S21 is higher than a predetermined threshold temperature t (fixed value). If yes, go to S23, otherwise go to S24.

S23では電動ファン9の風量を設定する処理を行う。風量はS21で取得したタンク温度センサ102が検出した温度に応じて図5(b)に示す関係に従い設定する。   In S23, processing for setting the air volume of the electric fan 9 is performed. The air volume is set according to the relationship shown in FIG. 5B according to the temperature detected by the tank temperature sensor 102 acquired in S21.

図5(b)に示すように、電動ファン9の設定風量は気体燃料タンク4の温度が相対的に高い場合にはこれが低い場合よりも、大きくされている。具体的には、気体燃料タンク4の温度がT2までは一定であるが、その後、気体燃料タンク4の温度が高くなるにつれて増大するように風量が設定されている。   As shown in FIG. 5B, the set air volume of the electric fan 9 is made larger when the temperature of the gaseous fuel tank 4 is relatively higher than when it is low. Specifically, although the temperature of the gaseous fuel tank 4 is constant until T2, the air volume is set so as to increase as the temperature of the gaseous fuel tank 4 increases thereafter.

S23では図5(b)に示す風量と気体燃料タンク4の温度との関係からS21で取得したタンク温度センサ102が検出した温度に対応する風量を設定する。   In S23, the air volume corresponding to the temperature detected by the tank temperature sensor 102 acquired in S21 is set from the relationship between the air volume shown in FIG. 5B and the temperature of the gaseous fuel tank 4.

S24ではS23で設定した風量にて電動ファン9を作動する。これにより電動ファン9がバッテリ7に送風して、バッテリ7を冷却する。S25では電動ファン9を停止する。以上により一単位の処理が終了する。   In S24, the electric fan 9 is operated with the air volume set in S23. Thereby, the electric fan 9 blows air to the battery 7 to cool the battery 7. In S25, the electric fan 9 is stopped. Thus, one unit of processing is completed.

このように本実施形態によれば、バッテリ7の温度が高い場合には低い場合よりも電動ファン9の風量を増大するので、バッテリ7の冷却能力が向上し、気体燃料の温度上昇に関わらず、バッテリ7の温度上昇をより効果的に抑制できる。また、バッテリ7の温度上昇をより効果的に、無駄な電力消費をなくして必要な範囲で抑制できる。   As described above, according to this embodiment, when the temperature of the battery 7 is high, the air volume of the electric fan 9 is increased as compared with the case where the battery 7 is low. The temperature rise of the battery 7 can be more effectively suppressed. Moreover, the temperature rise of the battery 7 can be suppressed more effectively, and wasteful power consumption can be eliminated to a necessary extent.

なお、第3実施形態では閾値温度tを固定値としたが、第1実施形態と第3実施形態とを組み合わせ、第1実施形態のように閾値温度tを気体燃料タンク4の温度に応じて設定する構成としてもよい。また、第2実施形態と第3実施形態とを組み合わせ、気体燃料の給燃時に電動ファン9を作動する構成としてもよい。   Although the threshold temperature t is a fixed value in the third embodiment, the first embodiment and the third embodiment are combined, and the threshold temperature t is set according to the temperature of the gaseous fuel tank 4 as in the first embodiment. It is good also as a structure to set. Moreover, it is good also as a structure which act | operates the electric fan 9 at the time of fuel supply of gaseous fuel combining 2nd Embodiment and 3rd Embodiment.

<第4実施形態>
図6はPCM101のCPUが実行する、本発明の第4実施形態に係る燃料選択処理を示すフローチャートである。燃料選択処理はエンジン6の燃料として気体燃料又は液体燃料のいずれかを選択する処理であり、第1乃至第3実施形態と組み合わせられる。
<Fourth embodiment>
FIG. 6 is a flowchart showing a fuel selection process according to the fourth embodiment of the present invention, which is executed by the CPU of the PCM 101. The fuel selection process is a process of selecting either gaseous fuel or liquid fuel as the fuel for the engine 6, and is combined with the first to third embodiments.

S31では車両の状況(各燃料の残量、走行制御の内容等)に応じて気体燃料又は液体燃料を自動選択する。S32ではエンジン6の燃料の切換が可能な状況(各燃料の残量が十分か否か、走行制御上支障がないか等)かを判定する。該当する場合はS33へ進み、該当しない場合は一単位の処理を終了する。   In S31, a gaseous fuel or a liquid fuel is automatically selected according to the state of the vehicle (remaining amount of each fuel, content of travel control, etc.). In S32, it is determined whether or not the fuel of the engine 6 can be switched (whether the remaining amount of each fuel is sufficient, whether or not there is any problem in traveling control, etc.). If applicable, the process proceeds to S33, and if not, one unit of processing is terminated.

S33では燃料切換スイッチ106に対する乗員の操作の有無を判定する。操作があった場合はS34へ進み、操作がない場合はS35へ進む。S34ではエンジン6の燃料を切り換える。   In S33, it is determined whether or not an occupant has operated the fuel selector switch 106. If there is an operation, the process proceeds to S34, and if there is no operation, the process proceeds to S35. In S34, the fuel of the engine 6 is switched.

S35では電動ファン9が作動中であるか否かを判定する。該当する場合はS36へ進み、該当しない場合は一単位の処理を終了する。S36ではエンジン6の燃料を自動的に気体燃料を選択する。以上により一単位の処理を終了する。   In S35, it is determined whether or not the electric fan 9 is operating. If applicable, the process proceeds to S36, and if not, one unit of processing is terminated. In S36, the fuel of the engine 6 is automatically selected as the gaseous fuel. Thus, one unit of processing is completed.

このように本実施形態では電動ファン9による送風時にエンジン6の燃料として気体燃料が自動的に選択される。エンジン6の燃料が気体燃料の場合、減圧弁4aによる気体燃料の減圧に伴う冷熱をバッテリ7の冷却に活用でき、バッテリ7の温度上昇をより一層効果的に抑制できる。   Thus, in this embodiment, gaseous fuel is automatically selected as the fuel for the engine 6 when the electric fan 9 blows air. When the fuel of the engine 6 is gaseous fuel, the cold heat accompanying the decompression of the gaseous fuel by the pressure reducing valve 4a can be utilized for cooling the battery 7, and the temperature rise of the battery 7 can be more effectively suppressed.

本発明の制御装置が適用可能なハイブリッド車両Aのブロック図である。1 is a block diagram of a hybrid vehicle A to which a control device of the present invention can be applied. 本発明の一実施形態に係る制御装置100のブロック図である。It is a block diagram of control device 100 concerning one embodiment of the present invention. (a)はPCM101のCPUが実行するバッテリ冷却処理を示すフローチャート、(b)は閾値温度tの説明図である。(A) is a flowchart which shows the battery cooling process which CPU of PCM101 performs, (b) is explanatory drawing of threshold temperature t. PCM101のCPUが実行する、本発明の第2実施形態に係るバッテリ冷却処理を示すフローチャートである。It is a flowchart which shows the battery cooling process which concerns on 2nd Embodiment of this invention which CPU of PCM101 performs. (a)はPCM101のCPUが実行する、本発明の第3実施形態に係るバッテリ冷却処理を示すフローチャート、(b)は電動ファン9の風量の説明図である。(A) is a flowchart which shows the battery cooling process which concerns on 3rd Embodiment of this invention which CPU of PCM101 performs, (b) is explanatory drawing of the air volume of the electric fan 9. FIG. PCM101のCPUが実行する、本発明の第4実施形態に係る燃料選択処理を示すフローチャートである。It is a flowchart which shows the fuel selection process which concerns on 4th Embodiment of this invention which CPU of PCM101 performs.

符号の説明Explanation of symbols

A ハイブリッド車両
M1、M2 モータ
4 気体燃料タンク
4a 減圧弁
5 電動ファン
6 エンジン
7 バッテリ
100 制御装置
102 タンク温度センサ
103 タンク圧力センサ
104 バッテリ温度センサ
A Hybrid vehicle M1, M2 Motor 4 Gaseous fuel tank 4a Pressure reducing valve 5 Electric fan 6 Engine 7 Battery 100 Controller 102 Tank temperature sensor 103 Tank pressure sensor 104 Battery temperature sensor

Claims (6)

気体燃料を圧縮状態で貯蔵する気体燃料タンクと、前記気体燃料タンクに貯蔵された前記気体燃料により駆動するエンジンと、車両の駆動力を出力可能なモータと、前記モータに電力を供給するバッテリと、を備えたハイブリッド車両の制御装置であって、
前記気体燃料タンクの温度を検出するタンク温度検出手段と、
前記バッテリの温度を検出するバッテリ温度検出手段と、
前記バッテリ温度検出手段が検出した温度が閾値温度よりも高い場合に前記バッテリに送風して冷却するバッテリ冷却手段と、
前記タンク温度検出手段が検出した温度に応じて前記閾値温度を設定する閾値温度設定手段と、
を備え、
前記閾値温度設定手段は、前記タンク温度検出手段が検出した温度が高い場合には低い場合よりも前記閾値温度を低く設定することを特徴とする制御装置。
A gaseous fuel tank for storing gaseous fuel in a compressed state, an engine driven by the gaseous fuel stored in the gaseous fuel tank, a motor capable of outputting a driving force of a vehicle, and a battery for supplying electric power to the motor A control device for a hybrid vehicle comprising:
Tank temperature detecting means for detecting the temperature of the gaseous fuel tank;
Battery temperature detecting means for detecting the temperature of the battery;
Battery cooling means for blowing and cooling the battery when the temperature detected by the battery temperature detection means is higher than a threshold temperature;
Threshold temperature setting means for setting the threshold temperature according to the temperature detected by the tank temperature detection means;
With
The threshold temperature setting means sets the threshold temperature lower when the temperature detected by the tank temperature detection means is higher than when the temperature is low.
気体燃料を圧縮状態で貯蔵する気体燃料タンクと、前記気体燃料タンクに貯蔵された前記気体燃料により駆動するエンジンと、車両の駆動力を出力可能なモータと、前記モータに電力を供給するバッテリと、を備えたハイブリッド車両の制御装置であって、
前記気体燃料タンクの温度を検出するタンク温度検出手段と、
前記バッテリの温度を検出するバッテリ温度検出手段と、
前記バッテリ温度検出手段が検出した温度が閾値温度よりも高い場合に前記バッテリに送風して冷却するバッテリ冷却手段と、
前記気体燃料タンクに対する前記気体燃料の給燃を検出する給燃検出手段と、
を備え、
前記バッテリ冷却手段は、前記給燃検出手段が前記給燃を検出した場合に前記バッテリに送風することを特徴とする制御装置。
A gaseous fuel tank for storing gaseous fuel in a compressed state, an engine driven by the gaseous fuel stored in the gaseous fuel tank, a motor capable of outputting a driving force of a vehicle, and a battery for supplying electric power to the motor A control device for a hybrid vehicle comprising:
Tank temperature detecting means for detecting the temperature of the gaseous fuel tank;
Battery temperature detecting means for detecting the temperature of the battery;
Battery cooling means for blowing and cooling the battery when the temperature detected by the battery temperature detection means is higher than a threshold temperature;
Fuel supply detection means for detecting fuel supply of the gaseous fuel to the gaseous fuel tank;
With
The said battery cooling means ventilates to the said battery, when the said fuel supply detection means detects the said fuel supply, The control apparatus characterized by the above-mentioned.
気体燃料を圧縮状態で貯蔵する気体燃料タンクと、前記気体燃料タンクに貯蔵された前記気体燃料により駆動するエンジンと、車両の駆動力を出力可能なモータと、前記モータに電力を供給するバッテリと、を備えたハイブリッド車両の制御装置であって、
前記気体燃料タンクの温度を検出するタンク温度検出手段と、
前記バッテリの温度を検出するバッテリ温度検出手段と、
前記バッテリ温度検出手段が検出した温度が閾値温度よりも高い場合に前記バッテリに送風して冷却するバッテリ冷却手段と、
を備え、
前記バッテリ冷却手段は、
前記バッテリ温度検出手段が検出した温度が高い場合には低い場合よりも風量を増大することを特徴とする制御装置。
A gaseous fuel tank for storing gaseous fuel in a compressed state, an engine driven by the gaseous fuel stored in the gaseous fuel tank, a motor capable of outputting a driving force of a vehicle, and a battery for supplying electric power to the motor A control device for a hybrid vehicle comprising:
Tank temperature detecting means for detecting the temperature of the gaseous fuel tank;
Battery temperature detecting means for detecting the temperature of the battery;
Battery cooling means for blowing and cooling the battery when the temperature detected by the battery temperature detection means is higher than a threshold temperature;
With
The battery cooling means is
The control device characterized in that when the temperature detected by the battery temperature detecting means is high, the air volume is increased as compared with a case where the temperature is low.
前記バッテリ冷却手段は、電動ファンを備えたことを特徴とする請求項1乃至3のいずれか1項に記載の制御装置。   The control apparatus according to claim 1, wherein the battery cooling unit includes an electric fan. 前記ハイブリッド車両が、前記気体燃料タンクと前記エンジンとの間の燃料供給通路に設けた減圧弁を備え、
前記バッテリ冷却手段は、
前記電動ファンが送風する空気を取り入れるダクトを有し、
前記ダクトの内部又は開口端部近傍に前記減圧弁が配置されていることを特徴とする請求項4に記載の制御装置。
The hybrid vehicle includes a pressure reducing valve provided in a fuel supply passage between the gaseous fuel tank and the engine,
The battery cooling means is
A duct for taking in air blown by the electric fan;
The control device according to claim 4, wherein the pressure reducing valve is disposed in the duct or in the vicinity of the opening end.
前記ハイブリッド車両が、液体燃料を貯蔵する液体燃料タンクを備え、
前記エンジンが、前記気体燃料と、前記液体燃料タンクに貯蔵された前記液体燃料と、のいずれかを選択的に燃料として駆動するデュアルフューエルエンジンであり、
前記制御装置は、
前記電動ファンによる送風時に、前記エンジンの燃料として前記気体燃料を選択する燃料選択手段を更に備えたことを特徴とする請求項5に記載の制御装置。
The hybrid vehicle includes a liquid fuel tank that stores liquid fuel;
The engine is a dual fuel engine that selectively drives either the gaseous fuel or the liquid fuel stored in the liquid fuel tank as fuel,
The controller is
The control device according to claim 5, further comprising a fuel selection unit that selects the gaseous fuel as fuel for the engine when the electric fan blows air.
JP2007023504A 2007-02-01 2007-02-01 Control device Expired - Fee Related JP4888141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007023504A JP4888141B2 (en) 2007-02-01 2007-02-01 Control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007023504A JP4888141B2 (en) 2007-02-01 2007-02-01 Control device

Publications (2)

Publication Number Publication Date
JP2008189070A true JP2008189070A (en) 2008-08-21
JP4888141B2 JP4888141B2 (en) 2012-02-29

Family

ID=39749596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007023504A Expired - Fee Related JP4888141B2 (en) 2007-02-01 2007-02-01 Control device

Country Status (1)

Country Link
JP (1) JP4888141B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011148444A (en) * 2010-01-22 2011-08-04 Mazda Motor Corp Front part structure of electric vehicle
JP2011148445A (en) * 2010-01-22 2011-08-04 Mazda Motor Corp Vehicle structure of electric vehicle
JP2012144208A (en) * 2011-01-14 2012-08-02 Denso Corp Cruising range extension device
JP2019131003A (en) * 2018-01-30 2019-08-08 トヨタ自動車株式会社 Vehicle lower part structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004232777A (en) * 2003-01-31 2004-08-19 Nissan Motor Co Ltd High-pressure gas cylinder for vehicle
JP2006096174A (en) * 2004-09-29 2006-04-13 Toyota Industries Corp Hydrogen station and vehicle
JP2006250024A (en) * 2005-03-10 2006-09-21 Mazda Motor Corp Fuel leakage detection device for gaseous fuel engine
JP2007015419A (en) * 2005-07-05 2007-01-25 Mazda Motor Corp Battery cooling device for vehicle provided with hydrogen fuel tank

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004232777A (en) * 2003-01-31 2004-08-19 Nissan Motor Co Ltd High-pressure gas cylinder for vehicle
JP2006096174A (en) * 2004-09-29 2006-04-13 Toyota Industries Corp Hydrogen station and vehicle
JP2006250024A (en) * 2005-03-10 2006-09-21 Mazda Motor Corp Fuel leakage detection device for gaseous fuel engine
JP2007015419A (en) * 2005-07-05 2007-01-25 Mazda Motor Corp Battery cooling device for vehicle provided with hydrogen fuel tank

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011148444A (en) * 2010-01-22 2011-08-04 Mazda Motor Corp Front part structure of electric vehicle
JP2011148445A (en) * 2010-01-22 2011-08-04 Mazda Motor Corp Vehicle structure of electric vehicle
JP2012144208A (en) * 2011-01-14 2012-08-02 Denso Corp Cruising range extension device
JP2019131003A (en) * 2018-01-30 2019-08-08 トヨタ自動車株式会社 Vehicle lower part structure

Also Published As

Publication number Publication date
JP4888141B2 (en) 2012-02-29

Similar Documents

Publication Publication Date Title
JP4893475B2 (en) Air conditioning control device for hybrid vehicle
JP5783080B2 (en) Control device for hybrid vehicle
US10160307B2 (en) System and method for controlling motor temperature for green car
JP5998506B2 (en) Control device for hybrid vehicle
EP1738947B1 (en) Hybrid vehicle
JP5928683B2 (en) Electric vehicle power supply control device
AU2002302166B2 (en) Hybrid vehicle and control method therefor
JP5090738B2 (en) Fuel supply device and fuel supply method
JP6767673B2 (en) Hybrid vehicle control device
US7513325B2 (en) Method for operating a hybrid motor vehicle
JP6725880B2 (en) Control device for hybrid vehicle
JP4193371B2 (en) Battery capacity control device
CN105691143B (en) Vehicular system and method with improved heating properties
JP3156582U (en) Hybrid industrial vehicle
US9233595B2 (en) Method of controlling heating of hybrid electric vehicle
CA2888029A1 (en) Power generation control device
US20190283730A1 (en) Control system for hybrid vehicle
CN104108390A (en) Hybrid vehicle and control method thereof
US6624527B1 (en) Method and apparatus for reducing engine cycling in hybrid electric vehicle
JP4888141B2 (en) Control device
JP2008101526A (en) Control device of hybrid vehicle
JP5042816B2 (en) Internal combustion engine control device
JP4844417B2 (en) Control device
JP4626161B2 (en) Cooling device for electric equipment mounted on vehicle
JP5350986B2 (en) Vehicle drive system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100115

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101001

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111128

R150 Certificate of patent or registration of utility model

Ref document number: 4888141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees