JP2008188646A - Method for detecting abnormality in plastic working, working system, and ae detector - Google Patents

Method for detecting abnormality in plastic working, working system, and ae detector Download PDF

Info

Publication number
JP2008188646A
JP2008188646A JP2007026704A JP2007026704A JP2008188646A JP 2008188646 A JP2008188646 A JP 2008188646A JP 2007026704 A JP2007026704 A JP 2007026704A JP 2007026704 A JP2007026704 A JP 2007026704A JP 2008188646 A JP2008188646 A JP 2008188646A
Authority
JP
Japan
Prior art keywords
abnormality
time
frequency
signal
power difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007026704A
Other languages
Japanese (ja)
Other versions
JP4959360B2 (en
Inventor
Kazuo Meki
一男 目木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP2007026704A priority Critical patent/JP4959360B2/en
Publication of JP2008188646A publication Critical patent/JP2008188646A/en
Application granted granted Critical
Publication of JP4959360B2 publication Critical patent/JP4959360B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To correctly judge the generation of abnormality in plastic working. <P>SOLUTION: In the working system provided with a plastic working device 10, an AE sensor 21 and an AE signal processing section 22, the AE signal processing section includes: an A/D converter 33; a frequency analysis unit 34 analyzing the frequency characteristics of digital AE signals, and calculating the powers to frequencies per unit time; a memory unit 38 memorizing data obtained regarding the powers to frequencies per unit time upon normal time by time series as standard data; and a difference calculation unit 35 calculating power differences with the standard data in each frequency of the digital AE signals detected per unit time, adding the power differences in each frequency, and calculating power differences per unit time, so as to calculate power differences by time series. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、プレス機などの塑性加工装置の異常を検出する塑性加工異常検出方法、加工システム、及びAE(Acoustic Emission)センサを有するAE検出装置に関する。   The present invention relates to a plastic working abnormality detection method for detecting an abnormality in a plastic working apparatus such as a press machine, a working system, and an AE detection apparatus having an AE (Acoustic Emission) sensor.

プレス機などでは、金型の摩耗や金型の一部が破損するなどにより、加工異常が発生する場合がある。このような加工異常は、従来、目視などで加工品を検査することにより発見していた。しかし、プレス機などによる加工は高速で行われており、異常が生じてから加工品異常に発見されるまでにはかなりの時間が経過するため、その間に多数の加工品が不良になるという問題があった。そのため、プレス機などの塑性加工装置の加工中に加工異常を発見できるようにすることが望まれていた。   In a press machine or the like, a processing abnormality may occur due to wear of the mold or damage to a part of the mold. Conventionally, such processing abnormality has been found by inspecting a processed product visually. However, processing with a press machine is performed at high speed, and since a considerable amount of time elapses between the occurrence of an abnormality and the detection of an abnormality in the processed product, many processed products become defective during that time. was there. Therefore, it has been desired to make it possible to find a processing abnormality during processing of a plastic processing apparatus such as a press machine.

特許文献1は、塑性加工装置にAEセンサを設けて、塑性加工装置の構造物において発する弾性波をAEセンサにより検出し、良品加工時の弾性波と比較して塑性加工部品の異常の有無及び異常の判別を行う際に、弾性波を毎回の加工開始から複数の弾性波に対応した複数の時間部分に分け、各時間部分ごとの弾性波で評価を行うことを記載している。   In Patent Document 1, an AE sensor is provided in a plastic processing apparatus, and an elastic wave generated in a structure of the plastic processing apparatus is detected by the AE sensor. It is described that when an abnormality is determined, an elastic wave is divided into a plurality of time portions corresponding to a plurality of elastic waves from the start of machining each time, and evaluation is performed with the elastic waves for each time portion.

AEセンサは、対象とする周波数などに応じて各種の方式があるが、塑性装置で使用するAEセンサは、数十kHz〜数百MHzの超音波領域を対象とし、圧電素子などで構成される。   There are various types of AE sensors depending on the target frequency, but the AE sensor used in the plastic apparatus is intended for an ultrasonic region of several tens of kHz to several hundreds of MHz, and is composed of a piezoelectric element or the like. .

以下、プレス機における加工を例として説明するが、本発明はこれに限定されるものではなく、塑性加工装置であればどのようなものにも適用可能である。   Hereinafter, processing in a press machine will be described as an example. However, the present invention is not limited to this, and can be applied to any plastic processing apparatus.

AEセンサについては、NDISのNo.2106−79、2106−91などに、AEセンサを使用した研削盤については、特許文献1などに記載されているように、広く知られているので、ここではAEセンサ及びプレス機の詳しい説明は省略し、本発明に直接関係する部分についてのみ説明する。   For AE sensors, NDIS No. Since the grinding machines using the AE sensor in 2106-79, 2106-91 and the like are widely known as described in Patent Document 1 and the like, the detailed explanation of the AE sensor and the press machine is here. Only the portions directly related to the present invention will be described.

特開2004−358487号公報JP 2004-358487 A

塑性加工装置に設けたAEセンサから出力信号(AE信号)は、加工開始からの経過時間に応じて変化し、信号が大きくなる部分(山部分)が複数生じる。そのため、特許文献1に記載されたように、AE信号を複数の弾性波に対応した複数の時間部分に分けて部分ごとに比較するのは効果的と思われるが、実際には比較が難しく、異常発生を判定するのが難しいという問題があった。   An output signal (AE signal) from an AE sensor provided in the plastic working apparatus changes according to an elapsed time from the start of machining, and a plurality of portions (peak portions) where the signal becomes large are generated. Therefore, as described in Patent Document 1, it seems effective to divide the AE signal into a plurality of time parts corresponding to a plurality of elastic waves and compare the parts for each part. There was a problem that it was difficult to determine the occurrence of an abnormality.

本発明は、このような問題を解決して、異常発生をより適確に判定できるようにすることを目的とする。   An object of the present invention is to solve such a problem and to more accurately determine the occurrence of an abnormality.

上記目的を実現するため、本発明は、正常な塑性加工が行われた時のAEセンサの出力信号の単位時間ごとの周波数解析を時系列で行って、単位時間ごとの周波数に対するパワーを時系列で演算して基準データとして記憶し、塑性加工が行われた時のAEセンサの出力信号の周波数解析を同様に行って、単位時間ごとに各周波数における基準データとのパワー差を演算し、各周波数におけるパワー差を合わせて単位時間ごとの積算パワー差を演算することにより、時系列で積算パワー差を演算する。そして、この積算パワー差の時系列変化から塑性加工における異常を検出する。   In order to achieve the above object, the present invention performs frequency analysis for each unit time of the output signal of the AE sensor when normal plastic working is performed in time series, and calculates the power for the frequency for each unit time in time series. Is calculated and stored as reference data, the frequency analysis of the output signal of the AE sensor when plastic processing is performed is performed in the same manner, and the power difference from the reference data at each frequency is calculated for each unit time. By integrating the power difference in frequency and calculating the integrated power difference per unit time, the integrated power difference is calculated in time series. Then, an abnormality in the plastic working is detected from the time series change of the integrated power difference.

特許文献1に記載されたように、塑性加工装置に設けられたAEセンサの出力信号は、異常がある場合に変化するが、AEセンサから出力された電圧信号のままでは差が十分に明瞭とはいえない。これに対して、本発明のように、AEセンサの出力信号の単位時間ごとの周波数解析を時系列で行って、単位時間ごとに各周波数における基準データとのパワー差を演算し、各周波数におけるパワー差を合わせて単位時間ごとの積算パワー差を演算して積算パワー差の時系列変化を得ると、塑性加工における異常が明瞭に検出できることが分かった。   As described in Patent Document 1, the output signal of the AE sensor provided in the plastic working apparatus changes when there is an abnormality, but the difference is sufficiently clear if the voltage signal output from the AE sensor remains as it is. I can't say that. On the other hand, as in the present invention, the frequency analysis for each unit time of the output signal of the AE sensor is performed in time series, the power difference with the reference data at each frequency is calculated for each unit time, and the frequency at each frequency is calculated. It was found that when the integrated power difference per unit time was calculated by combining the power difference and the time series change of the integrated power difference was obtained, abnormality in plastic working could be detected clearly.

また、本発明のAE検出装置は、塑性加工装置の異常を検出するAE検出装置であって、AEセンサと、AEセンサの出力するAE信号を処理するAE信号処理部と、を備え、AE信号処理部は、AE信号をデジタル信号に変換するA/D変換器と、デジタルAE信号の周波数特性を解析して単位時間ごとに周波数に対するパワーを演算する周波数解析部と、塑性加工装置において正常な加工が行われた時の単位時間ごとの周波数に対するパワーを時系列で求めたデータを基準データとして記憶する記憶部と、単位時間ごとに検出したデジタルAE信号の各周波数における基準データとのパワー差を演算し、各周波数におけるパワー差を合わせて単位時間ごとの積算パワー差を演算することにより、時系列で積算パワー差を演算する差演算部と、を備えることを特徴とする。   An AE detection apparatus according to the present invention is an AE detection apparatus that detects an abnormality in a plastic working apparatus, and includes an AE sensor and an AE signal processing unit that processes an AE signal output from the AE sensor. The processing unit is normal in an A / D converter that converts an AE signal into a digital signal, a frequency analysis unit that analyzes a frequency characteristic of the digital AE signal and calculates power with respect to a frequency per unit time, and a plastic processing apparatus. A power difference between a storage unit that stores, as reference data, data obtained in time series for power for a frequency per unit time when processing is performed, and reference data at each frequency of a digital AE signal detected per unit time A difference calculator that calculates the integrated power difference in time series by calculating the integrated power difference per unit time by combining the power differences at each frequency , Characterized in that it comprises a.

更に、本発明の加工システムは、塑性加工装置と、上記のAE検出装置と、を有し、塑性加工装置の異常を検出可能にしたものである。   Furthermore, the processing system of the present invention has a plastic processing device and the AE detection device described above, and can detect an abnormality in the plastic processing device.

異常発生と判定する方法は、塑性加工の対象物や塑性加工装置により各種考えられ、条件に応じて適宜設定することが望ましいが、例えば、積算パワー差の時系列変化の総量が所定値以上の時に、異常発生と判定する。   There are various methods for determining the occurrence of an abnormality, depending on the object of plastic processing and the plastic processing apparatus, and it is desirable to set appropriately according to the conditions. For example, the total amount of time series change of the integrated power difference is a predetermined value or more. Sometimes it is determined that an abnormality has occurred.

また、ある塑性加工の対象物や塑性加工装置では、異常の種類に応じて積算パワー差の時系列変化パターンが異なることが確認されており、異常の種類に応じた積算パワー差の時系列変化パターンを異常対応パターンとして記憶しておき、演算した積算パワー差の時系列変化をこれと比較して類似している異常対応パターンから異常の種類を判定することができる。   In addition, it has been confirmed that the time series change pattern of the integrated power difference differs depending on the type of abnormality in a certain plastic processing object or plastic processing apparatus, and the time series change of the integrated power difference according to the type of abnormality is confirmed. The pattern can be stored as an abnormality response pattern, and the time series change of the calculated integrated power difference can be compared with this to determine the type of abnormality from the similar abnormality response pattern.

本発明によれば、塑性加工における異常発生が加工中に明瞭に検出できるので、塑性加工の品質管理が改善され、不良加工品の発生を低減できる。   According to the present invention, the occurrence of abnormality in plastic processing can be clearly detected during processing, so the quality control of plastic processing is improved and the generation of defective processed products can be reduced.

図1は、本発明の実施例の塑性加工システムの全体構成を示す図である。参照番号10は塑性加工装置を示し、ここでは塑性加工装置としてプレス機が示されている。プレス機10は、プレスベット11と、プレスベット11に設けられた下金型12と、上移動部14と、上移動部14に取り付けられた上金型15と、上移動部14に対して上下動可能に設けられたストリッパー17と、ストリッパー17に設けられた押さえ部18と、ストリッパー17を下方向に加圧するバネ19と、加工機制御装置20と、を有する。下金型12には、雌型に相当する穴13が設けられ、上金型15には雄型に相当する突起部(ピン)16が設けられている。他にも下金型12と上金型15とを合わせるためのガイドなどが設けられるが、図示を省略している。   FIG. 1 is a diagram showing an overall configuration of a plastic working system according to an embodiment of the present invention. Reference numeral 10 indicates a plastic working apparatus, and here, a press machine is shown as the plastic working apparatus. The press machine 10 includes a press bed 11, a lower mold 12 provided on the press bed 11, an upper moving unit 14, an upper mold 15 attached to the upper moving unit 14, and the upper moving unit 14. It has a stripper 17 provided so as to be movable up and down, a pressing part 18 provided on the stripper 17, a spring 19 for pressurizing the stripper 17 downward, and a processing machine control device 20. The lower mold 12 is provided with a hole 13 corresponding to a female mold, and the upper mold 15 is provided with a projection (pin) 16 corresponding to a male mold. In addition, a guide for aligning the lower mold 12 and the upper mold 15 is provided, but the illustration is omitted.

下金型12の上に加工対象である薄板のワークWを載置し、上移動部14を上死点から下死点に向かって移動させると、まず押さえ部18がワークWの表面に接触してワークWを押さえる。上移動部14が更に下方向に移動すると、ストリッパー17はバネ19が縮み上移動部14に対して相対的に移動し、押さえ部18がワークWをそのまま押さえる。そして、上金型15の突起部16がワークWの表面に接触し、更に下側に移動すると、突起部16がワークWをせん断して下金型12の穴13内に入り、上移動部14は下死点に到達する。その後、上移動部14は上死点に向かって上昇する。このようにして、ワークWのプレス加工が行われ、以下ワークWを入れ替えて同様の動作が繰り返される。加工機制御装置20は、オペレータのスイッチ操作に応じて、上移動部14を上死点から下死点、さらに下死点から上死点に移動させて停止させるように制御する。   When a thin workpiece W to be processed is placed on the lower mold 12 and the upper moving portion 14 is moved from the top dead center toward the bottom dead center, the pressing portion 18 first contacts the surface of the workpiece W. And hold the work W. When the upper moving part 14 moves further downward, the spring 19 contracts in the stripper 17 and moves relative to the upper moving part 14, and the pressing part 18 holds the work W as it is. When the protrusion 16 of the upper mold 15 comes into contact with the surface of the workpiece W and moves further downward, the protrusion 16 shears the workpiece W and enters the hole 13 of the lower mold 12, and the upper movement portion 14 reaches bottom dead center. Thereafter, the upper moving part 14 rises toward the top dead center. In this way, the press work of the workpiece W is performed, and thereafter the same operation is repeated by replacing the workpiece W. The processing machine control device 20 controls the upper moving unit 14 to move from the top dead center to the bottom dead center, and further from the bottom dead center to the top dead center, and stop in accordance with the operator's switch operation.

本実施例の塑性加工システムでは、プレス機10のプレスベット11に設けられたAEセンサ21と、AEセンサ21の出力信号を処理するAE信号処理装置22と、が更に設けられている。AE信号処理装置22は、加工機制御装置20からの動作開始信号を受けて処理を行う。また、AE信号処理装置22は、加工異常を検出すると、その情報を加工機制御装置20に送り、加工機制御装置20は動作を停止してこの情報を操作パネル等の表示部に表示する。   In the plastic working system of the present embodiment, an AE sensor 21 provided on the press bed 11 of the press machine 10 and an AE signal processing device 22 for processing an output signal of the AE sensor 21 are further provided. The AE signal processing device 22 receives the operation start signal from the processing machine control device 20 and performs processing. Further, when the AE signal processing device 22 detects a processing abnormality, the AE signal processing device 22 sends the information to the processing machine control device 20, and the processing machine control device 20 stops its operation and displays this information on a display unit such as an operation panel.

AEセンサ21は、どのようなものでもよいが、プレス加工に特徴的に発生するAE波の検出感度を相対的に高くするため、低周波数領域の機械振動を検出しないように低周波数領域の感度を低減したものであることが望ましい。また、実施例では、AEセンサ21はプレスベット11に設けられたが、弾性波が検出できればどのような位置でもよく、所望の周波数領域の弾性波が高感度で検出できる位置が適宜選定される。   The AE sensor 21 may be any type, but in order to relatively increase the detection sensitivity of the AE wave generated characteristically in the press working, the sensitivity in the low frequency region is not detected so that the mechanical vibration in the low frequency region is not detected. It is desirable to reduce this. In the embodiment, the AE sensor 21 is provided on the press bed 11. However, any position may be used as long as an elastic wave can be detected, and a position where an elastic wave in a desired frequency region can be detected with high sensitivity is appropriately selected. .

図2は、AE信号処理装置22の構成を示す図である。図示のように、AE信号処理装置22は、AEセンサ21の出力するアナログAE信号から、AE波の対象とする周波数範囲、例えば20kHz〜500kHzの範囲の信号を通過させ、それ以外の周波数の信号を遮断するバンドパスフィルタ31と、バンドパスフィルタ31を通過した信号を所定の強度に増幅する可変ゲインアンプ32と、可変ゲインアンプ32から出力されたアナログ信号をデジタルAE信号に変換するA/D変換器33と、A/D変換器33から出力されたデジタルAE信号に対して周波数解析を行うFFT(高速フーリエ変換器)34と、FFT34の出力するAE信号の周波数特性に対して所定の処理(ここでは減算処理と積分処理)を行うスペクトラムサブストラクションメソッド(SSM)35と、SSM35の出力が所定値以上であるかを判定して所定値以上の時に接触検出信号を出力すると共に、SSM35の出力パターンから異常の種類を判定する判定部36と、FFT34とSSM35と判定部36とを制御するAE処理制御部37と、メモリ38とを有する。FFT34、SSM35、判定部36及びAE処理制御部37は、デジタル・シグナル・プロセッサ(DSP)39で構成され、メモリ38はDSPが動作するための動作メモリである。DSP39は、加工機制御装置15に異常検出信号を出力すると共に、加工機制御装置15から動作開始信号を受ける。なお、FFT34、SSM35及び判定部36をDSPで実現し、AE処理制御部37はマイクロコンピュータなどで実現することも可能である。DSPを使用した周波数解析処理については広く知られているので、これ以上の説明は省略する。   FIG. 2 is a diagram illustrating a configuration of the AE signal processing device 22. As shown in the figure, the AE signal processing device 22 passes a signal in the frequency range targeted for the AE wave, for example, in the range of 20 kHz to 500 kHz, from the analog AE signal output from the AE sensor 21, and signals having other frequencies. A band-pass filter 31 that cuts off the signal, a variable gain amplifier 32 that amplifies the signal that has passed through the band-pass filter 31 to a predetermined intensity, and an A / D that converts an analog signal output from the variable gain amplifier 32 into a digital AE signal. Predetermined processing for the frequency characteristics of the converter 33, the FFT (Fast Fourier Transformer) 34 that performs frequency analysis on the digital AE signal output from the A / D converter 33, and the AE signal output from the FFT 34 A spectrum subtraction method (SSM) 35 for performing (subtraction processing and integration processing here), and SSM 35 And the contact detection signal is output when the output is greater than or equal to a predetermined value, and the determination unit 36 for determining the type of abnormality from the output pattern of the SSM 35, the FFT 34, the SSM 35, and the determination unit 36 An AE processing control unit 37 for controlling the memory and a memory 38. The FFT 34, the SSM 35, the determination unit 36, and the AE processing control unit 37 are configured by a digital signal processor (DSP) 39, and the memory 38 is an operation memory for operating the DSP. The DSP 39 outputs an abnormality detection signal to the processing machine control device 15 and receives an operation start signal from the processing machine control device 15. Note that the FFT 34, the SSM 35, and the determination unit 36 can be realized by a DSP, and the AE processing control unit 37 can be realized by a microcomputer or the like. Since frequency analysis processing using a DSP is widely known, further explanation is omitted.

次に、A/D変換器33及びFFT34での処理について図3及び図4を参照して説明する。   Next, processing in the A / D converter 33 and the FFT 34 will be described with reference to FIGS.

図3に示すように、A/D変換器33は、可変ゲインアンプ32から出力されたアナログAE信号を1μsごとに(1MHzで)サンプリングしてデジタル信号(AEデータ信号)に変換する。FFT34は、AEデータ信号を256μsの単位時間ごとに、すなわち256個のサンプリングデータごとに、FFT(高速フーリエ変換)処理を行い、単位時間ごとにAEデータ信号の周波数特性(周波数に対するパワー)を演算する。これにより、プレス機の動作開始から256μsの時系列で単位時間ごとに、AEデータ信号の周波数特性(周波数に対するパワー)が演算される。図4はこの時系列の周波数特性を示す。   As shown in FIG. 3, the A / D converter 33 samples the analog AE signal output from the variable gain amplifier 32 every 1 μs (at 1 MHz) and converts it into a digital signal (AE data signal). The FFT 34 performs an FFT (Fast Fourier Transform) process on the AE data signal every 256 μs unit time, that is, every 256 sampling data, and calculates the frequency characteristics (power relative to the frequency) of the AE data signal per unit time. To do. Thereby, the frequency characteristic (power with respect to the frequency) of the AE data signal is calculated for each unit time in a time series of 256 μs from the start of the operation of the press. FIG. 4 shows this time-series frequency characteristic.

本発明では、正常なプレス加工が行われた時の時系列の周波数特性を基準データとして記憶しておき、通常の加工時に同様の処理で時系列の周波数特性を求め、各単位時間ごとに、各周波数ごとの基準データとの差を求める。言い換えれば、各単位時間で周波数ごとの基準データとのパワー差を、時系列で求める。そして、単位時間ごとにパワー差の2乗和の平方根を求める。これにより、単位時間ごとの積算パワー差が時系列で求まる。なお、ここではパワー差の2乗和の平方根を求めたが、これに限らず単位時間ごとのパワー差が表せる算出方法であればよい。   In the present invention, the time-series frequency characteristics when normal pressing is performed are stored as reference data, and the time-series frequency characteristics are obtained by the same processing during normal processing, for each unit time, The difference from the reference data for each frequency is obtained. In other words, the power difference from the reference data for each frequency in each unit time is obtained in time series. Then, the square root of the sum of squares of the power difference is obtained every unit time. Thereby, the integrated power difference for each unit time is obtained in time series. Here, the square root of the sum of squares of the power difference is obtained. However, the present invention is not limited to this, and any calculation method that can express the power difference per unit time may be used.

図5は、実施例の塑性加工システムで上記のような処理を行なって求めた時系列の積算パワー差の例を示す図であり、横軸が経過時間で、縦軸が積算パワーである。(A)は、基準データを求めた直後に同じ条件でプレス加工を行った時の正常加工データであり、(B)はワークWが下金型12から脱落した状態でプレス機を動作させた時のデータであり、(C)はカス上がり等によりプレス面に異物が混入した時のデータであり、(D)は上金型15のピン(突起部)16の一部が折損した時のデータである。   FIG. 5 is a diagram illustrating an example of a time-series integrated power difference obtained by performing the above-described processing in the plastic working system of the embodiment, where the horizontal axis represents elapsed time and the vertical axis represents integrated power. (A) is normal processing data when the press processing is performed under the same conditions immediately after obtaining the reference data, and (B) is the press machine operated in a state in which the workpiece W is detached from the lower mold 12. (C) is data when foreign matter is mixed in the press surface due to residue rise, etc. (D) is data when a part of the pin (projection) 16 of the upper mold 15 is broken. It is data.

(A)の場合は、すべての経過時間(1回の加工時間)全体に亘って積算パワー差が小さい。(B)の場合は、経過時間全体に亘って積算パワー差は大きくなっているが、特に長い経過時間の部分で大きな積算パワー差が生じていることが分かる。(C)の場合は、(B)の場合と同様に経過時間全体に亘って積算パワー差は大きくなっているが、長い経過時間の部分では(B)の場合ほど大きな積算パワー差は生じていない。(D)の場合は、中間の経過部分で(B)の場合より大きな積算パワー差を生じているが、長い経過時間の部分では(B)の場合ほど大きな積算パワー差は生じていない。   In the case of (A), the integrated power difference is small over the entire elapsed time (one machining time). In the case of (B), the accumulated power difference is large over the entire elapsed time, but it can be seen that a large accumulated power difference is generated particularly in the portion of the long elapsed time. In the case of (C), the accumulated power difference is large over the entire elapsed time as in the case of (B), but in the portion of the long elapsed time, the larger accumulated power difference is generated as in (B). Absent. In the case of (D), a larger integrated power difference is generated in the intermediate elapsed part than in the case of (B), but in the part of the long elapsed time, the integrated power difference is not as large as in the case of (B).

図5に示すように、異常の種類により時系列の積算パワー差パターンが異なるので、時系列の積算パワー差パターンから異常の種類を特定することが可能である。   As shown in FIG. 5, the time-series integrated power difference pattern varies depending on the type of abnormality, so that the type of abnormality can be specified from the time-series integrated power difference pattern.

図6は、実施例のAE信号処理装置22の処理を説明するフローチャートである。   FIG. 6 is a flowchart illustrating the processing of the AE signal processing device 22 according to the embodiment.

ここでは、異常の種類に対応させて時系列の積算パワー差パターンをあらかじめ求めておき、メモリ38に記憶しておくものとする。   Here, it is assumed that a time-series integrated power difference pattern corresponding to the type of abnormality is obtained in advance and stored in the memory 38.

ステップ101では、正常な加工が行える状態で1回の加工を行い、FF34でその正常時の加工におけるAEセンサ信号の周波数特性を時系列で求める。   In step 101, processing is performed once in a state where normal processing can be performed, and the frequency characteristics of the AE sensor signal in the normal processing are obtained in time series by the FF.

ステップ102では、AE処理制御部37は、ステップ101で求めた時系列の周波数特性を基準データとして記憶する。   In step 102, the AE processing control unit 37 stores the time-series frequency characteristics obtained in step 101 as reference data.

以上のステップ101と102が準備段階であり、ステップ103以降通常のプレス加工が行われる。   The above steps 101 and 102 are the preparation stage, and normal press working is performed after step 103.

ステップ103では、1回の加工ごとに、FF34でその加工におけるAEセンサ信号の時系列の周波数特性を求める。   In step 103, for each processing, the time series frequency characteristics of the AE sensor signal in the processing are obtained by the FF.

ステップ104では、SSM35が、各単位時間ごとに、ステップ103で求めた各周波数ごとの基準データとの差を求める。言い換えれば、各単位時間で周波数ごとの基準データとのパワー差を、時系列で求める。   In step 104, the SSM 35 obtains a difference from the reference data for each frequency obtained in step 103 for each unit time. In other words, the power difference from the reference data for each frequency in each unit time is obtained in time series.

ステップ105では、SSM35が、単位時間ごとにパワー差の2乗和の平方根を求める。これにより、単位時間ごとの積算パワー差が時系列で求まる。   In step 105, the SSM 35 obtains the square root of the sum of squares of the power difference every unit time. Thereby, the integrated power difference for each unit time is obtained in time series.

ステップ106では、判定部36が、ステップ105で求めた時系列の積算パワー差から異常発生を判定すると共に、ステップ105で求めた時系列の積算パワー差のパターンを、メモリ38に記憶した異常の種類に対応させた積算パワー差パターンと比較して異常の種類を判定する。異常発生と判定する方法は、塑性加工の対象物や塑性加工装置により各種考えられ、条件に応じて適宜設定することが望ましいが、ここでは、積算パワー差の時系列変化の総量が所定値以上の時に、異常発生と判定する。   In step 106, the determination unit 36 determines the occurrence of abnormality from the time-series integrated power difference obtained in step 105, and stores the time-series accumulated power difference pattern obtained in step 105 in the memory 38. The type of abnormality is determined by comparison with the integrated power difference pattern corresponding to the type. There are various methods for determining the occurrence of an abnormality depending on the plastic processing object and the plastic processing apparatus, and it is desirable to set appropriately according to the conditions, but here, the total amount of time series change of the integrated power difference is greater than or equal to a predetermined value It is determined that an abnormality has occurred.

ステップ107では、ステップ106で異常が発生したかを判定し、異常が発生していなければステップ103に戻り、異常が発生している時にはステップ108に進んで、加工機制御装置20に、異常発生及び異常の種類の情報を送る。これに応じて、加工機制御装置20はプレス機が動作しないようにした上で、操作部に設けられた表示や音響出力により、オペレータに異常の発生及び異常の種類を報知する。   In step 107, it is determined whether or not an abnormality has occurred in step 106. If no abnormality has occurred, the process returns to step 103. If an abnormality has occurred, the process proceeds to step 108 to cause the processing machine control device 20 to generate an abnormality. And send information on the type of anomaly. In response to this, the processing machine control device 20 prevents the press machine from operating, and notifies the operator of the occurrence of the abnormality and the type of abnormality by means of a display or sound output provided on the operation unit.

本発明は、塑性加工装置にAEセンサを設ける構成であれば、どのようなものにも適用可能である。   The present invention can be applied to any configuration as long as the AE sensor is provided in the plastic working apparatus.

図1は、本発明の実施例の加工システムの全体構成を示す図である。FIG. 1 is a diagram showing an overall configuration of a machining system according to an embodiment of the present invention. 図2は、AE信号処理装置の構成を示す図である。FIG. 2 is a diagram illustrating a configuration of the AE signal processing device. 図4は、AE信号のサンプリング及び処理周期を説明する図である。FIG. 4 is a diagram for explaining the sampling and processing cycle of the AE signal. 図4は、単位時間ごとの周波数特性を時系列で示す図である。FIG. 4 is a diagram showing the frequency characteristics for each unit time in time series. 図5は、各種の異常状態に対応する時系列の積算パワー差の例を示す図である。FIG. 5 is a diagram illustrating examples of time-series integrated power differences corresponding to various abnormal states. 図6は、実施例の加工システムにおけるAE信号処理装置の処理を示すフローチャートである。FIG. 6 is a flowchart illustrating processing of the AE signal processing device in the machining system according to the embodiment.

符号の説明Explanation of symbols

12 下金型
15 上金型
20 加工機制御装置
21 AEセンサ
22 AE信号処理装置
31 バンドパスフィルタ
33 A/D変換器
34 周波数解析部(FFT)
35 スペクトラムサブストラクションメソッド(SSM)
36 AE処理制御部
W ワーク
12 Lower mold 15 Upper mold 20 Processing machine control device 21 AE sensor 22 AE signal processing device 31 Band pass filter 33 A / D converter 34 Frequency analysis unit (FFT)
35 Spectrum Subtraction Method (SSM)
36 AE Processing Control Unit W Workpiece

Claims (9)

塑性加工装置に配設されたAEセンサの出力信号から塑性加工における異常を検出する塑性加工異常検出方法であって、
正常な塑性加工が行われた時の、前記AEセンサの出力信号の単位時間ごとの周波数解析を時系列で行って、単位時間ごとに周波数に対するパワーを時系列で演算し、
演算した正常な塑性加工時の周波数に対するパワーの時系列変化を基準データとして記憶し、
塑性加工が行われた時の、前記AEセンサの出力信号の単位時間ごとの周波数解析を時系列で行って、単位時間ごとの周波数に対するパワーを時系列で演算し、
単位時間ごとに各周波数における基準データとのパワー差を演算し、各周波数におけるパワー差を合わせて単位時間ごとの積算パワー差を演算することにより、時系列で積算パワー差を演算し、
積算パワー差の時系列変化から塑性加工における異常を検出することを特徴とする塑性加工異常検出方法。
A plastic working abnormality detecting method for detecting an abnormality in plastic working from an output signal of an AE sensor disposed in a plastic working apparatus,
When normal plastic working is performed, frequency analysis for each unit time of the output signal of the AE sensor is performed in time series, and power with respect to frequency is calculated in time series for each unit time,
Stores the time-series change of power with respect to the frequency at the time of normal plastic working as reference data,
When plastic processing is performed, frequency analysis per unit time of the output signal of the AE sensor is performed in time series, and power for the frequency per unit time is calculated in time series,
Calculate the power difference with the reference data at each frequency per unit time, calculate the integrated power difference per unit time by combining the power difference at each frequency, and calculate the integrated power difference in time series,
An abnormality detection method for plastic working, wherein abnormality in plastic working is detected from a time series change of the integrated power difference.
積算パワー差の時系列変化の総量が所定値以上の時に、異常発生と判定する請求項1に記載の塑性加工異常検出方法。   The plastic working abnormality detection method according to claim 1, wherein when the total amount of time series change of the integrated power difference is equal to or greater than a predetermined value, abnormality is determined. 異常の種類に応じて、積算パワー差の時系列変化パターンを記憶しておき、
演算した積算パワー差の時系列変化から塑性加工における異常の種類を検出する請求項1に記載の塑性加工異常検出方法。
Depending on the type of abnormality, memorize the time series change pattern of accumulated power difference,
The plastic working abnormality detection method according to claim 1, wherein a type of abnormality in plastic working is detected from a time series change of the calculated integrated power difference.
塑性加工装置と、
前記塑性加工装置に設けられたAEセンサと、
前記AEセンサの出力するAE信号を処理するAE信号処理部と、を備える加工システムにおいて、
前記AE信号処理部は、
前記AE信号をデジタル信号に変換するA/D変換器と、
デジタルAE信号の周波数特性を解析して単位時間ごとに周波数に対するパワーを演算する周波数解析部と、
前記塑性加工装置において正常な加工が行われた時の単位時間ごとの周波数に対するパワーを時系列で求めたデータを基準データとして記憶する記憶部と、
単位時間ごとに検出した前記デジタルAE信号の各周波数における基準データとのパワー差を演算し、各周波数におけるパワー差を合わせて単位時間ごとの積算パワー差を演算することにより、時系列で積算パワー差を演算する差演算部と、を備えることを特徴とする加工システム。
A plastic working device;
An AE sensor provided in the plastic working apparatus;
An AE signal processing unit that processes an AE signal output from the AE sensor;
The AE signal processing unit
An A / D converter for converting the AE signal into a digital signal;
A frequency analysis unit that analyzes the frequency characteristics of the digital AE signal and calculates the power for the frequency per unit time;
A storage unit that stores, as reference data, data obtained by time-series power with respect to frequency per unit time when normal processing is performed in the plastic processing apparatus;
By calculating the power difference from the reference data at each frequency of the digital AE signal detected every unit time, and calculating the integrated power difference per unit time by combining the power difference at each frequency, the integrated power in time series A machining system comprising: a difference calculation unit that calculates a difference.
前記AE信号処理部は、積算パワー差の時系列変化の総量が所定値以上であるかを判定して異常発生信号を出力する判定部を備える請求項4に記載の加工システム。   5. The processing system according to claim 4, wherein the AE signal processing unit includes a determination unit that determines whether or not a total amount of time series change of the integrated power difference is equal to or greater than a predetermined value and outputs an abnormality occurrence signal. 前記記憶部は、異常の種類に応じて、積算パワー差の時系列変化パターンを異常対応パターンとして記憶しており、
前記AE信号処理部の前記判定部は、積算パワー差の時系列変化パターンと前記異常対応パターンとを比較して類似している異常対応パターンから異常の種類を判定する請求項5に記載の加工システム。
According to the type of abnormality, the storage unit stores a time series change pattern of accumulated power difference as an abnormality corresponding pattern,
The processing according to claim 5, wherein the determination unit of the AE signal processing unit determines a type of abnormality from a similar abnormality correspondence pattern by comparing a time-series change pattern of an integrated power difference and the abnormality correspondence pattern. system.
塑性加工装置の異常を検出するAE検出装置であって、
前記塑性加工装置に設けられるAEセンサと、
前記AEセンサの出力するAE信号を処理するAE信号処理部と、を備え、
前記AE信号処理部は、
前記AE信号をデジタル信号に変換するA/D変換器と、
デジタルAE信号の周波数特性を解析して単位時間ごとに周波数に対するパワーを演算する周波数解析部と、
前記塑性加工装置において正常な加工が行われた時の単位時間ごとの周波数に対するパワーを時系列で求めたデータを基準データとして記憶する記憶部と、
単位時間ごとに検出した前記デジタルAE信号の各周波数における基準データとのパワー差を演算し、各周波数におけるパワー差を合わせて単位時間ごとの積算パワー差を演算することにより、時系列で積算パワー差を演算する差演算部と、を備えることを特徴とするAE検出装置。
An AE detection device for detecting an abnormality in a plastic working device,
An AE sensor provided in the plastic working apparatus;
An AE signal processing unit for processing an AE signal output from the AE sensor,
The AE signal processing unit
An A / D converter for converting the AE signal into a digital signal;
A frequency analysis unit that analyzes the frequency characteristics of the digital AE signal and calculates the power for the frequency per unit time;
A storage unit that stores, as reference data, data obtained by time-series power with respect to frequency per unit time when normal processing is performed in the plastic processing apparatus;
By calculating the power difference from the reference data at each frequency of the digital AE signal detected every unit time, and calculating the integrated power difference per unit time by combining the power difference at each frequency, the integrated power in time series An AE detection apparatus comprising: a difference calculation unit that calculates a difference.
前記AE信号処理部は、積算パワー差の時系列変化の総量が所定値以上であるかを判定して異常発生信号を出力する判定部を備える請求項7に記載のAE検出装置。   The AE detection apparatus according to claim 7, wherein the AE signal processing unit includes a determination unit that determines whether or not a total amount of time series change of the integrated power difference is equal to or greater than a predetermined value and outputs an abnormality occurrence signal. 前記記憶部は、異常の種類に応じて、積算パワー差の時系列変化パターンを異常対応パターンとして記憶しており、
前記AE信号処理部の前記判定部は、積算パワー差の時系列変化パターンと前記異常対応パターンとを比較して類似している異常対応パターンから異常の種類を判定する請求項8に記載のAE検出装置。
According to the type of abnormality, the storage unit stores a time series change pattern of accumulated power difference as an abnormality corresponding pattern,
The AE according to claim 8, wherein the determination unit of the AE signal processing unit determines a type of abnormality from a similar abnormality correspondence pattern by comparing a time series change pattern of an integrated power difference and the abnormality correspondence pattern. Detection device.
JP2007026704A 2007-02-06 2007-02-06 Abnormality detection method for plastic processing, processing system, and AE detection device Active JP4959360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007026704A JP4959360B2 (en) 2007-02-06 2007-02-06 Abnormality detection method for plastic processing, processing system, and AE detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007026704A JP4959360B2 (en) 2007-02-06 2007-02-06 Abnormality detection method for plastic processing, processing system, and AE detection device

Publications (2)

Publication Number Publication Date
JP2008188646A true JP2008188646A (en) 2008-08-21
JP4959360B2 JP4959360B2 (en) 2012-06-20

Family

ID=39749251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007026704A Active JP4959360B2 (en) 2007-02-06 2007-02-06 Abnormality detection method for plastic processing, processing system, and AE detection device

Country Status (1)

Country Link
JP (1) JP4959360B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5913724B1 (en) * 2008-12-19 2016-04-27 エスコム ホールディングス エスオーシー リミテッド Method and system for monitoring shaft signals of rotating machinery
JP2017028173A (en) * 2015-07-24 2017-02-02 株式会社東芝 Imprint device and imprint method
JP2018062000A (en) * 2016-10-14 2018-04-19 日本電産株式会社 Die abnormality prediction system, press having the same, and die abnormality prediction method
JP2019160860A (en) * 2018-03-08 2019-09-19 株式会社ディスコ Chuck table and machining apparatus having the same
JP7435103B2 (en) 2020-03-18 2024-02-21 株式会社リコー Diagnostic equipment, diagnostic method and diagnostic program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6803161B2 (en) 2015-07-07 2020-12-23 日本電産シンポ株式会社 Mold abnormality prediction system, press machine equipped with it, and mold abnormality prediction method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0542335A (en) * 1991-08-07 1993-02-23 Shinko Electric Ind Co Ltd Abnormality detector for metallic mold
JPH0777519A (en) * 1993-09-08 1995-03-20 Hitachi Ltd Method and system for automatically configuring abnormality diagnostic algorism
JP2005305541A (en) * 2004-04-22 2005-11-04 Takayoshi Yamamoto Method and apparatus for monitoring/controlling die machining
JP2007003385A (en) * 2005-06-24 2007-01-11 Japan Science & Technology Agency Diagnostic method for objective facility, computer program, and device for diagnosing objective facility

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0542335A (en) * 1991-08-07 1993-02-23 Shinko Electric Ind Co Ltd Abnormality detector for metallic mold
JPH0777519A (en) * 1993-09-08 1995-03-20 Hitachi Ltd Method and system for automatically configuring abnormality diagnostic algorism
JP2005305541A (en) * 2004-04-22 2005-11-04 Takayoshi Yamamoto Method and apparatus for monitoring/controlling die machining
JP2007003385A (en) * 2005-06-24 2007-01-11 Japan Science & Technology Agency Diagnostic method for objective facility, computer program, and device for diagnosing objective facility

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5913724B1 (en) * 2008-12-19 2016-04-27 エスコム ホールディングス エスオーシー リミテッド Method and system for monitoring shaft signals of rotating machinery
JP2017028173A (en) * 2015-07-24 2017-02-02 株式会社東芝 Imprint device and imprint method
JP2018062000A (en) * 2016-10-14 2018-04-19 日本電産株式会社 Die abnormality prediction system, press having the same, and die abnormality prediction method
JP2019160860A (en) * 2018-03-08 2019-09-19 株式会社ディスコ Chuck table and machining apparatus having the same
JP7184525B2 (en) 2018-03-08 2022-12-06 株式会社ディスコ Chuck table and processing equipment with chuck table
JP7435103B2 (en) 2020-03-18 2024-02-21 株式会社リコー Diagnostic equipment, diagnostic method and diagnostic program

Also Published As

Publication number Publication date
JP4959360B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
JP4959360B2 (en) Abnormality detection method for plastic processing, processing system, and AE detection device
JP6803161B2 (en) Mold abnormality prediction system, press machine equipped with it, and mold abnormality prediction method
KR101678353B1 (en) Abnormal sound detection device, abnormal processing-machine-sound detection system, and abnormal sound detection method
TWI637169B (en) Tool status detection system and method thereof
JP5106121B2 (en) Machining system, contact detection method, and AE contact detection device
JP7134652B2 (en) Anomaly detection method and anomaly detection device
JP4697023B2 (en) Press failure determination method, press failure determination system, and press molding apparatus
RU2014128655A (en) DIAGNOSTIC OF ELEVATOR MALFUNCTIONS AND ITS COMPONENTS BY MEANS OF A SENSOR
JP2016045808A (en) Abnormality detection system and method for manufacturing semiconductor device
JP6281273B2 (en) Acoustic device inspection apparatus, acoustic device inspection method, and acoustic device inspection program
JP5800289B2 (en) Clamping device management system
US7532951B2 (en) Method of automatically setting vibration suppression filter
TW202217257A (en) Punching abnormality detection system
JP2010266327A (en) Facility diagnosis device and facility diagnosis method
JP4661540B2 (en) Press monitoring system and AE evaluation method
JP2007152427A (en) Method and apparatus for determining press defect, and press forming apparatus
JP2010281806A (en) Method and device for detecting abnormality in press molding
JP4536620B2 (en) Defect determination method and defect determination device for press-worked product, and defect determination method and defect determination device for press-work mold
JP2007105838A (en) Device and method of abnormality detection for machining tool
US7054789B2 (en) Abnormality determination and estimation method for product of plastic working, and an abnormality determination and estimation device
JP5301778B2 (en) Surface shape measuring device
JP6840912B2 (en) Mold abnormality prediction system, press machine equipped with it, and mold abnormality prediction method
KR101479292B1 (en) Method of measuring bearing abrasion in rotating machine and apparatus thereof
JP2005305541A (en) Method and apparatus for monitoring/controlling die machining
JP2005003388A (en) System for estimating occurrence of crack in mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4959360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250