JP2008186830A - Solid-state image sensor - Google Patents

Solid-state image sensor Download PDF

Info

Publication number
JP2008186830A
JP2008186830A JP2007016453A JP2007016453A JP2008186830A JP 2008186830 A JP2008186830 A JP 2008186830A JP 2007016453 A JP2007016453 A JP 2007016453A JP 2007016453 A JP2007016453 A JP 2007016453A JP 2008186830 A JP2008186830 A JP 2008186830A
Authority
JP
Japan
Prior art keywords
solid
photoelectric conversion
conversion layer
imaging device
state imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007016453A
Other languages
Japanese (ja)
Inventor
Masashi Kantani
正史 乾谷
Shunji Takada
俊二 高田
Takahiro Saito
隆弘 齊藤
Takashi Komatsu
隆 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa University
Fujifilm Corp
Original Assignee
Kanagawa University
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa University, Fujifilm Corp filed Critical Kanagawa University
Priority to JP2007016453A priority Critical patent/JP2008186830A/en
Publication of JP2008186830A publication Critical patent/JP2008186830A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lamination type solid-state image sensor capable of satisfying light utilization efficiency and color reproducibility. <P>SOLUTION: In the solid-state image sensor 5, an R photoelectric conversion layer 53 for absorbing light at the wavelength region of mainly red color for generating a signal charge accordingly, a G photoelectric conversion layer 51 for absorbing light at the wavelength region of mainly green color for generating a signal charge accordingly, and a B photoelectric conversion layer 52 for absorbing light at the wavelength region of mainly blue color for generating a signal charge accordingly are laminated on a semiconductor substrate. In the solid-state image sensor 5, the G photoelectric conversion layer 51 is laminated on the uppermost layer, and the absorption rate is lower than 1.0 when the absorption rate at the absorption peak wavelength is set to 1.0 at the maximum. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、主として赤色(R)の波長域(波長が約550nm〜約700nmまでの範囲)の光を吸収してこれに応じた信号電荷を発生するR光電変換層と、主として緑色(G)の波長域(波長が約450nm〜約610nmまでの範囲)の光を吸収してこれに応じた信号電荷を発生するG光電変換層と、主として青色(B)の波長域(波長が約380nm〜約520nmまでの範囲)の光を吸収してこれに応じた信号電荷を発生するB光電変換層とを半導体基板上に積層してなる固体撮像素子に関する。   The present invention mainly includes an R photoelectric conversion layer that absorbs light in a red (R) wavelength region (wavelength ranging from about 550 nm to about 700 nm) and generates a signal charge corresponding thereto, and mainly green (G). A G photoelectric conversion layer that absorbs light in a wavelength region (wavelength of about 450 nm to about 610 nm) and generates a signal charge corresponding thereto, and a blue (B) wavelength region (wavelength is about 380 nm to about 380 nm) The present invention relates to a solid-state imaging device in which a B photoelectric conversion layer that absorbs light in a range (up to about 520 nm) and generates a signal charge corresponding thereto is laminated on a semiconductor substrate.

CCD型やCMOS型のイメージセンサに代表される単板式カラー固体撮像素子では、光電変換する受光部の配列上に3種または4種の色フィルタをモザイク状に配置している。これにより、各受光部から色フィルタに対応した色信号が出力され、これ等の色信号を信号処理することでカラー画像が生成される。   In a single-plate color solid-state imaging device typified by a CCD type or CMOS type image sensor, three or four types of color filters are arranged in a mosaic pattern on an array of light receiving units that perform photoelectric conversion. Accordingly, color signals corresponding to the color filters are output from the respective light receiving units, and a color image is generated by performing signal processing on these color signals.

しかし、モザイク状に色フィルタを配列したカラー固体撮像素子は、原色の色フィルタの場合、およそ入射光の2/3が色フィルタで吸収されてしまうため、光利用効率が悪く、感度が低いという問題がある。また、各受光部で1色の色信号しか得られないため、解像度も悪く、特に、偽色が目立つという問題もある。   However, in a color solid-state imaging device in which color filters are arranged in a mosaic shape, about 2/3 of incident light is absorbed by the color filter in the case of a primary color filter, light use efficiency is poor and sensitivity is low. There's a problem. Further, since only one color signal can be obtained at each light receiving unit, the resolution is poor, and in particular, there is a problem that false colors are conspicuous.

そこで、斯かる問題を克服するために、信号読出回路が形成された半導体基板の上に3層の光電変換層を積層する構造の積層型固体撮像素子が研究・開発されている(例えば、下記の特許文献1,2)。この積層型固体撮像素子は、例えば、光入射面から順次、B,G,Rの光に対して信号電荷(電子,正孔)を発生する光電変換層を重ねた受光部構造を備え、しかも各受光部毎に、各光電変換層で発生した信号電荷を独立に読み出すことができる信号読み出し回路が設けられる。   Therefore, in order to overcome such a problem, a stacked solid-state imaging device having a structure in which three photoelectric conversion layers are stacked on a semiconductor substrate on which a signal readout circuit is formed has been researched and developed (for example, Patent Documents 1, 2). This stacked solid-state imaging device has, for example, a light receiving unit structure in which photoelectric conversion layers that generate signal charges (electrons, holes) are sequentially stacked on B, G, and R light sequentially from the light incident surface. A signal readout circuit that can independently read out signal charges generated in each photoelectric conversion layer is provided for each light receiving unit.

斯かる構造の撮像素子の場合、入射光が殆ど光電変換されて読み出され、可視光の利用効率は100%に近く、しかも各受光部でR,G,Bの3色の色信号が得られるため、高感度で、高解像度(偽色が目立たない)の良好な画像が生成できる。   In the case of an image pickup device having such a structure, incident light is almost photoelectrically converted and read out, the utilization efficiency of visible light is close to 100%, and color signals of three colors of R, G, and B are obtained in each light receiving unit. Therefore, it is possible to generate a good image with high sensitivity and high resolution (false color is not noticeable).

特表2002−502120号公報Special Table 2002-502120 特開2002−83946号公報JP 2002-83946 A

銀塩カメラに用いられるカラーフィルムや単板式の固体撮像素子については、良好な色再現性を確保するための分光感度設計に関しては豊富な知見があるが、上述した積層型固体撮像素子については、その光利用効率の高さを活かしつつ、色再現性を満足させることのできる理想的な分光感度に関する知見はなかった。   For color films and single-plate solid-state image sensors used in silver-salt cameras, there is a wealth of knowledge regarding spectral sensitivity design to ensure good color reproducibility. There was no knowledge about the ideal spectral sensitivity that can satisfy the color reproducibility while utilizing the high light utilization efficiency.

本発明は、上記事情に鑑みてなされたものであり、光利用効率と色再現性を満足させることが可能な積層型の固体撮像素子を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a stacked solid-state imaging device capable of satisfying light utilization efficiency and color reproducibility.

本発明の固体撮像素子は、主として赤色の波長域の光を吸収してこれに応じた信号電荷を発生するR光電変換層と、主として緑色の波長域の光を吸収してこれに応じた信号電荷を発生するG光電変換層と、主として青色の波長域の光を吸収してこれに応じた信号電荷を発生するB光電変換層とを半導体基板上に積層してなる固体撮像素子であって、前記G光電変換層が最も上に積層され、その吸収ピーク波長における吸収率が1.0を最大としたときに、それよりも低い。   The solid-state imaging device of the present invention mainly absorbs light in the red wavelength region and generates a signal charge corresponding thereto, and absorbs light in the green wavelength region and signals corresponding thereto A solid-state imaging device in which a G photoelectric conversion layer that generates electric charges and a B photoelectric conversion layer that absorbs light mainly in the blue wavelength region and generates signal charges corresponding thereto are stacked on a semiconductor substrate. When the G photoelectric conversion layer is laminated on the top and the absorption rate at the absorption peak wavelength is 1.0, the lower is lower than that.

本発明の固体撮像素子は、前記G光電変換層の吸収ピーク波長における吸収率が0.5〜0.8の範囲にある。   In the solid-state imaging device of the present invention, the absorptance at the absorption peak wavelength of the G photoelectric conversion layer is in the range of 0.5 to 0.8.

本発明の固体撮像素子は、前記G光電変換層の吸収ピーク波長が533nm〜547nmの範囲にある。   In the solid-state imaging device of the present invention, the G photoelectric conversion layer has an absorption peak wavelength in the range of 533 nm to 547 nm.

本発明の固体撮像素子は、前記R光電変換層と前記B光電変換層のそれぞれの吸収ピーク波長が、sRGBに基づく理想の波長よりも前記G光電変換層の吸収ピーク波長側にずれている。   In the solid-state imaging device of the present invention, the absorption peak wavelengths of the R photoelectric conversion layer and the B photoelectric conversion layer are shifted to the absorption peak wavelength side of the G photoelectric conversion layer from the ideal wavelength based on sRGB.

本発明の固体撮像素子は、前記R光電変換層の吸収ピーク波長が575nm〜605nmの範囲にあり、前記B光電変換層の吸収ピーク波長が445nm〜478nmの範囲にある。   In the solid-state imaging device of the present invention, the R photoelectric conversion layer has an absorption peak wavelength in the range of 575 nm to 605 nm, and the B photoelectric conversion layer has an absorption peak wavelength in the range of 445 nm to 478 nm.

本発明の固体撮像素子は、前記R光電変換層の吸収スペクトルの半値巾が65nm〜100nmの範囲にある。   In the solid-state imaging device of the present invention, the half width of the absorption spectrum of the R photoelectric conversion layer is in the range of 65 nm to 100 nm.

本発明の固体撮像素子は、前記B光電変換層の吸収スペクトルの半値巾が50nm〜110nmの範囲にある。   In the solid-state imaging device of the present invention, the half width of the absorption spectrum of the B photoelectric conversion layer is in the range of 50 nm to 110 nm.

本発明の固体撮像素子は、前記半導体基板上に、前記B光電変換層、前記R光電変換層、前記G光電変換層がこの順に積層されている。   In the solid-state imaging device of the present invention, the B photoelectric conversion layer, the R photoelectric conversion layer, and the G photoelectric conversion layer are stacked in this order on the semiconductor substrate.

本発明によれば、光利用効率と色再現性を満足させることが可能な積層型の固体撮像素子を提供することができる。   According to the present invention, it is possible to provide a stacked solid-state imaging device capable of satisfying light utilization efficiency and color reproducibility.

以下、本発明の実施形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

発明者は、以下のシミュレーションモデルによって、光利用効率と色再現性を満足させることが可能な積層型の固体撮像素子の各光電変換層の特性を見出した。
図1は、シミュレーションモデルに用いた撮像システムの構成を示した図である。
図1に示す撮像システムは、被写体となるマクベスチャート1と、マクベスチャート1をD65光で照明する光源2と、マクベスチャート1を撮影するための固体撮像素子5と、固体撮像素子5の前面に設けられた赤外域の光をカットするIRカットフィルタ4と、IRカットフィルタ4とカラーチャート1との間に配置された撮影光学系3と、固体撮像素子5から出力される撮像信号のホワイトバランスを調整する演算処理を行うWB回路6と、WB回路6の出力信号を補正するMTX回路7と、MTX回路7で補正後の信号に基づく画像を表示するためのsRGBに対応したモニタ8と、モニタ8に表示されるマクベスチャート画像とマクベスチャート1との色差を演算する色差演算部9と、モニタ8に表示されるマクベスチャート画像の輝度S/Nを演算するS/N演算部10とからなる。
The inventor has found the characteristics of each photoelectric conversion layer of a stacked solid-state imaging device capable of satisfying light use efficiency and color reproducibility by the following simulation model.
FIG. 1 is a diagram illustrating a configuration of an imaging system used for a simulation model.
The imaging system shown in FIG. 1 includes a Macbeth chart 1 as a subject, a light source 2 that illuminates the Macbeth chart 1 with D65 light, a solid-state imaging device 5 for photographing the Macbeth chart 1, and a front surface of the solid-state imaging device 5. The provided IR cut filter 4 that cuts light in the infrared region, the imaging optical system 3 disposed between the IR cut filter 4 and the color chart 1, and the white balance of the imaging signal output from the solid-state imaging device 5 A WB circuit 6 that performs arithmetic processing to adjust the output, an MTX circuit 7 that corrects an output signal of the WB circuit 6, a monitor 8 that supports sRGB for displaying an image based on the signal corrected by the MTX circuit 7, A color difference calculation unit 9 for calculating a color difference between the Macbeth chart image displayed on the monitor 8 and the Macbeth chart 1, and a Macbeth chart image displayed on the monitor 8 It consists S / N calculating section 10 for calculating the luminance S / N.

図2は、図1に示す固体撮像素子5の1画素分の断面構成を示した図である。固体撮像素子5は、24色のマクベスチャートを撮影するために、図2に示す画素が二次元状に少なくとも24個並べられたものとする。
図2に示すように、固体撮像素子5は、図示しない半導体基板上に積層されたB光電変換層(以下、B層という)53と、B層53上に積層されたR光電変換層(以下、R層という)52と、R層52上に積層されたG光電変換層(以下、G層という)51とを含む構成となっている。IRカットフィルタ4上方から入射したマクベスチャート1のナンバーnのチャートからの反射光のうちのG光は、G層51で吸収され、ここでG光に応じたG信号電荷が発生し、G層51を透過した光のうちのR光はR層52で吸収され、ここでR光に応じたR信号電荷が発生し、R層52を透過した光のうちのB光はB層53で吸収され、ここでB光に応じたB信号電荷が発生する。そして、R信号電荷に応じた撮像信号Srnと、G信号電荷に応じた撮像信号Sgnと、B信号電荷に応じた撮像信号Sbnとが外部に出力されるものとしている。
FIG. 2 is a diagram showing a cross-sectional configuration for one pixel of the solid-state imaging device 5 shown in FIG. It is assumed that the solid-state imaging device 5 includes at least 24 pixels shown in FIG. 2 arranged in a two-dimensional manner in order to capture a 24-color Macbeth chart.
As shown in FIG. 2, the solid-state imaging device 5 includes a B photoelectric conversion layer (hereinafter referred to as B layer) 53 stacked on a semiconductor substrate (not shown), and an R photoelectric conversion layer (hereinafter referred to as B layer 53). , R layer) 52 and a G photoelectric conversion layer (hereinafter referred to as G layer) 51 laminated on the R layer 52. The G light of the reflected light from the number n chart of the Macbeth chart 1 incident from above the IR cut filter 4 is absorbed by the G layer 51, where a G signal charge corresponding to the G light is generated, and the G layer R light out of the light transmitted through 51 is absorbed by the R layer 52, where an R signal charge corresponding to the R light is generated, and B light out of the light transmitted through the R layer 52 is absorbed by the B layer 53. Here, a B signal charge corresponding to the B light is generated. An imaging signal Srn corresponding to the R signal charge, an imaging signal Sgn corresponding to the G signal charge, and an imaging signal Sbn corresponding to the B signal charge are output to the outside.

固体撮像素子5の1画素を構成するR層52、G層51、B層53の各々の分光感度Sr(λ)、Sg(λ)、Sb(λ)は、以下の数1の式によって表される。   The spectral sensitivities Sr (λ), Sg (λ), and Sb (λ) of the R layer 52, the G layer 51, and the B layer 53 that constitute one pixel of the solid-state imaging device 5 are expressed by the following equation (1). Is done.

Figure 2008186830
Figure 2008186830

R層52、G層51、B層53の各々の吸収係数スペクトルをαr(λ)、αg(λ)、αb(λ)とし、それぞれがガウス分布であると仮定すると、以下の数2の式に示すように、数1に示した各層の吸収スペクトルA添え字(λ)と透過スペクトルT添え字(λ)は、添え字で示した層の吸収係数スペクトルα(λ)の吸収ピーク波長λ0と、添え字で示した層の吸収係数スペクトルα(λ)の層厚tと、添え字で示した層の吸収係数スペクトルα(λ)の半値巾HWとをパラメータとして記述することができる。つまり、各層のλ0,t,HWを調整することで、各層の吸収スペクトルA(λ)を調整することができる。 Assuming that the absorption coefficient spectra of the R layer 52, the G layer 51, and the B layer 53 are αr (λ), αg (λ), and αb (λ), respectively, and assuming that each has a Gaussian distribution, As shown, the absorption spectrum A subscript (λ) and the transmission spectrum T subscript (λ) of each layer shown in Equation 1 are the absorption peak wavelength λ 0 of the absorption coefficient spectrum α (λ) of the layer shown by the subscript. And the layer thickness t of the absorption coefficient spectrum α (λ) of the layer indicated by the subscript and the half width HW of the absorption coefficient spectrum α (λ) of the layer indicated by the subscript can be described as parameters. That is, the absorption spectrum A (λ) of each layer can be adjusted by adjusting λ0, t, HW of each layer.

Figure 2008186830
Figure 2008186830

又、固体撮像素子5から出力される信号は以下の数3の式で示される。   The signal output from the solid-state imaging device 5 is expressed by the following equation (3).

Figure 2008186830
Figure 2008186830

本シミュレーションでは、固体撮像素子5内で発生するランダムノイズのみを検討対象とし、出力信号Srnに含まれるノイズをNrnとし、出力信号Sgnに含まれるノイズをNgnとし、出力信号Sbnに含まれるノイズをNbnとする。   In this simulation, only random noise generated in the solid-state imaging device 5 is considered, noise included in the output signal Srn is defined as Nrn, noise included in the output signal Sgn is defined as Ngn, and noise included in the output signal Sbn is determined. Nbn.

WB回路6では、出力信号SrnにゲインGrを乗じて出力信号Swrnを得る処理と、出力信号SgnにゲインGgを乗じて出力信号Swgnを得る処理と、出力信号SbnにゲインGbを乗じて出力信号Swbnを得る処理とを行う。WB回路6では、出力信号Swrn、Swgn、Swbnが、完全拡散白色板撮像に対してSwrn=Swgn=Swbn=一定値となるようWBケ゛インGr、Gg、Gbを設定する。この結果、WB回路6から出力されるノイズは数4の式で与えられる。   In the WB circuit 6, the output signal Srn is multiplied by the gain Gr to obtain the output signal Swrn, the output signal Sgn is multiplied by the gain Gg, the output signal Swgn is obtained, and the output signal Sbn is multiplied by the gain Gb. Performs processing to obtain Swbn. In the WB circuit 6, the WB chains Gr, Gg, and Gb are set so that the output signals Swrn, Swgn, and Swbn are set to Swrn = Swgn = Swbn = constant value for complete diffusion white plate imaging. As a result, the noise output from the WB circuit 6 is given by the equation (4).

Figure 2008186830
Figure 2008186830

MTX回路7では、3×3のマトリクス係数を用いた以下の数5に示す演算を行って出力信号Swrn,Swgn,Swbnを補正し、補正後の出力信号SRn,SGn,SBnをモニタ8とS/N演算部10に出力する。本シミュレーションでは、マクベスチャート1自身と、固体撮像素子5でマクベスチャート1を撮像したときに得られるマクベスチャート画像との各色の色差ΔE*abのRMS値(二乗和の平方根)が最小になるようマトリックス係数を決定する。   The MTX circuit 7 corrects the output signals Swrn, Swgn, Swbn by performing the calculation shown in the following equation 5 using a 3 × 3 matrix coefficient, and outputs the corrected output signals SRn, SGn, SBn to the monitor 8 and S / N Output to the arithmetic unit 10. In this simulation, the RMS value (square root of the sum of squares) of the color difference ΔE * ab of each color between the Macbeth chart 1 itself and the Macbeth chart image obtained when the Macbeth chart 1 is imaged by the solid-state imaging device 5 is minimized. Determine the matrix coefficients.

Figure 2008186830
Figure 2008186830

この結果、MTX回路7の出力信号に含まれるノイズは数6の式で与えられる。   As a result, the noise included in the output signal of the MTX circuit 7 is given by the equation (6).

Figure 2008186830
Figure 2008186830

モニタ8に出力信号SRn、SGn、BGnが入力したとき、モニタ8上に表示されるマクベスチャート画像の色度点XYZは以下の数7の式で与えられる。   When the output signals SRn, SGn, BGn are input to the monitor 8, the chromaticity points XYZ of the Macbeth chart image displayed on the monitor 8 are given by the following equation (7).

Figure 2008186830
Figure 2008186830

色差演算部9では、モニタ8上に表示されたマクベスチャート画像のXYZ色度座標と、マクベスチャート1自身のXYZ色度座標との色差をCIELAB色空間で求める。色差ΔE*abは以下の数8の式によって求める。色差演算部9での演算により、マクベスチャート1の24色の各々について色差ΔE*abが得られる。   The color difference calculation unit 9 obtains a color difference between the XYZ chromaticity coordinates of the Macbeth chart image displayed on the monitor 8 and the XYZ chromaticity coordinates of the Macbeth chart 1 itself in the CIELAB color space. The color difference ΔE * ab is obtained by the following equation (8). The color difference ΔE * ab is obtained for each of the 24 colors of the Macbeth chart 1 by the calculation in the color difference calculation unit 9.

Figure 2008186830
Figure 2008186830

S/N演算部10では、sYCC空間における輝度S/Nを演算する。MTX回路7の出力信号SRn,SGn,SBnからsYCC空間への変換は数9の式で与えられる。   The S / N calculator 10 calculates the luminance S / N in the sYCC space. The conversion from the output signals SRn, SGn, SBn of the MTX circuit 7 to the sYCC space is given by the equation (9).

Figure 2008186830
Figure 2008186830

よって、MTX回路7の出力信号に含まれるノイズ信号Nwrno,Nwgno,NwbnoからsYCC空間への変換は数10の式で与えられる。 Therefore, the conversion from the noise signals Nwrno, Nwgno, Nwbno included in the output signal of the MTX circuit 7 to the sYCC space is given by the equation (10).

Figure 2008186830
Figure 2008186830

このため、マクベスチャート1のナンバーnを撮影したときの輝度S/Nは、Y/Ynoiseによって求まる。 For this reason, the luminance S / N when the number n of the Macbeth chart 1 is photographed is obtained by Y / Ynoise.

このような構成のシミュレーションモデルにおいて、R層52、G層51、B層53の各々の吸収スペクトルA(λ)を決定する3つのパラメータλ0,HW,tのうち、「半値巾HW及び層厚tを固定値とし、ピーク波長λ0を微小量変化させては、24個の色差ΔE*abのRMS値(=平均色差ΔE)が最小となるようにMTX回路7のマトリクス係数を最適化する」という作業を繰り返した。この結果を図3に示す。   In the simulation model having such a configuration, among the three parameters λ0, HW, t that determine the absorption spectrum A (λ) of each of the R layer 52, the G layer 51, and the B layer 53, “half-value width HW and layer thickness” When t is a fixed value and the peak wavelength λ0 is changed by a small amount, the matrix coefficient of the MTX circuit 7 is optimized so that the RMS value (= average color difference ΔE) of 24 color differences ΔE * ab is minimized. Repeated the work. The result is shown in FIG.

図3(a)は、あるピーク波長λ0に設定したときの吸収スペクトルAg(λ)の吸収ピーク波長(横軸)と、そのピーク波長λ0でマトリクス係数を最適化して得られた平均色差ΔE(縦軸)との関係を示した図である。図3(b)は、あるピーク波長λ0に設定したときの吸収スペクトルAr(λ)の吸収ピーク波長(横軸)と、そのピーク波長λ0でマトリクス係数を最適化して得られた平均色差ΔE(縦軸)との関係を示した図である。図3(c)は、あるピーク波長λ0に設定したときの吸収スペクトルAb(λ)の吸収ピーク波長(横軸)と、そのピーク波長λ0でマトリクス係数を最適化して得られた平均色差ΔE(縦軸)との関係を示した図である。   FIG. 3A shows an absorption peak wavelength (horizontal axis) of the absorption spectrum Ag (λ) when set to a certain peak wavelength λ0, and an average color difference ΔE (optimized by a matrix coefficient at the peak wavelength λ0). It is the figure which showed the relationship with the vertical axis | shaft. FIG. 3 (b) shows the absorption peak wavelength (horizontal axis) of the absorption spectrum Ar (λ) when set to a certain peak wavelength λ0, and the average color difference ΔE () obtained by optimizing the matrix coefficient at the peak wavelength λ0. It is the figure which showed the relationship with the vertical axis | shaft. FIG. 3 (c) shows the absorption peak wavelength (horizontal axis) of the absorption spectrum Ab (λ) when set to a certain peak wavelength λ0, and the average color difference ΔE (optimized by the matrix coefficient at the peak wavelength λ0). It is the figure which showed the relationship with the vertical axis | shaft.

更に、R層52、G層51、B層53の各々の吸収スペクトルA(λ)を決定する3つのパラメータλ0,HW,tのうち、「ピーク波長λ0及び層厚tを固定値とし、半値巾HWを微小量変化させては、24個の色差ΔE*abのRMS値(=平均色差ΔE)が最小となるようにMTX回路7のマトリクス係数を最適化する」という作業を繰り返した。この結果を図4に示す。   Furthermore, among the three parameters λ0, HW, t that determine the absorption spectrum A (λ) of each of the R layer 52, the G layer 51, and the B layer 53, “the peak wavelength λ0 and the layer thickness t are fixed values, and the half value The work of “optimizing the matrix coefficient of the MTX circuit 7 so that the RMS value (= average color difference ΔE) of 24 color differences ΔE * ab is minimized by changing the width HW by a small amount” was repeated. The result is shown in FIG.

図4(a)は、ある半値巾HWに設定したときの吸収スペクトルAg(λ)の半値巾(横軸)と、その半値巾HWでマトリクス係数を最適化して得られた平均色差ΔE(縦軸)との関係を示した図である。図4(b)は、ある半値巾HWに設定したときの吸収スペクトルAr(λ)の半値巾(横軸)と、その半値巾HWでマトリクス係数を最適化して得られた平均色差ΔE(縦軸)との関係を示した図である。図4(c)は、ある半値巾HWに設定したときの吸収スペクトルAb(λ)の半値巾(横軸)と、その半値巾HWでマトリクス係数を最適化して得られた平均色差ΔE(縦軸)との関係を示した図である。   FIG. 4 (a) shows the half width (horizontal axis) of the absorption spectrum Ag (λ) when set to a certain half width HW, and the average color difference ΔE (vertical length) obtained by optimizing the matrix coefficient with the half width HW. It is the figure which showed the relationship with an axis | shaft. FIG. 4B shows the half-value width (horizontal axis) of the absorption spectrum Ar (λ) when set to a certain half-value width HW and the average color difference ΔE (vertical length) obtained by optimizing the matrix coefficient with the half-value width HW. It is the figure which showed the relationship with an axis | shaft. FIG. 4 (c) shows the half width (horizontal axis) of the absorption spectrum Ab (λ) when set to a certain half width HW, and the average color difference ΔE (vertical length) obtained by optimizing the matrix coefficient with the half width HW. It is the figure which showed the relationship with an axis | shaft.

更に、G層51の吸収スペクトルAg(λ)を決定する3つのパラメータλ0,HW,tのうち、「ピーク波長λ0及び半値巾HWを固定値とし、層厚tを微小量変化させては、24個の色差ΔE*abのRMS値(=平均色差ΔE)が最小となるようにMTX回路7のマトリクス係数を最適化する」という作業を繰り返した。この結果を図5に示す。   Furthermore, among the three parameters λ0, HW, t that determine the absorption spectrum Ag (λ) of the G layer 51, “the peak wavelength λ0 and the half-value width HW are fixed values, and the layer thickness t is changed by a minute amount. The operation of “optimizing the matrix coefficient of the MTX circuit 7 so that the RMS value of 24 color differences ΔE * ab (= average color difference ΔE) is minimized” was repeated. The result is shown in FIG.

図5(a)は、G層をある層厚tに設定したときの吸収スペクトルAg(λ)の吸収ピーク波長における吸収率(横軸)と、その層厚tでマトリクス係数を最適化して得られた平均色差ΔE(縦軸)との関係を示した図である。図5(b)は、G層をある層厚tに設定したときの吸収スペクトルAg(λ)の吸収ピーク波長における吸収率(横軸)と、その層厚tでマトリクス係数を最適化したときのMTX回路7の出力信号のS/N(縦軸,正確には、理想的な撮像特性を有する単板式の撮像素子からの出力信号のS/Nを基準とした相対S/N)との関係を示した図である。   FIG. 5 (a) is obtained by optimizing the matrix coefficient with the absorption rate (abscissa) at the absorption peak wavelength of the absorption spectrum Ag (λ) when the G layer is set to a certain layer thickness t and the layer thickness t. It is the figure which showed the relationship with the obtained average color difference (DELTA) E (vertical axis). Fig. 5 (b) shows the absorption coefficient (abscissa) at the absorption peak wavelength of the absorption spectrum Ag (λ) when the G layer is set to a certain layer thickness t, and the matrix coefficient optimized by the layer thickness t. S / N of the output signal of the MTX circuit 7 (vertical axis, more precisely, the relative S / N based on the S / N of the output signal from the single-plate image sensor having ideal imaging characteristics) It is the figure which showed the relationship.

図3〜図5のシミュレーション結果によれば、平均色差ΔEを最も小さくすることができるのは、吸収スペクトルAg(λ)の吸収ピーク波長における吸収率を変化させた場合であることが分かる。図5に示すように、吸収スペクトルAg(λ)の吸収ピーク波長における吸収率が約0.6のときに、平均色差ΔEは最小値をとっているが、吸収率が低下するにしたがって、G層51から得られる信号量が減少してしまうため、G層51で発生するノイズが吸収光量に依存しないと仮定すると、吸収率が低くなるにしたがって相対S/Nは悪くなる結果となってしまう。モニタ5に表示されるマクベスチャート画像と、マクベスチャート1自身とを目視で比較したときに、その差異がほとんど識別できなくするためには、平均色差ΔEを約1.0以下にすることが好ましく、ある程度の感度を実現するためには、相対S/Nが−4〜−1の範囲であることが好ましい。このため、高感度と良好な色再現性とを両立させるには、吸収スペクトルAg(λ)の吸収ピーク波長における吸収率が、最大値の1.0よりも小さい約0.5〜約0.8の範囲にあることが最も重要な要件であると言える。   According to the simulation results of FIGS. 3 to 5, it can be seen that the average color difference ΔE can be minimized when the absorption rate at the absorption peak wavelength of the absorption spectrum Ag (λ) is changed. As shown in FIG. 5, when the absorption rate at the absorption peak wavelength of the absorption spectrum Ag (λ) is about 0.6, the average color difference ΔE takes the minimum value, but as the absorption rate decreases, G Since the amount of signal obtained from the layer 51 decreases, assuming that the noise generated in the G layer 51 does not depend on the amount of absorbed light, the relative S / N deteriorates as the absorption rate decreases. . In order to make the difference almost indistinguishable when the Macbeth chart image displayed on the monitor 5 and the Macbeth chart 1 itself are visually compared, the average color difference ΔE is preferably about 1.0 or less. In order to achieve a certain degree of sensitivity, the relative S / N is preferably in the range of -4 to -1. For this reason, in order to achieve both high sensitivity and good color reproducibility, the absorbance at the absorption peak wavelength of the absorption spectrum Ag (λ) is about 0.5 to about 0. It can be said that being in the range of 8 is the most important requirement.

図3及び図4のシミュレーション結果から、以下の追加要件1〜6を加えることにより、色再現性を更に向上させられることが分かった。
(追加要件1)
平均色差ΔEの許容範囲の上限はΔE=2.0付近である。このため、図3(a)の結果から、吸収スペクトルAg(λ)の吸収ピーク波長の好ましい範囲は、平均色差ΔEが2.0以下となる範囲、即ち、533nm〜547nmとなる。
(追加要件2)
図6は、sRGB理想撮像特性を示す図である。このsRGB理想撮像特性から、吸収スペクトルAr(λ)の吸収ピーク波長は、その値を605nmにした場合に、最も色再現性が良くなることが分かる。そこで、図3(b)を見ると、sRGB理想撮像特性に基づく理想的な値である605nmのときのΔEよりも、その値を小さくすることができる波長の範囲(波長575nm〜605nmの範囲)が存在している。つまり、追加要件2は、吸収スペクトルAr(λ)の吸収ピーク波長を波長575nm〜605nmの範囲にすることであり、このようにすることで、sRGB理想撮像特性よりも色再現性を向上させることができる。
From the simulation results of FIGS. 3 and 4, it was found that the color reproducibility can be further improved by adding the following additional requirements 1 to 6.
(Additional requirement 1)
The upper limit of the allowable range of the average color difference ΔE is around ΔE = 2.0. Therefore, from the result of FIG. 3A, the preferable range of the absorption peak wavelength of the absorption spectrum Ag (λ) is a range in which the average color difference ΔE is 2.0 or less, that is, 533 nm to 547 nm.
(Additional requirement 2)
FIG. 6 is a diagram showing the sRGB ideal imaging characteristics. From this sRGB ideal imaging characteristic, it can be seen that the absorption peak wavelength of the absorption spectrum Ar (λ) has the best color reproducibility when its value is 605 nm. Therefore, when viewing FIG. 3B, the range of wavelengths in which the value can be made smaller than ΔE at 605 nm, which is an ideal value based on the sRGB ideal imaging characteristics (wavelength range of 575 nm to 605 nm). Is present. In other words, the additional requirement 2 is that the absorption peak wavelength of the absorption spectrum Ar (λ) is in the wavelength range of 575 nm to 605 nm. By doing so, the color reproducibility is improved more than the sRGB ideal imaging characteristics. Can do.

(追加要件3)
図6に示すsRGB理想撮像特性から、吸収スペクトルAb(λ)の吸収ピーク波長は、その値を445nmにした場合に、最も色再現性が良くなることが分かる。そこで、図3(c)を見ると、sRGB理想撮像特性に基づく理想的な値である445nmのときのΔEよりも、その値を小さくすることができる波長の範囲(波長445nm〜478nmの範囲)が存在している。つまり、追加要件3は、吸収スペクトルAb(λ)の吸収ピーク波長を波長445nm〜478nmの範囲にすることであり、このようにすることで、sRGB理想撮像特性よりも色再現性を向上させることができる。
(Additional requirement 3)
From the sRGB ideal imaging characteristics shown in FIG. 6, it can be seen that the absorption peak wavelength of the absorption spectrum Ab (λ) has the best color reproducibility when its value is set to 445 nm. Therefore, when viewing FIG. 3 (c), the wavelength range in which the value can be made smaller than ΔE at 445 nm, which is an ideal value based on the sRGB ideal imaging characteristics (wavelength range of 445 nm to 478 nm). Is present. That is, the additional requirement 3 is to make the absorption peak wavelength of the absorption spectrum Ab (λ) in the wavelength range of 445 nm to 478 nm. By doing so, the color reproducibility is improved more than the sRGB ideal imaging characteristics. Can do.

追加要件3,4から注目すべきことは、吸収スペクトルAr(λ)の吸収ピーク波長と吸収スペクトルAb(λ)の吸収ピーク波長を、それぞれ、sRGB理想撮像特性に基づく理想的な値よりも吸収スペクトルAg(λ)の吸収ピーク波長側にずらすことで、良好な色再現性を確保できることである。   It should be noted from the additional requirements 3 and 4 that the absorption peak wavelength of the absorption spectrum Ar (λ) and the absorption peak wavelength of the absorption spectrum Ab (λ) are absorbed more than ideal values based on the sRGB ideal imaging characteristics, respectively. By shifting to the absorption peak wavelength side of the spectrum Ag (λ), good color reproducibility can be secured.

(追加要件4〜6)
図4に示すように、各光電変換層の吸収スペクトルA(λ)の半値巾についても、色再現性を考慮した好ましい範囲を設定することができる。図4(a)〜(c)の各々において、色再現性を許容できる範囲(平均色差ΔEが最小値からその最小値よりも50%増加した値までの範囲)で最適な半値巾を規定すると、吸収スペクトルAg(λ)の半値巾は70nm〜120nmの範囲にあることが好ましく(追加要件4)、吸収スペクトルAr(λ)の半値巾は65nm〜100nmの範囲にあることが好ましく(追加要件5)、吸収スペクトルAb(λ)の半値巾は50nm〜110nmの範囲にあることが好ましい(追加要件6)。
(Additional requirements 4-6)
As shown in FIG. 4, a preferable range in consideration of color reproducibility can also be set for the half width of the absorption spectrum A (λ) of each photoelectric conversion layer. In each of FIGS. 4 (a) to 4 (c), when an optimum half-value width is defined in a range where the color reproducibility can be tolerated (a range where the average color difference ΔE increases from the minimum value to a value increased by 50% from the minimum value). The half width of the absorption spectrum Ag (λ) is preferably in the range of 70 nm to 120 nm (additional requirement 4), and the half width of the absorption spectrum Ar (λ) is preferably in the range of 65 nm to 100 nm (additional requirement). 5) The half width of the absorption spectrum Ab (λ) is preferably in the range of 50 nm to 110 nm (additional requirement 6).

尚、これら追加要件1〜6は、これらのうちの少なくとも1つを上記重要な要件と組み合わせることで、重要な要件のみとした場合に比べて、良好な色再現性を実現することができる。   Incidentally, these additional requirements 1 to 6 can realize better color reproducibility by combining at least one of these with the important requirements as compared with the case where only the important requirements are used.

又、本シミュレーションでは、B層53、R層52、G層51をこの順に積層した構成の固体撮像素子5を用いてシミュレーションしているが、B層53とR層52の位置を入れ替えた場合でも、上記要件を変えることなく適用可能である。   In this simulation, the simulation is performed using the solid-state imaging device 5 having a configuration in which the B layer 53, the R layer 52, and the G layer 51 are stacked in this order. However, when the positions of the B layer 53 and the R layer 52 are switched. However, it can be applied without changing the above requirements.

上述した各種要件を実現することができる各層の材料としては以下のようなものが挙げられる。
R層52:スクアリリウム系化合物、クロコニウム系化合物、フタロシアニン系化合物、メロシアニン系化合物
G層51:キナクリドン系化合物、メロシアニン系化合物
B層53:メロシアニン系化合物、ポルフィリン系化合物
Examples of the material of each layer that can realize the various requirements described above include the following.
R layer 52: squarylium compound, croconium compound, phthalocyanine compound, merocyanine compound G layer 51: quinacridone compound, merocyanine compound B layer 53: merocyanine compound, porphyrin compound

次に、パラメータλ0,HW,tを変化させて、固体撮像素子5の各層の吸収スペクトルA(λ)の組み合わせをあらゆるパターンで試した結果、平均色差ΔEが最も小さくなったパターンの結果を図7に示す。   Next, as a result of changing the parameters λ0, HW, t and trying the combinations of the absorption spectra A (λ) of the layers of the solid-state imaging device 5 in every pattern, the result of the pattern having the smallest average color difference ΔE is shown in FIG. 7 shows.

図7(a)は、各層の吸収スペクトルA(λ)と透過スペクトルT(λ)を示した図である。図7(a)において、B-AbsがB層53の吸収スペクトル、G-AbsがG層51の吸収スペクトル、R-AbsがR層52の吸収スペクトル、G-TransがG層51の透過スペクトル、R-TransがR層52の透過スペクトルである。図7(b)は、各層を図7(a)の特性にしたときのシステム全体の撮像特性を示した図である。図7(c)は、図7(a)の特性に設定したときの色差ΔE*abのマクベスチャート1のチャートナンバー毎の値を示した図である。   FIG. 7A shows the absorption spectrum A (λ) and transmission spectrum T (λ) of each layer. In FIG. 7A, B-Abs is the absorption spectrum of the B layer 53, G-Abs is the absorption spectrum of the G layer 51, R-Abs is the absorption spectrum of the R layer 52, and G-Trans is the transmission spectrum of the G layer 51. , R-Trans is the transmission spectrum of the R layer 52. FIG. 7B is a diagram showing the imaging characteristics of the entire system when each layer has the characteristics shown in FIG. FIG. 7 (c) is a diagram showing a value for each chart number of the Macbeth chart 1 of the color difference ΔE * ab when the characteristics of FIG. 7 (a) are set.

図7(c)の結果から平均色差ΔEを求めると、その値は0.510であった。この値は、色差がほとんど確認できないレベルであり、最適化された単板型の撮像素子と比べて遜色がない。図7(a)を見ると、G層51の吸収ピーク波長での吸収率は、約0.6であり、上述した重要な要件を満たしていることが分かる。又、G層51の吸収ピーク波長は540nm付近であり、追加要件1を満たしていることが分かる。又、R層52の吸収ピーク波長は、590nm付近であり、追加要件2を満たしていることが分かる。又、B層53の吸収ピーク波長は、460nm付近であり、追加要件3を満たしていることが分かる。又、G層51の半値巾は約95nmであり、追加要件4を満たしていることが分かる。又、R層52の半値巾は約95nmであり、追加要件5を満たしていることが分かる。又、B層53の半値巾は約80nmであり、追加要件6を満たしていることが分かる。   When the average color difference ΔE was determined from the result of FIG. 7C, the value was 0.510. This value is a level at which almost no color difference can be confirmed, and is not inferior to that of an optimized single-plate image sensor. As can be seen from FIG. 7A, the absorption rate at the absorption peak wavelength of the G layer 51 is about 0.6, which satisfies the above-mentioned important requirement. Further, it can be seen that the absorption peak wavelength of the G layer 51 is around 540 nm and satisfies the additional requirement 1. Further, it can be seen that the absorption peak wavelength of the R layer 52 is around 590 nm and satisfies the additional requirement 2. Further, it can be seen that the absorption peak wavelength of the B layer 53 is around 460 nm and satisfies the additional requirement 3. Further, it can be seen that the half width of the G layer 51 is about 95 nm and satisfies the additional requirement 4. Further, the half width of the R layer 52 is about 95 nm, and it can be seen that the additional requirement 5 is satisfied. In addition, the half width of the B layer 53 is about 80 nm, and it can be seen that the additional requirement 6 is satisfied.

このように、重要な要件と追加要件1〜6とを組み合わせることで、最適な色再現性を確保できることが分かった。   Thus, it was found that the optimum color reproducibility can be secured by combining the important requirements and the additional requirements 1 to 6.

シミュレーションモデルに用いた撮像システムの構成を示した図Diagram showing the configuration of the imaging system used in the simulation model 図1に示す固体撮像素子5の1画素分の断面構成を示した図The figure which showed the cross-sectional structure for 1 pixel of the solid-state image sensor 5 shown in FIG. 各層の吸収ピーク波長を変化させたときの平均色差ΔEの変化を示した図Figure showing the change in average color difference ΔE when the absorption peak wavelength of each layer is changed 各層の半値巾を変化させたときの平均色差ΔEの変化を示した図The figure which showed the change of average color difference ΔE when changing the half width of each layer G層の吸収ピーク波長での吸収率を変化させたときの平均色差ΔEの変化を示した図Figure showing the change in average color difference ΔE when the absorptance at the absorption peak wavelength of the G layer is changed sRGB理想撮像特性を示した図Diagram showing ideal imaging characteristics of sRGB シミュレーションモデルにおいて、平均色差ΔEが最小となったときの各層の特性を示した図Diagram showing the characteristics of each layer when the average color difference ΔE is minimized in the simulation model

符号の説明Explanation of symbols

51 G光電変換層
52 R光電変換層
53 B光電変換層
51 G photoelectric conversion layer 52 R photoelectric conversion layer 53 B photoelectric conversion layer

Claims (8)

主として赤色の波長域の光を吸収してこれに応じた信号電荷を発生するR光電変換層と、主として緑色の波長域の光を吸収してこれに応じた信号電荷を発生するG光電変換層と、主として青色の波長域の光を吸収してこれに応じた信号電荷を発生するB光電変換層とを半導体基板上に積層してなる固体撮像素子であって、
前記G光電変換層が最も上に積層され、その吸収ピーク波長における吸収率が1.0を最大としたときに、それよりも低い固体撮像素子。
An R photoelectric conversion layer that mainly absorbs light in the red wavelength region and generates a signal charge corresponding thereto, and a G photoelectric conversion layer that absorbs light in the green wavelength region and generates signal charge corresponding thereto And a solid-state imaging device in which a B photoelectric conversion layer that mainly absorbs light in a blue wavelength range and generates a signal charge corresponding thereto is laminated on a semiconductor substrate,
A solid-state imaging device in which the G photoelectric conversion layer is stacked on the top and the absorptance at the absorption peak wavelength is 1.0, which is lower than that.
請求項1記載の固体撮像素子であって、
前記G光電変換層の吸収ピーク波長における吸収率が0.5〜0.8の範囲にある固体撮像素子。
The solid-state imaging device according to claim 1,
The solid-state image sensor whose absorptivity in the absorption peak wavelength of the said G photoelectric converting layer exists in the range of 0.5-0.8.
請求項1又は2記載の固体撮像素子であって、
前記G光電変換層の吸収ピーク波長が533nm〜547nmの範囲にある固体撮像素子。
The solid-state imaging device according to claim 1 or 2,
A solid-state imaging device in which an absorption peak wavelength of the G photoelectric conversion layer is in a range of 533 nm to 547 nm.
請求項1〜3のいずれか1項記載の固体撮像素子であって、
前記R光電変換層と前記B光電変換層のそれぞれの吸収ピーク波長が、sRGBに基づく理想の波長よりも前記G光電変換層の吸収ピーク波長側にずれている固体撮像素子。
The solid-state image sensor according to any one of claims 1 to 3,
A solid-state imaging device in which absorption peak wavelengths of the R photoelectric conversion layer and the B photoelectric conversion layer are shifted to an absorption peak wavelength side of the G photoelectric conversion layer from an ideal wavelength based on sRGB.
請求項4記載の固体撮像素子であって、
前記R光電変換層の吸収ピーク波長が575nm〜605nmの範囲にあり、
前記B光電変換層の吸収ピーク波長が445nm〜478nmの範囲にある固体撮像素子。
The solid-state imaging device according to claim 4,
The absorption peak wavelength of the R photoelectric conversion layer is in the range of 575 nm to 605 nm,
A solid-state imaging device in which an absorption peak wavelength of the B photoelectric conversion layer is in a range of 445 nm to 478 nm.
請求項4又は5記載の固体撮像素子であって、
前記R光電変換層の吸収スペクトルの半値巾が65nm〜100nmの範囲にある固体撮像素子。
The solid-state imaging device according to claim 4 or 5,
A solid-state imaging device having a half-value width of an absorption spectrum of the R photoelectric conversion layer in a range of 65 nm to 100 nm.
請求項6記載の固体撮像素子であって、
前記B光電変換層の吸収スペクトルの半値巾が50nm〜110nmの範囲にある固体撮像素子。
The solid-state imaging device according to claim 6,
A solid-state imaging device having a half-value width of an absorption spectrum of the B photoelectric conversion layer in a range of 50 nm to 110 nm.
請求項1〜7のいずれか1項記載の固体撮像素子であって、
前記半導体基板上に、前記B光電変換層、前記R光電変換層、前記G光電変換層がこの順に積層された固体撮像素子。
The solid-state imaging device according to any one of claims 1 to 7,
A solid-state imaging device in which the B photoelectric conversion layer, the R photoelectric conversion layer, and the G photoelectric conversion layer are stacked in this order on the semiconductor substrate.
JP2007016453A 2007-01-26 2007-01-26 Solid-state image sensor Withdrawn JP2008186830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007016453A JP2008186830A (en) 2007-01-26 2007-01-26 Solid-state image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007016453A JP2008186830A (en) 2007-01-26 2007-01-26 Solid-state image sensor

Publications (1)

Publication Number Publication Date
JP2008186830A true JP2008186830A (en) 2008-08-14

Family

ID=39729698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007016453A Withdrawn JP2008186830A (en) 2007-01-26 2007-01-26 Solid-state image sensor

Country Status (1)

Country Link
JP (1) JP2008186830A (en)

Similar Documents

Publication Publication Date Title
TWI460520B (en) Solid-state imaging device and camera module
US8106343B2 (en) Image sensing system interposing light shielding portion between color filter and pixel arrays
JP6136669B2 (en) Imaging device
JP5663564B2 (en) Imaging apparatus, captured image processing method, and captured image processing program
US20060186322A1 (en) Color filter array and solid-state image pickup device
US8054352B2 (en) Color filter array with reduced crosstalk effect and image sensor and image pickup apparatus having the same
TW200816805A (en) Solid-state image sensor
TW201008264A (en) Solid-state image sensor
KR101411548B1 (en) Image sensor, color filter array, and image pickup apparatus
KR20100025362A (en) Apparatus and method for generating hdr image
JP2008092247A (en) Solid-state imaging apparatus
JP2009194604A (en) Imaging apparatus and method of driving the same
JP5600814B2 (en) Image processing apparatus and method, and imaging apparatus
JP2015053578A (en) Color image pickup device and color image pickup method
US9716867B2 (en) Color filter array and image sensor having the same
JP4950541B2 (en) Solid-state image sensor
JP2004022565A (en) Light receiving element and collar sensor device using it
US10056418B2 (en) Imaging element for generating a pixel signal corresponding to light receiving elements
JP2008186830A (en) Solid-state image sensor
JP2005286649A (en) Color filter array and imaging apparatus using it
JP6399146B2 (en) Imaging device
WO2011132619A1 (en) Solid state imaging element and imaging device
JP2019004507A (en) Imaging device
US8964071B2 (en) Solid-state imaging device, camera module, and imaging method having first and second green pixel cells
WO2012008070A1 (en) Image capturing device and signal processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091008

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110812