JP2008188488A - Wastewater treatment system - Google Patents

Wastewater treatment system Download PDF

Info

Publication number
JP2008188488A
JP2008188488A JP2007022756A JP2007022756A JP2008188488A JP 2008188488 A JP2008188488 A JP 2008188488A JP 2007022756 A JP2007022756 A JP 2007022756A JP 2007022756 A JP2007022756 A JP 2007022756A JP 2008188488 A JP2008188488 A JP 2008188488A
Authority
JP
Japan
Prior art keywords
wastewater
treatment
waste water
treatment system
pva
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007022756A
Other languages
Japanese (ja)
Inventor
Ikuo Takeda
生男 武田
Atsuhiro Tamura
篤弘 田村
Takeshi Miyagawa
健 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshinbo Holdings Inc
Ebara Jitsugyo Co Ltd
Original Assignee
Ebara Jitsugyo Co Ltd
Nisshinbo Industries Inc
Nisshin Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Jitsugyo Co Ltd, Nisshinbo Industries Inc, Nisshin Spinning Co Ltd filed Critical Ebara Jitsugyo Co Ltd
Priority to JP2007022756A priority Critical patent/JP2008188488A/en
Publication of JP2008188488A publication Critical patent/JP2008188488A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wastewater treatment system for effectively actualizing wastewater treatment in a shorter period of time and more inexpensively compared to conventional equipment when treating, in particular, PVA wastewater. <P>SOLUTION: The wastewater treatment system mixes common salt with the wastewater containing polyvinyl alcohol, electrolyzes the resultant mixture, merges the wastewater of the bleaching process of a cellulose based fiber structure and/or a liquid ammonia manufacturing process and the electrolyzed wastewater, and subjects the merged wastewater to denitrification and activated sludge treatment. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、産業廃水の電気分解を含む廃水処理システムに関し、特に、主にポリビニルアルコールを含む産業廃水を経済的にかつ効果的に処理する廃水処理システムに関する。   The present invention relates to a wastewater treatment system including electrolysis of industrial wastewater, and more particularly to a wastewater treatment system that economically and effectively treats industrial wastewater mainly containing polyvinyl alcohol.

産業廃水に含まれるポリビニルアルコール(PVA)は、織物や編物などの漂白・染色工場から排出される物質であるが、生物分解性が悪く、活性汚泥法で処理すると20日以上の長期間の処理が必要とされている。   Polyvinyl alcohol (PVA) contained in industrial wastewater is a substance discharged from bleaching and dyeing factories such as woven fabrics and knitted fabrics, but its biodegradability is poor, and when treated by the activated sludge method, it is treated for a long period of 20 days or longer. Is needed.

そのため、現状では濃縮して焼却されることが多いが、焼却費用や焼却灰の処理コストが掛かる、また、焼却による二酸化炭素の排出の観点から問題視されている。   Therefore, it is often concentrated and incinerated at present, but incurs incineration costs and incineration ash processing costs, and is regarded as a problem from the viewpoint of carbon dioxide emission by incineration.

<1>特開平11−309468号公報に記載されているように、金属触媒の存在下、酸化剤を添加して、有機物を酸化させる方法も多数開示されている。しかし、これらの方法は、使用する酸化剤が劇物で取り扱いが難しく、コストも高いのが難点である。 <1> As disclosed in JP-A-11-309468, many methods for oxidizing an organic substance by adding an oxidizing agent in the presence of a metal catalyst are also disclosed. However, these methods are difficult to handle because the oxidizing agent used is a deleterious substance, and the cost is high.

次に、電気分解による方法も提案されている。
<2>例えば、特開平6−254568号公報においては、電解質溶液である又は電解質溶液とした廃棄液に直流電流を流すことにより、これによって生成する発生基活性酸素が、廃棄液中の被酸化物質と反応しこれを酸化分解させる廃棄液処理工程を有する方法を提案している。
<3>特開2000−254650号公報では、陰極に酸素含有ガスを供給して過酸化水素を生成させ、かつ陽極に酸溶液添加口から無機酸を供給して次亜塩素酸等の酸化生成物を生成させて、前記両化合物により被処理液の処理を行う。これにより殺菌力が向上するとともに共存する酸化生成物の酸性により陰極表面近傍も中性から酸性に維持されて金属水酸化物の析出が抑制される水処理方法と装置が提案されている。
Next, an electrolysis method has also been proposed.
<2> For example, in Japanese Patent Application Laid-Open No. 6-254568, by generating a direct current through a waste liquid that is an electrolyte solution or an electrolyte solution, the generated radical active oxygen generated thereby is oxidized in the waste liquid. A method having a waste liquid treatment process that reacts with a substance and oxidatively decomposes the substance is proposed.
<3> In Japanese Patent Laid-Open No. 2000-254650, oxygen-containing gas is supplied to the cathode to generate hydrogen peroxide, and inorganic acid is supplied to the anode from the acid solution addition port to oxidize and generate hypochlorous acid or the like. The product to be treated is treated with the two compounds. As a result, a water treatment method and apparatus have been proposed in which the sterilizing power is improved and the vicinity of the cathode surface is maintained from neutral to acidic due to the acidity of the coexisting oxidation product, thereby suppressing the precipitation of metal hydroxide.

<4>特開2003−326263号公報では、濃縮電気分解水処理法は、被処理水を濃縮して濃縮被処理液を得る濃縮工程及び、当該濃縮工程の後に前記濃縮被処理液を電気分解処理する電気分解工程を備え、好適には、上記電気分解工程の後に、更に、電気分解後の処理液を、濃縮工程で得られた濃縮被処理液以外の分離水で希釈する希釈工程を備える。又、更に、上記濃縮工程の前に、被処理水を生物分解処理する生物分解処理工程を備える濃縮電気分解水処理法が提案されている。 <4> In Japanese Patent Application Laid-Open No. 2003-326263, the concentrated electrolyzed water treatment method includes a concentration step of concentrating water to be treated to obtain a concentrated liquid to be treated, and electrolysis of the concentrated liquid to be treated after the concentration step. An electrolysis process to be treated, and preferably, after the electrolysis process, further includes a dilution process for diluting the treated liquid after electrolysis with separated water other than the concentrated liquid to be treated obtained in the concentration process. . Furthermore, a concentrated electrolyzed water treatment method including a biodegradation treatment step for biodegradation treatment of water to be treated before the concentration step has been proposed.

しかしながら、PVAを電気分解処理のみで行う場合、PVAの分解が十分でなく、また、一般的に電気分解を用いた方法においては、充分な電極の反応面積を確保するためには装置の投資が高価になってしまうという問題がある。   However, when the PVA is performed only by electrolysis, the PVA is not sufficiently decomposed. In general, in the method using electrolysis, the investment of the apparatus is required to secure a sufficient reaction area of the electrode. There is a problem that it becomes expensive.

特開平11−309468号公報JP 11-309468 A 特開平6−254568号公報JP-A-6-254568 特開2000−254650号公報JP 2000-254650 A 特開2003−326263号公報JP 2003-326263 A

本発明者らは、上記目的を達成するため鋭意検討した結果、特にPVA廃水を処理するにあたり、従来装置と比較して、短期間かつ低コストで廃水処理を効果的に実現する廃水処理システムを提供することを課題とする。   As a result of intensive studies to achieve the above object, the present inventors have developed a wastewater treatment system that effectively realizes wastewater treatment in a short period of time and at a low cost, particularly when treating PVA wastewater. The issue is to provide.

本発明者等は、上記課題に鑑み、PVAを数質量%含まれる廃水に食塩を添加し電気分解する。漂白加工や液体アンモニア加工工程の廃水と前記電気分解処理した廃水とを合流させ、この合流させた廃水を脱窒素及び活性汚泥処理工程に通すようにした廃水処理システムを見出し、本発明を完成するに至った。   In view of the above problems, the present inventors perform electrolysis by adding sodium chloride to waste water containing several mass% of PVA. A wastewater treatment system is found that combines wastewater from a bleaching process or liquid ammonia processing process and the electrolyzed wastewater, and passes the combined wastewater through a denitrification and activated sludge treatment process, thereby completing the present invention. It came to.

本発明は、
<1>ポリビニルアルコールを含む廃水に食塩を混合し電気分解し、セルロース系繊維構造物の漂白工程及び/又は液体アンモニア加工工程の廃水と前記電気分解された廃水を合わせ、前記合わされた廃水を脱窒素及び活性汚泥処理することを特徴とする廃水処理システム、
<2>前記電気分解したポリビニルアルコールを含む廃水とセルロース系繊維構造物の前記漂白工程及び/又は液体アンモニア加工工程の廃水を、1:25〜1:35の割合で合わせて、脱窒素及び活性汚泥処理することを特徴とする<1>記載の廃水処理システム、
<3>上記電気分解の電極1組当りの処理条件は、処理時間(滞留)が30〜60分、電流が400〜500A、電圧が6〜10V、電極1組当りの処理量が2〜3m/日、食塩(NaCl)濃度が3000〜5000mg/Lとしたことを特徴とする<1>、<2>記載の廃水処理システム、
である。
The present invention
<1> Salt water is mixed with wastewater containing polyvinyl alcohol and electrolyzed, and the wastewater from the bleaching step of the cellulosic fiber structure and / or the liquid ammonia processing step is combined with the electrolyzed wastewater, and the combined wastewater is removed. A wastewater treatment system characterized by treating nitrogen and activated sludge;
<2> The waste water containing the electrolyzed polyvinyl alcohol and the waste water from the bleaching step and / or the liquid ammonia processing step of the cellulosic fiber structure are combined at a ratio of 1:25 to 1:35 to remove nitrogen and activity. <1> The wastewater treatment system according to <1>, characterized by sludge treatment.
<3> The treatment conditions for one set of electrodes in the above electrolysis are as follows: the treatment time (residence) is 30 to 60 minutes, the current is 400 to 500 A, the voltage is 6 to 10 V, and the treatment amount per pair of electrodes is 2 to 3 m. 3 / day, the wastewater treatment system according to <1>, <2>, wherein the sodium chloride (NaCl) concentration is 3000 to 5000 mg / L,
It is.

本発明の廃水処理システムは、
<1>PVA廃水処理に掛かる期間を、生分解性処理のみの場合に比べ大幅に短縮できる、約20日から2〜4日に短縮、
<2>PVA廃水処理装置の稼動維持費用を大幅に低減できる、
<3>PVAの焼却処理よりも処理費用を低減できる、
等の効果が得られる。
The wastewater treatment system of the present invention is
<1> The period of PVA wastewater treatment can be significantly shortened compared to the case of biodegradable treatment alone, shortened from about 20 days to 2 to 4 days.
<2> Operation and maintenance costs of PVA wastewater treatment equipment can be significantly reduced.
<3> Processing costs can be reduced more than incineration of PVA.
Etc. are obtained.

図1を用いて、本発明の廃水処理システムを説明する。
本発明の廃水処理システムは、PVAを数質量%含む廃水に食塩を添加し電気分解する。漂白加工や液体アンモニア加工工程の廃水と前記電気分解処理した廃水とを合流させ、この合流させた廃水を脱窒素及び活性汚泥処理工程に通すことで、PVAなどの汚染物質を早期に分解処理する。
The wastewater treatment system of this invention is demonstrated using FIG.
In the wastewater treatment system of the present invention, salt is added to electrolyze wastewater containing several mass% of PVA. The wastewater from the bleaching process or liquid ammonia processing process and the electrolyzed wastewater are merged, and the combined wastewater is passed through a denitrification and activated sludge treatment process to quickly decompose pollutants such as PVA. .

図2を用いて、本発明の電気分解装置を説明する。
電気分解は、廃水1中に食塩を混ぜ電気分解すると、溶解している塩素イオンは陽極で酸化されて塩素イオンが生成し、塩素の一部は更に水と反応して次亜塩素酸イオンを生成し、この塩素及び次亜塩素酸がCOD成分を酸化分解し、CODMn値の低減と生物分解性成分を生成する。
図2中上部から装置内に廃水1を導水し、逆コの字状に形成された電極部の水路6を流れていく。この水路6の凸状部の電極5aを陽極、凹状部の電極5bを陰極のよう配し、電極の間を廃水1が流れ、電圧が掛けられた電極間を流れることにより、廃水1内に入れた食塩が電気分解する。この水路6を直線状、または曲線状にすることも可能であるが、廃水1が電極間を流れて電気分解される時間をコントロールする、また廃水1と電極の接触面積を増やすには、図2のように廃水1の流れの方向を変えることが好ましい。
The electrolyzer according to the present invention will be described with reference to FIG.
When electrolysis is performed by mixing sodium chloride in waste water 1, the dissolved chlorine ions are oxidized at the anode to produce chlorine ions, and some of the chlorine further reacts with water to produce hypochlorite ions. This chlorine and hypochlorous acid oxidatively decompose the COD component to produce a COD Mn value reduced and biodegradable component.
The waste water 1 is introduced into the apparatus from the upper part in FIG. 2, and flows through the water channel 6 of the electrode part formed in an inverted U shape. By arranging the convex electrode 5a of the water channel 6 as an anode and the concave electrode 5b as a cathode, the waste water 1 flows between the electrodes, and flows between the electrodes to which voltage is applied. The salt put in is electrolyzed. Although the water channel 6 can be linear or curved, in order to control the time during which the wastewater 1 flows between the electrodes and is electrolyzed, and to increase the contact area between the wastewater 1 and the electrodes, It is preferable to change the flow direction of the waste water 1 as in FIG.

PVAを含む廃水の電気分解装置の設定条件を決定するために、PVA排水のCODMn濃度が27,000mg/Lの時の条件を、電圧約9V、電流500A、処理量100L、電極1setで、表1の実験を行った。

Figure 2008188488
水質基準の指標の一つである水質汚濁負荷量はCOD(Chemical Oxygen Demmand:化学的酸素要求量)濃度と排水流量との積で定義されており,一日平均排水量が50m以上の事業所はその汚濁負荷量を測定するとともに,その規制値を遵守することを義務づけられている。 In order to determine the setting conditions of the electrolyzer for wastewater containing PVA, the conditions when the COD Mn concentration of the PVA wastewater is 27,000 mg / L are as follows: voltage about 9V, current 500A, throughput 100L, electrode 1set, The experiment of Table 1 was conducted.
Figure 2008188488
Water pollution load which is one indicator of the water quality standards COD (Chemical Oxygen Demmand: Chemical Oxygen Demand) concentration and is defined by the product of the wastewater flow, the average daily wastewater is 50 m 3 or more establishments Is obliged to measure its pollutant load and to comply with its regulation values.

前記表1より、PVA排水のCODMn濃度が約27,000mg/Lの時、電気分解処理条件は、電圧9V、電流500A,処理量100L/電極1set、NaCl濃度3,000mg/L、電気分解処理時間に余裕をみて45分が好ましいことがわかった。 From Table 1 above, when the COD Mn concentration of the PVA waste water is about 27,000 mg / L, the electrolysis treatment conditions are voltage 9V, current 500A, treatment amount 100L / electrode 1set, NaCl concentration 3,000mg / L, electrolysis. It was found that 45 minutes was preferable in view of the processing time.

電気分解装置は、ポリビニルアルコール(PVA)が約2質量%含まれるPVA廃水1を、処理時間は、30〜60分とし、30分未満では未処理となることがあり、また、60分を超えると効率が悪くなる。電流と電圧は、400〜500A、6〜10Vとし、この条件以下では処理能力が落ち、また、この条件を超えると水温の上昇が起きたり電極の寿命が短くなるなどの影響がでる。電極1組当りの処理量は、2〜3m/日で、食塩(NaCl)濃度は、3000〜5000mg/Lとし、3000mg/L未満のときは処理能力が低下し、5000mg/Lを超えると未利用分が増えて効率が下がるなどの影響がでる。 The electrolysis apparatus uses PVA wastewater 1 containing about 2% by mass of polyvinyl alcohol (PVA). The treatment time is 30 to 60 minutes, and the treatment time may be untreated in less than 30 minutes, and more than 60 minutes. And the efficiency becomes worse. The current and voltage are 400 to 500 A and 6 to 10 V. Under this condition, the processing capacity is lowered, and when this condition is exceeded, the water temperature rises and the life of the electrode is shortened. The treatment amount per electrode set is 2 to 3 m 3 / day, and the sodium chloride (NaCl) concentration is 3000 to 5000 mg / L. When the treatment amount is less than 3000 mg / L, the treatment capacity decreases and exceeds 5000 mg / L. Unused portion will increase and efficiency will decrease.

電極は、廃水中の汚染物質により、炭素、鉄、チタン、ステンレススチールなどが用いられ、腐食耐性などよりチタンがより好ましく用いられる。   For the electrode, carbon, iron, titanium, stainless steel or the like is used depending on the pollutant in the wastewater, and titanium is more preferably used because of corrosion resistance.

PVA廃水1にはPVA以外の懸濁物が含まれており、この懸濁物は、電気分解で発生する微細気泡に付着し浮上する。懸濁物を含む浮上した泡は、電気分解処理槽からオーバーフローし、次の処理に送られる。
電気分解処理されたPVA廃水1約100ton/日は、漂白工程や液体アンモニア加工の廃水約2,900ton/日と合され、合わせて約3,000ton/日の廃水が次工程の脱窒素及び活性汚泥処理にかけられる。
The PVA waste water 1 contains a suspension other than PVA, and this suspension adheres to fine bubbles generated by electrolysis and floats. The floated foam containing the suspension overflows from the electrolytic treatment tank and is sent to the next treatment.
About 100 ton / day of electrolyzed PVA wastewater is combined with about 2,900 ton / day of bleaching process and liquid ammonia processing wastewater, and about 3,000 ton / day of wastewater is combined with denitrification and activity in the next process. It is subjected to sludge treatment.

次に、脱窒素及び活性汚泥処理装置について説明する。
漂白工程や液体アンモニア加工工程等の廃水2と電気分解処理されたPVA廃水1は、両廃水が合されてから脱窒素及び活性汚泥処理装置により廃水中の窒素やアンモニアを分解して窒素が取り除かれるとともに、微生物(バクテリア)によりPVAや水中汚染物質が分解・沈殿されて、水と分離される。
脱窒素及び活性汚泥処理装置は、処理槽内部に様々なバクテリアを繁殖させて汚染物質をバクテリアにて分解させるものである。バクテリアは、水中の汚染物質を分解するに当って最適なものを選択すれば良い。
Next, the denitrification and activated sludge treatment apparatus will be described.
The waste water 2 from the bleaching process, liquid ammonia processing process, etc. and the electrolyzed PVA waste water 1 are removed from the waste water by decomposing nitrogen and ammonia by the denitrification and activated sludge treatment equipment after both waste waters are combined. At the same time, PVA and water pollutants are decomposed and precipitated by microorganisms (bacteria) and separated from water.
The denitrification and activated sludge treatment apparatus propagates various bacteria inside the treatment tank and decomposes the pollutants with the bacteria. What is necessary is just to select the optimal bacteria in decomposing | disassembling the contaminant in water.

PVAを約2質量%含有するPVA廃水1(約100ton/日)を、下記の条件に設定された電気分解装置を通し、また、漂白工程や液体アンモニア加工工程からの廃水2(約2,900ton/日)を合わせて約3,000ton/日の混合廃水3を、脱窒素及び活性汚泥装置に通した。   PVA waste water 1 containing about 2% by mass of PVA (about 100 ton / day) is passed through an electrolysis apparatus set to the following conditions, and waste water 2 (about 2,900 ton from the bleaching process or liquid ammonia processing process). The combined waste water 3 of about 3,000 ton / day was passed through the denitrification and activated sludge apparatus.

電気分解装置の各種条件を下記のように設定した。
条件
廃水処理量 :100m(ton)/日
電極1組当たりの処理量:2〜3m/日

電流・電圧 :500A・9V/電極1組
NaCl濃度:3,000mg/L
Various conditions of the electrolysis apparatus were set as follows.
Condition Wastewater treatment amount: 100 m 3 (ton) / day Treatment amount per electrode pair: 2-3 m 3 / day

Current / voltage: 500A / 9V / electrode 1 set NaCl concentration: 3,000mg / L

このときの電気分解処理後で脱窒素及び活性汚泥処理前の廃水CODMn値と脱窒素及び活性汚泥処理処理後の処理水CODMn値を、表2に示す。表2中、2日間づつ工場休業日のためPVA廃水がない日は測定していない。

Figure 2008188488
Table 2 shows the wastewater COD Mn value after the electrolysis treatment and before the denitrification and activated sludge treatment and the treated water COD Mn value after the denitrification and activated sludge treatment. In Table 2, the days when there is no PVA wastewater are not measured because the factory is closed every two days.
Figure 2008188488

廃水3のCODMnは、600〜1,000mg/Lの間であったが、脱窒素及び活性汚泥処理後の処理水4のCODMnは、80mg/L以下となっている。なお、この処理水4はこの後、加圧浮上装置やPH調整などの処理が行われ、外部に排水される。ここで、CODMnを80mg/L以下したが、工場から排水される際には、規制値である日間平均20mg/L以下および最大25mg/L以下をクリアするためのものである。 The COD Mn of the waste water 3 was between 600 and 1,000 mg / L, but the COD Mn of the treated water 4 after denitrification and activated sludge treatment was 80 mg / L or less. The treated water 4 is then subjected to treatment such as a pressure levitation device and pH adjustment, and is drained to the outside. Here, COD Mn was set to 80 mg / L or less, but when draining from the factory, it is intended to clear the regulation daily average 20 mg / L or less and the maximum 25 mg / L or less.

比較例
実施例と比較するために、PVA廃水1を電気分解処理せずに、漂白加工や液体アンモニア加工工程の廃水と合わせて、脱窒素及び活性汚泥処理装置で処理をし、6日間の混合排水3と処理水4のCODMn(mg/L)を測定した。測定時間は、毎日10時とし、測定方法はJIS K 0102 17(100℃における過マンガン酸カリウムによる酸素消費量)に基づき、測定結果を表3に示した。
Comparative Example For comparison with the examples, PVA wastewater 1 was treated with denitrification and activated sludge treatment equipment, combined with wastewater from bleaching and liquid ammonia processing processes, without electrolysis treatment, and mixed for 6 days. COD Mn (mg / L) of waste water 3 and treated water 4 was measured. The measurement time was 10:00 every day, and the measurement method was based on JIS K 0102 17 (oxygen consumption by potassium permanganate at 100 ° C.).

Figure 2008188488
表3から、電気分解処理されないPVA含有廃水が混合廃水3として現れたのが第2日目の測定時であり、これが処理水4として現れたのが第5日目のため、混合廃水3は脱窒素及び活性汚泥処理装置内において約3日間で処理され、その後廃水される。このことから、PVAは脱窒素及び活性汚泥処理装置内において約3日間で分解処理されていることが解る。
Figure 2008188488
From Table 3, the PVA-containing wastewater that was not electrolyzed appeared as the mixed wastewater 3 at the time of measurement on the second day, and since this appeared as the treated water 4 on the fifth day, the mixed wastewater 3 was It is processed in a denitrification and activated sludge treatment apparatus in about 3 days, and then is drained. From this, it is understood that PVA is decomposed in about 3 days in the denitrification and activated sludge treatment apparatus.

本発明の廃水処理システムの説明図。Explanatory drawing of the waste water treatment system of this invention. 本発明の廃水処理システムに用いられる電解装置の概略説明図。Schematic explanatory drawing of the electrolyzer used for the waste water treatment system of this invention.

符号の説明Explanation of symbols

1 PVA廃水
2 漂白等の廃水
3 混合廃水
4 処理水
5a 電極a
5b 電極b
6 水路
1 PVA wastewater 2 Bleaching wastewater 3 Mixed wastewater 4 Treated water 5a Electrode a
5b Electrode b
6 waterway

Claims (3)

ポリビニルアルコールを含む廃水に食塩を混合し電気分解し、セルロース系繊維構造物の漂白工程及び/又は液体アンモニア加工工程の廃水と前記電気分解された廃水を合わせ、前記合わされた廃水を脱窒素及び活性汚泥処理することを特徴とする廃水処理システム。 Salt water is mixed with the waste water containing polyvinyl alcohol and electrolyzed, and the waste water from the bleaching process of the cellulosic fiber structure and / or the liquid ammonia processing process is combined with the electrolyzed waste water, and the combined waste water is denitrogenated and activated. A wastewater treatment system characterized by sludge treatment. 前記電気分解したポリビニルアルコールを含む廃水とセルロース系繊維構造物の前記漂白工程及び/又は液体アンモニア加工工程の廃水を、1:25〜1:35の割合で合わせて、脱窒素及び活性汚泥処理することを特徴とする請求項1記載の廃水処理システム。 The electrolyzed waste water containing polyvinyl alcohol and the waste water from the bleaching step and / or the liquid ammonia processing step of the cellulosic fiber structure are combined at a ratio of 1:25 to 1:35 to perform denitrification and activated sludge treatment. The wastewater treatment system according to claim 1. 上記電気分解は電極1組当りの処理条件を、廃水のCODMnが20000〜30000mg/L当り、処理時間(滞留)が30〜60分、電流が400〜500A、電圧が6〜10V、電極1組当りの処理量が2〜3m/日、食塩(NaCl)濃度が3000〜5000mg/Lとしたことを特徴とする請求項1、2記載の廃水処理システム。 In the electrolysis, the treatment conditions per electrode set are as follows: waste water COD Mn is 20000 to 30000 mg / L, treatment time (retention) is 30 to 60 minutes, current is 400 to 500 A, voltage is 6 to 10 V, electrode 1 The wastewater treatment system according to claim 1, wherein the treatment amount per group is 2 to 3 m 3 / day, and the salt (NaCl) concentration is 3000 to 5000 mg / L.
JP2007022756A 2007-02-01 2007-02-01 Wastewater treatment system Pending JP2008188488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007022756A JP2008188488A (en) 2007-02-01 2007-02-01 Wastewater treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007022756A JP2008188488A (en) 2007-02-01 2007-02-01 Wastewater treatment system

Publications (1)

Publication Number Publication Date
JP2008188488A true JP2008188488A (en) 2008-08-21

Family

ID=39749103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007022756A Pending JP2008188488A (en) 2007-02-01 2007-02-01 Wastewater treatment system

Country Status (1)

Country Link
JP (1) JP2008188488A (en)

Similar Documents

Publication Publication Date Title
US10315942B2 (en) Resource reuse-type industrial waste water treatment method and apparatus utilizing oxidizing agent generated by utilizing waste water
JP4671743B2 (en) Electrolytic treatment method and apparatus for wastewater containing ammonia nitrogen
Cotillas et al. Optimization of an integrated electrodisinfection/electrocoagulation process with Al bipolar electrodes for urban wastewater reclamation
JP4040028B2 (en) Method and system for treating water to be treated containing organic matter and nitrogen compound
JP5579414B2 (en) Treatment method for wastewater containing reducing selenium
US20070034567A1 (en) Water treatment device
Özyurt et al. Applications of combined electrocoagulation and electrooxidation treatment to industrial wastewaters
JP2003126861A (en) Method and apparatus for water treatment
JP4920255B2 (en) Water treatment method and system
JP2005218983A (en) Wastewater treatment method and apparatus using electrolytic oxidation
JP2009255069A (en) Water treatment system
JP5122074B2 (en) Water treatment method and system
CN111087047A (en) Treatment method of bromine-containing organic wastewater
KR19990064833A (en) Apparatus and method for treating a cyanide waste water using a electrolysis
Vijayaraghavan et al. In situ hypochlorous acid generation for treatment of tannery wastewaters
KR101046942B1 (en) Water treatment method using electrolysis
JPH07100466A (en) Method for treating waste water
Vijayaraghavan et al. In situ hypochlorous acid generation for the treatment of syntan wastewater
CN113184972B (en) Method for removing organic pollutants in wastewater by sequencing batch reaction
KR101032619B1 (en) Method for wastewater including chromaticity treatment using electrochemistry
JP4662327B2 (en) Wastewater treatment method and apparatus
JP4641435B2 (en) Endocrine disrupting chemical substance decomposition method and apparatus
JP2008188488A (en) Wastewater treatment system
KR100545306B1 (en) Electrochemical process for wastewater containing nitric acid
RU2104960C1 (en) Method for purification of sewage