JP2008188508A - Microorganism removing device and water treatment method - Google Patents

Microorganism removing device and water treatment method Download PDF

Info

Publication number
JP2008188508A
JP2008188508A JP2007023947A JP2007023947A JP2008188508A JP 2008188508 A JP2008188508 A JP 2008188508A JP 2007023947 A JP2007023947 A JP 2007023947A JP 2007023947 A JP2007023947 A JP 2007023947A JP 2008188508 A JP2008188508 A JP 2008188508A
Authority
JP
Japan
Prior art keywords
water
sterilization
metal
sterilization apparatus
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007023947A
Other languages
Japanese (ja)
Other versions
JP4760724B2 (en
Inventor
Jun Inagaki
純 稲垣
Mio Oribe
美緒 織部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007023947A priority Critical patent/JP4760724B2/en
Publication of JP2008188508A publication Critical patent/JP2008188508A/en
Application granted granted Critical
Publication of JP4760724B2 publication Critical patent/JP4760724B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Humidification (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microorganism removing device which does not use electric power and can cope with conditions where the depth of a water tank is deep or a change in a water level is large, and a water treatment method employing the same device. <P>SOLUTION: In the microorganism removing device 1, a zinc plate 2 and a copper plate 3 as two or more kinds of electrically conductive materials different in oxidation-reduction potential are brought in an electrical continuity through a short-circuit part 5, and spaces between the plates are held by a spacer 4 having a low bulk specific gravity, so that the growth of microorganisms in water can be inhibited by an energy-saving and compact structure. The water treatment method employs the above microorganism removing device. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、水中の微生物を除菌できる簡易な構造の除菌装置に関する。また、前記除菌装置を利用した加湿装置、除湿装置、循環式浴槽装置、サウナ装置、空調装置、水処理装置、除菌装置などの水処理方法に関する。   The present invention relates to a sterilization apparatus having a simple structure capable of sterilizing microorganisms in water. In addition, the present invention relates to a water treatment method such as a humidifier, a dehumidifier, a circulating bathtub device, a sauna device, an air conditioner, a water treatment device, and a sterilization device using the sterilization device.

加湿装置や循環式浴槽あるいは排水溝の部材などの貯水部においては、大腸菌および黄色ブドウ球菌などの微生物の増殖が認められることがあった。極端に長時間放置し続ければ、微生物の増殖に伴ってぬめりや腐敗臭が発生する可能性が考えられた。そのため、貯水部での微生物の増殖抑制、および除菌に関する技術が強く要望されていた。   Growth of microorganisms such as Escherichia coli and Staphylococcus aureus has been observed in water storage parts such as humidifiers, circulation baths or drainage ditch members. If left untreated for an extremely long period of time, the possibility of slimy and spoiled odors may occur with the growth of microorganisms. For this reason, there has been a strong demand for techniques relating to the suppression of microbial growth and sterilization in the water storage section.

たとえば特許文献1記載の従来の加湿装置は、図11から図13に示すように、本体またはカバーに設けられた吸気口100aおよび吹出口100bを有しており、本体の内部には、給水タンク101から供給された水を受ける水槽102、水槽102内の水を加熱するための加熱筒103、および加熱筒103を囲みつつ水槽102内の水を吸い上げる吸水体(加湿フィルタ)104を有している。そして、吸気口100aから送風機105を経て吹出口100bまで風路が形成されており、送風機105によって、吸気口100aからの空気とともに、吸水体104から気化した水蒸気が、吹出口100bから放出される。これによって、室内の加湿が行われる。給水タンク101からの水は、水槽102に供給され、水槽102内のいずれかの部分に、抗菌作用を有する物質を溶出させる一対の電極106が設けられている。そして、両電極間に電気を流すとともに所定の周期で極性を切り替えることによって、抗菌性の程度を変化させている。   For example, as shown in FIGS. 11 to 13, a conventional humidifier described in Patent Document 1 has an intake port 100a and an outlet 100b provided in a main body or a cover, and a water tank is provided inside the main body. A water tank 102 for receiving water supplied from 101, a heating cylinder 103 for heating the water in the water tank 102, and a water absorbing body (humidification filter) 104 that sucks up the water in the water tank 102 while surrounding the heating cylinder 103. Yes. An air path is formed from the air inlet 100a through the blower 105 to the air outlet 100b, and the air vapor from the water absorber 104 is released from the air outlet 100b together with the air from the air inlet 100a by the air blower 105. . Thereby, indoor humidification is performed. Water from the water supply tank 101 is supplied to the water tank 102, and a pair of electrodes 106 for eluting a substance having an antibacterial action is provided in any part of the water tank 102. The degree of antibacterial properties is changed by flowing electricity between the electrodes and switching the polarity at a predetermined cycle.

また、特許文献2には、電力を使用しないで除菌することのできる加湿装置が示されている。水供給部と、少なくとも一部が水に浸されるように配置された加湿フィルタおよび空気を加湿フィルタを介して送る送風手段を含む加湿機構と、間隙を設けて設置された酸化還元電位の異なる第1の電極および第2の電極、ならびに第1の電極および第2の電極を短絡させる短絡部を具備する除菌装置とを有し、第1の電極の酸化還元電位が第2の電極の酸化還元電位より高く、少なくとも第1の電極および第2の電極が水に接する位置に配置されている。加湿装置の水に含まれる微生物は一定の電荷を有しているため、前記第1の電極から前記第2の電極に向けて微生物が移動し、電極間の水中から微生物を物理的に排除できることが示されている。さらに、第2の電極の表面に集積した微生物は、第2の電極表面から溶出する金属イオンの影響により増殖能を失って不活化することが示されている。
特開2002−89895号公報 特開2004−93108号公報
Patent Document 2 discloses a humidifier that can be sterilized without using electric power. A humidification mechanism including a water supply unit, a humidification filter arranged so that at least a part is immersed in water, and a blowing means for sending air through the humidification filter, and a redox potential different from that provided with a gap A first electrode and a second electrode, and a sterilization apparatus including a short-circuit portion that short-circuits the first electrode and the second electrode, and the oxidation-reduction potential of the first electrode is that of the second electrode It is higher than the oxidation-reduction potential and is disposed at a position where at least the first electrode and the second electrode are in contact with water. Since the microorganisms contained in the water of the humidifier have a certain charge, the microorganisms can move from the first electrode toward the second electrode, and the microorganisms can be physically excluded from the water between the electrodes. It is shown. Furthermore, it has been shown that microorganisms accumulated on the surface of the second electrode lose their ability to grow due to the influence of metal ions eluted from the surface of the second electrode and become inactivated.
JP 2002-89895 A JP 2004-93108 A

特許文献1に記載の方法では、電極から溶出させた金属イオンを用いて殺菌することができるものの、電極から溶出させるためには外部からの電源入力が必須であり、電源のない場所や装置が停止しているときには殺菌効果が働かず、菌が増殖してしまうという課題があった。特に電源入力が停止しているときには金属の溶出が進まないため、細菌と金属イオンの物理的な接触はほとんど期待できず、金属板表面近傍のごく限られた領域でしか効果がないという課題があった。さらに、殺菌手段では微生物の死骸が金属イオンを付与した領域に残る場合があり、快適性を保つためには除去された方が望ましく、殺菌手段ではなく除菌手段がより要望されている。   Although the method described in Patent Document 1 can be sterilized using metal ions eluted from the electrode, an external power input is indispensable for elution from the electrode. When stopped, there was a problem that the bactericidal effect did not work and the bacteria would grow. Especially when the power input is stopped, metal elution does not progress, so physical contact between bacteria and metal ions can hardly be expected, and there is a problem that it is effective only in a limited area near the surface of the metal plate. there were. Furthermore, in the sterilization means, dead bodies of microorganisms may remain in the region to which metal ions have been applied, and it is desirable to remove them in order to maintain comfort, and a sterilization means is desired rather than a sterilization means.

また、特許文献2に記載の方法では、電力を使用しないで除菌できるメリットをもっているが、短絡部を水面上に設けながら第1の電極と第2の電極とを水面下に配置する必要があるため、水槽の水深が深い場合あるいは水位の変動が大きい場合には設置が困難であった。   In addition, the method described in Patent Document 2 has an advantage that it can be sterilized without using electric power, but it is necessary to dispose the first electrode and the second electrode below the water surface while providing the short-circuit portion on the water surface. Therefore, installation is difficult when the water depth of the aquarium is deep or when the fluctuation of the water level is large.

本発明は上記課題を解決するため、電力を使用せず、水槽の水深が深い場合あるいは水位の変動が大きい場合にも対応できる水の除菌装置、および前記除菌方法を利用した水処理方法を提供することを目的とする。   In order to solve the above-described problems, the present invention eliminates the need for electric power, and can be used even when the water depth of the aquarium is deep or when the fluctuation of the water level is large, and a water treatment method using the sterilization method. The purpose is to provide.

本発明の除菌装置は上記目的を達成するために、請求項1に記載の通り、酸化還元電位の異なる2種類以上の導電性材料を導通させ、水に浮かべて用いることを特徴とする。   In order to achieve the above object, the sterilization apparatus of the present invention is characterized in that, as described in claim 1, two or more kinds of conductive materials having different oxidation-reduction potentials are made conductive and floated on water.

また、本発明の除菌装置は、導電性材料が金属および/または炭素であることを特徴とする。   In the sterilization apparatus of the present invention, the conductive material is a metal and / or carbon.

また、本発明の除菌装置は、導電性材料が殺菌性の金属を含むことを特徴とする。   Further, the sterilization apparatus of the present invention is characterized in that the conductive material contains a bactericidal metal.

また、本発明の除菌装置は、間隔をおいて配置された酸化還元電位の異なる2種類以上の金属材料と、前記電極同士を短絡させる短絡部から構成されていることを特徴とする。   In addition, the sterilization apparatus of the present invention is characterized by comprising two or more kinds of metal materials having different oxidation-reduction potentials arranged at intervals and a short-circuit portion that short-circuits the electrodes.

また、本発明の除菌装置は、短絡部が、水面より上に位置することを特徴とする。   Moreover, the sterilization apparatus of the present invention is characterized in that the short-circuit portion is located above the water surface.

また、本発明の除菌装置は、金属材料が、絶縁性スペーサーを介して対向していることを特徴とする。   Moreover, the sterilization apparatus of the present invention is characterized in that the metal materials face each other via an insulating spacer.

また、本発明の除菌装置は、金属材料と絶縁性スペーサーを交互に積層したことを特徴とする。   In addition, the sterilization apparatus of the present invention is characterized in that metal materials and insulating spacers are alternately stacked.

また、本発明の除菌装置は、絶縁性スペーサーのかさ比重が水よりも軽いことを特徴とする。   In the sterilization apparatus of the present invention, the bulk density of the insulating spacer is lighter than that of water.

また、本発明の除菌装置は、導電性材料が粉末および/または繊維状であることを特徴とする。   In the sterilization apparatus of the present invention, the conductive material is powder and / or fibrous.

また、本発明の除菌装置は、導電性材料を分散または溶解した処理液を、かさ比重が水よりも軽い基材に塗布したことを特徴とする。   The sterilization apparatus of the present invention is characterized in that a treatment liquid in which a conductive material is dispersed or dissolved is applied to a base material having a bulk specific gravity lighter than water.

また、本発明の除菌装置は、導電性材料を分散または溶解した処理液を塗布した表面処理部分の表面電気抵抗が107Ω/□以下であることを特徴とする。 Moreover, the sterilization apparatus of the present invention is characterized in that the surface electrical resistance of the surface treatment portion coated with the treatment liquid in which the conductive material is dispersed or dissolved is 10 7 Ω / □ or less.

また、本発明の除菌装置は、かさ比重が水よりも軽い基材の、水面下に位置する場所に処理液を塗布したことを特徴とする。   In addition, the sterilization apparatus of the present invention is characterized in that the treatment liquid is applied to a place located below the water surface of a base material whose bulk specific gravity is lighter than water.

また、本発明の除菌装置は、かさ比重が水よりも軽い基材が多孔質であることを特徴とする。   Moreover, the sterilization apparatus of the present invention is characterized in that the substrate having a bulk specific gravity lighter than water is porous.

また、本発明の除菌方法は、請求項1乃至13いずれかに記載の除菌装置を、水に浮かべることを特徴とする。   The sterilization method of the present invention is characterized in that the sterilization apparatus according to any one of claims 1 to 13 is floated on water.

また、本発明の除菌方法は、請求項1乃至13いずれかに記載の除菌装置を接続する接続手段を備え、前記接続手段によって連通した除菌装置を水に浮かべることを特徴とする。   In addition, the sterilization method of the present invention is characterized in that it comprises connection means for connecting the sterilization apparatus according to any one of claims 1 to 13, and the sterilization apparatus communicated by the connection means is floated on water.

本発明によれば、電力を使用せず、水槽の水深が深い場合あるいは水位の変動が大きい場合にも対応できる水の除菌装置、および前記除菌方法を利用した水処理方法を提供することができる。   According to the present invention, there is provided a water sterilization apparatus that can cope with a case where water is deep or water level fluctuation is large without using electric power, and a water treatment method using the sterilization method. Can do.

本発明の請求項1記載の発明は、酸化還元電位の異なる2種類以上の導電性材料を導通させ、水に浮かべて用いることを特徴としたものである。水に含まれる微生物はその表面電荷として一定の電荷を有しているため、水中に電場を与えるとその電場の向きに応じて移動する作用が生まれる。本発明のように、酸化還元電位の異なる2種類以上の導電性材料を導通させることによって、前記導電材料の間に起電力が生じ、その結果一方の導電性材料の表面に微生物が集められるため、水中の微生物が除菌される。   The invention described in claim 1 of the present invention is characterized in that two or more kinds of conductive materials having different oxidation-reduction potentials are conducted and floated on water. Since microorganisms contained in water have a constant charge as the surface charge, when an electric field is applied to water, an action of moving according to the direction of the electric field is produced. As in the present invention, by conducting two or more kinds of conductive materials having different oxidation-reduction potentials, an electromotive force is generated between the conductive materials, and as a result, microorganisms are collected on the surface of one of the conductive materials. The microorganisms in the water are sterilized.

本構成においては2種類以上の導電性材料を短絡させることによって前記の除菌効果が得られるため、特許文献1のように微生物の増殖抑制のため通電する必要がなく、省エネルギーにできるという効果を有する。また、水道水にはCa、Mgなどの陽性イオン物質やCl、NO3などの陰性イオン物質などが含まれており、短絡した導電性の材料が形成する微小な電場によってこれらのイオン性帯電物質も除去することができる。また、水中でマイナスに帯電している菌類やカビ胞子などを捕集することができるという作用を有する。 In this configuration, since the above-mentioned sterilization effect is obtained by short-circuiting two or more kinds of conductive materials, there is no need to energize to suppress the growth of microorganisms as in Patent Document 1, and the effect that energy saving can be achieved. Have. Tap water contains positive ion substances such as Ca and Mg and negative ion substances such as Cl and NO 3, and these ionic charged substances are generated by a small electric field formed by a short-circuited conductive material. Can also be removed. Moreover, it has the effect | action that fungi, mold spores, etc. which are negatively charged in water can be collected.

また、特許文献2の方法では短絡部を水面上に設けながら第1の電極と第2の電極とを水面下に配置する必要があるため、水位が変動すると短絡部が水没して電荷が逃げ、除菌性能が発揮されないことがあった。本発明の方法では、除菌ユニットを水に浮かべているので水位が変動しても除菌ユニットの水深は一定に保たれ、除菌装置を希望の電位差に安定して保ち除菌性能を確保することができる。また、従来の方法では、水槽の水深が深い場合電極から短絡部までの距離を長く取る必要があり、断線などの不具合が生じやすかったが、本発明においては電極と短絡部の距離を短くすることができるので、水槽の水深が深い場合あるいは水位の変動が大きい場合にも対応できる水の除菌装置、および前記除菌方法を利用した水処理方法を提供することができる。   Further, in the method of Patent Document 2, it is necessary to dispose the first electrode and the second electrode below the water surface while providing the short circuit portion on the water surface. Therefore, when the water level fluctuates, the short circuit portion is submerged and the electric charge escapes. In some cases, the disinfection performance was not exhibited. In the method of the present invention, since the sterilization unit is floated on the water, the depth of the sterilization unit is kept constant even if the water level fluctuates, and the sterilization apparatus is stably maintained at a desired potential difference to ensure sterilization performance. can do. Further, in the conventional method, when the water depth of the water tank is deep, it is necessary to take a long distance from the electrode to the short-circuit portion, and problems such as disconnection are likely to occur, but in the present invention, the distance between the electrode and the short-circuit portion is shortened. Therefore, it is possible to provide a water sterilization apparatus that can cope with a case where the water depth of the aquarium is deep or a large fluctuation in water level, and a water treatment method using the sterilization method.

また、導電性材料が金属および/または炭素であることを特徴としたものであり、金属および/または炭素の導電性を利用して、容易に除菌装置を得ることができる。導電性の金属としては、Au、Pt、Ag、Cu、Pb、Ni、Sb、Co、W、Fe、Sn、Cr、Zn、V、Al、Ti、Zr、Mg、Kまたはこれらの合金などが挙げられる。特にAg、Cu、Znは金属自体の抗菌性が強いため好ましい。また、Fe、Zn、Alは比較的安価で安全なものとして利用しやすい。2種類以上の金属の選択としては用途と寿命と経済性を考慮すれば特に制限されるものではないが、水の電気分解開始電圧である1.2V付近では電極から水素の発生が生じ、電極の腐食が進みやすいため好ましくない。   Further, the conductive material is characterized in that it is a metal and / or carbon, and a sterilization apparatus can be easily obtained by utilizing the conductivity of the metal and / or carbon. Examples of conductive metals include Au, Pt, Ag, Cu, Pb, Ni, Sb, Co, W, Fe, Sn, Cr, Zn, V, Al, Ti, Zr, Mg, K, and alloys thereof. Can be mentioned. In particular, Ag, Cu, and Zn are preferable because the antibacterial property of the metal itself is strong. Fe, Zn, and Al are relatively inexpensive and easy to use. The selection of two or more metals is not particularly limited in consideration of the use, life and economy, but hydrogen is generated from the electrode in the vicinity of water electrolysis start voltage of 1.2 V. This is not preferable because of the tendency of corrosion.

また、酸化還元電位の異なる2種類以上の金属が電位差を生じた状態で水と接触すると、酸化還元電位の低いほうの金属が水に溶出する。溶出した金属は微生物に作用して除菌効果を発揮する。ここで酸化還元電位の高いほうの金属は溶出しにくいため、長期間使用するためには溶出量の多い酸化還元電位の低いほうの金属の配合比率を多くしたほうがよい。   Further, when two or more kinds of metals having different oxidation-reduction potentials come into contact with water in a state where a potential difference is generated, the metal having a lower oxidation-reduction potential is eluted into water. The eluted metal acts on microorganisms and exerts a sterilizing effect. Here, since the metal having a higher oxidation-reduction potential is difficult to elute, it is better to increase the compounding ratio of the metal having a higher oxidation-reduction potential and a lower oxidation-reduction potential for long-term use.

導電性の炭素材料としては、黒鉛、カーボンブラック、炭素繊維、フラーレン、カーボンナノチューブ、カーボンナノホーン、カーボンマイクロコイル、カーボンナノコイル、不飽和結合をもつ導電性ポリマーなどが挙げられる。黒鉛とカーボンブラックはもっとも一般的に用いられる導電性の炭素材料であり、経済性が高い。また、導電性塗料として樹脂エマルジョンとカーボンを混合したものが市販されており、容易に入手可能である。炭素繊維、フラーレン、カーボンナノチューブ、カーボンナノホーン、カーボンマイクロコイル、カーボンナノコイルなどは樹脂の強度向上や軽量化や電磁波対策などの目的で樹脂に添加されることが多いが、その導電性を利用して本発明の除菌効果を得ることができる。また、電極として開発が進められている導電性ポリマーも、同様に除菌効果を得ることができる。   Examples of the conductive carbon material include graphite, carbon black, carbon fiber, fullerene, carbon nanotube, carbon nanohorn, carbon microcoil, carbon nanocoil, and conductive polymer having an unsaturated bond. Graphite and carbon black are the most commonly used conductive carbon materials and are highly economical. Moreover, what mixed resin emulsion and carbon as a conductive paint is marketed, and it can obtain easily. Carbon fibers, fullerenes, carbon nanotubes, carbon nanohorns, carbon microcoils, carbon nanocoils, etc. are often added to resins for the purpose of improving the strength of the resins, reducing their weight, and preventing electromagnetic waves. Thus, the sterilization effect of the present invention can be obtained. In addition, a conductive polymer that is being developed as an electrode can similarly obtain a sterilizing effect.

また、導電性材料が殺菌性の金属を含むことを特徴としたものであり、導電性材料の表面に微生物が集められた後、金属の殺菌作用によって水中の微生物が速やかに死滅するという作用を有する。殺菌性の金属としては、Ag、Cu、Zn、Niなどが挙げられる。また、殺菌性をもった金属イオンを水中に放出することにより、殺菌性を持った水を得ることができるという作用を有する。   In addition, the conductive material is characterized by containing a bactericidal metal, and after microorganisms are collected on the surface of the conductive material, the microorganisms in the water are quickly killed by the bactericidal action of the metal. Have. Examples of the bactericidal metal include Ag, Cu, Zn, and Ni. Moreover, it has the effect | action that the water with bactericidal property can be obtained by discharge | releasing the metal ion with bactericidal property in water.

また、間隔をおいて配置された酸化還元電位の異なる2種類以上の金属材料と、前記電極同士を短絡させる短絡部から構成されていることを特徴としたものであり、酸化還元電位の異なる2種類以上の金属材料を導通させることによって、前記金属材料の間に起電力が生じ、その結果一方の金属材料の表面に微生物が集められるため、水中の微生物が除菌されるという作用を有する。電極同士を短絡させるという簡易な方法であり、外部から通電する必要がなく、省エネルギーにできるという効果を有する。また、通電回路や制御機構も不要で装置を簡略化できるという作用を有する。なお、金属材料と短絡部は同じ材料であってもよい。   Moreover, it is comprised from the short circuit part which short-circuits two or more types of metal materials with which the oxidation-reduction potentials arrange | positioned at intervals and the said electrodes are short-circuited, and 2 with different oxidation-reduction potentials. By conducting more than one kind of metal material, an electromotive force is generated between the metal materials. As a result, microorganisms are collected on the surface of one metal material, so that microorganisms in water are sterilized. This is a simple method of short-circuiting the electrodes, and there is no need to energize from the outside, and there is an effect that energy can be saved. In addition, there is an effect that the energization circuit and the control mechanism are not required and the apparatus can be simplified. In addition, the same material may be sufficient as a metal material and a short circuit part.

また、短絡部が、水面より上に位置することを特徴としたものである。特許文献2の方法では短絡部を水面上に設けながら第1の電極と第2の電極とを水面下に配置する必要があるため、水位が変動すると短絡部が水没して電荷が逃げ、除菌性能が発揮されないことがあった。本発明の方法では、除菌ユニットを水に浮かべているので短絡部が水没することがなく、除菌装置を希望の電位差に安定して保ち除菌性能を確保することができる。短絡部の表面は電気的絶縁処理および/または撥水処理されていることが好ましい。   The short-circuit portion is located above the water surface. In the method of Patent Document 2, it is necessary to dispose the first electrode and the second electrode under the water surface while providing the short-circuit portion on the water surface. Bacterial performance may not be demonstrated. In the method of the present invention, since the sterilization unit is floated on water, the short-circuit portion is not submerged, and the sterilization apparatus can be stably maintained at a desired potential difference to ensure sterilization performance. The surface of the short-circuit portion is preferably subjected to an electrical insulation treatment and / or a water repellent treatment.

また、金属材料が、絶縁性スペーサーを介して対向していることを特徴としたものであり、金属材料同士が水の中で接触して電荷が逃げることがなく、除菌装置を希望の電位差に保つことができるという作用を有する。また、金属材料の湾曲や変形によって金属材料の間隔にばらつきが生じることを防ぎ、金属材料が近接した部分の電位が強くなり、場所によって除菌性能にばらつきが生じる不具合を抑制することができる。   In addition, the metal materials are opposed to each other through an insulating spacer, so that the metal materials do not come into contact with each other in water and the charge does not escape, so that the sterilization apparatus can have a desired potential difference. It has the effect | action that it can be kept at. Further, it is possible to prevent variation in the interval between the metal materials due to the bending or deformation of the metal material, and to increase the potential of the portion where the metal material is in close proximity, thereby suppressing the problem that the disinfection performance varies depending on the location.

また、絶縁性スペーサーのかさ比重が水よりも軽いことを特徴としたものであり、別の浮き子を用意する必要がなく、水に浮く除菌装置を容易に得ることができる。ここでかさ比重とは、単位体積あたりの重量のことを指す。   In addition, the bulk density of the insulating spacer is lighter than that of water, and it is not necessary to prepare a separate float, and a sterilization apparatus that floats on water can be easily obtained. Here, the bulk specific gravity refers to the weight per unit volume.

また、導電性材料が粉末および/または繊維状であることを特徴としたものである。微細な粉末および/または繊維状導電性材料とすることにより、金属板状あるいは金属線状の場合に比べて、表面積を大きくすることができ除菌作用が強くなるという作用を有する。また、微細化することにより、成型する際に樹脂ペレットに導電性材料を混合することができ、金型成型するだけで除菌効果が得られ、参考文献2のように除菌装置のスペースを確保する必要がなく、コンパクトな構成にすることができるという作用を有する。また、樹脂成型によって、金属板よりも自由な形状に除菌部位を構成することができるという効果を有する。粉末の場合、樹脂に導電性の炭素材料と金属を分散させる際に、分散性がよく加工しやすいという効果を得ることができる。また、繊維状にくらべて均一な状態を得やすいため、色むらや凹凸の抑制など外観上の利点がある。繊維状の場合は、分散した際に導電性の炭素材料あるいは繊維同士の接点が多くなり、樹脂表面に局所的な電位差が発生する場所を多くすることができる。また、繊維がフィラーとしての役割を果たすことにより、樹脂の強度を向上させることができる。用途に応じて粉末と繊維の混合や、異種金属の混合を行ってもなんら問題はない。   Further, the conductive material is characterized in that it is powder and / or fibrous. By using a fine powder and / or a fibrous conductive material, the surface area can be increased and the sterilization action becomes stronger than in the case of a metal plate or metal wire. In addition, by miniaturization, conductive material can be mixed into the resin pellets when molding, and a sterilization effect can be obtained simply by molding a mold. It is not necessary to ensure, and it has the effect | action that it can be set as a compact structure. Moreover, it has the effect that a disinfection site | part can be comprised in a free shape rather than a metal plate by resin molding. In the case of powder, when the conductive carbon material and the metal are dispersed in the resin, it is possible to obtain an effect of good dispersibility and easy processing. In addition, since it is easy to obtain a uniform state as compared with the fibrous form, there are advantages in appearance such as suppression of uneven color and unevenness. In the case of a fibrous form, when dispersed, the number of conductive carbon materials or contact points between fibers increases, and the number of places where a local potential difference occurs on the resin surface can be increased. Moreover, the strength of the resin can be improved by the fiber serving as a filler. There is no problem even if mixing of powder and fiber or mixing of dissimilar metals depending on the application.

また、導電性材料を分散または溶解した処理液を、かさ比重が水よりも軽い基材に塗布したことを特徴としたものである。導電性材料を、液に分散または溶解できる大きさまで微細化することにより、除菌作用を有する処理液を作成することができる。樹脂に導電性材料を分散させた処理液は、表面に除菌材料を塗布するだけで除菌効果が得られ、参考文献2のように除菌装置のスペースを確保する必要がなく、コンパクトな構成にすることができるという作用を有する。また、塗装によって、金属板よりも自由な形状に除菌部位を構成することができるという効果を有する。また、除菌作用を発揮するのは樹脂の表面に露出している部分だけであり、樹脂中に導電性の材料を混合する方法に比べて少ない量で効果を発揮させることができるという作用を有する。   Further, the treatment liquid in which the conductive material is dispersed or dissolved is applied to a base material whose bulk specific gravity is lighter than water. By miniaturizing the conductive material to a size that can be dispersed or dissolved in the liquid, a treatment liquid having a sterilizing action can be created. A treatment liquid in which a conductive material is dispersed in a resin can obtain a sterilization effect simply by applying a sterilization material on the surface, and does not require a space for a sterilization apparatus as in Reference 2, and is compact. It has the effect that it can be configured. Moreover, it has the effect that a disinfection site | part can be comprised in a free shape rather than a metal plate by coating. In addition, only the part exposed on the surface of the resin exerts the sterilizing action, and the effect that the effect can be exerted in a smaller amount compared to the method of mixing a conductive material in the resin. Have.

炭素材料は、粉を使用する際には、あらかじめ粉砕しておくと混合が容易になる。また、炭素材料を分散した液体を用いるとさらに混合が容易である。このとき、樹脂を溶解もしくは分散させる溶媒が水系であれば、界面活性剤を用いて水に分散させたカーボンブラックなどを使用すると良い。樹脂を溶解もしくは分散させる溶媒が有機溶剤系であれば、樹脂エマルジョンとカーボンがあらかじめ混合された市販の導電性塗料を用いても良い。有機溶剤系の材料を使用した場合、揮発性に優れるため、材料の成形・乾燥が容易になる。   When using the powder, the carbon material is easily mixed if it is pulverized in advance. Further, when a liquid in which a carbon material is dispersed is used, mixing is easier. At this time, if the solvent in which the resin is dissolved or dispersed is aqueous, carbon black dispersed in water using a surfactant may be used. If the solvent for dissolving or dispersing the resin is an organic solvent system, a commercially available conductive paint in which a resin emulsion and carbon are mixed in advance may be used. When an organic solvent-based material is used, it is excellent in volatility, so that the material can be easily molded and dried.

導電性の炭素材料は、除菌材料中の金属粉の総量に対して配合比率で0.02%以上であることが好ましい。これによって除菌材料中に電位差を生じ、より高い電気的誘引効果を得ることができるために、十分な除菌性能を得ることができる。   The conductive carbon material is preferably 0.02% or more in terms of the mixing ratio with respect to the total amount of metal powder in the sterilizing material. As a result, a potential difference is generated in the sterilization material, and a higher electrical attraction effect can be obtained. Therefore, sufficient sterilization performance can be obtained.

樹脂としては、ナイロン、ポリエステル、ポリエーテル、アクリル、エポキシ、ポリウレタン、ポリカーボネート、シリコーンなどの樹脂、もしくはこれらを含有する樹脂が挙げられる。除菌材料中の総固形分に対する配合比率が7%以上になるように樹脂を配合すれば、材料どうし、および材料塗布面との十分な密着性が得られる。ただし、35%を超えると、密着性や強度は良好であるものの、金属と導電性材料との導通が阻害されるために、除菌性能が低下してくる。除菌材料に混合する樹脂量としては、配合比率7%以上の範囲で、除菌性能と密着性、強度のバランスによって任意に選択すればよい。また、樹脂が溶媒に溶解もしくは分散可能であれば、除菌材料の粘度を調整することが容易であり、扱いやすくなる。   Examples of the resin include resins such as nylon, polyester, polyether, acrylic, epoxy, polyurethane, polycarbonate, and silicone, or resins containing these. If the resin is blended so that the blending ratio with respect to the total solid content in the sterilizing material is 7% or more, sufficient adhesion between the materials and the material application surface can be obtained. However, if it exceeds 35%, the adhesion and strength are good, but the continuity between the metal and the conductive material is hindered, so the sterilization performance decreases. The amount of resin to be mixed with the sterilizing material may be arbitrarily selected depending on the balance between the sterilizing performance, adhesion, and strength within a range of 7% or more. Further, if the resin can be dissolved or dispersed in a solvent, it is easy to adjust the viscosity of the sterilizing material, and it becomes easy to handle.

金属の粒子径は除去しようとする微生物の大きさよりも大きいことが望ましい。電位差によって微生物を集めるためには、少なくとも電位がかかっている部分の間隔が微生物の大きさよりも大きい必要がある。粒子径が小さい場合でも複数の粒子が連なって間隔をあけた状態で電位が発生することが考えられるが、確率的には高くないと予想される。十分な距離を確保するためには雑菌として平均的な微生物の大きさである1μmより十分大きい10μm以上であることが好ましい。形状が繊維状である場合には太さではなく長さ方向について前記の条件であればよい。   The metal particle size is desirably larger than the size of the microorganism to be removed. In order to collect microorganisms by the potential difference, at least the interval between the portions to which the potential is applied needs to be larger than the size of the microorganisms. Even when the particle size is small, it is considered that a potential is generated in a state where a plurality of particles are connected and spaced apart from each other, but it is expected that the potential is not high in terms of probability. In order to ensure a sufficient distance, it is preferably 10 μm or more, which is sufficiently larger than 1 μm, which is the average size of microorganisms as various bacteria. When the shape is fibrous, the above-described conditions may be used in the length direction, not the thickness.

具体的には、金属の粒子径が0.3μm〜100μmであることが望ましい。100μmより大きい粒子は、導電材料や他金属粒子との接触面積が小さくなり、除菌効率が低下するため、金属の粒子径としては100μm以下であることが好ましい。また、100μm以下の粒子、とくに10μmより細かい粉末または繊維を用いた場合には、樹脂に導電性の炭素材料と金属を分散させる際に、分散性がよく加工しやすくなる。いっぽう、0.3μmより細かい粒子では、良好な分散性は得られるものの、粉塵となって飛散しやすく、混合時には混合容器の微細な凹凸にまで入り込みやすいため、ハンドリング性を考慮すると、金属の粒子径は0.3μm以上であることが好ましい。   Specifically, it is desirable that the metal particle diameter is 0.3 μm to 100 μm. Particles larger than 100 μm have a smaller contact area with the conductive material and other metal particles, and the sterilization efficiency is lowered. Therefore, the metal particle diameter is preferably 100 μm or less. In addition, when particles of 100 μm or less, particularly powders or fibers smaller than 10 μm are used, when the conductive carbon material and the metal are dispersed in the resin, the dispersibility is good and the processing becomes easy. On the other hand, fine particles smaller than 0.3 μm can obtain good dispersibility, but they are easily scattered as dust and easily get into the fine irregularities of the mixing container at the time of mixing. The diameter is preferably 0.3 μm or more.

また、酸化還元電位の異なる2種類以上の金属の粒子径比が1〜8であれば、導電材料や他金属粒子との接触効率が良いために、高い除菌性能を得ることができる。ここで金属の粒子径比は、大きな粒子/小さな粒子の長さ比率である。   Moreover, if the particle diameter ratio of two or more kinds of metals having different oxidation-reduction potentials is 1 to 8, high sterilization performance can be obtained because contact efficiency with the conductive material and other metal particles is good. Here, the particle size ratio of the metal is the length ratio of large particles / small particles.

また、導電性材料を分散または溶解した処理液を塗布した表面処理部分の表面電気抵抗が107Ω/□以下であることを特徴としたものである。表面電気抵抗が高すぎると絶縁皮膜となって、電場の強さが低下するため、除菌作用が低下するため好ましくない。また、表面電気抵抗を低くすることによって、帯電によるほこりや空気中の微生物の付着を軽減することができるという作用を有する。 Further, the surface electrical resistance of the surface-treated portion where the treatment liquid in which the conductive material is dispersed or dissolved is applied is 10 7 Ω / □ or less. If the surface electric resistance is too high, an insulating film is formed, and the strength of the electric field is lowered, so that the sterilization action is lowered, which is not preferable. Moreover, it has the effect | action that the adhesion of the microbe and the microorganisms in air by electrification can be reduced by making surface electrical resistance low.

また、かさ比重が水よりも軽い基材の、水面下に位置する場所に処理液を塗布したことを特徴としたものであり、水につかっている部分のみに除菌作用を得ることができ、材料の無駄がないという作用を得ることができる。   In addition, it is characterized in that the treatment liquid is applied to a base material with a bulk specific gravity lighter than water and located below the surface of the water. The effect that there is no waste of material can be obtained.

また、かさ比重が水よりも軽い基材が多孔質であることを特徴としたものである。基材が多孔質であるために、基材の表面積を大きくすることができ、より多くの菌を捕集することができるという作用を有する。多孔質の基材としては、綿、レーヨン、ナイロン、木材、パルプなどの天然繊維や、樹脂含浸紙、ポリエステル・ポリウレタン・ポリエーテルなどの合成繊維が利用できる。形状は、たとえば、繊維状、網状、ビーズ状、スリット状、ストロー状、板状、ハニカム状、スポンジ状、発泡形状などあらゆる形状が利用できる。発泡形状では、目の細かいほうが表面積が大きいために高効率となる。   In addition, the substrate having a lighter specific gravity than water is porous. Since the base material is porous, the surface area of the base material can be increased and more bacteria can be collected. As the porous substrate, natural fibers such as cotton, rayon, nylon, wood and pulp, and synthetic fibers such as resin-impregnated paper and polyester / polyurethane / polyether can be used. For example, any shape such as a fiber shape, a net shape, a bead shape, a slit shape, a straw shape, a plate shape, a honeycomb shape, a sponge shape, and a foam shape can be used. In the foamed shape, the finer the surface, the higher the surface area.

また、請求項1乃至13いずれかに記載の除菌装置を、水に浮かべることを特徴としたものである。除菌装置を水に浮かべることにより、水面下の除菌性能を有する部分の面積が、水位の変動の関わらず一定となるため、常に除菌効果を得ることができる。また、特許文献2に記載の方法では、短絡部を水面上に設けながら第1の電極と第2の電極とを水面下に配置する必要があるため、水槽の水深が深い場合には設置が困難であったが、本発明では除菌装置が水に浮かんでいるので、水深が深い場合での容易に除菌性能を発揮することができるという作用を有する。   The sterilization apparatus according to any one of claims 1 to 13 is floated on water. By floating the sterilization apparatus on the water, the area of the portion having the sterilization performance under the surface of the water becomes constant regardless of the fluctuation of the water level, so that a sterilization effect can always be obtained. Moreover, in the method described in Patent Document 2, since it is necessary to dispose the first electrode and the second electrode below the water surface while providing the short-circuit portion on the water surface, the installation is performed when the water depth of the aquarium is deep. Although it was difficult, in the present invention, since the sterilization apparatus floats on water, it has an effect that the sterilization performance can be easily exerted when the water depth is deep.

また、請求項1乃至13いずれかに記載の除菌装置を接続する接続手段を備え、前記接続手段によって連通した除菌装置を水に浮かべることを特徴としたものである。複数の除菌装置を用いることにより、望みの除菌性能に調節することが容易であるという作用を有する。また、除菌装置が相互に接続されているので、除菌装置の増減や回収が容易であるという作用を有する。   The sterilization apparatus connected to the sterilization apparatus according to any one of claims 1 to 13 is provided, and the sterilization apparatus communicated by the connection means is floated on water. By using a plurality of sterilization apparatuses, it is easy to adjust to the desired sterilization performance. In addition, since the sterilization apparatuses are connected to each other, the sterilization apparatus can be easily increased or decreased and collected.

以下、本発明の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1に示すように、除菌装置1は、導電性の材料としての電極である亜鉛板2と、間隔をあけて配置された導電性の材料としての電極である銅板3を備えている。前記亜鉛板2と銅板3は上部で導電性の短絡部としての銅線で接続され導通されるとともに、スペーサー4によって一定の間隔に保持されている。スペーサー4は発泡スチロール製であり、かさ比重が水よりも軽いため、除菌装置は短絡部を水面上に保持しながら水に浮かぶようになっている。
(Embodiment 1)
As shown in FIG. 1, the sterilization apparatus 1 includes a zinc plate 2 that is an electrode as a conductive material, and a copper plate 3 that is an electrode as a conductive material arranged at intervals. The zinc plate 2 and the copper plate 3 are connected to each other by a copper wire serving as a conductive short-circuit portion at the upper portion, and are held at a constant interval by a spacer 4. The spacer 4 is made of styrene foam, and its bulk specific gravity is lighter than water. Therefore, the sterilization apparatus floats on the water while holding the short-circuit portion on the water surface.

ここで、金属の標準電極電位を表1に示す。   Here, the standard electrode potential of the metal is shown in Table 1.

Figure 2008188508
Figure 2008188508

銅と亜鉛の標準電極電位はそれぞれ0.34V、−0.76Vなので、酸化還元電位はそれぞれの標準電極電位の差から1.11Vとなる。銅板と亜鉛板を短絡させたことにより、水中には電位差が生じ、金属板の間に存在するマイナスに荷電した微生物は亜鉛板のほうに引き寄せられ、除菌される。除菌された微生物は亜鉛板の表面で電荷を失うとともに、亜鉛の殺菌作用によって死滅する。同様のプロセスが繰り返されることによって、水の除菌が行われる。   Since the standard electrode potentials of copper and zinc are 0.34 V and −0.76 V, respectively, the redox potential is 1.11 V from the difference between the standard electrode potentials. By short-circuiting the copper plate and the zinc plate, a potential difference occurs in the water, and negatively charged microorganisms existing between the metal plates are attracted to the zinc plate and sterilized. The sterilized microorganisms lose their charge on the surface of the zinc plate and die by the sterilization action of zinc. By repeating the same process, water is sterilized.

以上のように、本発明の実施の形態1においては、電極である亜鉛板2と電極である銅板3との間の短絡部としての銅線の距離を短くすることができるので、すなわち、亜鉛板2と銅板3の間の間隔を短くすることができるので、水槽の水深が深い場合あるいは水位の変動が大きい場合にも対応できる水の除菌装置、および前記除菌方法を利用した水処理方法を提供することができることとなる。   As described above, in Embodiment 1 of the present invention, the distance of the copper wire as the short-circuit portion between the zinc plate 2 as the electrode and the copper plate 3 as the electrode can be shortened, that is, zinc Since the distance between the plate 2 and the copper plate 3 can be shortened, the water disinfection device that can cope with the case where the water depth of the aquarium is deep or the fluctuation of the water level is large, and the water treatment using the disinfection method A method can be provided.

(実施の形態2)
図2に示すように、除菌装置11は、枠12の内部に中空の球13を備えている。中空の球13の表面には、導電性材料としての亜鉛粉末と銀粉末および市販のカーボンぺーストを混合した処理液を塗布している。中空の球13はABS樹脂からなり、かさ比重が水よりも軽いため、除菌装置11は一部を水中に沈めた状態で浮かぶようになっている。ここで、亜鉛粉末と銀粉末は導電性のカーボン粒子によって導通されているため、水中には電位差が生じ、マイナスに荷電した微生物は亜鉛粉末のほうに引き寄せられ、除菌される。除菌された微生物は亜鉛粉末の表面で電荷を失うとともに、亜鉛の殺菌作用によって死滅する。同様のプロセスが繰り返されることによって、水の除菌が行われる。
(Embodiment 2)
As shown in FIG. 2, the sterilization apparatus 11 includes a hollow sphere 13 inside a frame 12. On the surface of the hollow sphere 13, a treatment liquid in which zinc powder and silver powder as a conductive material and a commercially available carbon paste are mixed is applied. The hollow sphere 13 is made of ABS resin, and its bulk specific gravity is lighter than that of water. Therefore, the sterilization apparatus 11 floats in a state where a part thereof is submerged in water. Here, since the zinc powder and the silver powder are electrically connected by conductive carbon particles, a potential difference is generated in the water, and negatively charged microorganisms are attracted to the zinc powder and sterilized. The sterilized microorganisms lose their charge on the surface of the zinc powder and die by the sterilization action of zinc. By repeating the same process, water is sterilized.

(実施の形態3)
図3に示すように、除菌装置21は、スチロール製の発砲体22の周囲に網状の樹脂ネット23が取り付けられており、前記樹脂ネット23の表面には導電性材料としての銅粉末と真鍮粉末および市販のカーボンぺーストを混合した処理液を塗布している。発砲体22はかさ比重が水よりも軽いため、除菌装置は樹脂ネット23を水中に沈めた状態で浮かぶようになっている。除菌装置21は連結棒24によって接続されている。ここで、銅粉末と真鍮粉末は導電性のカーボン粒子によって導通されているため、水中には電位差が生じ、マイナスに荷電した微生物は真鍮粉末のほうに引き寄せられ、除菌される。除菌された微生物は真鍮粉末の表面で電荷を失うとともに、真鍮の殺菌作用によって死滅する。同様のプロセスが繰り返されることによって、水の除菌が行われる。
(Embodiment 3)
As shown in FIG. 3, the sterilization apparatus 21 has a net-like resin net 23 attached around a foam body 22 made of styrene, and copper powder and brass as a conductive material are formed on the surface of the resin net 23. A treatment liquid in which powder and a commercially available carbon paste are mixed is applied. Since the foam body 22 has a bulk specific gravity lower than that of water, the sterilization apparatus floats in a state where the resin net 23 is submerged in water. The sterilizer 21 is connected by a connecting rod 24. Here, since the copper powder and the brass powder are electrically connected by conductive carbon particles, a potential difference is generated in the water, and negatively charged microorganisms are attracted to the brass powder and sterilized. The sterilized microorganisms lose their charge on the surface of the brass powder and are killed by the sterilizing action of brass. By repeating the same process, water is sterilized.

以下、本発明を実施例にて詳細に説明するが、本発明は、以下の記載に何ら限定して解釈されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is limited to the following description and is not interpreted at all.

精製水で400倍に希釈した普通ブイヨン培地に、大腸菌 (Esherichia coli、IFO3972)を添加した菌液を作成した。30cm2(金属面としては裏表合わせて60cm2)になるように作成した2枚の金属板を、水面上で電気的に接合してプラスチックシャーレに入れた。金属板は銅と銅の組み合わせ、および銅と亜鉛の組み合わせとした。菌液をそれぞれプラスチックシャーレに入れ、一定時間ごとに0.1mlの液を採取して培養することにより、菌数の変化を比較した。 A bacterial solution was prepared by adding Escherichia coli (IFO 3972) to a normal bouillon medium diluted 400 times with purified water. Two metal plates prepared so as to be 30 cm 2 (60 cm 2 on both sides as the metal surface) were electrically joined on the water surface and placed in a plastic petri dish. The metal plate was a combination of copper and copper and a combination of copper and zinc. The changes in the number of bacteria were compared by putting each bacterial solution in a plastic petri dish and collecting 0.1 ml of the solution at regular intervals and culturing.

結果を図4に示す。銅と銅の組み合わせでも銅の抗菌作用によって菌数の減少が見られたが、6時間という尺度では金属を入れないブランクと比べて大きな差は出ていない。一方、銅−亜鉛では6時間後に大きな菌数の減少が見られた。ここから、酸化還元電位のことなる導電性材料を電気的に接合すると、高い除菌作用が得られることがわかる。   The results are shown in FIG. Even with the combination of copper and copper, the number of bacteria decreased due to the antibacterial action of copper, but on the 6 hour scale, there was no significant difference compared to the blank without metal. On the other hand, with copper-zinc, a large decrease in the number of bacteria was observed after 6 hours. From this, it can be seen that when a conductive material having a redox potential is electrically joined, a high sterilization effect can be obtained.

銅板と亜鉛板をスライドグラス上にのせ、顕微鏡の視野に入る間隔で配置した。精製水で400倍に希釈した普通ブイヨン培地に、大腸菌 (Esherichia coli、IFO3972)を添加し、約106cfu/ml程度の菌液を、銅板と亜鉛板に触れるようにスライドグラス上に0.2ml滴下した。ただちに顕微鏡で観察したところ、大腸菌は亜鉛板側に移動して凝集した。このことから、イオン化傾向の異なる材料を電気的に接合すると、菌液中の大腸菌が除菌されることがわかった。 A copper plate and a zinc plate were placed on a slide glass and arranged at an interval entering the field of view of the microscope. Escherichia coli (IFO 3972) is added to a normal bouillon medium diluted 400 times with purified water, and about 10 6 cfu / ml of bacterial solution is added to the slide glass so that it touches the copper plate and the zinc plate. 2 ml was dropped. As soon as observed with a microscope, E. coli moved to the zinc plate and aggregated. From this, it was found that when materials having different ionization tendencies are electrically joined, Escherichia coli in the bacterial solution is sterilized.

2枚の亜鉛板を使って同様な実験を行ったところ、大腸菌は通常の運動状態でありどちらかの金属に誘引される様子は見られなかった。   When a similar experiment was performed using two zinc plates, Escherichia coli was in a normal movement state and was not seen to be attracted to either metal.

(1)金属として平均粒子径50μmの亜鉛粉末と、市販の導電性カーボン塗料(導電性のカーボンとポリエステル樹脂を溶剤に分散させたもの)とを、亜鉛とカーボンの重量比が11:5になる割合でよく混練してペースト状にし、処理液を作成した。作成した処理液をPETフィルム上に塗り広げて、100℃で1時間乾燥させることによって除菌フィルムZnを作成した。   (1) A zinc powder having an average particle diameter of 50 μm as a metal and a commercially available conductive carbon coating material (conductive carbon and polyester resin dispersed in a solvent), the weight ratio of zinc to carbon being 11: 5 The resulting mixture was well kneaded into a paste to prepare a treatment liquid. The prepared treatment liquid was spread on a PET film and dried at 100 ° C. for 1 hour to prepare a sterilization film Zn.

(2)金属を75〜150μmの銅粉末に変更した以外は(1)と同様の方法で除菌フィルムCuを作成した。   (2) A sterilizing film Cu was prepared by the same method as (1) except that the metal was changed to 75 to 150 μm copper powder.

(3)金属の代わりに金属酸化物である0.1〜0.3μmのTiO2粉末を添加した以外は(1)と同様の方法で、比較用フィルムTiO2を作成した。 (3) A comparative film TiO 2 was prepared in the same manner as in (1) except that a metal oxide 0.1-0.3 μm TiO 2 powder was added instead of metal.

(4)金属を混合せず、市販の導電性カーボン塗料(導電性のカーボンとポリエステル樹脂を溶剤に分散させたもの)をPETフィルム上に塗り広げて、一晩乾燥させることによって比較用フィルムCを作成した。   (4) A comparative film C without spreading a metal and mixing a commercially available conductive carbon paint (conductive carbon and polyester resin dispersed in a solvent) on a PET film and drying it overnight. It was created.

前記(1)〜(4)の方法で作成したフィルムをそれぞれ直径85mm(約57cm2)の円形に切り取り、処理液の塗布面が上向きになるようにプラスチックシャーレ内に置いた。 Each of the films prepared by the methods (1) to (4) was cut into a circle having a diameter of 85 mm (about 57 cm 2 ) and placed in a plastic petri dish so that the coating surface of the treatment liquid was facing upward.

精製水で400倍に希釈した普通ブイヨン培地に、大腸菌 (Esherichia coli、IFO3972)が105(cfu/ml)になるように添加した菌液を作成した。菌液をそれぞれ20mlずつプラスチックシャーレに入れ、一定時間ごとに0.1mlの液を採取して培養することにより、菌数の変化を比較した。なお、紫外線の殺菌作用を防ぐため、実験はシャーレを遮光して行った。 A bacterial solution was prepared by adding Escherichia coli (IFO 3972) to 10 5 (cfu / ml) in a normal bouillon medium diluted 400 times with purified water. 20 ml of each bacterial solution was placed in a plastic petri dish, and 0.1 ml of the solution was collected at regular intervals and cultured to compare changes in the number of bacteria. In order to prevent the sterilizing action of ultraviolet rays, the experiment was conducted with the petri dish shielded from light.

結果を図5に示す。金属を添加した除菌フィルムでは菌数の減少が見られ、除菌効果があるといえる。特にCuを添加したフィルムでその効果が強くみられた。一方、比較用フィルムCでは菌数の減少はわずかであり、除菌フィルムとは明らかに効果の差がみられた。金属酸化物である比較用フィルムTiO2では、比較用フィルムCよりも若干菌数が少なくTiO2粒子への吸着作用があるものと思われるが、除菌作用があるとはいえない。 The results are shown in FIG. In the sterilization film to which the metal is added, the number of bacteria is reduced and it can be said that there is a sterilization effect. The effect was especially strong in the film which added Cu. On the other hand, in the comparative film C, the decrease in the number of bacteria was slight, and the difference in the effect was clearly seen from the sterilization film. The comparative film TiO 2 , which is a metal oxide, seems to have a slightly smaller number of bacteria than the comparative film C and has an adsorption action on TiO 2 particles, but it cannot be said to have a sterilization action.

(1)金属として平均粒子径50μmの亜鉛粉末と、市販の導電性カーボン塗料(導電性のカーボンとポリエステル樹脂を溶剤に分散させたもの)とを、亜鉛とカーボンの重量比が11:5になる割合でよく混練してペースト状にし、処理液を作成した。作成した処理液を直径85mm(約57cm2)の円形に成型したPETフィルム上に塗り広げて、60℃で2時間乾燥させることによって除菌板Aを作成した。 (1) A zinc powder having an average particle diameter of 50 μm as a metal and a commercially available conductive carbon coating material (conductive carbon and polyester resin dispersed in a solvent), the weight ratio of zinc to carbon being 11: 5 The resulting mixture was well kneaded into a paste to prepare a treatment liquid. The prepared treatment liquid was spread on a PET film molded into a circle having a diameter of 85 mm (about 57 cm 2 ) and dried at 60 ° C. for 2 hours to prepare a sterilization plate A.

(2)金属として75〜150μmの銅粉末と、市販の導電性カーボン塗料(導電性のカーボンとポリエステル樹脂を溶剤に分散させたもの)とを、銅:カーボンの重量比が11:5になる割合でよく混練してペースト状にし、処理液を作成した。作成した処理液をPETフィルム上に塗り広げて、60℃で2時間乾燥させることによって除菌板Bを作成した。   (2) A copper powder of 75 to 150 μm as a metal and a commercially available conductive carbon paint (conductive carbon and polyester resin dispersed in a solvent) have a copper: carbon weight ratio of 11: 5. Thoroughly kneaded at a ratio to make a paste to prepare a treatment liquid. The prepared treatment liquid was spread on a PET film and dried at 60 ° C. for 2 hours to prepare a sterilization plate B.

(3)金属として平均粒子径50μmの亜鉛粉末と、75〜150μmの銅粉末と、市販の導電性カーボン塗料(導電性のカーボンとポリエステル樹脂を溶剤に分散させたもの)とを、亜鉛:銅:カーボンの重量比が10:1:5になる割合でよく混練してペースト状にし、処理液を作成した。作成した処理液をPETフィルム上に塗り広げて、60℃で2時間乾燥させることによって除菌板Cを作成した。   (3) As a metal, zinc powder having an average particle diameter of 50 μm, copper powder of 75 to 150 μm, and commercially available conductive carbon paint (conductive carbon and polyester resin dispersed in a solvent), zinc: copper : The weight ratio of carbon was well kneaded at a ratio of 10: 1: 5 to make a paste to prepare a treatment liquid. The prepared treatment liquid was spread on a PET film and dried at 60 ° C. for 2 hours to prepare a sterilization plate C.

(4)亜鉛を96%、アクリル樹脂を4%含有する塗料をPETフィルム上に塗り広げて、60℃で2時間乾燥させることによって比較板A作成した。   (4) A comparative plate A was prepared by spreading a paint containing 96% zinc and 4% acrylic resin on a PET film and drying at 60 ° C. for 2 hours.

(5)亜鉛を83%、アルミニウムを5%、アクリル樹脂を12%含有する塗料をPETフィルム上に塗り広げて、60℃で2時間乾燥させることによって比較板Bを作成した。   (5) A comparative plate B was prepared by spreading a paint containing 83% zinc, 5% aluminum, and 12% acrylic resin on a PET film and drying at 60 ° C. for 2 hours.

(6)何も処理せずに、比較板Cを作成した。   (6) A comparative plate C was prepared without any processing.

前記(1)〜(6)の方法で作成した鉄板を、除菌材料の塗布面が上向きになるようにプラスチックシャーレ内に置いた。   The iron plate prepared by the methods (1) to (6) was placed in a plastic petri dish so that the surface to which the sterilizing material was applied faced upward.

精製水で400倍に希釈した普通ブイヨン培地に、大腸菌 (Esherichia coli、IFO3972)が約105(cfu/ml)になるように添加した菌液を作成した。菌液をそれぞれ20mlずつプラスチックシャーレに入れ、一定時間ごとに0.1mlの液を採取して培養することにより、菌数の変化を比較した。所定時間経過後の菌数を初期の菌数で割って規格化した値を菌の残存比として縦軸にとり、横軸に経過時間を表した結果を図6に示す。除菌板A、B、Cでは菌数が減少し、除菌されていることがわかった。除菌板AとBではZnを添加したAのほうが除菌速度が速かった。銅と亜鉛を添加した除菌板Cは特に1時間後の菌数減少が顕著であった。 A bacterial solution was prepared by adding Escherichia coli (IFO 3972) to about 10 5 (cfu / ml) in a normal bouillon medium diluted 400 times with purified water. 20 ml of each bacterial solution was placed in a plastic petri dish, and 0.1 ml of the solution was collected at regular intervals and cultured to compare changes in the number of bacteria. FIG. 6 shows the result of dividing the number of bacteria after the lapse of a predetermined time by the initial number of bacteria and normalizing the value as the residual ratio of the bacteria on the vertical axis and the elapsed time on the horizontal axis. In the sterilization plates A, B, and C, the number of bacteria decreased and it was found that the bacteria were sterilized. In the sterilization plates A and B, the sterilization rate was higher in A with Zn added. In the sterilization plate C to which copper and zinc were added, the decrease in the number of bacteria after 1 hour was particularly remarkable.

市販の塗料を塗布した比較板Aはわずかに菌数の減少が観察された。比較板B、Cでは菌数はほとんど変化せず、除菌効果が働いていないことがわかった。   A slight decrease in the number of bacteria was observed in the comparative plate A coated with a commercially available paint. In comparison plates B and C, the number of bacteria hardly changed, and it was found that the sterilization effect was not working.

作成した除菌板および比較板の表面電気抵抗を測定した結果を表2に示す。   Table 2 shows the results of measuring the surface electrical resistance of the prepared sterilization plate and the comparison plate.

Figure 2008188508
Figure 2008188508

比較板A、Bでは表面抵抗が非常に高く、導電性を有していないことがわかる。一方、除菌板A、B、Cでは表面抵抗が低く導電性を有している。図6の結果と対比してみると、導電性を有している除菌板A、B、Cでは除菌性能があり、導電性を有していない比較板A、Bおよびなにも処理していない比較板Cでは除菌性能が低いことがわかった。   It can be seen that the comparative plates A and B have very high surface resistance and do not have conductivity. On the other hand, the sterilization plates A, B, and C have low surface resistance and conductivity. Compared with the results of FIG. 6, the sterilization plates A, B, and C having conductivity have the sterilization performance, and the comparison plates A and B that have no conductivity and any treatment It was found that the comparative plate C that was not used had low sterilization performance.

また、樹脂の種類を任意に選択した、その他のサンプルにおいても、同様に表面抵抗値を測定したところ、表3に示すような値が得られ、除菌処理部の表面電気抵抗は107Ω/□以下であることが好ましいといえる。 Further, in other samples in which the type of resin was arbitrarily selected, when the surface resistance value was measured in the same manner, the values shown in Table 3 were obtained, and the surface electrical resistance of the sterilization treatment part was 10 7 Ω. / □ or less is preferable.

Figure 2008188508
Figure 2008188508

実施例5で作成した除菌板Cをスライドグラス上にのせ、顕微鏡の視野に入る位置に配置した。精製水で400倍に希釈した普通ブイヨン培地に、大腸菌 (Esherichia coli、IFO3972)を添加し、約106cfu/ml程度の菌液を、除菌板Cに触れるようにスライドグラス上に0.2ml滴下した。ただちに顕微鏡で観察したところ、大腸菌は除菌板Cの特定の位置に偏在して移動し、凝集した。除菌板Cは亜鉛と銅と導電性カーボンが混在しており、どの位置に各材料が塗布されているか確認することはできなかった。大腸菌の大きさ(約2μm)に比べて、亜鉛と銅の大きさは十分に大きく(50〜150μm)、実施例4の結果と合わせて考えると、おそらく亜鉛が高濃度に存在する位置に菌が凝集しているものと思われた。 The sterilization plate C prepared in Example 5 was placed on a slide glass and placed at a position that fits into the field of view of the microscope. Escherichia coli (IFO 3972) is added to a normal bouillon medium diluted 400 times with purified water, and about 10 6 cfu / ml of bacterial solution is placed on a slide glass so that it touches the sterilization plate C. 2 ml was dropped. As soon as observed with a microscope, E. coli was unevenly distributed at a specific position on the sterilization plate C and aggregated. The sterilization plate C was a mixture of zinc, copper and conductive carbon, and it was not possible to confirm in which position each material was applied. Compared with the size of E. coli (about 2 μm), the size of zinc and copper is sufficiently large (50 to 150 μm), and when combined with the results of Example 4, the bacteria are probably located at a high concentration. Seemed to be agglomerated.

平均粒子径0.3μm〜150μmから、粒子径を任意に選んだ亜鉛および銅粉末と、市販の導電性カーボン塗料(導電性のカーボンとポリエステル樹脂を溶剤に分散させたもの)とを、金属粉末とカーボン塗料の重量比が11:5になる割合でよく混練してペースト状にし、7種類の処理液を作成した。作成した処理液をPETフィルム上に塗り広げて、100℃で1時間乾燥させることによって除菌フィルムを作成した。これらの除菌フィルムをそれぞれ直径85mm(約57cm2)の円形に切り取り、塗料の塗布面が上向きになるようにプラスチックシャーレ内に置いた。 Zinc and copper powders whose particle sizes are arbitrarily selected from an average particle size of 0.3 μm to 150 μm, and commercially available conductive carbon paint (conductive carbon and polyester resin dispersed in a solvent), metal powder The carbon paint was kneaded well at a ratio of 11: 5 to make a paste, and seven types of treatment liquids were prepared. The prepared treatment liquid was spread on a PET film and dried at 100 ° C. for 1 hour to prepare a sterilization film. Each of these sterilizing films was cut into a circle having a diameter of 85 mm (about 57 cm 2 ), and placed in a plastic petri dish so that the coating surface of the paint was directed upward.

精製水で400倍に希釈した普通ブイヨン培地に、大腸菌 (Esherichia coli、IFO3972)が105(cfu/ml)になるように添加した菌液を作成した。菌液をそれぞれ20mlずつプラスチックシャーレに入れ、3時間後に0.1mlの液を採取して培養することにより、初期に対する菌数の変化を除菌スピードとして比較した。ここでの除菌スピードとは菌数の減衰速度を、初期に対する除菌率で現したものであり、除菌スピードが速いほど除菌性能が優れると言える。なお、紫外線の殺菌作用を防ぐため、実験はシャーレを遮光して行った。 A bacterial solution was prepared by adding Escherichia coli (IFO 3972) to 10 5 (cfu / ml) in a normal bouillon medium diluted 400 times with purified water. 20 ml each of the bacterial solution was placed in a plastic petri dish, and after 3 hours, 0.1 ml of the solution was collected and cultured, and the change in the number of bacteria relative to the initial stage was compared as the sterilization speed. The sterilization speed here represents the decay rate of the number of bacteria in terms of the sterilization rate relative to the initial stage, and it can be said that the faster the sterilization speed, the better the sterilization performance. In order to prevent the sterilizing action of ultraviolet rays, the experiment was conducted with the petri dish shielded from light.

結果を図7に示す。亜鉛と銅の粒子径が異なる場合は、グラフ横軸における亜鉛/銅サイズ比が1から離れていくが、亜鉛/銅サイズ比が0.1以下もしくは8以上になる領域、すなわち、亜鉛と銅の粒子径比が0.1以下もしくは8以上であるときには、粒子径差が少ないときに比べて除菌スピードが遅く、3時間後の除菌率が99%を下回ることがわかった。すなわちこれは、同じ重量の金属粉が含まれていても、二種類の金属の粒子径差が少ない場合に比べて、粒子径差が大きいときは導電材料や他金属粒子との接触効率が悪くなるためと考えられる。   The results are shown in FIG. When the particle sizes of zinc and copper are different, the zinc / copper size ratio on the horizontal axis of the graph moves away from 1, but the region where the zinc / copper size ratio is 0.1 or less, or 8 or more, that is, zinc and copper It was found that when the particle size ratio was 0.1 or less or 8 or more, the sterilization speed was slower than when the particle size difference was small, and the sterilization rate after 3 hours was less than 99%. That is, even when the same weight of metal powder is contained, the contact efficiency with the conductive material or other metal particles is poor when the particle size difference is large compared to the case where the particle size difference between the two types of metal is small. It is thought to be.

平均粒子径50μmの亜鉛粉末と、75〜150μmの銅粉末と、市販の導電性カーボン塗料(導電性のカーボンとポリエステル樹脂を溶媒に分散させたもの)とをよく混練して、金属粉末の総量に対するカーボン量を変動させた4種類の処理液を作成した。作成した処理液をPETフィルム上に塗り広げて、100℃で1時間乾燥させることによって除菌フィルムを作成した。これらの除菌フィルムをそれぞれ直径85mm(約57cm2)の円形に切り取り、塗料の塗布面が上向きになるようにプラスチックシャーレ内に置いた。 Thoroughly knead a zinc powder with an average particle size of 50 μm, a copper powder of 75 to 150 μm, and a commercially available conductive carbon paint (conductive carbon and polyester resin dispersed in a solvent), and the total amount of metal powder Four types of treatment liquids with varying amounts of carbon were prepared. The prepared treatment liquid was spread on a PET film and dried at 100 ° C. for 1 hour to prepare a sterilization film. Each of these sterilizing films was cut into a circle having a diameter of 85 mm (about 57 cm 2 ), and placed in a plastic petri dish so that the coating surface of the paint was directed upward.

精製水で400倍に希釈した普通ブイヨン培地に、大腸菌 (Esherichia coli、IFO3972)が105(cfu/ml)になるように添加した菌液を作成した。菌液をそれぞれ20mlずつプラスチックシャーレに入れ、3時間後の初期に対する菌数の変化を、除菌スピードとして比較した。なお、紫外線の殺菌作用を防ぐため、実験はシャーレを遮光して行った。 A bacterial solution was prepared by adding Escherichia coli (IFO 3972) to 10 5 (cfu / ml) in a normal bouillon medium diluted 400 times with purified water. 20 ml of each bacterial solution was placed in a plastic petri dish, and the change in the number of bacteria relative to the initial value after 3 hours was compared as the sterilization speed. In order to prevent the sterilizing action of ultraviolet rays, the experiment was conducted with the petri dish shielded from light.

結果を図8に示す。金属粉の総重量に対するカーボン量が、配合比率0.02%以上存在するとき、除菌スピードはほぼ同じ値が得られる。すなわち、導電性の炭素材料と金属との間に十分な電位差が生じて除菌性能を発揮するためには、0.02%のカーボン量があれば良いと考えられる。   The results are shown in FIG. When the amount of carbon relative to the total weight of the metal powder is 0.02% or more, the sterilization speed is almost the same value. That is, in order to produce a sufficient potential difference between the conductive carbon material and the metal to exhibit the sterilization performance, it is considered that a carbon amount of 0.02% is sufficient.

平均粒子径50μmの亜鉛粉末と、75〜150μmの銅粉末と、カーボン粉末とアクリル樹脂エマルジョンとを、金属粉末とカーボンの重量比を一定にし、アクリル樹脂の量を任意の割合で変動させた6種類の処理液を作成した。作成した処理液をPETフィルム上に塗り広げて、100℃で1時間乾燥させることによって除菌フィルムを作成した。これらの除菌フィルムをそれぞれ直径85mm(約57cm2)の円形に切り取り、塗料の塗布面が上向きになるようにプラスチックシャーレ内に置いた。 A zinc powder having an average particle diameter of 50 μm, a copper powder having a particle size of 75 to 150 μm, a carbon powder and an acrylic resin emulsion, the weight ratio of the metal powder and carbon being constant, and the amount of the acrylic resin being varied at an arbitrary ratio 6 Different types of treatment solutions were made. The prepared treatment liquid was spread on a PET film and dried at 100 ° C. for 1 hour to prepare a sterilization film. Each of these sterilizing films was cut into a circle having a diameter of 85 mm (about 57 cm 2 ), and placed in a plastic petri dish so that the coating surface of the paint was directed upward.

精製水で400倍に希釈した普通ブイヨン培地に、大腸菌 (Esherichia coli、IFO3972)が105(cfu/ml)になるように添加した菌液を作成した。菌液をそれぞれ20mlずつプラスチックシャーレに入れ、3時間後の初期に対する菌数の変化を除菌スピードとして比較した。なお、紫外線の殺菌作用を防ぐため、実験はシャーレを遮光して行った。 A bacterial solution was prepared by adding Escherichia coli (IFO 3972) to 10 5 (cfu / ml) in a normal bouillon medium diluted 400 times with purified water. 20 ml of each bacterial solution was placed in a plastic petri dish, and the change in the number of bacteria relative to the initial value after 3 hours was compared as the sterilization speed. In order to prevent the sterilizing action of ultraviolet rays, the experiment was conducted with the petri dish shielded from light.

結果を図9に示す。樹脂量が総固形分に対する配合比率7%〜35%の範囲において、除菌フィルムは良好な除菌性能を呈した。樹脂が7%より少ない場合は、除菌性能が低下するだけでなく、金属やカーボンとフィルムとの密着性も低下する。また、樹脂量が35%を超えると、密着性は良好であり、十分な強度は得られるものの、金属と導電性材料との導通阻害になるために、除菌性能が低下した。樹脂としては、アクリル以外にも、ナイロン、ポリエステル、ポリエーテル、エポキシ、ポリウレタン、ポリカーボネートなどが挙げられる。   The results are shown in FIG. When the resin amount was within a range of 7% to 35% of the total solid content, the sterilization film exhibited good sterilization performance. When the resin is less than 7%, not only the sterilization performance is lowered, but also the adhesion between the metal or carbon and the film is lowered. Moreover, when the amount of the resin exceeds 35%, the adhesion is good and sufficient strength is obtained, but the sterilization performance deteriorates because conduction between the metal and the conductive material is inhibited. Examples of the resin include nylon, polyester, polyether, epoxy, polyurethane, polycarbonate and the like in addition to acrylic.

平均粒子径50μmの亜鉛粉末と、75〜150μmの銅粉末と、市販の導電性カーボン塗料(導電性のカーボンとポリエステル樹脂を溶剤に分散させたもの)とを、亜鉛と銅とカーボンの重量比が10:1:5になる割合でよく混練してペースト状にし、処理液を作成した。作成した処理液をPETフィルム上に塗り広げて、100℃で1時間乾燥させることによって除菌フィルムを作成した。同様にスポンジ状のフィルタに塗布して100℃で1時間乾燥させることによって除菌フィルタを作成した。   A zinc powder with an average particle diameter of 50 μm, a copper powder with a particle size of 75 to 150 μm, and a commercially available conductive carbon paint (conductive carbon and polyester resin dispersed in a solvent), the weight ratio of zinc, copper and carbon. Was well kneaded at a ratio of 10: 1: 5 to make a paste to prepare a treatment liquid. The prepared treatment liquid was spread on a PET film and dried at 100 ° C. for 1 hour to prepare a sterilization film. Similarly, a sterilization filter was prepared by applying to a sponge-like filter and drying at 100 ° C. for 1 hour.

市販の加湿装置に、作成した除菌フィルムを配置し、給水タンクに水を入れた後、除菌フィルムの周囲から水を採取し培養して水中菌数を測定した。加湿装置の運転を開始し、渇水になるまで連続運転した。翌朝、除菌フィルムの周囲から残留水を採取し、培養して水中菌数を測定した。その後、給水タンクに水をいれて運転を開始し、以下同様の方法で除菌フィルタを配置したもの、および除菌部材を入れないものを比較として14日間、水中の菌数の変化を測定した。同様の実験を除菌フィルタありの条件で行った。   The prepared sterilization film was placed in a commercially available humidifier, and water was put into a water supply tank. Then, water was collected from the periphery of the sterilization film and cultured to measure the number of bacteria in water. Operation of the humidifier was started and continued until drought occurred. The next morning, residual water was collected from the periphery of the sterilization film, cultured, and the number of bacteria in water was measured. Thereafter, water was put into the water supply tank and the operation was started, and the change in the number of bacteria in the water was measured for 14 days as a comparison between the one in which the sterilization filter was arranged in the same manner and the one without the sterilization member. . A similar experiment was performed under conditions with a sterilization filter.

図10に示すように、除菌フィルムなしでは数日で菌数が増加していき、4日目以降は106(cfu/ml)以上の高い菌数を継続して示した。一方、除菌フィルムを入れた場合には、なしの場合と比較して明らかに菌数の増加が少なくなり、除菌の作用が確認できた。菌数が10以下にならなかったのは、除菌フィルムの面積が小さく能力が不足したこと、および空気中から継続的に浮遊微生物が混入するためであると思われる。また、除菌フィルタを搭載したものは14日間運転しても菌は検出されなかった。 As shown in FIG. 10, the number of bacteria increased in several days without a sterilizing film, and a high number of bacteria of 10 6 (cfu / ml) or more was continuously shown from the fourth day. On the other hand, when the sterilization film was inserted, the increase in the number of bacteria was clearly reduced as compared with the case without sterilization, and the sterilization action was confirmed. The reason why the number of bacteria did not become 10 or less seems to be that the area of the sterilization film was small and the ability was insufficient, and that floating microorganisms were continuously mixed from the air. In addition, no bacteria were detected even when the filter equipped with the sterilization filter was operated for 14 days.

本発明の除菌装置では、電力を使用せず、水槽の水深が深い場合あるいは水位の変動が大きい場合にも対応できる水の除菌装置を提供することができ、前記除菌装置を用いて、加湿装置、除湿装置、循環式浴槽装置の水タンク内を清浄に保つ用途や、サウナ装置、空調装置などの導水管内の清浄と菌による腐食の防止用途や、河川や湖沼などの水処理装置、除菌装置などへの展開用途が期待できる。   The sterilization apparatus of the present invention can provide a sterilization apparatus for water that does not use electric power and can cope with the case where the water depth of the aquarium is deep or the fluctuation of the water level is large, using the sterilization apparatus. , Humidifiers, dehumidifiers, recirculating bathtubs, water tanks such as rivers and lakes In addition, it can be expected to be used for disinfection devices.

本発明の発明を実施するための最良の形態1の概略斜視図1 is a schematic perspective view of a best mode 1 for carrying out the invention of the present invention. 本発明の発明を実施するための最良の形態2の概略斜視図Schematic perspective view of the best mode 2 for carrying out the invention of the present invention 本発明の発明を実施するための最良の形態3の概略斜視図Schematic perspective view of the best mode 3 for carrying out the invention of the present invention 本発明の実施例1の除菌効果を示す図The figure which shows the microbe elimination effect of Example 1 of this invention 本発明の実施例3のフィルムを構成する材料と除菌効果の関係を示す図The figure which shows the relationship between the material which comprises the film of Example 3 of this invention, and the disinfection effect 本発明の実施例4の金属の組み合わせと除菌効果の関係を示す図The figure which shows the relationship between the combination of the metal of Example 4 of this invention, and disinfection effect 本発明の実施例6の金属の粒子径と除菌スピードの関係を示す図The figure which shows the relationship between the particle diameter of the metal of Example 6 of this invention, and the disinfection speed. 本発明の実施例7のカーボン量と除菌スピードの関係を示す図The figure which shows the relationship between the carbon content of Example 7 of this invention, and the disinfection speed. 本発明の実施例8の樹脂混合量と除菌スピードの関係を示す図The figure which shows the relationship between the resin mixing amount of Example 8 of this invention, and the disinfection speed. 本発明の実施例9の加湿装置内の菌数の変化を示す図The figure which shows the change of the number of bacteria in the humidification apparatus of Example 9 of this invention. 従来例の加湿装置の概略斜視図Schematic perspective view of conventional humidifier 従来例の加湿装置の内部構造を説明するための概略斜視図The schematic perspective view for demonstrating the internal structure of the humidification apparatus of a prior art example 従来例の加湿装置の内部構造を説明するための概略斜視図The schematic perspective view for demonstrating the internal structure of the humidification apparatus of a prior art example

符号の説明Explanation of symbols

1 除菌装置
2 亜鉛板
3 銅板
4 スペーサー
5 短絡部
11 除菌装置
12 枠
13 中空の球
21 除菌装置
22 発砲体
23 樹脂ネット
24 連結棒
100a 吸気口
100b 吹出口
101 給水タンク
102 水槽
103 加熱筒
104 吸水体
105 送風機
106 電極
DESCRIPTION OF SYMBOLS 1 Disinfection apparatus 2 Zinc plate 3 Copper plate 4 Spacer 5 Short-circuit part 11 Disinfection apparatus 12 Frame
DESCRIPTION OF SYMBOLS 13 Hollow ball 21 Sanitization apparatus 22 Foaming body 23 Resin net 24 Connecting rod 100a Intake port 100b Outlet 101 Water supply tank 102 Water tank 103 Heating cylinder 104 Water absorption body 105 Blower 106 Electrode

Claims (15)

酸化還元電位の異なる2種類以上の導電性材料を導通させ、水に浮かべて用いることを特徴とする除菌装置。 A sterilization apparatus characterized in that two or more kinds of conductive materials having different oxidation-reduction potentials are conducted and floated on water. 導電性材料が金属および/または炭素であることを特徴とする請求項1記載の除菌装置。 The sterilizing apparatus according to claim 1, wherein the conductive material is metal and / or carbon. 導電性材料が殺菌性の金属を含むことを特徴とする請求項1または2記載の除菌装置。 The sterilization apparatus according to claim 1 or 2, wherein the conductive material contains a bactericidal metal. 間隔をおいて配置された酸化還元電位の異なる2種類以上の金属材料と、前記金属材料同士を短絡させる短絡部から構成されていることを特徴とする請求項1乃至3いずれかに記載の除菌装置。 4. The removal according to claim 1, comprising two or more kinds of metal materials having different redox potentials arranged at intervals and a short-circuit portion for short-circuiting the metal materials. Bacteria device. 短絡部が、水面より上に位置することを特徴とする請求項4記載の除菌装置。 The sterilization apparatus according to claim 4, wherein the short-circuit portion is located above the water surface. 金属材料が、絶縁性スペーサーを介して対向していることを特徴とする請求項4または5記載の除菌装置。 6. The sterilizing apparatus according to claim 4 or 5, wherein the metal materials are opposed to each other via an insulating spacer. 金属材料と絶縁性スペーサーを交互に積層したことを特徴とする請求項6記載の除菌装置。 The sterilization apparatus according to claim 6, wherein metal materials and insulating spacers are alternately laminated. 絶縁性スペーサーのかさ比重が水よりも軽いことを特徴とする請求項6または7記載の除菌装置。 The sterilizing apparatus according to claim 6 or 7, wherein the bulk specific gravity of the insulating spacer is lighter than water. 導電性材料が粉末および/または繊維状であることを特徴とする請求項1乃至3いずれかに記載の除菌装置。 The sterilization apparatus according to any one of claims 1 to 3, wherein the conductive material is powder and / or fibrous. 導電性材料を分散または溶解した処理液を、かさ比重が水よりも軽い基材に塗布したことを特徴とする請求項9記載の除菌装置。 The sterilization apparatus according to claim 9, wherein the treatment liquid in which the conductive material is dispersed or dissolved is applied to a base material having a bulk specific gravity lighter than water. 導電性材料を分散または溶解した処理液を塗布した表面処理部分の表面電気抵抗が107Ω/□以下であることを特徴とした請求項10記載の除菌装置。 The sterilizing apparatus according to claim 10, wherein the surface electrical resistance of the surface-treated portion where the treatment liquid in which the conductive material is dispersed or dissolved is applied is 10 7 Ω / □ or less. かさ比重が水よりも軽い基材の、水面下に位置する場所に処理液を塗布したことを特徴とする請求項10または11記載の除菌装置。 The sterilizing apparatus according to claim 10 or 11, wherein the treatment liquid is applied to a place located below the surface of the base material having a bulk specific gravity lighter than water. かさ比重が水よりも軽い基材が多孔質であることを特徴とする請求項10乃至12いずれかに記載の除菌装置。 The sterilization apparatus according to any one of claims 10 to 12, wherein the substrate having a bulk specific gravity lighter than water is porous. 請求項1乃至13いずれかに記載の除菌装置を、水に浮かべることを特徴とした水処理方法。 A water treatment method, wherein the sterilization apparatus according to claim 1 is floated on water. 請求項1乃至13いずれかに記載の除菌装置を接続する接続手段を備え、前記接続手段によって連通した除菌装置を水に浮かべることを特徴とする水処理方法。 A water treatment method comprising: a connection unit that connects the sterilization apparatus according to claim 1, wherein the sterilization apparatus communicated by the connection unit is floated on water.
JP2007023947A 2007-02-02 2007-02-02 Disinfection apparatus and water treatment method Expired - Fee Related JP4760724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007023947A JP4760724B2 (en) 2007-02-02 2007-02-02 Disinfection apparatus and water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007023947A JP4760724B2 (en) 2007-02-02 2007-02-02 Disinfection apparatus and water treatment method

Publications (2)

Publication Number Publication Date
JP2008188508A true JP2008188508A (en) 2008-08-21
JP4760724B2 JP4760724B2 (en) 2011-08-31

Family

ID=39749122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007023947A Expired - Fee Related JP4760724B2 (en) 2007-02-02 2007-02-02 Disinfection apparatus and water treatment method

Country Status (1)

Country Link
JP (1) JP4760724B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010023960A1 (en) * 2008-08-29 2010-03-04 Hayakawa Youji Aquatic battery
JP2014127466A (en) * 2012-12-26 2014-07-07 Kazuhiro Hayashi Promoting step of material movement between electrodes in electrolyte by applying voltage

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04298285A (en) * 1991-03-27 1992-10-22 Daiwabo Create Kk Algaproofing device
JP2003181454A (en) * 2001-12-15 2003-07-02 Matsumoto Seisakusho:Kk Sterilization method of bath water and sterilization device thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04298285A (en) * 1991-03-27 1992-10-22 Daiwabo Create Kk Algaproofing device
JP2003181454A (en) * 2001-12-15 2003-07-02 Matsumoto Seisakusho:Kk Sterilization method of bath water and sterilization device thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010023960A1 (en) * 2008-08-29 2010-03-04 Hayakawa Youji Aquatic battery
US8540855B2 (en) 2008-08-29 2013-09-24 Youji Hayakawa Water battery device
JP2014127466A (en) * 2012-12-26 2014-07-07 Kazuhiro Hayashi Promoting step of material movement between electrodes in electrolyte by applying voltage

Also Published As

Publication number Publication date
JP4760724B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
JP5157170B2 (en) Humidifier
Wu et al. Amidoxime-functionalized macroporous carbon self-refreshed electrode materials for rapid and high-capacity removal of heavy metal from water
JP2008001950A (en) Surface treatment method, metals using the method, and sterilizing device
US20040045909A1 (en) Humidifier
JP5522798B2 (en) Ballast water purification method
JP2007196152A (en) Dust collecting filter, dust collector and air conditioner
JP2012247185A (en) Sterilization filter and humidifier
JP2008188508A (en) Microorganism removing device and water treatment method
JP4401695B2 (en) Humidifier
JP4830997B2 (en) Disinfecting member and cleaning tool using the same
CN107381732A (en) A kind of triboelectricity water sterilization device
JP5145796B2 (en) Disinfection filter and manufacturing method thereof
JP2010164201A (en) Humidification device
JP2014224646A (en) Outdoor unit auxiliary cooling system
EP3120084A1 (en) Seawater air-conditioning system
JP2011089769A (en) Water sterilization device and humidifier
JP4479212B2 (en) Method for sterilizing electrolyte solution and member thereof
JPH078790A (en) Preparation of colloidal solution of carbon
JP5186226B2 (en) Water treatment equipment
CN205245417U (en) Filter core device and humidifier
CN207811401U (en) A kind of layered shaping formula chemical engineering sewage processing unit
WO2006081687A1 (en) Systems and methods for generation of low zeta potential mineral crystals and hydrated electrons to enhance the quality of liquid solutions
JP5310772B2 (en) Air conditioning equipment
JP5465232B2 (en) Humidifier
JP2008309357A (en) Humidifying device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100128

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees