JP2008187156A - Substrate detection device - Google Patents

Substrate detection device Download PDF

Info

Publication number
JP2008187156A
JP2008187156A JP2007022012A JP2007022012A JP2008187156A JP 2008187156 A JP2008187156 A JP 2008187156A JP 2007022012 A JP2007022012 A JP 2007022012A JP 2007022012 A JP2007022012 A JP 2007022012A JP 2008187156 A JP2008187156 A JP 2008187156A
Authority
JP
Japan
Prior art keywords
light
substrate
glass substrate
light receiving
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007022012A
Other languages
Japanese (ja)
Other versions
JP2008187156A5 (en
Inventor
Shogo Kosuge
正吾 小菅
Satoshi Hirokawa
智 廣川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2007022012A priority Critical patent/JP2008187156A/en
Publication of JP2008187156A publication Critical patent/JP2008187156A/en
Publication of JP2008187156A5 publication Critical patent/JP2008187156A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a glass substrate detection device that detects the presence or non-presence of the glass substrate on a sample stage not only at any time but also irrespective of the quality or thickness of the glass substrate in addition to a light volume incident to a sensor. <P>SOLUTION: This invention relates to a substrate detection device wherein detection is carried out in such a manner that a light emitting position and a light receiving position are rectilinearily arranged by using a high rectilinearity transmitting sensor such as a laser beam sensor and by focusing on the light reflective index. In the foregoing method, the device is turned on (ON) since the light receiving volume is great when light is not blocked by the shielding materials, and turned off (OFF) since the light receiving volume is small when the light is blocked by them. More specifically, the light receiving volume is reduced since the glass reflective index light distribution path is displaced in such a shielding material whose material quality is transmissive like glass. Therefore, the device detects the presence or non-presence of the shielding materials based on the reduced light receiving volume, and is turned off (OFF) if it is found that they are present. Further, the device enables substrate detection since the light receiving volume is not reduced if the displacement of the shielding position is not so great as expected and if in the light path. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ガラス基板を取扱う機器類において、ガラス基板の有無を検出するガラス基板検出装置に関わる。   The present invention relates to a glass substrate detection device that detects the presence or absence of a glass substrate in devices that handle glass substrates.

従来のガラス基板の有無を検出する方法を以下に述べる。
図3は、従来のガラス基板の搬送ロボットと搬送ロボットが搬送するガラス基板を戴置する試料台を示す図である。図3の試料台は、例えば、試料台に固定され、ガラス基板上に成膜されたパターンの線幅や線間隔等を測定する寸法測定装置に備えられる。
A method for detecting the presence or absence of a conventional glass substrate will be described below.
FIG. 3 is a diagram showing a conventional glass substrate transfer robot and a sample stage on which the glass substrate transferred by the transfer robot is placed. The sample stage in FIG. 3 is provided, for example, in a dimension measurement apparatus that measures the line width, line interval, and the like of a pattern fixed on the sample stage and formed on a glass substrate.

1は被検査対象物であるガラス基板、2はガラス基板1を戴置して固定する基板クランブ台(試料台)、3はガラス基板1の測定ポイントを相対的にX軸方向に移動するためのX軸移動ステージ、4はガラス基板1の測定ポイントエリアを相対的にY軸方向に移動するためのY軸移動ステージ、5は基板クランプ台2の除振台、6は照明電源、7はX軸移動ステージ3とY軸移動ステージ4の移動を制御するXY移動制御部、8は光学顕微鏡、9は光学顕微鏡8の落射照明として照明電源6の出力光を入力するライトガイド、11は光学顕微鏡8の検査対物レンズ、10は光学顕微鏡8の検査対物レンズ11を所望の倍率に切替えるためのレボルバ、12は反射センサ、13は光軸(Z軸)移動ステージ、14は光学顕微鏡8が拡大したガラス基板1上の測定ポイントエリアの反射光像を撮像し映像信号として出力するカメラ、15は線幅測定を行うために測定装置全体を制御し測定カメラ14から出力される映像信号から線幅等を寸法測定する測定制御部、16は測定制御部15から与えられる表示情報を表示するモニタ、17は搬送アーム、18は搬送アーム17に連動しガラス基板1を載せて基板クランプ台に搬送するための基板搬送ハンドである。カメラ14は、例えばCCD( Charge Coupled Device )カメラである。   Reference numeral 1 denotes a glass substrate which is an object to be inspected, 2 a substrate cram table (sample table) on which the glass substrate 1 is placed and fixed, and 3 a relative movement of the measurement point of the glass substrate 1 in the X-axis direction. X-axis moving stage 4 is a Y-axis moving stage for relatively moving the measurement point area of the glass substrate 1 in the Y-axis direction, 5 is an anti-vibration table for the substrate clamp table 2, 6 is an illumination power source, and 7 is An XY movement control unit for controlling the movement of the X-axis movement stage 3 and the Y-axis movement stage 4, 8 is an optical microscope, 9 is a light guide for inputting the output light of the illumination power source 6 as epi-illumination of the optical microscope 8, and 11 is an optical Inspection objective lens of the microscope 8, 10 is a revolver for switching the inspection objective lens 11 of the optical microscope 8 to a desired magnification, 12 is a reflection sensor, 13 is an optical axis (Z-axis) moving stage, and 14 is an enlargement of the optical microscope 8. Gala A camera that captures a reflected light image of a measurement point area on the substrate 1 and outputs it as a video signal, 15 controls the entire measuring apparatus to measure the line width, and calculates the line width and the like from the video signal output from the measurement camera 14 A measurement control unit for measuring dimensions, 16 is a monitor for displaying display information given from the measurement control unit 15, 17 is a transfer arm, 18 is linked to the transfer arm 17, and is used to load the glass substrate 1 and transfer it to the substrate clamp table. It is a substrate transfer hand. The camera 14 is, for example, a CCD (Charge Coupled Device) camera.

搬送対象物のガラス基板1は、基板搬送ハンド18から搬送アーム17によって基板クランプ台2に搬送される。搬送されたガラス基板1は、寸法測定装置によって所定の処理を実行される。寸法測定装置が所定の処理を開始するためには、まず、ガラス基板が搬送され、基板クランプ台2の所定の位置に戴置されたことを認識しなければならない。   The glass substrate 1 to be transferred is transferred from the substrate transfer hand 18 to the substrate clamp table 2 by the transfer arm 17. The conveyed glass substrate 1 is subjected to predetermined processing by a dimension measuring device. In order for the dimension measuring apparatus to start predetermined processing, it must first be recognized that the glass substrate has been transported and placed at a predetermined position on the substrate clamp table 2.

図4と図5を参照して搬送及び戴置(固定)される方法を説明する。図4は、従来の基板クランプ方法を説明するための図である。また図5は、従来の基板搬送方法を説明するための図である。
図5において、Y軸移動ステージ4とX軸移動ステージ3の基板受取準備位置への移動後、基板クランプ台2の4つの穴1911、1921、1931、及び1941から、基板受取りピン191、192、193、及び194をそれぞれ上昇させ、基板搬送ハンド18上のガラス基板1を上方向に持ち上げる。
その後、基板搬送ハンド18は左側に平行に移動し、待避する。
A method of carrying and placing (fixing) will be described with reference to FIGS. FIG. 4 is a diagram for explaining a conventional substrate clamping method. FIG. 5 is a diagram for explaining a conventional substrate transfer method.
In FIG. 5, after the Y-axis moving stage 4 and the X-axis moving stage 3 are moved to the substrate receiving preparation position, the substrate receiving pins 191, 192, Each of 193 and 194 is raised, and the glass substrate 1 on the substrate transport hand 18 is lifted upward.
Thereafter, the substrate transport hand 18 moves parallel to the left side and retracts.

基板受取りピン191、192、193、及び194はそれぞれ下降し、基板クランプ台2にガラス基板1を受け渡す。基板平面維持ピン2001、2002、‥‥‥、2099、2100は、基板クランプ台2に取付けられ、基板全体の平面の平坦さを保つ。   The substrate receiving pins 191, 192, 193, and 194 are lowered to deliver the glass substrate 1 to the substrate clamp table 2. The substrate plane maintaining pins 2001, 2002,..., 2099, 2100 are attached to the substrate clamp table 2 and maintain the flatness of the entire substrate.

次に、図4において、ガラス基板1の基板基準面101と102(図では太線で示す)を基準ローラ201、202、及び211に押付け、ガラス基板1を固定する。即ち、押し当てローラ203、204、212でガラス基板1を矢印(押し当てローラ203、204、212のすぐ横に描かれた矢印)の方向に押し(例えば、押す力は、2N)、基準ローラ201、202、211に押し付ける。基準ローラ201、202、211は、押し当てローラ203、204、212の力に負けない力(例えば、5N)を保持できるようになされている。その状態で図5に示すガラス基板1の裏面を基板クランプ台2に設けられた吸着パッド2201〜2212(図5の黒丸で示す)で吸着しホールドする。
基板吸着後、押し当てローラ203、204、212は基板押し当て解除で外側に退避する。基準ローラ201、202、211も外側に退避する。
Next, in FIG. 4, the substrate reference surfaces 101 and 102 (indicated by bold lines) of the glass substrate 1 are pressed against the reference rollers 201, 202, and 211 to fix the glass substrate 1. That is, the glass substrate 1 is pushed by the pressing rollers 203, 204, 212 in the direction of an arrow (an arrow drawn next to the pressing rollers 203, 204, 212) (for example, the pressing force is 2N), and the reference roller Press against 201, 202, 211. The reference rollers 201, 202, and 211 can hold a force (for example, 5N) that does not lose the force of the pressing rollers 203, 204, and 212. In this state, the back surface of the glass substrate 1 shown in FIG. 5 is sucked and held by suction pads 2201 to 2212 (indicated by black circles in FIG. 5) provided on the substrate clamp table 2.
After the substrate is attracted, the pressing rollers 203, 204, and 212 are retracted to the outside by releasing the substrate pressing. The reference rollers 201, 202, 211 are also retracted to the outside.

而して、自動線幅測定装置等の検査装置において、図4に示す基板基準面101と102を基準に、例えば、測定したい測定ポイントエリアの中心位置座標1121〜1128を事前に登録しておいて、被検査対象物であるガラス基板1を測定する時に読み出し、その位置における配線パターンの線幅等を測定する。   Thus, in an inspection apparatus such as an automatic line width measuring apparatus, for example, center position coordinates 1121 to 1128 of a measurement point area to be measured are registered in advance with reference to the substrate reference planes 101 and 102 shown in FIG. Then, when measuring the glass substrate 1 which is an object to be inspected, the data is read, and the line width of the wiring pattern at the position is measured.

図3に示すように、被検査対象物のガラス基板1は、反射センサ12で基板の有無が確認された後、基板クランプ台2に取付けられた吸着パッド2201〜2212で裏面吸着され、固定される。基板クランプ台2は、除振台5上に配置されたY軸移動ステージ4、X軸移動ステージ3の下にあり、光学顕微鏡8を平面(X軸方向とY軸方向に)移動でき、ガラス基板2内の任意の位置(測定ポイントエリア)を光学顕微鏡8で観察する。   As shown in FIG. 3, the glass substrate 1 of the object to be inspected is back-surface sucked and fixed by suction pads 2201 to 2212 attached to the substrate clamp table 2 after the presence or absence of the substrate is confirmed by the reflection sensor 12. The The substrate clamp table 2 is below the Y-axis moving stage 4 and the X-axis moving stage 3 disposed on the vibration isolation table 5, and can move the optical microscope 8 in a plane (in the X-axis direction and the Y-axis direction). An arbitrary position (measurement point area) in the substrate 2 is observed with the optical microscope 8.

図2は、反射センサ12をより詳細に説明するための図3の部分断面図である。図2に示すように、反射センサ12は、センサ発光部121から光を出力し、ガラス基板1の裏側で反射し、センサ受光部122に入射する。このとき、ガラス基板1の材質が素ガラスの時には、センサ発光部121からの出力光の約4%しか受光部122に入射しない。受光部122のセンサ感度は、調整が可能である。しかし、受光量が少ないことを補うため、センサ感度を上げると、ノイズに対する許容量が低くなる。   FIG. 2 is a partial cross-sectional view of FIG. 3 for explaining the reflection sensor 12 in more detail. As shown in FIG. 2, the reflection sensor 12 outputs light from the sensor light emitting unit 121, reflects on the back side of the glass substrate 1, and enters the sensor light receiving unit 122. At this time, when the material of the glass substrate 1 is bare glass, only about 4% of the output light from the sensor light emitting unit 121 enters the light receiving unit 122. The sensor sensitivity of the light receiving unit 122 can be adjusted. However, if the sensor sensitivity is increased in order to compensate for the small amount of received light, the tolerance for noise is reduced.

照明電源6はライトガイド9によってその出力光を光学顕微鏡8に導入する。導入された光は、検査対物レンズ11を介し検査対象物1に照射される。照射された光は、測定ポイントエリアのガラス基板面で反射、反射した光が検査対物レンズ11を通り、中間レンズを介し、カメラ14に撮像される。
変倍機構(レボルバ)10は、目的に応じて検査対物レンズ11を切替え、光学顕微鏡8の拡大倍率を変更する。
The illumination power supply 6 introduces the output light into the optical microscope 8 by the light guide 9. The introduced light is applied to the inspection object 1 through the inspection objective lens 11. The irradiated light is reflected and reflected by the glass substrate surface in the measurement point area, and the reflected light passes through the inspection objective lens 11 and is captured by the camera 14 via the intermediate lens.
A zooming mechanism (revolver) 10 switches the inspection objective lens 11 according to the purpose, and changes the magnification of the optical microscope 8.

光軸(Z軸)移動ステージ13は、検査対物レンズ11の焦点距離を維持するために、検査対物レンズ11を装着した光学顕微鏡8全体を光軸(Z軸)方向に移動する。   The optical axis (Z-axis) moving stage 13 moves the entire optical microscope 8 equipped with the inspection objective lens 11 in the optical axis (Z-axis) direction in order to maintain the focal length of the inspection objective lens 11.

上述した基板位置決め方法は、例えば、特許文献1に記載されている。
特開2004−186681号公報
The above-described substrate positioning method is described in Patent Document 1, for example.
JP 2004-186681 A

上述の従来技術では、基板受取りピン191、192、193、及び194がガラス基板1を受け取ったかどうかは、下降して試料台に載ってから反射センサ12で基板の有無確認をするため、基板搬送ハンド18に戴せたときにはわからないので、判断が遅れる欠点があった。   In the above-described prior art, whether the substrate receiving pins 191, 192, 193, and 194 have received the glass substrate 1 is determined by lowering and placing on the sample stage, and then checking the presence or absence of the substrate with the reflection sensor 12. Since it is not known when the hand 18 is put on, there is a drawback that the judgment is delayed.

また、反射センサは、センサ発光部から光を出力し、ガラス基板の裏側で反射し、センサ受光部に入射する。このとき、ガラス基板の材質が素ガラスの時には、センサ発光部からの出力光の一部しか受光部に入射しない。受光部のセンサ感度の調整は可能だが、ノイズに対する許容量が低くなる欠点があった。
また、ガラス基板の位置が基板クランプ台の表面位置にぴたり一致する必要がある。
本発明の目的は、上記のような問題を解決し、どの時点であっても試料台上のガラス基板の有無を検出でき、ガラス基板の材質や厚さによらずまたはセンサに入射する光量によらず基板の有無検出が可能なガラス基板検出装置を提供することにある。
The reflection sensor outputs light from the sensor light emitting unit, reflects on the back side of the glass substrate, and enters the sensor light receiving unit. At this time, when the material of the glass substrate is bare glass, only a part of the output light from the sensor light emitting part enters the light receiving part. Although it is possible to adjust the sensor sensitivity of the light receiving section, there is a drawback that the tolerance for noise is lowered.
In addition, the position of the glass substrate needs to exactly match the surface position of the substrate clamp table.
The object of the present invention is to solve the above-mentioned problems and to detect the presence or absence of the glass substrate on the sample stage at any point in time, regardless of the material and thickness of the glass substrate or to the amount of light incident on the sensor. It is an object of the present invention to provide a glass substrate detection device capable of detecting the presence or absence of a substrate.

上記の目的を達成するため、本発明のガラス基板検出装置は、レーザビームのような直進性の高い透過センサを使用し、光の屈折率に注目して、発光位置と受光位置を直線に配置し、遮断物が無いときは受光量が多いのでオン(ON)し、遮断物があるときは受光量が少ないのでオフ(OFF)するようにするものである。
即ち、材質がガラスのように透過する遮断物では、ガラスの屈折率分光路がずれるので、受光量が減少する。従って、受光量の減少によって遮断物が有無がわかり、遮蔽物があることが明らかになればOFFとなる。また、遮断位置がそれほどずれず、光路内ならば、受光量が減少せず、検出可能となる。
即ち、本発明の基板検出装置は、ほぼ透明な基板を取り扱う機器において、透過光を機器に戴置する基板に対して斜めに通過するように照射する発光部と、基板を通過した光を受光する受光部を設け、基板が試料台に有るときと無いときの光の受光量を測定し、受光量の違いに応じて基板が機器に存在するか否かを判定するものである。
In order to achieve the above object, the glass substrate detection apparatus of the present invention uses a highly linear transmission sensor such as a laser beam, and arranges the light emitting position and the light receiving position in a straight line, paying attention to the refractive index of light. However, when there is no obstruction, the amount of received light is large so that it is turned on (ON), and when there is an obstruction, the amount of received light is small so that it is off (OFF).
In other words, in the case of an obstructing material such as glass, the refractive index spectral path of the glass is shifted, so that the amount of received light is reduced. Therefore, the presence or absence of an obstruction can be determined by the decrease in the amount of received light, and it is turned off when it is clear that there is an obstruction. Further, if the blocking position does not deviate so much and is within the optical path, the amount of received light is not reduced and detection is possible.
That is, the substrate detection apparatus of the present invention receives a light emitting unit that irradiates transmitted light obliquely with respect to a substrate placed on the device, and light that has passed through the substrate in a device that handles a substantially transparent substrate. A light receiving unit is provided to measure the amount of light received when the substrate is on the sample stage and when the substrate is not, and determine whether the substrate is present in the device according to the difference in the amount of received light.

本発明によれば、LCD( Liquid Crystal Device )基板等の基板では、製造工程で、基板表面に種々の膜を形成していくが、全製造工程で、かつ全種類の基板に対応が可能となる。
また更に、基板を寸法測定装置等の機器が受け取ってから、搬出するまで、基板の有無を常に検出できる。
According to the present invention, in a substrate such as an LCD (Liquid Crystal Device) substrate, various films are formed on the surface of the substrate in the manufacturing process, but it can be applied to all types of substrates in the entire manufacturing process. Become.
Furthermore, the presence / absence of the substrate can always be detected from when the substrate is received by a device such as a dimension measuring device until it is unloaded.

本発明の一実施例を図1を参照することによって説明する。図1は、本発明の一実施例を説明するための図である。図1(a) は、本発明のガラス基板の有無を検出するガラス基板検出装置を説明するための断面図、図1(b) はセンサ発光部とセンサ受光部間の光路を説明するための断面図、図1(c) は図1(b) のガラス基板1を通過する光の光路を具体的に説明した図である。図1(a) は、例えば、図3で示すような線幅測定装置に用いられる。
図1(a) は、1はガラス基板、2は基板クランプ台、17は搬送アーム、18は基板搬送ハンド、121′はセンサ発光部、122aは直進した時の光路、122bは屈折した時の光路である。センサ発光部121′から出力する光はレーザビームのような直進性の高いものが望ましい、
One embodiment of the present invention will be described with reference to FIG. FIG. 1 is a diagram for explaining an embodiment of the present invention. FIG. 1 (a) is a cross-sectional view for explaining a glass substrate detection device for detecting the presence or absence of a glass substrate of the present invention, and FIG. 1 (b) is for explaining an optical path between a sensor light emitting part and a sensor light receiving part. FIG. 1C is a sectional view specifically explaining the optical path of light passing through the glass substrate 1 of FIG. FIG. 1A is used, for example, in a line width measuring apparatus as shown in FIG.
In FIG. 1 (a), 1 is a glass substrate, 2 is a substrate clamp base, 17 is a transfer arm, 18 is a substrate transfer hand, 121 'is a sensor light emitting unit, 122a is a light path when it goes straight, 122b is when it is refracted It is an optical path. The light output from the sensor light-emitting unit 121 ′ is preferably highly linear, such as a laser beam.

図1(a) は、ガラス基板1が搬送アーム17と基板搬送ハンド18によって基板クランプ台2の上に搬入された状態を示す。
図1(b) と図1(c) によって、図1(a)の状態で、基板クランプ台2に設けられたセンサ発光部121′からセンサ受光部122′へ光がガラス基板1を通過していく状況を説明する。
FIG. 1A shows a state in which the glass substrate 1 is carried onto the substrate clamp table 2 by the transfer arm 17 and the substrate transfer hand 18.
1 (b) and 1 (c), in the state shown in FIG. 1 (a), light passes through the glass substrate 1 from the sensor light emitting part 121 ′ provided on the substrate clamp table 2 to the sensor light receiving part 122 ′. Explain the situation.

空気中の屈折率を1、ガラス基板1の屈折率を1.55とし、空気中からガラス基板1に45度の角度で入射した光は、角度θ度に光路が曲がる。即ち、
1×sin45=1.55×sinθ
sinθ=sin45÷1.55
=0.707÷1.55
=0.456
∴ θ=27度
ガラス基板1の厚さを0.5mmとした場合、直進する光路からのずれX0は
X0=0.5mm×tan45=0.5mm
Xg=0.5mm×tan27=0.5mm×0.51=0.25mm
X0−Xg=0.25mm
Z=0.25mm×sin45=0.25mm×0.707=0.18mm
The refractive index in the air is 1, the refractive index of the glass substrate 1 is 1.55, and light incident on the glass substrate 1 from the air at an angle of 45 degrees is bent at an angle θ degree. That is,
1 × sin45 = 1.55 × sinθ
sin θ = sin 45 ÷ 1.55
= 0.707 / 1.55
= 0.456
∴ θ = 27 ° When the thickness of the glass substrate 1 is 0.5 mm, the deviation X0 from the straight optical path is X0 = 0.5 mm × tan 45 = 0.5 mm
Xg = 0.5 mm × tan 27 = 0.5 mm × 0.51 = 0.25 mm
X0-Xg = 0.25mm
Z = 0.25 mm × sin 45 = 0.25 mm × 0.707 = 0.18 mm

光路122bと122aの光路差は0.18mmであり、空気中で光の中心がセンサ受光部122′の口径の中心になるよう設定しておき、そのときの感度を100%とすると、0.5mmのガラス基板で遮蔽したときに、光が0.18mmずれ、口径1mmのセンサ受光部の場合にセンサ受光部122′側の受ける光量は半分程度となり、遮断ON、OFFの判断がいたって簡単になる。   The optical path difference between the optical paths 122b and 122a is 0.18 mm, and the center of light is set to be the center of the aperture of the sensor light receiving unit 122 ′ in air, and the sensitivity at that time is 100%. When shielded by a 5 mm glass substrate, the amount of light received by the sensor light receiving unit 122 ′ is about half in the case of a sensor light receiving unit with a deviation of 0.18 mm and a diameter of 1 mm. Become.

以上の原理から、図1に示すように搬送アーム17で試料クランプ台2の上方にガラスが来たときから試料クランプ台2上にガラスをクランプする位置までガラス有りを認識できる。
センサ受光部は受光した光量を測定し、予め定められたしきい値を超えたか否かで、基板が無いか有るかを判定しても良い。また、複数のしきい値を設け、基板の有無の外、基板の厚みや品質を判定するようにしても良い。
From the above principle, the presence of glass can be recognized from the time when the glass comes above the sample clamp table 2 by the transfer arm 17 to the position where the glass is clamped on the sample clamp table 2 as shown in FIG.
The sensor light receiving unit may measure the amount of light received and determine whether or not there is a substrate depending on whether or not a predetermined threshold value is exceeded. A plurality of threshold values may be provided to determine the thickness and quality of the substrate in addition to the presence or absence of the substrate.

本発明の他の実施例として、全反射ミラー123を配置し、図6のような配置にすることでガラスの厚さが薄いものでも対応可能である。
図6は、本発明の別の実施例を説明するための図で、センサ発光部121′からガラス基板1を通過した光が全反射ミラー123で反射し、再度ガラス基板1を通過してセンサ受光部122′′を通過することによって2回屈折することによって受光する位置が明確に判別できる距離(図1のX0−Xg)が2倍となる。
この繰り返しを行うことで薄いガラス基板や屈折率が小さい材質のガラス基板でも、本発明を適用可能である。
As another embodiment of the present invention, the total reflection mirror 123 is arranged, and the arrangement as shown in FIG.
FIG. 6 is a diagram for explaining another embodiment of the present invention. Light that has passed through the glass substrate 1 from the sensor light emitting portion 121 ′ is reflected by the total reflection mirror 123, and passes through the glass substrate 1 again to be used as a sensor. The distance (X0-Xg in FIG. 1) at which the light receiving position can be clearly identified by passing through the light receiving portion 122 ″ and being refracted twice is doubled.
By repeating this, the present invention can be applied even to a thin glass substrate or a glass substrate made of a material having a small refractive index.

以上のように、実施例によれば、
(1)ガラス基板は、製造工程で、ガラス表面に種々の膜を形成していくが全種類の基板に対応可能である。
(2)ガラス基板を装置が受け取ってから、搬出するまで、ガラス有りを検出できる。
As described above, according to the embodiment,
(1) Although a glass substrate forms a various film | membrane on the glass surface at a manufacturing process, it can respond to all types of board | substrates.
(2) The presence of glass can be detected from when the apparatus receives the glass substrate until it is unloaded.

上記実施例では、被測定対象物を透明なガラス基板とした。しかし、光を少量でも透過し、空気中または他の媒体と異なる屈折率を有する基板であれば何でも本発明が適用可能であり、空気中以外の真空中または液中でも良く、さらに空気以外の雰囲気であっても良いことは自明である。   In the above embodiment, the object to be measured is a transparent glass substrate. However, the present invention can be applied to any substrate that transmits light even in a small amount and has a refractive index different from that of air or other media, and may be in a vacuum or liquid other than in air, and in an atmosphere other than air. It is obvious that it may be.

本発明の一実施例を説明するための断面図。Sectional drawing for demonstrating one Example of this invention. 反射センサ12をより詳細に説明するための部分断面図。The fragmentary sectional view for demonstrating the reflection sensor 12 in detail. 従来のガラス基板の搬送ロボットと搬送ロボットが搬送するガラス基板の戴置台を示す図。The figure which shows the mounting base of the glass substrate which the conveyance robot of the conventional glass substrate and a conveyance robot convey. 従来の基板クランプ方法を説明するための図。The figure for demonstrating the conventional board | substrate clamp method. 従来の基板搬送方法を説明するための図。The figure for demonstrating the conventional board | substrate conveyance method. 本発明の一実施例を説明するための断面図。Sectional drawing for demonstrating one Example of this invention.

符号の説明Explanation of symbols

1:ガラス基板、 2:基板クランブ台、 3:X軸移動ステージ、 4:Y軸移動ステージ、 5:除振台、 6:照明電源、 7:XY移動制御部、 8:光学顕微鏡、 9:ライトガイド、 10:レボルバ、 11:検査対物レンズ、 12:反射センサ、 13:光軸(Z軸)移動ステージ、 14:カメラ、 15:測定制御部、 16:モニタ、 17:搬送アーム、 18:基板搬送ハンド、 101,102:基板基準面、 121,121′:センサ発光部、 122,122′、122′′:センサ受光部、 191〜194:基板受取りピン、 201,202,211:基準ローラ、 203,204,212:押し当てローラ、 1121〜1128:測定ポイントエリアの中心位置座標、 1911,1921,1931,1941:穴、 2001,2002,‥‥‥,2099,2100:基板平面維持ピン、 2201〜2212:吸着パッド。   1: Glass substrate, 2: Substrate cram table, 3: X-axis movement stage, 4: Y-axis movement stage, 5: Vibration isolation table, 6: Illumination power supply, 7: XY movement control unit, 8: Optical microscope, 9: Light guide, 10: Revolver, 11: Inspection objective lens, 12: Reflection sensor, 13: Optical axis (Z-axis) moving stage, 14: Camera, 15: Measurement control unit, 16: Monitor, 17: Transfer arm, 18: Substrate transport hand, 101, 102: Substrate reference surface, 121, 121 ′: Sensor light emitting unit, 122, 122 ′, 122 ″: Sensor light receiving unit, 191-194: Substrate receiving pin, 201, 202, 211: Reference roller 203, 204, 212: Pressing roller, 1121-1128: Center position coordinates of measurement point area, 1911, 1921, 1931, 1 41: Hole, 2001,2002, ‥‥‥, 2099,2100: substrate plane maintains pins, 2201-2212: suction pad.

Claims (1)

ほぼ透明な基板を取り扱う機器において、透過光を上記機器に戴置する上記基板に対して斜めに通過するように照射する発光部と、上記基板を通過した光を受光する受光部を設け、上記基板が上記試料台に有るときと無いときの光の受光量を測定し、受光量の違いに応じて上記基板が上記機器に存在するか否かを判定する基板検出装置。 In a device that handles a substantially transparent substrate, a light emitting unit that irradiates transmitted light obliquely with respect to the substrate placed on the device, and a light receiving unit that receives light that has passed through the substrate are provided. A substrate detection apparatus that measures the amount of light received when the substrate is on the sample stage and determines whether the substrate is present in the device according to the difference in the amount of received light.
JP2007022012A 2007-01-31 2007-01-31 Substrate detection device Pending JP2008187156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007022012A JP2008187156A (en) 2007-01-31 2007-01-31 Substrate detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007022012A JP2008187156A (en) 2007-01-31 2007-01-31 Substrate detection device

Publications (2)

Publication Number Publication Date
JP2008187156A true JP2008187156A (en) 2008-08-14
JP2008187156A5 JP2008187156A5 (en) 2010-03-11

Family

ID=39729964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007022012A Pending JP2008187156A (en) 2007-01-31 2007-01-31 Substrate detection device

Country Status (1)

Country Link
JP (1) JP2008187156A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114516540A (en) * 2020-11-19 2022-05-20 联策科技股份有限公司 Optical identification suction nozzle system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03274747A (en) * 1990-03-23 1991-12-05 Tokyo Electron Ltd Treating equipment for substrate
JPH06132269A (en) * 1992-10-20 1994-05-13 Tokyo Electron Ltd Detector for substance to be processed, and method
JPH10135306A (en) * 1996-10-24 1998-05-22 Omron Corp Substrate detecting apparatus and arm for carrying substrate using the same
JP2004186681A (en) * 2002-11-21 2004-07-02 Hitachi Kokusai Electric Inc Substrate-positioning method and inspecting apparatus using the method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03274747A (en) * 1990-03-23 1991-12-05 Tokyo Electron Ltd Treating equipment for substrate
JPH06132269A (en) * 1992-10-20 1994-05-13 Tokyo Electron Ltd Detector for substance to be processed, and method
JPH10135306A (en) * 1996-10-24 1998-05-22 Omron Corp Substrate detecting apparatus and arm for carrying substrate using the same
JP2004186681A (en) * 2002-11-21 2004-07-02 Hitachi Kokusai Electric Inc Substrate-positioning method and inspecting apparatus using the method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114516540A (en) * 2020-11-19 2022-05-20 联策科技股份有限公司 Optical identification suction nozzle system

Similar Documents

Publication Publication Date Title
US7714996B2 (en) Automatic inspection system for flat panel substrate
JPH06239404A (en) Method and apparatus for holding and carrying plate-shaped base
JP2008203280A (en) Defect inspection apparatus
CN106896113B (en) Defect detection system and method
WO2016088623A1 (en) Substrate examination device
JP6033041B2 (en) Automatic quality inspection device for optical glass base material and automatic quality inspection method for optical glass base material
JP2008298780A (en) Inspection method for transparent substrate
JP2008210951A (en) Device and method for detecting position
KR20190100616A (en) Surface defect inspection apparatus
WO2015174114A1 (en) Substrate inspection device
US6521889B1 (en) Dust particle inspection apparatus, and device manufacturing method using the same
JP5893154B2 (en) Measurement of substrate shape change
JP2012132811A (en) Apparatus and method for observing and evaluating end part of sheet material
JP2008187156A (en) Substrate detection device
WO2016038946A1 (en) Substrate inspection apparatus
JP2006258631A (en) Substrate inspection device
JP2010127910A (en) Film inspecting device, translucent film manufacturing apparatus equipped therewith, film inspecting method, and translucent film manufacturing method using the same
TW201925764A (en) Methods and apparatus for detecting surface defects on glass sheets
JP6748428B2 (en) Lithographic apparatus, article manufacturing method, stage apparatus, and measuring apparatus
US9086352B2 (en) Stage device and driving method thereof
JP2006258662A (en) Surface inspection method
JP2010127909A (en) Film inspecting device, translucent film manufacturing apparatus equipped therewith, film inspecting method, and translucent film manufacturing method using the same
KR20120071764A (en) Auto focusing apparatus
KR20090007172A (en) Thickness measuring instrument for a plate glass
JP5259669B2 (en) Defect inspection apparatus and defect inspection method

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20100121

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Effective date: 20100121

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Effective date: 20110406

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A02 Decision of refusal

Effective date: 20110823

Free format text: JAPANESE INTERMEDIATE CODE: A02