JP2008185924A - Illuminating apparatus and image projector - Google Patents
Illuminating apparatus and image projector Download PDFInfo
- Publication number
- JP2008185924A JP2008185924A JP2007021250A JP2007021250A JP2008185924A JP 2008185924 A JP2008185924 A JP 2008185924A JP 2007021250 A JP2007021250 A JP 2007021250A JP 2007021250 A JP2007021250 A JP 2007021250A JP 2008185924 A JP2008185924 A JP 2008185924A
- Authority
- JP
- Japan
- Prior art keywords
- light
- light emitting
- current
- emitting diode
- current value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/20—Lamp housings
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/20—Lamp housings
- G03B21/2006—Lamp housings characterised by the light source
- G03B21/2033—LED or laser light sources
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/20—Lamp housings
- G03B21/2046—Positional adjustment of light sources
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/20—Lamp housings
- G03B21/2053—Intensity control of illuminating light
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/20—Controlling the colour of the light
- H05B45/22—Controlling the colour of the light using optical feedback
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/20—Controlling the colour of the light
- H05B45/28—Controlling the colour of the light using temperature feedback
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Optics & Photonics (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
- Video Image Reproduction Devices For Color Tv Systems (AREA)
- Projection Apparatus (AREA)
- Circuit Arrangement For Electric Light Sources In General (AREA)
Abstract
Description
本発明は、照明装置および画像投影装置に関し、特に複数の発光ダイオードを用いた照明装置およびこの照明装置を備えた画像投影装置に関する。 The present invention relates to an illuminating device and an image projecting device, and more particularly to an illuminating device using a plurality of light emitting diodes and an image projecting device including the illuminating device.
近年、発光ダイオード(LED)の高出力化、高効率化により、光源として赤(R)、緑(G)、青(B)の光を発光するLEDを用いたプロジェクタが開発されている。このような複数のLEDを使用した光源を直流駆動する場合、LEDに流す電流レベルを増減させることにより光量を変化させているが、周囲温度やLED自身の発熱量が変わると電流レベルを一定にするフィードバック制御を行ってもLED毎の発光量にばらつきが生じる。また同じ色のLEDに同じ電流を流した場合であっても、特性ばらつきや長時間の使用による劣化によってLED毎の発光量が異なってくる。その結果、プロジェクタから投影される画像のホワイトバランスが崩れたり、RGBの混色において色ずれが起こるという問題点があった。 2. Description of the Related Art In recent years, projectors using LEDs that emit red (R), green (G), and blue (B) light as light sources have been developed due to higher output and higher efficiency of light emitting diodes (LEDs). When direct-current driving such a light source using a plurality of LEDs, the amount of light is changed by increasing or decreasing the current level flowing through the LED. However, if the ambient temperature or the amount of heat generated by the LED itself changes, the current level is kept constant. Even if feedback control is performed, the amount of light emitted from each LED varies. Even when the same current is applied to LEDs of the same color, the amount of light emitted from each LED varies due to characteristic variations and deterioration due to long-term use. As a result, there is a problem that the white balance of the image projected from the projector is lost or color misregistration occurs in RGB color mixture.
このため従来の投写型表示装置(プロジェクタ)では、基準白色信号を投影してその色度を検出し、ホワイトバランスが崩れている場合には点灯する各色毎にLED素子の個数を制御すること等によりホワイトバランスを制御するようにしていた(例えば、特許文献1参照)。
しかし従来の投写型表示装置では(例えば、特許文献1参照)、点灯するLED素子の個数を制御することで光使用効率の高いホワイトバランス制御を実現しているものの、LED毎の特性ばらつきや劣化による発光効率の違いを考慮しておらず、必ずしも十分な電力低減効果を得ることができないという問題点があった。 However, in the conventional projection display device (see, for example, Patent Document 1), white balance control with high light use efficiency is realized by controlling the number of LED elements to be lit. Thus, there is a problem that a sufficient power reduction effect cannot always be obtained.
本発明は、上記のような問題点を鑑みてなされたものであり、LED毎の特性ばらつきや劣化による発光効率の違いを考慮した低消費電力の照明装置およびこの照明装置を備えた画像投影装置を提供することを目的とする。 The present invention has been made in view of the above-described problems, and a low power consumption illumination device that takes into account differences in light emission efficiency due to characteristic variations and deterioration of each LED, and an image projection device including the illumination device. The purpose is to provide.
本発明に係る照明装置は、複数の異なる色の照明光を出射し、照明光の色毎に複数の発光ダイオードを有する光源手段と、光源手段の各発光ダイオードに供給される電流の電流値を制御して、光源手段から出射される照明光の光量を色毎に増減させる光量制御手段と、光源手段の各発光ダイオードに所定値の電流が供給されたときの各発光ダイオードの発光量を記憶する発光量記憶手段と、発光量記憶手段に記憶された各発光ダイオードの発光量に基づいて、各発光ダイオードに供給される電流の電流値に対する各発光ダイオードの発光量の変化率である効率感度を算出する効率感度算出手段とを備え、光量制御手段が、効率感度に基づいて各発光ダイオードに供給される電流の電流値を制御することを特徴とするものである。 An illumination device according to the present invention emits a plurality of illumination lights of different colors, and has a light source means having a plurality of light emitting diodes for each color of the illumination light, and a current value of a current supplied to each light emitting diode of the light source means. Controls the light intensity control means for increasing or decreasing the amount of illumination light emitted from the light source means for each color, and stores the light emission amount of each light emitting diode when a predetermined current is supplied to each light emitting diode of the light source means Efficiency sensitivity that is the rate of change of the light emission amount of each light emitting diode with respect to the current value of the current supplied to each light emitting diode based on the light emission amount of each light emitting diode stored in the light emission amount storage means The light quantity control means controls the current value of the current supplied to each light emitting diode based on the efficiency sensitivity.
また本発明に係る照明装置は、上記の発光量記憶手段が、光源手段の各発光ダイオードについて、各発光ダイオードに供給される電流の電流値を変化させたときの各発光ダイオードの発光量を、各発光ダイオードに供給される電流の電流値毎に記憶することを特徴とするものである。 Further, in the illumination device according to the present invention, the light emission amount storage means described above, for each light emitting diode of the light source means, the light emission amount of each light emitting diode when the current value of the current supplied to each light emitting diode is changed, It memorize | stores for every electric current value of the electric current supplied to each light emitting diode.
また本発明に係る照明装置は、光源手段の温度を検出する温度センサを備え、上記の発光量記憶手段が、光源手段の各発光ダイオードについて、光源手段の温度が変化したときの各発光ダイオードの発光量をその温度毎に記憶し、効率感度算出手段は、温度センサが検出した検出温度を用いて効率感度を算出することを特徴とするものである。 The illumination device according to the present invention further includes a temperature sensor for detecting the temperature of the light source means, and the light emission amount storage means has a light emitting diode for each light emitting diode when the temperature of the light source means changes for each light emitting diode of the light source means. The light emission amount is stored for each temperature, and the efficiency sensitivity calculating means calculates the efficiency sensitivity using the detected temperature detected by the temperature sensor.
また本発明に係る照明装置は、上記の効率感度算出手段が、光源手段の各発光ダイオードに所定の直流電流とこの直流電流に重畳する所定の交流電流が供給されたときの所定の交流電流の振幅と各発光ダイオードの発光量の振幅の比として、所定の直流電流の電流値における効率感度を算出することを特徴とするものである。 In the illumination device according to the present invention, the efficiency sensitivity calculating unit may calculate a predetermined alternating current when a predetermined direct current and a predetermined alternating current superimposed on the direct current are supplied to each light emitting diode of the light source unit. As a ratio between the amplitude and the amplitude of the light emission amount of each light emitting diode, efficiency sensitivity at a current value of a predetermined direct current is calculated.
また本発明に係る照明装置は、複数の異なる色の照明光を出射し、照明光の色毎に複数の発光ダイオードを有する光源手段と、光源手段の各発光ダイオードに供給される電流の電流値を制御して、光源手段から出射される照明光の光量を色毎に増減させる光量制御手段と、各発光ダイオードに供給される電流の電流値に対する各発光ダイオードの発光量の変化率である効率感度を記憶する効率感度記憶手段とを備え、光量制御手段が、効率感度に基づいて各発光ダイオードに供給される電流の電流値を制御することを特徴とするものである。 The illumination device according to the present invention emits a plurality of different colors of illumination light, and includes a light source unit having a plurality of light emitting diodes for each color of the illumination light, and a current value of a current supplied to each light emitting diode of the light source unit. And a light amount control means for increasing or decreasing the amount of illumination light emitted from the light source means for each color, and an efficiency that is a change rate of the light emission amount of each light emitting diode with respect to the current value of the current supplied to each light emitting diode And an efficiency sensitivity storage means for storing the sensitivity, wherein the light quantity control means controls the current value of the current supplied to each light emitting diode based on the efficiency sensitivity.
また本発明に係る照明装置は、上記の光量制御手段が、光源手段から出射されるある色の照明光の光量を減少させるときに、その色の発光ダイオードの中で効率感度が最も低いものに供給される電流の電流値を減少させ、光源手段から出射されるある色の照明光の光量を増加させるときに、その色の発光ダイオードの中で効率感度が最も高いものに供給される電流の電流値を増加させることを特徴とするものである。 In the illumination device according to the present invention, when the light quantity control means reduces the light quantity of the illumination light of a certain color emitted from the light source means, the light emitting diode of the color has the lowest efficiency sensitivity. When the current value of the supplied current is decreased and the amount of illumination light of a certain color emitted from the light source means is increased, the current supplied to the one with the highest efficiency sensitivity among the light emitting diodes of that color The current value is increased.
また本発明に係る照明装置は、上記の光量制御手段が、光源手段から出射されるある色の照明光の光量を減少させるときに、その色の発光ダイオードの中で効率感度が他の発光ダイオードよりも低く且つ効率感度が等しいものが複数あるときは、それらの発光ダイオードに供給される電流の電流値をそれらの効率感度が等しい状態を保ちながら減少させ、光源手段から出射されるある色の照明光の光量を増加させるときに、その色の発光ダイオードの中で効率感度が他の発光ダイオードよりも高く且つ効率感度が等しいものが複数あるときは、それらの発光ダイオードに供給される電流の電流値をそれらの効率感度が等しい状態を保ちながら増加させることを特徴とするものである。 In the illumination device according to the present invention, when the light amount control means reduces the light amount of illumination light of a certain color emitted from the light source means, the efficiency sensitivity among the light emitting diodes of that color is different from the other light emitting diodes. If there is a plurality of devices having lower efficiency and equal efficiency sensitivity, the current values of the currents supplied to the light emitting diodes are decreased while maintaining the same efficiency sensitivity. When increasing the amount of illumination light, if there are multiple light emitting diodes of that color that have higher efficiency sensitivity than other light emitting diodes and equal efficiency sensitivity, the current supplied to those light emitting diodes The current value is increased while maintaining the state where the efficiency sensitivities are equal.
本発明に係る画像投影装置は、上記のいずれか一つの照明装置と、照明装置から出射する照明光を入力画像信号に基づいて空間変調する空間変調手段と、空間変調手段で空間変調された照明光を投影する投影光学手段とを備えたことを特徴とするものである。 An image projection apparatus according to the present invention includes any one of the above-described illumination apparatuses, spatial modulation means that spatially modulates illumination light emitted from the illumination apparatus based on an input image signal, and illumination that is spatially modulated by the spatial modulation means And projection optical means for projecting light.
本発明に係る照明装置は、光源手段の各発光ダイオードに所定値の電流が供給されたときの各発光ダイオードの発光量を記憶する発光量記憶手段と、発光量記憶手段に記憶された各発光ダイオードの発光量に基づいて、各発光ダイオードに供給される電流の電流値に対する各発光ダイオードの発光量の変化率である効率感度を算出する効率感度算出手段とを備え、光量制御手段が、効率感度に基づいて各発光ダイオードに供給される電流の電流値を制御するため、効率感度が高い発光ダイオードの発光量を優先して増加させ、効率感度が低い発光ダイオードの発光量を優先して低下させることで、照明装置全体としての消費電力(電流)を低減することが可能となる。 The lighting device according to the present invention includes a light emission amount storage unit that stores a light emission amount of each light emitting diode when a predetermined current is supplied to each light emitting diode of the light source unit, and each light emission stored in the light emission amount storage unit. An efficiency sensitivity calculating means for calculating an efficiency sensitivity which is a rate of change of the light emission amount of each light emitting diode with respect to a current value of a current supplied to each light emitting diode, based on the light emission amount of the diode, and the light quantity control means has an efficiency Since the current value of the current supplied to each light emitting diode is controlled based on the sensitivity, the light emission amount of the light emitting diode with high efficiency sensitivity is given priority to increase, and the light emission amount of the light emitting diode with low efficiency sensitivity is given priority to decrease. By doing so, it becomes possible to reduce the power consumption (current) of the entire lighting device.
以下、図面を参照しながら本発明の実施形態に係る照明装置および画像投影装置について説明する。 Hereinafter, an illumination device and an image projection device according to an embodiment of the present invention will be described with reference to the drawings.
図1は、本発明の実施形態に係る照明装置を備えた画像投影装置の全体構成を示すブロック図である。なお図1には、画像投影装置の例として3板液晶パネル方式のプロジェクタを示しているが、本発明に係る照明装置をその他の方式の画像投影装置(プロジェクタ)に用いてもよい。 FIG. 1 is a block diagram illustrating an overall configuration of an image projection apparatus including an illumination apparatus according to an embodiment of the present invention. In FIG. 1, a three-panel liquid crystal panel projector is shown as an example of the image projector. However, the illumination device according to the present invention may be used for other types of image projectors (projectors).
図1に示す画像投影装置は画像信号処理部10を有し、この画像信号処理部10にパソコン等のアナログRGB信号やテレビジョン(NTSC)等の画像信号が入力される。画像信号処理部10は、その入力画像信号の信号形態によって入力画像信号に対して同期分離、Y/C分離、IP変換、スケーリング(解像度変換)、色(カラーマトリクス)変換、台形(キーストーン)補正等の処理を行い、デジタル画像データを生成する。このデジタル画像データは、RGBの色毎に設けられた表示パネル12r、12g、12bのパネルドライバ14r、14g、14bに送られ、パネルドライバ14r、14g、14bは表示パネル12r、12g、12bをデジタル画像データに基づいて駆動する。これによりRGB毎の画像が表示パネル12r、12g、12bに形成される。なお本実施形態では、3枚の表示パネル12r、12g、12bがそれぞれ液晶パネルから構成されているものとする。 The image projection apparatus shown in FIG. 1 has an image signal processing unit 10, and an analog RGB signal from a personal computer or the like, or an image signal from a television (NTSC) or the like is input to the image signal processing unit 10. The image signal processing unit 10 performs synchronization separation, Y / C separation, IP conversion, scaling (resolution conversion), color (color matrix) conversion, trapezoid (keystone) on the input image signal according to the signal form of the input image signal. Processing such as correction is performed to generate digital image data. This digital image data is sent to the panel drivers 14r, 14g, and 14b of the display panels 12r, 12g, and 12b provided for each of the RGB colors, and the panel drivers 14r, 14g, and 14b digitally display the display panels 12r, 12g, and 12b. Drive based on image data. As a result, RGB images are formed on the display panels 12r, 12g, and 12b. In the present embodiment, it is assumed that the three display panels 12r, 12g, and 12b are each composed of a liquid crystal panel.
また本実施形態に係る画像投影装置は、赤(R)、緑(G)、青(B)の照明光を出射する光源16を有する。光源16は、RGBの色毎に複数の発光ダイオード(以下、LEDという)を備えており、Rの光を発光するLED101、102、103がR−LED光源を、Gの光を発光するLED201、202、203がG−LED光源を、Bの光を発光するLED301、302、303がB−LED光源を構成している。R−LED光源を構成するLED101、102、103は、カソード側がそれぞれFET111、112、113に接続されており、アノード側がR−LED光源用のR電源に接続されている。G−LED光源を構成するLED201、202、203、B−LED光源を構成する301、302、303も同様に、カソード側がそれぞれFETに接続されており、アノード側が電源に接続されている。ここでは、RGBのLEDとそれに接続されたFET及び電源を含めて光源16と呼ぶこととする。なお本実施形態では、光源16がRGBの色毎に3つのLEDを備えているが、例えばRGBの色毎に2つまたは4つ以上のLEDを用いるようにしてもよく、RGBの色毎にLEDの個数が異なっていてもよい。 In addition, the image projection apparatus according to the present embodiment includes a light source 16 that emits red (R), green (G), and blue (B) illumination light. The light source 16 includes a plurality of light emitting diodes (hereinafter referred to as LEDs) for each of the RGB colors. The LEDs 101, 102, and 103 that emit R light are R-LED light sources, and the LED 201 that emits G light. 202 and 203 constitute a G-LED light source, and LEDs 301, 302 and 303 emitting B light constitute a B-LED light source. The LEDs 101, 102, and 103 constituting the R-LED light source have the cathode side connected to the FETs 111, 112, and 113, respectively, and the anode side connected to the R power source for the R-LED light source. Similarly, the LEDs 201, 202, and 203 constituting the G-LED light source and the 301, 302, and 303 constituting the B-LED light source have the cathode side connected to the FET and the anode side connected to the power source. Here, the RGB LED, the FET connected to the LED, and the power source are referred to as the light source 16. In the present embodiment, the light source 16 includes three LEDs for each RGB color. However, for example, two or four or more LEDs may be used for each RGB color, and each RGB color may be used. The number of LEDs may be different.
光源16の各LEDに接続されたFETのゲートは、LED発光タイミング制御部18に接続されており、このLED発光タイミング制御部18はCPU20に接続されている。CPU20は、光源16の各LEDの発光タイミングを制御するタイミング信号を生成し、このタイミング信号を各LEDへ送る。また光源16の各LEDは、FETを介して電流制御回路部22に接続されており、この電流制御回路部22はDAコンバータ24を介してLED発光電流制御部26に接続されている。LED発光電流制御部26は、CPU20と接続されており、LED発光電流制御部26はCPU20からの指令により各LEDに供給される電流の電流値を制御して各LEDの発光量を制御する。なお図1では、R−LED光源用の電流制御回路部22のみを示しているが、G−LED光源、B−LED光源も同様に電流制御回路部に接続されているものとする。 The gate of the FET connected to each LED of the light source 16 is connected to the LED light emission timing control unit 18, and this LED light emission timing control unit 18 is connected to the CPU 20. CPU20 produces | generates the timing signal which controls the light emission timing of each LED of the light source 16, and sends this timing signal to each LED. Each LED of the light source 16 is connected to a current control circuit unit 22 via an FET, and this current control circuit unit 22 is connected to an LED light emission current control unit 26 via a DA converter 24. The LED light emission current control unit 26 is connected to the CPU 20, and the LED light emission current control unit 26 controls the light emission amount of each LED by controlling the current value of the current supplied to each LED according to a command from the CPU 20. Although only the current control circuit unit 22 for the R-LED light source is shown in FIG. 1, it is assumed that the G-LED light source and the B-LED light source are also connected to the current control circuit unit.
R−LED光源、G−LED光源、B−LED光源からの光は、例えばインテグレータロッドから構成される照明光学系28r、28g、28bで色毎に合成、整形されて表示パネル12r、12g、12bに導光される。照明光学系28r、28g、28bからの光は表示パネル12r、12g、12bにより空間変調され、これにより生成された画像が投影光学系30に導かれる。投影光学系30は、表示パネル12r、12g、12bで生成された各色の画像をRGB混色の画像に合成し、この画像を画像投影装置外部のスクリーン(図示せず)等に投影する。 Light from the R-LED light source, G-LED light source, and B-LED light source is synthesized and shaped for each color by illumination optical systems 28r, 28g, and 28b constituted by, for example, integrator rods, and displayed on the display panels 12r, 12g, and 12b. Is guided to. Light from the illumination optical systems 28r, 28g, and 28b is spatially modulated by the display panels 12r, 12g, and 12b, and an image generated thereby is guided to the projection optical system 30. The projection optical system 30 synthesizes each color image generated by the display panels 12r, 12g, and 12b into an RGB mixed color image, and projects the image onto a screen (not shown) or the like outside the image projection apparatus.
またCPU20は、メモリ32、ユーザインターフェース34と接続されており、メモリ32は以下に示す電流値−発光量テーブル等を記憶し、ユーザインターフェース34は、ユーザからの光量設定指示等を受けて設定信号をCPU20に送る。また本実施形態では、画像信号処理部10とCPU20に特徴量抽出部36が接続されている。特徴量抽出部36は、画像信号処理部10から入力画像信号を受け取り、その画像について輝度の最大値および最小値、平均輝度レベル(APL)等を判断し、その値をCPU20に送る。なお、特徴量抽出部36は必ずしも設けなくてもよいが、例えば光源16の光量を、ユーザが設定する代わりに特徴量抽出部36が判断した平均輝度レベル等に応じてCPU20が自動で設定するようにしてもよい。 The CPU 20 is connected to a memory 32 and a user interface 34. The memory 32 stores a current value-light emission amount table and the like shown below, and the user interface 34 receives a light quantity setting instruction from the user and the like, Is sent to the CPU 20. In the present embodiment, a feature amount extraction unit 36 is connected to the image signal processing unit 10 and the CPU 20. The feature amount extraction unit 36 receives the input image signal from the image signal processing unit 10, determines the maximum and minimum luminance values, the average luminance level (APL), and the like for the image, and sends the values to the CPU 20. Note that the feature amount extraction unit 36 is not necessarily provided, but the CPU 20 automatically sets, for example, the light amount of the light source 16 according to the average luminance level determined by the feature amount extraction unit 36 instead of setting by the user. You may do it.
さらに本実施形態に係る画像投影装置は、光源16の温度をR−LED光源、G−LED光源、B−LED光源ごとに検出する温度センサ38r、38g、38bと、R−LED光源、G−LED光源、B−LED光源から出射され、照明光学系28r、28g、28bを通過した照明光の光量を色毎に検出する光量センサ40r、40g、40bを備えている。温度センサ38r、38g、38bは、例えばR−LED光源、G−LED光源、B−LED光源の近傍や、画像投影装置が空冷式のものであれば放熱板、水冷式のものであれば水冷ジャケットに取り付けることができる。なお温度センサを、光源16に1つだけ取り付けるようにしてもよい。また光量センサ40r、40g、40bは、例えば照明光学系28r、28g、28bの出射端に取り付けることができ、光量データを取得するときに照明光学系28r、28g、28bの出射端中央に移動するように構成することができる。温度センサ38r、38g、38bは検出した温度データをCPU20へ送り、光量センサ40r、40g、40bは検出した光量データをCPU20へ送る。 Further, the image projection apparatus according to the present embodiment includes temperature sensors 38r, 38g, and 38b that detect the temperature of the light source 16 for each of the R-LED light source, the G-LED light source, and the B-LED light source, the R-LED light source, and the G-LED. Light amount sensors 40r, 40g, and 40b that detect the amount of illumination light emitted from the LED light source and the B-LED light source and passed through the illumination optical systems 28r, 28g, and 28b are provided for each color. The temperature sensors 38r, 38g, and 38b are, for example, the vicinity of an R-LED light source, a G-LED light source, and a B-LED light source, or a heat sink if the image projection apparatus is an air-cooled type, and water-cooled if a water-cooled type. Can be attached to a jacket. Note that only one temperature sensor may be attached to the light source 16. The light quantity sensors 40r, 40g, and 40b can be attached to the emission ends of the illumination optical systems 28r, 28g, and 28b, for example, and move to the center of the emission ends of the illumination optical systems 28r, 28g, and 28b when acquiring light quantity data. It can be constituted as follows. The temperature sensors 38r, 38g, and 38b send the detected temperature data to the CPU 20, and the light quantity sensors 40r, 40g, and 40b send the detected light quantity data to the CPU 20.
なお本実施形態に係る画像投影装置において、光源16、LED発光タイミング制御部18、CPU20、電流制御回路部22、DAコンバータ24、LED発光電流制御部26、メモリ32、温度センサ38r、38g、38b、光量センサ40r、40g、40b等が画像を投影するための照明装置として機能する。 In the image projection apparatus according to the present embodiment, the light source 16, the LED light emission timing control unit 18, the CPU 20, the current control circuit unit 22, the DA converter 24, the LED light emission current control unit 26, the memory 32, and the temperature sensors 38r, 38g, and 38b. The light quantity sensors 40r, 40g, and 40b function as an illumination device for projecting an image.
本実施形態では、まずキャリブレーションにより光源16の各LEDについて電流値−発光量テーブルを作成し、メモリ32に記憶させる。この電流値−発光量テーブルは、光源16の各LEDに供給される電流の電流値を変化させたときの各LEDの発光量を、各LEDに供給される電流の電流値毎に記録したデータテーブルであり、例えば光源16の各発光ダイオードに一定のステップ幅で電流を加えてそのときの発光量を光量センサ40r、40g、40bで検出することにより得ることができる。後に示すように、CPU20はこの電流値−発光量テーブルから各LEDに供給される電流の電流値に対する各LEDの発光量の変化率である効率感度を算出し、光源16から出射される照明光の光量を色毎に増減させる際、この効率感度に基づいて光源16のトータルの駆動消費電力、即ちトータルの電流が最も少なくなるように各LEDに供給される電流の電流値を制御する。 In the present embodiment, first, a current value-light emission amount table is created for each LED of the light source 16 by calibration and stored in the memory 32. This current value-light emission amount table is data in which the light emission amount of each LED when the current value of the current supplied to each LED of the light source 16 is changed is recorded for each current value of the current supplied to each LED. This is a table, and can be obtained, for example, by applying a current to each light emitting diode of the light source 16 with a constant step width and detecting the light emission amount at that time by the light quantity sensors 40r, 40g, 40b. As will be described later, the CPU 20 calculates the efficiency sensitivity, which is the rate of change of the light emission amount of each LED with respect to the current value of the current supplied to each LED, from this current value-light emission amount table, and the illumination light emitted from the light source 16 When the amount of light is increased or decreased for each color, the total drive power consumption of the light source 16, that is, the current value of the current supplied to each LED is controlled so as to minimize the total current based on this efficiency sensitivity.
図2は、電流値−発光量テーブルを取得するためのキャリブレーションの手順を示したフローチャートである。なお、図2の手順で得られた電流値−発光量テーブルの例は図4に示されている。 FIG. 2 is a flowchart showing a calibration procedure for obtaining a current value-light emission amount table. An example of the current value-emission amount table obtained by the procedure of FIG. 2 is shown in FIG.
まず、ユーザがユーザインターフェース34からキャリブレーション開始指令を入力すると、光源16の各LEDについての電流値−発光量テーブルの作成を開始する信号がCPU20へ送られる(S101)。 First, when a user inputs a calibration start command from the user interface 34, a signal for starting creation of a current value-light emission amount table for each LED of the light source 16 is sent to the CPU 20 (S101).
電流値−発光量テーブルの作成を開始する信号を受けたCPU20は、画像信号処理部10に対し電流値−発光量テーブの作成中にノイズのある画像等が表示されないように画像信号をマスク処理する(S102)。これは、発光量データの取得中に不適切な色の画像や光量変化による違和感のある画像が表示されないようにするためのものであり、例えばロゴやブルーバックといった特定の画像を出力するようなデジタル画像信号データをパネルドライバ14r、14g、14bへ送る。 The CPU 20 that has received a signal for starting the creation of the current value-emission amount table masks the image signal so that no image or the like with noise is displayed during the creation of the current value-emission amount table. (S102). This is to prevent an image of an inappropriate color or an uncomfortable image due to a change in the amount of light from being displayed during the acquisition of the light emission amount data. For example, a specific image such as a logo or a blue back is output. The digital image signal data is sent to the panel drivers 14r, 14g, and 14b.
そしてLED発光タイミング制御部18は、CPU20からの指示により光源16の各LEDの発光量を取得するためのタイミング信号をLED毎に生成する(S103)。図3は、LED発光タイミング制御部18が生成するタイミング信号の例を示した図である。なお図3では、光源16がRGBの色毎に8個のLED(R1、R2…、R8、G1、G2…、G8、B1、B2…、B8)を有する場合を示している。図3に示すようにLED発光タイミング制御部18は各LEDの電流値毎の発光量を検出するために、タイミング信号として各色についてLED毎にタイミングをずらしたゲートパルス信号を生成する。図3の例では、RのLEDについてR1、R2…R8の順にゲートパルス信号が生成され、G、Bについても同様のゲートパルス信号が生成される。LED発光タイミング制御部18で生成されたタイミング信号は、FET111、112、113等を経てLED101、102、103等の各LEDに送られる。 And the LED light emission timing control part 18 produces | generates the timing signal for acquiring the light emission amount of each LED of the light source 16 for every LED by the instruction | indication from CPU20 (S103). FIG. 3 is a diagram illustrating an example of a timing signal generated by the LED light emission timing control unit 18. 3 shows a case where the light source 16 has eight LEDs (R1, R2,..., R8, G1, G2,..., G8, B1, B2,..., B8) for each RGB color. As shown in FIG. 3, the LED light emission timing control unit 18 generates a gate pulse signal in which the timing is shifted for each LED for each color as a timing signal in order to detect the light emission amount for each current value of each LED. In the example of FIG. 3, gate pulse signals are generated in the order of R1, R2,... R8 for the R LEDs, and similar gate pulse signals are generated for G and B. The timing signal generated by the LED light emission timing control unit 18 is sent to each LED such as the LEDs 101, 102, and 103 via the FETs 111, 112, and 113.
またLED発光電流制御部26は、CPU20からの指示により各LEDに供給する電流の電流値を例えば所定のステップ毎に変更する(S104)。このときLED発光電流制御部26は、各LEDについて異なる電流値における発光量を取得するため、例えば使用条件範囲内で各LEDに供給される電流値を所定のステップ毎に増加させるようなデータを出力する。LED発光電流制御部26から出力されたデータは、DAコンバータ24によりアナログ信号に変換され、電流制御回路部22、FET111、112、113等に入力される。FET111、112、113等は、入力されたアナログ信号に対応した電流値の電流をLED101、102、103等の各LEDに供給する。即ち、LED発光タイミング制御部18が生成するタイミング信号により発光するLEDが選択され、LED発光電流制御部26から出力されるデータによって各LEDに供給される電流の電流値が制御されることとなる。 Moreover, the LED light emission current control part 26 changes the electric current value of the electric current supplied to each LED by the instruction | indication from CPU20, for example for every predetermined step (S104). At this time, the LED light emission current control unit 26 acquires, for example, data for increasing the current value supplied to each LED within a use condition range for each predetermined step in order to obtain the light emission amount at different current values for each LED. Output. Data output from the LED light emission current control unit 26 is converted into an analog signal by the DA converter 24 and input to the current control circuit unit 22, FETs 111, 112, 113, and the like. The FETs 111, 112, 113, etc. supply a current having a current value corresponding to the input analog signal to each LED, such as the LEDs 101, 102, 103. That is, an LED that emits light is selected based on the timing signal generated by the LED light emission timing control unit 18, and the current value of the current supplied to each LED is controlled by data output from the LED light emission current control unit 26. .
それから、上記のようなタイミングおよび設定電流値で発光する各LEDの発光量をその電流値ごとに光量センサ40r、40g、40bで検出する(S105)。検出された各LEDの発光量は、CPU20へ送られる。 Then, the light emission amount of each LED that emits light at the timing and set current value as described above is detected by the light amount sensors 40r, 40g, and 40b for each current value (S105). The detected light emission amount of each LED is sent to the CPU 20.
また各LEDの発光量を検出すると同時に、温度センサ38r、38g、38bによってR−LED光源、G−LED光源、B−LED光源の温度も検出する(S106)。なお、複数の温度状態において各LEDの発光量をその電流値ごとに検出して、各LEDについて温度毎の電流値−発光量テーブルを作成するようにしてもよい。例えば、上記のような各LEDの発光量の検出を複数回行い、異なる温度における各LEDの電流値−発光量テーブルをメモリに記憶させておくことができる。検出されたR−LED光源、G−LED光源、B−LED光源の温度データは、CPU20へ送られる。 At the same time as detecting the light emission amount of each LED, the temperatures of the R-LED light source, G-LED light source and B-LED light source are also detected by the temperature sensors 38r, 38g and 38b (S106). Note that the light emission amount of each LED may be detected for each current value in a plurality of temperature states, and a current value-light emission amount table for each temperature may be created for each LED. For example, the detection of the light emission amount of each LED as described above can be performed a plurality of times, and the current value-light emission amount table of each LED at different temperatures can be stored in the memory. The detected temperature data of the R-LED light source, G-LED light source, and B-LED light source is sent to the CPU 20.
そして、上記のようにCPU20に送られた各LEDの発光量およびR−LED光源、G−LED光源、B−LED光源の温度は、図4に示すように各LEDについて電流値−発光量テーブルの形でメモリ32に保存される(S107)。このとき異なる温度における発光量のデータは、別の電流値―発光量テーブルとして保存することができる。 Then, the light emission amount of each LED and the temperatures of the R-LED light source, G-LED light source, and B-LED light source sent to the CPU 20 as described above are the current value-light emission amount table for each LED as shown in FIG. Is stored in the memory 32 (S107). At this time, the light emission amount data at different temperatures can be stored as another current value-light emission amount table.
最後に、S102で行ったマスク処理を解除してキャリブレーションが終了する(S108)。 Finally, the mask process performed in S102 is canceled and the calibration is completed (S108).
なおこのキャリブレーションは、工場での出荷調整工程時、ユーザが初めて画像投影装置を起動するとき、ある所定の使用時間の経過後等に行うようにすればよい。特にユーザが所定の使用時間ごとにキャリブレーションを行って、メモリ32の電流値−発光量テーブルを更新または追加することにより、後に示す光量制御の精度をより一層向上させることができる。 Note that this calibration may be performed after the elapse of a predetermined use time, for example, when the user starts the image projection apparatus for the first time in the factory shipping adjustment process. In particular, when the user performs calibration every predetermined usage time and updates or adds the current value-light emission amount table of the memory 32, the accuracy of the light amount control described later can be further improved.
図4は、キャリブレーションで得られた電流値−発光量テーブルをグラフ化した例を示す図である。図4に示す電流値−発光量テーブルは、図2に示すキャリブレーションで得られたものである。なお図4に示す例では、光源16のR−LED光源がR1、R2、R3の3つのLEDを備えているものとし、この3つのLEDについての電流値−発光量テーブルを示すものとする。また図4では、R1についての電流値−発光量テーブル(特性カーブ)をLr1、R2についての電流値−発光量テーブルをLr2、R3についての電流値−発光量テーブルをLr3として示している。 FIG. 4 is a diagram illustrating an example in which a current value-light emission amount table obtained by calibration is graphed. The current value-light emission amount table shown in FIG. 4 is obtained by the calibration shown in FIG. In the example shown in FIG. 4, it is assumed that the R-LED light source of the light source 16 includes three LEDs R1, R2, and R3, and a current value-light emission amount table for these three LEDs. In FIG. 4, the current value-light emission amount table (characteristic curve) for R1 is shown as Lr1, the current value-light emission amount table for R2 is Lr2, and the current value-light emission amount table for R3 is shown as Lr3.
R1、R2、R3に電流値Iaの電流が供給されているときの発光量をそれぞれLa1、La2、La3とし、電流値Iaに所定の電流値を加えた電流値Ibの電流が供給されているときの発光量をそれぞれLb1、Lb2、Lb3とする。ここで電流値がIaからIbの間におけるR1、R2、R3の電流値−発光量テーブル(特性カーブ)の傾きをそれぞれk1、k2、k3とすると、
k1=(Lb1−La1)/(Ib−Ia)
k2=(Lb2−La2)/(Ib−Ia)
k3=(Lb3−La3)/(Ib−Ia)
となる。本実施形態ではこの傾きk1、k2、k3を、各LEDの効率感度と呼ぶものとする。この効率感度は、各LEDに供給される電流の電流値に対する各LEDの発光量の変化率と定義することもできる。図4に示す例では、電流値がIaからIbの間における効率感度k1、k2、k3の大小関係がk1>k2>k3となっている。
The light emission amounts when current of current value Ia is supplied to R1, R2, and R3 are La1, La2, and La3, respectively, and current of current value Ib obtained by adding a predetermined current value to current value Ia is supplied. The light emission amounts at that time are Lb1, Lb2, and Lb3, respectively. Here, assuming that the slopes of the current value-light emission amount tables (characteristic curves) of R1, R2, and R3 between the current values Ia and Ib are k1, k2, and k3, respectively.
k1 = (Lb1-La1) / (Ib-Ia)
k2 = (Lb2-La2) / (Ib-Ia)
k3 = (Lb3-La3) / (Ib-Ia)
It becomes. In the present embodiment, the inclinations k1, k2, and k3 are referred to as the efficiency sensitivity of each LED. This efficiency sensitivity can also be defined as the rate of change of the light emission amount of each LED with respect to the current value of the current supplied to each LED. In the example shown in FIG. 4, the magnitude relationship between the efficiency sensitivities k1, k2, and k3 between the current values Ia and Ib is k1>k2> k3.
本実施形態では、CPU20がメモリ32に記憶された各LEDの電流値−発光量テーブルを読み出し、各電流値における効率感度をLED毎に算出する。なお図4の例では、R−LED光源のLEDのみを例に挙げているが、CPU20はG−LED光源、B−LED光源の各LEDについても同様に効率感度を算出するものとする。また本実施形態では、メモリ32に各LEDの電流値−発光量テーブルのみを記憶するようにしているが、電流値−発光量テーブルと各電流値における効率感度の両方を記憶するようにしてもよい。 In the present embodiment, the CPU 20 reads the current value-light emission amount table of each LED stored in the memory 32, and calculates the efficiency sensitivity at each current value for each LED. In the example of FIG. 4, only the LED of the R-LED light source is taken as an example, but the CPU 20 calculates the efficiency sensitivity for each LED of the G-LED light source and the B-LED light source in the same manner. In this embodiment, only the current value-emission amount table of each LED is stored in the memory 32. However, both the current value-emission amount table and the efficiency sensitivity at each current value may be stored. Good.
さらに図4の例では、電流値をIaからIbに増加させて各LEDの効率感度を求めているが、例えば電流値を減少させたときの傾きとして効率感度を求めてもよく、ある電流値から同じステップ幅だけ前後のデータ間における傾きとして効率感度を求めてもよい。 Further, in the example of FIG. 4, the efficiency sensitivity of each LED is obtained by increasing the current value from Ia to Ib. For example, the efficiency sensitivity may be obtained as a slope when the current value is decreased. Therefore, the efficiency sensitivity may be obtained as a slope between data before and after the same step width.
図5は、各LEDの効率感度を求める他の方法を示したグラフである。なお図5に示す例では図4の例と同様に、光源16のR−LED光源がR1、R2、R3の3つのLEDを備えているものとし、図5(a)にR1の電流値対発光量を、図5(b)にR2の電流値対発光量を、図5(c)にR3の電流値対発光量を示す。また図5(a)、図5(b)および図5(c)では、R1についての特性カーブ(電流値−発光量テーブルと同じ)をLr1、R2についての特性カーブをLr2、R3についての特性カーブをLr3で示している。 FIG. 5 is a graph showing another method for obtaining the efficiency sensitivity of each LED. In the example shown in FIG. 5, as in the example of FIG. 4, the R-LED light source of the light source 16 includes three LEDs R 1, R 2, and R 3, and FIG. FIG. 5B shows the light emission amount, the current value of R2 versus the light emission amount, and FIG. 5C shows the current value of R3 versus the light emission amount. In FIGS. 5A, 5B, and 5C, the characteristic curve for R1 (same as the current value-emission amount table) is Lr1, and the characteristic curve for R2 is the characteristic for Lr2 and R3. The curve is indicated by Lr3.
図5の例では、R1、R2、R3に電流値Icの直流電流と、この直流電流に重畳する振幅がIdの交流電流を供給する。このときのR1、R2、R3の発光量の振幅をそれぞれLd1、Ld2、Ld3とすると、電流値IcにおけるR1、R2、R3の効率感度k1、k2、k3は、交流電流の振幅Idと各LEDの発光量の振幅の比として求められる。即ち、
k1=Ld1/Id
k2=Ld2/Id
k3=Ld3/Id
となり、図4の例と同様に特性カーブ(電流値−発光量テーブル)に沿った傾きが求められる。なお図5に示す方法を用いて各LEDの効率感度を求める場合には、図2に示すような電流値−発光量テーブルを作成するためのキャリブレーションを行う必要はなく、求められた各LEDの効率感度をメモリ32に保存するようにしてもよい。
In the example of FIG. 5, a direct current having a current value Ic and an alternating current having an amplitude Id superimposed on the direct current are supplied to R1, R2, and R3. Assuming that the amplitudes of the light emission amounts of R1, R2, and R3 at this time are Ld1, Ld2, and Ld3, respectively, the efficiency sensitivities k1, k2, and k3 of R1, R2, and R3 at the current value Ic are the AC current amplitude Id and each LED. It is calculated | required as a ratio of the amplitude of light emission amount. That is,
k1 = Ld1 / Id
k2 = Ld2 / Id
k3 = Ld3 / Id
Thus, the inclination along the characteristic curve (current value-emission amount table) is obtained as in the example of FIG. In addition, when calculating | requiring the efficiency sensitivity of each LED using the method shown in FIG. 5, it is not necessary to perform the calibration for creating a current value-light-emission amount table as shown in FIG. The efficiency sensitivity may be stored in the memory 32.
このように、各LEDに所定の直流電流とこの直流電流に重畳する所定の交流電流を供給してそのときの発光量を検出し、交流電流の振幅と各LEDの発光量の振幅の比として、その直流電流の電流値における効率感度を算出することができる。 In this way, a predetermined direct current and a predetermined alternating current superimposed on the direct current are supplied to each LED to detect the light emission amount at that time, and the ratio between the amplitude of the alternating current and the amplitude of the light emission amount of each LED is obtained. The efficiency sensitivity at the current value of the direct current can be calculated.
図6は、電流値−発光量テーブルとそれに対応する効率感度の例を示したグラフである。なお図6の例では、光源16のR−LED光源がR1、R2、R3の3つのLEDを備えているものとする。また、R1についての電流値−発光量テーブルをLr1、R2についての電流値−発光量テーブルをLr2、R3についての電流値−発光量テーブルをLr3で示し、R−LED光源から出射される光量をLr(=Lr1+Lr2+Lr3)で示している。但し光量Lrについては、R1、R2、R3に供給される電流値が同じであるとする。さらに図6(b)は、図6(a)の電流値−発光量テーブルから算出された効率感度を示すグラフであり、R1、R2、R3の効率感度をそれぞれk1、k2、k3で示している。なお図6の例において、R1、R2、R3に供給できる電流の最大電流値をImとし、電流値がImのときのR1、R2、R3の効率感度をそれぞれK1、K2、K3とし、電流値が0のときのR1、R2、R3の効率感度をそれぞれK1´、K2´、K3´する。また図6の例では、便宜上K3<K2<K1<K3´<K2´<K1´とする。 FIG. 6 is a graph showing an example of the current value-light emission amount table and the corresponding efficiency sensitivity. In the example of FIG. 6, it is assumed that the R-LED light source of the light source 16 includes three LEDs R1, R2, and R3. The current value-light emission amount table for R1 is Lr1, the current value-light emission amount table for R2 is Lr2, the current value-light emission amount table for R3 is Lr3, and the amount of light emitted from the R-LED light source is shown. This is indicated by Lr (= Lr1 + Lr2 + Lr3). However, it is assumed that the current values supplied to R1, R2, and R3 are the same for the light amount Lr. FIG. 6B is a graph showing the efficiency sensitivity calculated from the current value-emission amount table of FIG. 6A, and the efficiency sensitivities of R1, R2, and R3 are indicated by k1, k2, and k3, respectively. Yes. In the example of FIG. 6, the maximum current value that can be supplied to R1, R2, and R3 is Im, and the efficiency sensitivity of R1, R2, and R3 when the current value is Im is K1, K2, and K3, respectively. The efficiency sensitivities of R1, R2, and R3 when K is 0 are K1 ′, K2 ′, and K3 ′, respectively. In the example of FIG. 6, it is assumed that K3 <K2 <K1 <K3 ′ <K2 ′ <K1 ′ for convenience.
図7は、本実施形態に係る照明装置の光量制御方法を説明するためのグラフである。なお図7(a)から図7(f)は、図6(b)と同じ効率感度のグラフであり、図6のときと同一のR−LED光源について示しているものとする。 FIG. 7 is a graph for explaining the light amount control method of the lighting apparatus according to the present embodiment. FIGS. 7A to 7F are graphs of the same efficiency sensitivity as FIG. 6B, and show the same R-LED light source as in FIG.
従来の画像投影装置に用いられる照明装置では、例えばR−LED光源の光量を100%(すべてのLEDが最大電流値で発光している状態)から50%まで減少させる場合に、各LEDに供給される電流の電流値が等しい状態で一律にその電流値を減少させ、R−LED光源から出射される光量を減少させるようにしていた。 In an illumination device used in a conventional image projection device, for example, when the light amount of an R-LED light source is reduced from 100% (a state in which all LEDs emit light at a maximum current value) to 50%, it is supplied to each LED. The current value is uniformly reduced in a state where the current values of the generated currents are equal, and the amount of light emitted from the R-LED light source is reduced.
これに対して本実施形態では、例えばR−LED光源から出射される光量を増減させるときに、図4や図5で算出された各LEDの効率感度に基づいて各LEDに供給される電流値を制御し、各LEDの発光量を増減させる。具体的には、例えばR−LED光源から出射される光量を減少させる場合、効率感度の低いLEDから順番に供給される電流の電流値を減少させていく。なお本実施形態では、各色のLED光源から出射される光量を増減させるときに、まずCPU20が光量センサ40r、40g、40bの光量データに基づき現状の各LEDの発光量を把握し、そこから各LEDの発光量を増減させて目標の光量とする。 On the other hand, in this embodiment, for example, when increasing or decreasing the amount of light emitted from the R-LED light source, the current value supplied to each LED based on the efficiency sensitivity of each LED calculated in FIG. 4 or FIG. To control the amount of light emitted from each LED. Specifically, for example, when the amount of light emitted from the R-LED light source is decreased, the current value of the current supplied in order from the LED having low efficiency sensitivity is decreased. In this embodiment, when increasing or decreasing the amount of light emitted from the LED light source of each color, the CPU 20 first grasps the current light emission amount of each LED based on the light amount data of the light amount sensors 40r, 40g, and 40b, and from there, The light emission amount of the LED is increased or decreased to a target light amount.
以下、本実施形態においてR−LED光源から出射される光量を減少させる場合の制御シーケンスを図7(a)から図7(c)を用いて説明する。なお、図7(a)には初期状態を示しており、この初期状態ではR−LED光源の光量が100%(R1、R2、R3がすべて最大電流値Imで発光している状態)であるものとする。 Hereinafter, a control sequence for reducing the amount of light emitted from the R-LED light source in the present embodiment will be described with reference to FIGS. 7A to 7C. FIG. 7A shows an initial state, and in this initial state, the light amount of the R-LED light source is 100% (a state where R1, R2, and R3 all emit light at the maximum current value Im). Shall.
まず図7(a)の丸で示すように、R1、R2、R3が最大電流値Imで発光している状態から、この時点で最も効率感度の低いR3の電流値を下げて、R3の効率感度k3がK2になるまでR3の発光量を減少させる(図7(a)のa)。 First, as indicated by a circle in FIG. 7A, the current value of R3 having the lowest efficiency sensitivity at this time is lowered from the state where R1, R2, and R3 emit light at the maximum current value Im, and the efficiency of R3 is reduced. The light emission amount of R3 is decreased until the sensitivity k3 becomes K2 (a in FIG. 7A).
そしてR3、R2の効率感度k3、k2がK2で等しくなったら、図7(b)の丸および三角で示すように、R3、R2の効率感度k3、k2が等しい状態を保ちながらR3とR2の電流値を下げて、R3、R2の効率感度k3、k2がK1になるまでR3とR2の発光量を減少させる(図7(b)のb−c、d−e)。なおこの制御を一般化して4つ以上のLEDを有するR−LED光源に適用する場合、R−LED光源のLEDの中で効率感度が他のLED(ここではR1)よりも低く且つ効率感度が等しいもの(ここではR3とR2)が複数あるときは、それらのLEDに供給される電流の電流値をそれらの効率感度が等しい状態を保ちながら減少させるということになる。 When the efficiency sensitivities k3 and k2 of R3 and R2 become equal at K2, as indicated by the circles and triangles in FIG. 7 (b), the efficiency sensitivities k3 and k2 of R3 and R2 are kept equal while R3 and R2 The current value is decreased, and the light emission amounts of R3 and R2 are decreased until the efficiency sensitivities k3 and k2 of R3 and R2 become K1 (bc and de in FIG. 7B). When this control is generalized and applied to an R-LED light source having four or more LEDs, the efficiency sensitivity of the LEDs of the R-LED light source is lower than that of other LEDs (here, R1) and the efficiency sensitivity is lower. When there are a plurality of equal values (here, R3 and R2), the current values of the currents supplied to the LEDs are decreased while their efficiency sensitivities are kept equal.
それからR3、R2、R1の効率感度k3、k2、k1がK1で等しくなったら、図7(c)の丸、三角、四角で示すように、R3、R2、R1の効率感度k3、k2、k1が等しい状態を保ちながらR3、R2、R1の電流値を0になるまで下げて、R3、R2、R1の発光量を減少させる(図7(c)のf−g−h)。ここでR3の電流値が0となったら、R2、R1の効率感度k2、k1が等しい状態を保ちながらR2の電流値が0となるまでR2とR1の電流値を下げ(図7(c)のi−j)、R2の電流値が0となったら、R1の電流値が0となるまでR1の電流値を下げる(図7(c)のn)。 Then, when the efficiency sensitivities k3, k2, and k1 of R3, R2, and R1 are equal to K1, the efficiency sensitivities k3, k2, and k1 of R3, R2, and R1, as indicated by circles, triangles, and squares in FIG. While maintaining the same state, the current values of R3, R2, and R1 are decreased to 0 to decrease the light emission amounts of R3, R2, and R1 (fgh in FIG. 7C). Here, when the current value of R3 becomes 0, the current values of R2 and R1 are lowered until the current value of R2 becomes 0 while keeping the efficiency sensitivities k2 and k1 of R2 and R1 equal (FIG. 7C). I−j) When the current value of R2 becomes 0, the current value of R1 is decreased until the current value of R1 becomes 0 (n in FIG. 7C).
次に、本実施形態においてR−LED光源から出射される光量を増加させる場合の制御シーケンスを図7(d)から図7(f)を用いて説明する。R−LED光源から出射される光量を増加させる場合には、効率感度の高いLEDから順番に供給される電流の電流値を増加させるため、基本的には光量を減少させる場合と逆の順序となる。なお、図7(d)には初期状態を示しており、この初期状態ではR−LED光源の光量が0%(R1、R2、R3の電流値がすべて0の状態)であるものとする。 Next, a control sequence for increasing the amount of light emitted from the R-LED light source in the present embodiment will be described with reference to FIGS. 7 (d) to 7 (f). When increasing the amount of light emitted from the R-LED light source, in order to increase the current value of the current supplied in order from the LED with high efficiency sensitivity, basically, the order is the reverse of the case where the amount of light is decreased. Become. FIG. 7D shows an initial state. In this initial state, the light amount of the R-LED light source is 0% (the current values of R1, R2, and R3 are all 0).
まず図7(d)の四角で示すように、R1、R2、R3の電流値が0の状態から、この時点で最も効率感度の高いR1の電流値を上げて、R1の効率感度k1がK2´になるまでR1の発光量を増加させる(図7(d)のa)。 First, as shown by the square in FIG. 7D, the current value of R1, which has the highest efficiency sensitivity at this time, is increased from the state where the current values of R1, R2, and R3 are 0, and the efficiency sensitivity k1 of R1 is K2 The light emission amount of R1 is increased until “′” (a in FIG. 7D).
そしてR1、R2の効率感度k1、k2がK2´で等しくなったら、図7(d)の四角および三角で示すように、R1、R2の効率感度k1、k2が等しい状態を保ちながらR1とR2の電流値を上げて、R1、R2の効率感度k1、k2がK3´になるまでR1とR2の発光量を増加させる(図7(d)のb−c、d−e)。なおこの制御を一般化して4つ以上のLEDを有するR−LED光源に適用する場合、R−LED光源のLEDの中で効率感度が他のLED(ここではR3)よりも高く且つ効率感度が等しいもの(ここではR1とR2)が複数あるときは、それらのLEDに供給される電流の電流値をそれらの効率感度が等しい状態を保ちながら増加させるということになる。 When the efficiency sensitivities k1 and k2 of R1 and R2 become equal at K2 ′, the efficiency sensitivities k1 and k2 of R1 and R2 are kept equal as shown by the squares and triangles in FIG. 7D. And the light emission amounts of R1 and R2 are increased until the efficiency sensitivities k1 and k2 of R1 and R2 become K3 ′ (bc and de in FIG. 7D). When this control is generalized and applied to an R-LED light source having four or more LEDs, the efficiency sensitivity of the LEDs of the R-LED light source is higher than that of other LEDs (here, R3) and the efficiency sensitivity is higher. When there are a plurality of equal values (here, R1 and R2), the current values of the currents supplied to the LEDs are increased while their efficiency sensitivities are kept equal.
それからR1、R2、R3の効率感度k1、k2、k3がK3´で等しくなったら、図7(d)の四角、三角、丸で示すように、R1、R2、R3の効率感度k1、k2、k3が等しい状態を保ちながらR1、R2、R3の最大電流値をImになるまで上げて、R1、R2、R3の発光量を増加させる(図7(d)のf−g−h)。ここでR1の電流値がImとなったら、R2、R3の効率感度k2、k3が等しい状態を保ちながらR2の電流値がImとなるまでR2とR3の電流値を上げ(図7(e)のh−i、j−n)、R2の電流値がImとなったら、R3の電流値がImとなるまでR3の電流値を上げる(図7(f)のp)。 Then, when the efficiency sensitivities k1, k2, and k3 of R1, R2, and R3 are equal to K3 ′, the efficiency sensitivities k1, k2, and R1, R2, and R3 of R1, R2, and R3 as shown by squares, triangles, and circles in FIG. While maintaining the same state of k3, the maximum current values of R1, R2, and R3 are increased to Im to increase the light emission amounts of R1, R2, and R3 (fgh in FIG. 7D). Here, when the current value of R1 becomes Im, the current values of R2 and R3 are increased until the current value of R2 becomes Im while maintaining the equal sensitivity sensitivities k2 and k3 of R2 and R3 (FIG. 7 (e)). Hi, jn), when the current value of R2 becomes Im, the current value of R3 is increased until the current value of R3 becomes Im (p in FIG. 7 (f)).
図8は、電流値−発光量テーブルとそれに対応する効率感度の他の例を示したグラフである。なお図8の例でも、図6の例と同様に光源16のR−LED光源がR1、R2、R3の3つのLEDを備えているものとする。また、R1についての電流値−発光量テーブルをLr1、R2についての電流値−発光量テーブルをLr2、R3についての電流値−発光量テーブルをLr3で示し、R−LED光源から出射される光量をLr(=Lr1+Lr2+Lr3)で示している。但し光量Lrについては、R1、R2、R3に供給される電流値が同じであるとする。さらに図8(b)は、図8(a)の電流値−発光量テーブルから算出された効率感度を示すグラフであり、R1、R2、R3の効率感度をそれぞれk1、k2、k3で示している。なお図8の例においても、R1、R2、R3に供給できる電流の最大電流値をImとする。 FIG. 8 is a graph showing another example of the current value-light emission amount table and the corresponding efficiency sensitivity. In the example of FIG. 8, it is assumed that the R-LED light source of the light source 16 includes three LEDs R1, R2, and R3 as in the example of FIG. The current value-light emission amount table for R1 is Lr1, the current value-light emission amount table for R2 is Lr2, the current value-light emission amount table for R3 is Lr3, and the amount of light emitted from the R-LED light source is shown. This is indicated by Lr (= Lr1 + Lr2 + Lr3). However, it is assumed that the current values supplied to R1, R2, and R3 are the same for the light amount Lr. Further, FIG. 8B is a graph showing the efficiency sensitivity calculated from the current value-emission amount table of FIG. 8A, and the efficiency sensitivities of R1, R2, and R3 are indicated by k1, k2, and k3, respectively. Yes. In the example of FIG. 8, Im is the maximum current value that can be supplied to R1, R2, and R3.
図8の例では、図8(a)に示すようにLr1、Lr2、Lr3の電流値0から点Aまでの傾き(効率感度)が同一かつ一定となっており、この傾きを図8(b)において効率感度K4として示している。またLr1の点Bよりも電流値の大きい領域、Lr2の点Cよりも電流値の大きい領域、およびLr3の点Dよりも電流値の大きい領域の傾きも同一かつ一定となっており、この傾きを図8(b)において効率感度K5として示している。なお図8(a)の点A、点B、点C、点Dに対応する点を、図8(b)においてそれぞれ点A´、点B´、点C´、点D´として示している。 In the example of FIG. 8, as shown in FIG. 8A, the slopes (efficiency sensitivity) from the current value 0 to the point A of Lr1, Lr2, and Lr3 are the same and constant, and this slope is shown in FIG. ) Is shown as efficiency sensitivity K4. The slopes of the region where the current value is larger than the point B of Lr1, the region where the current value is larger than the point C of Lr2, and the region where the current value is larger than the point D of Lr3 are the same and constant. Is shown as efficiency sensitivity K5 in FIG. The points corresponding to point A, point B, point C, and point D in FIG. 8A are shown as point A ′, point B ′, point C ′, and point D ′ in FIG. 8B, respectively. .
図9は、本実施形態に係る照明装置の光量制御方法の他の例を説明するためのグラフである。なお図9(a)から図9(f)は、図8(b)と同じ効率感度のグラフであり、図8のときと同一のR−LED光源について示しているものとする。 FIG. 9 is a graph for explaining another example of the light amount control method of the lighting apparatus according to the present embodiment. 9 (a) to 9 (f) are graphs of the same efficiency sensitivity as FIG. 8 (b), and show the same R-LED light source as in FIG.
以下、図8(b)の例においてR−LED光源から出射される光量を減少させる場合の制御シーケンスを図9(a)から図9(c)を用いて説明する。なお、図9(a)には初期状態を示しており、この初期状態ではR−LED光源の光量が100%(R1、R2、R3がすべて最大電流値Imで発光している状態)であるものとする。また光量制御の基本的な考え方は図7の場合と同様であり、効率感度の低いLEDから順番に供給される電流の電流値を減少させていく。 Hereinafter, a control sequence for reducing the amount of light emitted from the R-LED light source in the example of FIG. 8B will be described with reference to FIGS. 9A to 9C. FIG. 9A shows an initial state. In this initial state, the light amount of the R-LED light source is 100% (the state where R1, R2, and R3 all emit light at the maximum current value Im). Shall. The basic concept of the light amount control is the same as that in the case of FIG. 7, and the current value of the current supplied in order from the LED with low efficiency sensitivity is decreased.
まず図9(a)の四角、三角、丸で示すように、R3、R2、R1が最大電流値Imで発光している状態からR3、R2、R1の電流値を一律に点B´まで下げて、R3、R2、R1の発光量を減少させる(図9(a)のa―b−c)。このとき、R3、R2、R1の効率感度k3、k2、k1はK5の状態を保っている。 First, as indicated by squares, triangles, and circles in FIG. 9A, the current values of R3, R2, and R1 are uniformly lowered to the point B ′ from the state where R3, R2, and R1 emit light at the maximum current value Im. Thus, the light emission amounts of R3, R2, and R1 are decreased (abc in FIG. 9A). At this time, the efficiency sensitivities k3, k2, and k1 of R3, R2, and R1 maintain the state of K5.
そして図9(a)の四角および三角で示すように、R3とR2の電流値を一律に点B´から点C´まで下げて、R3とR2の発光量を減少させる(図9(a)のd−e)。このとき、R3、R2の効率感度k3、k2はまだK5の状態を保っている。 Then, as indicated by squares and triangles in FIG. 9A, the current values of R3 and R2 are uniformly lowered from the point B ′ to the point C ′ to reduce the light emission amounts of R3 and R2 (FIG. 9A). D-e). At this time, the efficiency sensitivities k3 and k2 of R3 and R2 are still in the state of K5.
それから図9(a)の四角で示すように、R3の電流値を点C´から点D´まで下げる(図9(a)のf)。このとき、R3の効率感度k3はまだK5の状態を保っている。 Then, as indicated by the square in FIG. 9A, the current value of R3 is lowered from the point C ′ to the point D ′ (f in FIG. 9A). At this time, the efficiency sensitivity k3 of R3 is still in the state of K5.
ここでR3の電流値が点D´になったら、図9(b)の四角、三角、丸で示すように、R3、R2、R1の効率感度k3、k2、k1が等しい状態を保ちながらR3、R2、R1の電流値を点A´まで下げて、R3、R2、R1の発光量を減少させる(図9(b)のg−h−i、j−n−p)。これにより、R3、R2、R1の効率感度k3、k2、k1はK4となる。 Here, when the current value of R3 reaches the point D ′, as indicated by the squares, triangles, and circles in FIG. 9B, the efficiency sensitivities k3, k2, and k1 of R3, R2, and R1 are kept equal to R3. , R2 and R1 are lowered to the point A ′ to reduce the light emission amounts of R3, R2 and R1 (g-i, j-np in FIG. 9B). As a result, the efficiency sensitivities k3, k2, and k1 of R3, R2, and R1 become K4.
最後に図9(c)の四角、三角、丸で示すように、R3、R2、R1の電流値を一律に点A´から0になるまで下げて、R3、R2、R1の発光量を減少させる(図9(c)のq、s、t)。このとき、R3、R2、R1の効率感度k3、k2、k1はK4である。 Finally, as indicated by the squares, triangles, and circles in FIG. 9C, the current values of R3, R2, and R1 are uniformly reduced from point A ′ to 0 to decrease the light emission amounts of R3, R2, and R1. (Q, s, t in FIG. 9C). At this time, the efficiency sensitivities k3, k2, and k1 of R3, R2, and R1 are K4.
次に、図8(b)の例においてR−LED光源から出射される光量を増加させる場合の制御シーケンスを図9(d)から図9(f)を用いて説明する。この場合も基本的な考え方は図7の場合と同様であり、効率感度の高いLEDから順番に供給される電流の電流値を増加させる。なお、図9(d)には初期状態を示しており、この初期状態ではR−LED光源の光量が0%(R1、R2、R3の電流値がすべて0の状態)であるものとする。 Next, a control sequence for increasing the amount of light emitted from the R-LED light source in the example of FIG. 8B will be described with reference to FIGS. 9D to 9F. In this case as well, the basic idea is the same as in FIG. 7, and the current value of the current supplied in order from the LED with high efficiency sensitivity is increased. FIG. 9D shows an initial state. In this initial state, the light amount of the R-LED light source is 0% (the current values of R1, R2, and R3 are all 0).
まず図9(d)の丸、三角、四角で示すように、R1、R2、R3の電流値を一律に0から点A´になるまで上げて、R1、R2、R3の発光量を増加させる(図9(d)のa、b、c)。このとき、R1、R2、R3の効率感度k1、k2、k3はK4である。 First, as indicated by circles, triangles, and squares in FIG. 9D, the current values of R1, R2, and R3 are uniformly increased from 0 to the point A ′ to increase the light emission amounts of R1, R2, and R3. (A, b, c in FIG. 9D). At this time, the efficiency sensitivities k1, k2, and k3 of R1, R2, and R3 are K4.
そして図9(e)の丸、三角、四角で示すように、R1、R2、R3の効率感度k1、k2、k3が等しい状態を保ちながらR1、R2、R3の電流値をそれぞれ点B´、点C´、点D´まで上げて、R1、R2、R3の発光量を増加させる(図9(b)のd−e−f、g−h−i)。これにより、R1、R2、R3の効率感度k1、k2、k3はK5となる。 Then, as indicated by the circles, triangles, and squares in FIG. 9 (e), the current values of R1, R2, and R3 are changed to points B ′, R3, R2, and R3 while maintaining the same efficiency sensitivities k1, k2, and k3, respectively. The light emission amount of R1, R2, and R3 is increased up to point C ′ and point D ′ (d−e−f and g−h−i in FIG. 9B). Thereby, the efficiency sensitivities k1, k2, and k3 of R1, R2, and R3 become K5.
それから図9(f)の四角で示すように、R3の電流値を点D´から点C´まで上げる(図9(f)のj)。 Then, as indicated by the square in FIG. 9 (f), the current value of R3 is increased from point D ′ to point C ′ (j in FIG. 9 (f)).
そして図9(f)の三角および四角で示すように、R2とR3の電流値を一律に点C´から点B´まで上げて、R2とR3の発光量を増加させる(図9(a)のn−p)。 Then, as indicated by triangles and squares in FIG. 9 (f), the current values of R2 and R3 are uniformly increased from point C ′ to point B ′ to increase the light emission amounts of R2 and R3 (FIG. 9 (a)). N-p).
最後に図9(f)の丸、三角、四角で示すように、点B´からR1、R2、R3の電流値を一律に最大電流値Imまで上げて、R1、R2、R3の発光量を増加させる(図9(f)のq―s−t)。 Finally, as indicated by circles, triangles, and squares in FIG. 9 (f), the current values of R1, R2, and R3 are uniformly increased from the point B ′ to the maximum current value Im, and the light emission amounts of R1, R2, and R3 are increased. Increase (qst in FIG. 9 (f)).
なお図7および図9では、一つの温度状態における効率感度を用いて光量制御を行っているが、例えば図2に示したキャリブレーションで複数の温度における電流値−発光量テーブルを作成し、最も近い温度についての電流値−発光量テーブルから算出した効率感度を用いて光量制御を行ってもよい。光量制御を行うときのR−LED光源の温度は、温度センサ38rで検出することができる。 7 and 9, the light amount control is performed using the efficiency sensitivity in one temperature state. For example, a current value-light emission amount table at a plurality of temperatures is created by the calibration shown in FIG. The light amount control may be performed using the efficiency sensitivity calculated from the current value-light emission amount table for a near temperature. The temperature of the R-LED light source when performing light quantity control can be detected by the temperature sensor 38r.
図10は、あるR−LED光源についての電流値−発光量テーブルとそれに対応する効率感度を示したグラフである。なお図10では、R−LED光源がR1、R2、R3の3つのLEDを備えているものとする。また図10(a)には、R1についての電流値−発光量テーブルをLr1、R2についての電流値−発光量テーブルをLr2、R3についての電流値−発光量テーブルをLr3で示し、図10(b)には、図10(a)の電流値−発光量テーブルから算出されたR1、R2、R3の効率感度をそれぞれk1、k2、k3で示している。 FIG. 10 is a graph showing a current value-light emission amount table and a corresponding efficiency sensitivity for an R-LED light source. In FIG. 10, it is assumed that the R-LED light source includes three LEDs R1, R2, and R3. FIG. 10A shows a current value-light emission amount table for R1 as Lr1, a current value-light emission amount table for R2, Lr2, and a current value-light emission amount table for R3 as Lr3. FIG. 10B shows the efficiency sensitivities of R1, R2, and R3 calculated from the current value-light emission amount table of FIG. 10A by k1, k2, and k3, respectively.
図10(a)に示す電流値−発光量テーブルLr1、Lr2、Lr3は、供給される電流値をIとして以下の式で表される(発光量は任意単位)。
Lr1=−0.0000099I2+0.0485I−1.08855
Lr2=−0.00000824I2+0.03957I−0.6947
Lr3=−0.000005966I2+0.032036I−0.6222
R1、R2、R3の最大電流値はすべて2000mAであり、R1、R2、R3のすべてに最大電流値2000mAの電流が供給されたとするとR−LED光源から出射される光量は141.38となり、このときのR−LED光源の光量を100%とする。ここでは、R−LED光源の光量を75%である106.03(=141.38×0.75)まで減少させる場合を考える。
The current value-light emission amount tables Lr1, Lr2, and Lr3 shown in FIG. 10A are expressed by the following formula where the supplied current value is I (the light emission amount is an arbitrary unit).
Lr1 = −0.0000099I 2 + 0.0485I−1.08855
Lr2 = −0.00000824I 2 + 0.03957I−0.6947
Lr3 = −0.000005966I 2 + 0.032036I−0.6222
The maximum current values of R1, R2, and R3 are all 2000 mA. If a current of 2000 mA is supplied to all of R1, R2, and R3, the amount of light emitted from the R-LED light source is 141.38. The amount of light from the R-LED light source is 100%. Here, consider a case where the light quantity of the R-LED light source is reduced to 106.03 (= 141.38 × 0.75), which is 75%.
従来のように各LEDの電流値が等しい状態で一律にその電流値を下げ、R−LED光源の光量を75%まで減少させると、R1、R2、R3の電流値は1185mAとなり、総電流は3555mAとなる。 When the current value of each LED is uniformly reduced with the current value of each LED being equal as in the prior art, and the light amount of the R-LED light source is reduced to 75%, the current values of R1, R2, and R3 are 1185 mA, and the total current is 3555 mA.
一方、図7および図9に示した効率感度に基づく光量制御を行ってR−LED光源の光量を75%まで減少させると、R1、R2、R3の電流値はそれぞれ1410mA、1150mA、960mAとなり、総電流は3520mAとなる。 On the other hand, when the light amount control based on the efficiency sensitivity shown in FIGS. 7 and 9 is performed to reduce the light amount of the R-LED light source to 75%, the current values of R1, R2, and R3 are 1410 mA, 1150 mA, and 960 mA, respectively. The total current is 3520 mA.
またR−LED光源の光量を50%である70.69まで減少させる場合、従来のように各LEDの電流値が等しい状態で一律にその電流値を下げると、R1、R2、R3の電流値は705mAとなり、総電流は2115mAとなる。一方、本実施形態に係る効率感度に基づく光量制御を行うと、R1、R2、R3の電流値はそれぞれ1030mA、695mA、335mAとなり、総電流は2060mAとなる。 Further, when the light amount of the R-LED light source is reduced to 70.69, which is 50%, when the current value is uniformly reduced with the current value of each LED being equal as in the prior art, the current values of R1, R2, and R3 Is 705 mA, and the total current is 2115 mA. On the other hand, when the light amount control based on the efficiency sensitivity according to the present embodiment is performed, the current values of R1, R2, and R3 are 1030 mA, 695 mA, and 335 mA, respectively, and the total current is 2060 mA.
さらにR−LED光源の光量を25%である35.346まで減少させる場合、従来のように各LEDの電流値が等しい状態で一律にその電流値を下げると、R1、R2、R3の電流値は340mAとなり、総電流は1020mAとなる。一方、本実施形態に係る効率感度に基づく光量制御を行うと、R1、R2、R3の電流値はそれぞれ665mA、260mA、0mAとなり、総電流は925mAとなる。 Further, when the light amount of the R-LED light source is reduced to 35.346, which is 25%, when the current value of each LED is uniformly reduced with the current value of each LED being equal, current values of R1, R2, and R3 Is 340 mA, and the total current is 1020 mA. On the other hand, when the light amount control based on the efficiency sensitivity according to the present embodiment is performed, the current values of R1, R2, and R3 are 665 mA, 260 mA, and 0 mA, respectively, and the total current is 925 mA.
このように本実施形態に係る効率感度に基づく光量制御を行うことで、光源の消費電力(総電流)を低減することが可能となる。 Thus, by performing light quantity control based on the efficiency sensitivity according to the present embodiment, it becomes possible to reduce the power consumption (total current) of the light source.
本実施形態では、メモリ32に記憶された電流値−発光量テーブルをCPU20が読み出して各LEDの効率感度を算出し、この効率感度に基づいて各LEDに供給される電流値を制御するため、各LEDの発光効率を考慮した低消費電力の照明装置および画像投影装置を得ることが可能となる。 In the present embodiment, the CPU 20 reads the current value-emission amount table stored in the memory 32, calculates the efficiency sensitivity of each LED, and controls the current value supplied to each LED based on this efficiency sensitivity. It is possible to obtain an illumination device and an image projection device with low power consumption in consideration of the light emission efficiency of each LED.
なお、本発明は上記した実施形態に限定されるものではなく、その技術的思想の範囲内でなしうるさまざまな変更、改良が含まれることは言うまでもない。例えば、上記の実施形態では主にLEDを直流駆動する照明装置について説明したが、LEDをパルス駆動する照明装置にも本発明を適用することができる。また、上記の実施形態では例としてR−LED光源の光量制御を説明したが、G−LED光源、B−LED光源でも同様の光量制御を行うことが可能である。また上記の実施形態で説明した照明装置は、液晶プロジェクタ等の画像投影装置だけでなく、例えば液晶ディスプレイ等の表示装置にも適用することができる。 Needless to say, the present invention is not limited to the above-described embodiments, and includes various modifications and improvements that can be made within the scope of the technical idea. For example, in the above-described embodiment, the illumination device that mainly drives the LED by direct current has been described, but the present invention can also be applied to an illumination device that drives the LED in pulses. In the above-described embodiment, the light amount control of the R-LED light source has been described as an example. However, the same light amount control can be performed with the G-LED light source and the B-LED light source. The illumination device described in the above embodiment can be applied not only to an image projection device such as a liquid crystal projector but also to a display device such as a liquid crystal display.
10 画像信号処理部
12r、12g、12b 表示パネル
14r、14g、14b パネルドライバ
16 光源
18 LED発光タイミング制御部
20 CPU
22 電流制御回路部
24 DAコンバータ
26 LED発光電流制御部
28r、28g、28b 照明光学系
30 投影光学系
32 メモリ
34 ユーザインターフェース
36 特徴量抽出部
38r、38g、38b 温度センサ
40r、40g、40b 光量センサ
101、102、103 R−LED
201、202、203 G−LED
301、302、303 B−LED
111、112、113 FET
DESCRIPTION OF SYMBOLS 10 Image signal processing part 12r, 12g, 12b Display panel 14r, 14g, 14b Panel driver 16 Light source 18 LED light emission timing control part 20 CPU
22 Current control circuit unit 24 DA converter 26 LED light emission current control unit 28r, 28g, 28b Illumination optical system 30 Projection optical system 32 Memory 34 User interface 36 Feature amount extraction unit 38r, 38g, 38b Temperature sensor 40r, 40g, 40b Light quantity sensor 101, 102, 103 R-LED
201, 202, 203 G-LED
301, 302, 303 B-LED
111, 112, 113 FET
Claims (8)
前記光源手段の各発光ダイオードに供給される電流の電流値を制御して、前記光源手段から出射される照明光の光量を色毎に増減させる光量制御手段と、
前記光源手段の各発光ダイオードに所定値の電流が供給されたときの前記各発光ダイオードの発光量を記憶する発光量記憶手段と、
前記発光量記憶手段に記憶された前記各発光ダイオードの発光量に基づいて、前記各発光ダイオードに供給される電流の電流値に対する前記各発光ダイオードの発光量の変化率である効率感度を算出する効率感度算出手段と、
を備え、
前記光量制御手段は、前記効率感度に基づいて前記各発光ダイオードに供給される電流の電流値を制御することを特徴とする照明装置。 Light source means for emitting illumination light of different colors, and having a plurality of light emitting diodes for each color of the illumination light;
A light amount control means for controlling the current value of the current supplied to each light emitting diode of the light source means to increase or decrease the amount of illumination light emitted from the light source means for each color;
A light emission amount storage means for storing the light emission amount of each light emitting diode when a current of a predetermined value is supplied to each light emitting diode of the light source means;
Based on the light emission amount of each light emitting diode stored in the light emission amount storage means, the efficiency sensitivity which is the rate of change of the light emission amount of each light emitting diode with respect to the current value of the current supplied to each light emitting diode is calculated. Efficiency sensitivity calculation means;
With
The illumination device according to claim 1, wherein the light amount control means controls a current value of a current supplied to each light emitting diode based on the efficiency sensitivity.
前記発光量記憶手段は、前記光源手段の各発光ダイオードについて、前記光源手段の温度が変化したときの前記各発光ダイオードの発光量をその温度毎に記憶し、前記効率感度算出手段は、前記温度センサが検出した検出温度を用いて前記効率感度を算出することを特徴とする請求項2に記載の照明装置。 A temperature sensor for detecting the temperature of the light source means;
The light emission amount storage means stores, for each light emitting diode of the light source means, the light emission amount of each light emitting diode when the temperature of the light source means changes for each temperature, and the efficiency sensitivity calculation means includes the temperature The lighting device according to claim 2, wherein the efficiency sensitivity is calculated using a detected temperature detected by a sensor.
前記光源手段の各発光ダイオードに供給される電流の電流値を制御して、前記光源手段から出射される照明光の光量を色毎に増減させる光量制御手段と、
前記各発光ダイオードに供給される電流の電流値に対する前記各発光ダイオードの発光量の変化率である効率感度を記憶する効率感度記憶手段と、
を備え、
前記光量制御手段は、前記効率感度に基づいて前記各発光ダイオードに供給される電流の電流値を制御することを特徴とする照明装置。 Light source means for emitting illumination light of different colors, and having a plurality of light emitting diodes for each color of the illumination light;
A light amount control means for controlling the current value of the current supplied to each light emitting diode of the light source means to increase or decrease the amount of illumination light emitted from the light source means for each color;
Efficiency sensitivity storage means for storing efficiency sensitivity which is a rate of change of the light emission amount of each light emitting diode with respect to a current value of a current supplied to each light emitting diode;
With
The illumination device according to claim 1, wherein the light amount control means controls a current value of a current supplied to each light emitting diode based on the efficiency sensitivity.
前記照明装置から出射する照明光を入力画像信号に基づいて空間変調する空間変調手段と、
前記空間変調手段で空間変調された照明光を投影する投影光学手段と、
を備えたことを特徴とする画像投影装置。 The lighting device according to any one of claims 1 to 7,
Spatial modulation means for spatially modulating illumination light emitted from the illumination device based on an input image signal;
Projection optical means for projecting illumination light spatially modulated by the spatial modulation means;
An image projection apparatus comprising:
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007021250A JP2008185924A (en) | 2007-01-31 | 2007-01-31 | Illuminating apparatus and image projector |
PCT/JP2007/072700 WO2008093462A1 (en) | 2007-01-31 | 2007-11-16 | Illuminating apparatus using a plurality of light emitting diodes, method for controlling the illuminating apparatus and image projecting apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007021250A JP2008185924A (en) | 2007-01-31 | 2007-01-31 | Illuminating apparatus and image projector |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008185924A true JP2008185924A (en) | 2008-08-14 |
Family
ID=39673778
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007021250A Withdrawn JP2008185924A (en) | 2007-01-31 | 2007-01-31 | Illuminating apparatus and image projector |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2008185924A (en) |
WO (1) | WO2008093462A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009145586A (en) * | 2007-12-13 | 2009-07-02 | Seiko Epson Corp | Laser light source device and video display device |
JP2010191402A (en) * | 2009-01-26 | 2010-09-02 | Toshiba Corp | Projector, image display method, and mobile telephone |
CN103248848A (en) * | 2012-02-07 | 2013-08-14 | 三菱电机株式会社 | Multi-screen display apparatus and luminance control method |
JP2013222064A (en) * | 2012-04-17 | 2013-10-28 | Mitsubishi Electric Corp | Laser light source projector |
US8801196B2 (en) | 2011-01-17 | 2014-08-12 | Mitsubishi Electric Corporation | Multi-screen display apparatus that determines common target brightness for controlling multiple light sources |
JP2015004902A (en) * | 2013-06-24 | 2015-01-08 | ウシオ電機株式会社 | Simple color light source device and display device |
WO2015008829A1 (en) * | 2013-07-19 | 2015-01-22 | ウシオ電機株式会社 | Light source device and projector |
US9052576B2 (en) | 2009-03-12 | 2015-06-09 | Casio Computer Co., Ltd. | Projection apparatus which adjusts power to light-emitting devices to correct a decrease in luminance due to heat generation, and projection method and program for the same |
JP2015161850A (en) * | 2014-02-28 | 2015-09-07 | 三菱電機株式会社 | Projection type display device |
US9907143B2 (en) | 2015-03-04 | 2018-02-27 | Panasonic Intellectual Property Management Co., Ltd. | Lighting control device, lighting system, and program |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5121783B2 (en) * | 2009-06-30 | 2013-01-16 | 株式会社日立ハイテクノロジーズ | LED light source, manufacturing method thereof, exposure apparatus using LED light source, and exposure method |
JP4983897B2 (en) * | 2009-11-30 | 2012-07-25 | カシオ計算機株式会社 | Light source device, projection device, and projection method |
JP5842288B2 (en) * | 2010-04-02 | 2016-01-13 | マーベル ワールド トレード リミテッド | System, integrated circuit, display system and method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3813144B2 (en) * | 2003-09-12 | 2006-08-23 | ローム株式会社 | Light emission control circuit |
JP4573579B2 (en) * | 2004-06-18 | 2010-11-04 | 三洋電機株式会社 | LED lighting device |
JP2006303016A (en) * | 2005-04-18 | 2006-11-02 | Rohm Co Ltd | Lighting device and display unit using the same |
JP2006318733A (en) * | 2005-05-12 | 2006-11-24 | Rohm Co Ltd | Lighting device and display device using this |
-
2007
- 2007-01-31 JP JP2007021250A patent/JP2008185924A/en not_active Withdrawn
- 2007-11-16 WO PCT/JP2007/072700 patent/WO2008093462A1/en active Application Filing
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009145586A (en) * | 2007-12-13 | 2009-07-02 | Seiko Epson Corp | Laser light source device and video display device |
JP2010191402A (en) * | 2009-01-26 | 2010-09-02 | Toshiba Corp | Projector, image display method, and mobile telephone |
US8322860B2 (en) | 2009-01-26 | 2012-12-04 | Kabushiki Kaisha Toshiba | Projector apparatus and method of controlling the color fluctuation of the light |
US9052576B2 (en) | 2009-03-12 | 2015-06-09 | Casio Computer Co., Ltd. | Projection apparatus which adjusts power to light-emitting devices to correct a decrease in luminance due to heat generation, and projection method and program for the same |
KR101614662B1 (en) | 2009-03-12 | 2016-04-21 | 가시오게산키 가부시키가이샤 | Projection apparatus and projection method |
US8801196B2 (en) | 2011-01-17 | 2014-08-12 | Mitsubishi Electric Corporation | Multi-screen display apparatus that determines common target brightness for controlling multiple light sources |
CN103248848A (en) * | 2012-02-07 | 2013-08-14 | 三菱电机株式会社 | Multi-screen display apparatus and luminance control method |
CN106028009A (en) * | 2012-02-07 | 2016-10-12 | 三菱电机株式会社 | Multi-screen display apparatus and luminance control method |
US9445484B2 (en) | 2012-02-07 | 2016-09-13 | Mitsubishi Electric Corporation | Multi-screen display apparatus and luminance control method |
JP2013222064A (en) * | 2012-04-17 | 2013-10-28 | Mitsubishi Electric Corp | Laser light source projector |
JP2015004902A (en) * | 2013-06-24 | 2015-01-08 | ウシオ電機株式会社 | Simple color light source device and display device |
JP2015022137A (en) * | 2013-07-19 | 2015-02-02 | ウシオ電機株式会社 | Light source device and projector |
WO2015008829A1 (en) * | 2013-07-19 | 2015-01-22 | ウシオ電機株式会社 | Light source device and projector |
US10031407B2 (en) | 2013-07-19 | 2018-07-24 | Ushio Denki Kabushiki Kaisha | Light source unit and projector |
JP2015161850A (en) * | 2014-02-28 | 2015-09-07 | 三菱電機株式会社 | Projection type display device |
US9907143B2 (en) | 2015-03-04 | 2018-02-27 | Panasonic Intellectual Property Management Co., Ltd. | Lighting control device, lighting system, and program |
Also Published As
Publication number | Publication date |
---|---|
WO2008093462A1 (en) | 2008-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008185924A (en) | Illuminating apparatus and image projector | |
US8021001B2 (en) | Projector and method of controlling a light source for use with the projector | |
TWI396927B (en) | Light emitting diode (led) illumination control system and method | |
US7378631B2 (en) | Image projection apparatus for adjusting white balance in consideration of level of light emitted from LED and method thereof | |
US9052576B2 (en) | Projection apparatus which adjusts power to light-emitting devices to correct a decrease in luminance due to heat generation, and projection method and program for the same | |
KR100643764B1 (en) | Image projection apparatus for adjusting white balance by referring to temperature of LED and method thereof | |
US8794765B2 (en) | Projection apparatus, projection method, and medium storing program | |
JP2009229558A (en) | Image-displaying device | |
JP2008276224A (en) | Method for driving light source and backlight assembly | |
JP2010145627A (en) | Apparatus, method and program for processing image | |
JP2010250208A (en) | Image display device and control method for the image display device | |
JP2015018051A (en) | Image projection device and image display system | |
JP2006047464A (en) | Image projection apparatus | |
JP2006330177A (en) | Display device and projector | |
US9635327B2 (en) | Projector, color correction device, and projection method | |
JP2007156211A (en) | Video display device | |
JP2010085726A (en) | Projection apparatus, projection method and program | |
JP2007316660A (en) | Projector | |
JP2008034190A (en) | Control device to control light source device, and image display device using it | |
KR101199566B1 (en) | Projection system | |
JP2008083247A (en) | Video creating apparatus | |
JP4715244B2 (en) | Projection device | |
JP6256997B2 (en) | Backlight device, display device, and backlight control method | |
JP2013156444A (en) | Projection device, projection method and program | |
JP2014066805A (en) | Projector and emission control method in projector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20100406 |