JP2008184968A - Control device of gasoline engine - Google Patents

Control device of gasoline engine Download PDF

Info

Publication number
JP2008184968A
JP2008184968A JP2007018981A JP2007018981A JP2008184968A JP 2008184968 A JP2008184968 A JP 2008184968A JP 2007018981 A JP2007018981 A JP 2007018981A JP 2007018981 A JP2007018981 A JP 2007018981A JP 2008184968 A JP2008184968 A JP 2008184968A
Authority
JP
Japan
Prior art keywords
combustion
fuel
switching
cylinder
ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007018981A
Other languages
Japanese (ja)
Other versions
JP4737103B2 (en
Inventor
Hiroyuki Yamashita
洋幸 山下
Tatsuya Tanaka
達也 田中
Tomomi Watanabe
友巳 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2007018981A priority Critical patent/JP4737103B2/en
Priority to EP07025226A priority patent/EP1953375A1/en
Priority to US12/013,360 priority patent/US7669578B2/en
Publication of JP2008184968A publication Critical patent/JP2008184968A/en
Application granted granted Critical
Publication of JP4737103B2 publication Critical patent/JP4737103B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3064Controlling fuel injection according to or using specific or several modes of combustion with special control during transition between modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • F02D41/3041Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode with means for triggering compression ignition, e.g. spark plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • F02D41/3041Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode with means for triggering compression ignition, e.g. spark plug
    • F02D41/3047Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode with means for triggering compression ignition, e.g. spark plug said means being a secondary injection of fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To restrain even the deterioration in exhaust emission, while securing combustion stability in transition, when switching an operation mode of an engine 1 between a self-ignition mode (HCCI combustion) and a spark ignition mode (SI combustion). <P>SOLUTION: When switching the mode, fuel is injected by a direct injection injector 18 in a negative overlap period of intake-exhaust valves 11 and 12, and an activated air-fuel mixture having high ignitability is formed. The fuel is injected by a port injector 19 in an intake stroke, and is supplied in a cylinder 2 together with intake air, and a substantially uniform premixed gas is formed. A small quantity of fuel is injected by the direct injection injector 18 in a compression stroke, and a stratified air-fuel mixture is formed around a spark plug 16, and self-ignition of the premixed air-fuel mixture is induced (assisted) by burning by igniting this premixed gas. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、気筒内の予混合気を圧縮して自己着火により燃焼させるようにしたガソリンエンジンに関し、特に、自己着火の起き難い低負荷、低回転側の運転領域において、気筒の排気行程ないし吸気行程で吸排気弁の双方を閉じる負のオーバーラップ期間を設けて、気筒内の温度を高めるようにしたものに係る。   The present invention relates to a gasoline engine in which a premixed gas in a cylinder is compressed and burned by self-ignition, and more particularly, in a low load and low rotation side operation region where self-ignition hardly occurs, the exhaust stroke or intake of the cylinder. This relates to a structure in which a negative overlap period for closing both the intake and exhaust valves is provided in the stroke to increase the temperature in the cylinder.

近年、ガソリンエンジンのさらなる燃費改善や排気清浄化を図るために、気筒内の予混合気を圧縮して自己着火により燃焼させるという新しい燃焼形態が提案されており、一般には、予混合圧縮着火燃焼(以下、HCCI燃焼ともいう)という呼称で知られている。この新しい燃焼形態では、従来一般的な火花点火による燃焼(以下、SI燃焼ともいう)とは異なり、気筒内の多数の箇所で予混合気が一斉に自己着火して燃焼を始めることから、熱効率が極めて高くなる。   In recent years, a new combustion mode has been proposed in which premixed gas in a cylinder is compressed and burned by self-ignition in order to further improve fuel efficiency and clean exhaust of gasoline engines. In general, premixed compression ignition combustion is proposed. (Hereinafter also referred to as HCCI combustion). In this new combustion mode, unlike conventional combustion by spark ignition (hereinafter also referred to as SI combustion), the premixed gas self-ignites all at once in a number of locations in the cylinder and starts combustion. Becomes extremely high.

また、従来のSI燃焼を実現できない超希薄な予混合気や多量のEGRによって希釈した予混合気であっても、ピストンにより圧縮された気筒内の温度が所定以上に高くなれば自己着火するようになり、燃焼期間そのものは短いものの激しい燃焼にはならないことから、窒素酸化物の生成も格段に少なくなる。   In addition, even in the case of an ultra-lean premixed gas that cannot realize conventional SI combustion or a premixed gas diluted with a large amount of EGR, self-ignition is performed if the temperature in the cylinder compressed by the piston becomes higher than a predetermined value. Thus, although the combustion period itself is short, it does not become vigorous combustion, so that the generation of nitrogen oxides is remarkably reduced.

但し、エンジンが相対的に低負荷、低回転側の運転領域にあるときには、圧縮上死点(TDC)近傍においても予混合気の温度が自己着火温度まで上昇しない可能性があり、これに対し特許文献1に記載のガソリンエンジンでは、気筒の排気行程から吸気行程にかけて吸気弁及び排気弁の双方を閉じる負のオーバーラップ期間を設け、多量の既燃ガスを残留させること(以下、内部EGRともいう)で、気筒内の温度を高めるようにしている。   However, when the engine is in a relatively low load and low speed operation region, the temperature of the premixed gas may not rise to the self-ignition temperature even near the compression top dead center (TDC). In the gasoline engine described in Patent Document 1, a negative overlap period is provided in which both the intake valve and the exhaust valve are closed from the exhaust stroke to the intake stroke of the cylinder to leave a large amount of burned gas (hereinafter also referred to as internal EGR). Therefore, the temperature in the cylinder is increased.

一方で、所謂高負荷、高回転の運転領域においては予混合気が例えば圧縮行程中期頃の過早なタイミングで自己着火してしまい(所謂ノッキング)、HCCI燃焼は実現できないので、前記従来例のエンジンでは高負荷ないし高回転側の運転領域においてはSI燃焼を行うようにしている。すなわち、気筒内に略理論空燃比の均一な予混合気を形成し、これに点火して火炎面の伝播により燃焼させる。   On the other hand, in the so-called high-load, high-speed operation region, the premixed gas self-ignites at a premature timing, for example, around the middle of the compression stroke (so-called knocking), and HCCI combustion cannot be realized. In the engine, SI combustion is performed in an operating region on a high load or high rotation side. That is, a uniform premixed gas having a substantially stoichiometric air-fuel ratio is formed in the cylinder, and this is ignited and burned by propagation of the flame surface.

ところで、そうして高負荷ないし高回転側でSI燃焼を行うときには、HCCI燃焼のときのように多量の内部EGRガスが在ってはならないので、HCCI燃焼とSI燃焼とを切換えるときには吸排気弁のオーバーラップ状態を変更して、内部EGRガス量を大幅に変更しなくてはならず、その切換えの途中ではHCCI燃焼には内部EGRガスが不足する一方、SI燃焼には内部EGRガスが多すぎる状態になってしまう。   By the way, when SI combustion is performed at a high load or high rotation side, a large amount of internal EGR gas should not be present as in HCCI combustion. Therefore, when switching between HCCI combustion and SI combustion, an intake / exhaust valve is required. The amount of internal EGR gas must be changed drastically by changing the overlap state of the engine, and during the switching, the internal EGR gas is insufficient for HCCI combustion, while the internal EGR gas is large for SI combustion. It will be too much.

この点に付き前記従来例(特許文献1)のエンジンでは、HCCI燃焼とSI燃焼との切換えに際し過渡的に、気筒の圧縮行程でのみ燃料を噴射させて点火プラグ周りの成層化混合気に点火する、所謂成層燃焼を行うようにしている。こうすれば、内部EGRガスの多すぎる状態であっても着火安定性性を確保し易く、また、燃料噴射量が相対的に少なくなるため、ノッキングも起き難い。
特開2001−152919号公報
With this point, in the engine of the conventional example (Patent Document 1), when switching between HCCI combustion and SI combustion, the fuel is injected only in the compression stroke of the cylinder to ignite the stratified mixture around the spark plug. In other words, so-called stratified combustion is performed. In this way, even when the amount of internal EGR gas is excessive, it is easy to ensure ignition stability, and the amount of fuel injection is relatively small, so that knocking does not easily occur.
JP 2001-152919 A

しかしながら、前記従来例のように燃焼の切換えに際し過渡的に成層燃焼を行うようにした場合は、点火プラグ周りのややリッチな混合気が点火されて燃焼するときに窒素酸化物の生成量が一時的に増大することになり、排気エミッションの観点からは改善の余地が残されている。   However, when stratified combustion is performed transiently at the time of switching of combustion as in the conventional example, the amount of nitrogen oxide produced is temporarily reduced when a slightly rich mixture around the spark plug is ignited and burned. From the viewpoint of exhaust emission, there is still room for improvement.

斯かる点に鑑みて本発明の目的は、内部EGRガスの多いHCCI燃焼とそれの少ないSI燃焼とを切換えるようにしたガソリンエンジンにおいて、切換の過渡時における燃焼の不安定化やノッキングの発生を防止しながら、その際の排気エミッションの悪化も抑制することにある。   In view of the above, an object of the present invention is to prevent combustion instability and knocking during a switching transition in a gasoline engine that switches between HCCI combustion with a large amount of internal EGR gas and SI combustion with a small amount of it. While preventing, it is in suppressing the deterioration of the exhaust emission in that case.

前記の目的を達成するために本発明に係るエンジンの制御装置では、燃焼状態の切換えに際して過渡的に、点火プラグ周りの成層化混合気に点火して燃焼させることで気筒内の予混合気の自己着火を誘発する、自己着火アシストモードを設けたものである。   In order to achieve the above object, in the engine control apparatus according to the present invention, the stratified mixture around the spark plug is ignited and burned transiently when the combustion state is switched, so that the premixed gas in the cylinder is burned. A self-ignition assist mode is provided to induce self-ignition.

具体的に請求項1の発明では、気筒の排気行程ないし吸気行程において吸気弁及び排気弁の双方を閉じる負のオーバーラップ期間を設けて既燃ガスを残留させ、圧縮行程の終盤以降において空燃比のリーンな予混合気を自己着火させる自己着火モードと、前記気筒内の略理論空燃比の予混合気に点火する火花点火モードと、のいずれかに切換えてエンジンを運転するようにしたガソリンエンジンの制御装置を対象とする。   Specifically, in the first aspect of the invention, a negative overlap period for closing both the intake valve and the exhaust valve is provided in the exhaust stroke or the intake stroke of the cylinder so that the burned gas remains, and the air-fuel ratio after the end of the compression stroke. The gasoline engine is operated by switching between a self-ignition mode for self-igniting a lean premixed gas and a spark ignition mode for igniting a premixed gas having a substantially stoichiometric air-fuel ratio in the cylinder. This is intended for control devices.

そして、エンジンには気筒内に燃料を直接、噴射する燃料噴射弁を設けて、前記自己着火モード及び火花点火モードのいずれか一方から他方へ切換えるときには、前記負のオーバーラップ期間を設けるとともに、気筒内には略均一な予混合気を形成した後に、前記燃料噴射弁により圧縮行程で燃料を噴射させて、点火プラグ周りに偏在する成層化混合気を形成し、この成層化混合気に点火して燃焼させることにより、予混合気の自己着火を誘発するようにした(切換え過渡時制御手段)。   The engine is provided with a fuel injection valve that directly injects fuel into the cylinder, and when switching from one of the self-ignition mode and the spark ignition mode to the other, the negative overlap period is provided, After forming a substantially uniform premixed gas in the fuel, fuel is injected by the fuel injection valve in a compression stroke to form a stratified gas mixture that is unevenly distributed around the spark plug, and this stratified gas mixture is ignited. In this way, self-ignition of the premixed gas is induced (the control means at the time of switching transient).

前記の構成により、まず、自己着火モードでは、気筒の排気行程ないし吸気行程において所定期間(負のオーバーラップ期間)、吸気弁及び排気弁の双方が閉じられて、気筒内に多量の既燃ガス(内部EGRガス)が残留するようになり、これにより気筒内の温度が上昇する。そして、圧縮行程におけるピストンの上昇に伴い予混合気が圧縮されると、その温度がさらに上昇して自己着火により燃焼(HCCI燃焼)するようになる。   With the above-described configuration, first, in the self-ignition mode, both the intake valve and the exhaust valve are closed during a predetermined period (negative overlap period) in the exhaust stroke or intake stroke of the cylinder, and a large amount of burned gas is contained in the cylinder. (Internal EGR gas) remains, thereby increasing the temperature in the cylinder. When the premixed gas is compressed as the piston rises during the compression stroke, the temperature further rises and combustion (HCCI combustion) occurs due to self-ignition.

一方、火花点火モードでは気筒内の略理論空燃比の予混合気に点火して燃焼(SI燃焼)させることになるが、このときには前記HCCI燃焼に比べて内部EGRガス量を大幅に減らすことで、吸気の充填効率を高めて高出力を得ることができる。   On the other hand, in the spark ignition mode, the pre-mixed air with a substantially stoichiometric air-fuel ratio in the cylinder is ignited and burned (SI combustion). At this time, the amount of internal EGR gas is greatly reduced compared to the HCCI combustion. The intake efficiency can be increased and high output can be obtained.

そして、前記自己着火モード及び火花点火モードの切換えの際に過渡的に、内部EGRガス量がHCCI燃焼には不足する一方、SI燃焼には多すぎる状態になると、基本的にはHCCI燃焼のときと同様に気筒内に略均一なリーン予混合気が形成されることになるが、これに加えて点火プラグ周りに成層化混合気が形成され、この成層化混合気が点火されて燃焼することにより予混合気の自己着火が誘発される(自己着火アシストモード)。   When the self-ignition mode and the spark ignition mode are switched, the internal EGR gas amount is transiently insufficient for HCCI combustion, but is too much for SI combustion. As in the case of, a substantially uniform lean premixture is formed in the cylinder, but in addition to this, a stratified mixture is formed around the spark plug, and this stratified mixture is ignited and burned. Triggers self-ignition of the premixed gas (self-ignition assist mode).

つまり、点火プラグ周りの成層化混合気の燃焼によって予混合気の自己着火をアシストし、燃焼の不安定化等の不具合を防止できるとともに、そうして自己着火燃焼によって必要なエンジン出力が得られることから、成層化混合気を形成するための燃料量は従来例(特許文献1)に比べて格段に少なくて済み、その燃焼に伴い生成される窒素酸化物の量も少なくなって、排気エミッションの悪化が抑制される。   In other words, the combustion of the stratified mixture around the spark plug assists the self-ignition of the premixed mixture, and can prevent problems such as instability of combustion, and thus the necessary engine output can be obtained by the self-ignition combustion. Therefore, the amount of fuel for forming the stratified mixture is much smaller than that of the conventional example (Patent Document 1), and the amount of nitrogen oxides generated by the combustion is also reduced. Deterioration is suppressed.

そのような窒素酸化物の生成を抑えるという観点からは、前記のような切換え過渡時の制御はできるだけ短期間とするのがよいから、例えば、運転モードが切換わるときのエンジンの運転状態に応じて、相対的に高負荷側ないし高回転側ほど、切換え過渡時の制御を行う期間を短くするのが好ましい(請求項2)。   From the viewpoint of suppressing the generation of such nitrogen oxides, the control at the time of switching transition as described above should be as short as possible. For example, according to the operating state of the engine when the operating mode is switched. Therefore, it is preferable to shorten the period during which the control is performed at the time of switching transition as the load is relatively high or the rotation speed is relatively high.

すなわち、相対的に負荷や回転速度の高い運転状態であれば、気筒の温度も高いので、予混合気が自己着火し易くなるから、その分、切換え過渡時の制御を行う期間を短くすることによって、過渡時の燃焼による窒素酸化物の生成を極小化できる。尚、過渡時の制御を行う期間は、モード切換えの開始からの時間、或いは燃焼サイクル数によって設定すればよい。   In other words, if the operating state is relatively high in load and rotation speed, the temperature of the cylinder is also high, so the premixed gas is likely to self-ignite, and accordingly, the control period during switching transition is shortened accordingly. This minimizes the generation of nitrogen oxides due to combustion during transients. It should be noted that the period for performing the control during the transition may be set according to the time from the start of mode switching or the number of combustion cycles.

一方で、相対的に負荷や回転速度の低い運転状態では、その分、気筒の温度も低くなるので、前記のように成層化混合気への点火によってアシストしても、予混合気を安定して自己着火させることができない場合がある。すなわち、例えば自己着火モードから火花点火モードへの切換えの際には気筒内の内部EGRガス量が徐々に減少し、これに伴い徐々に予混合気が自己着火し難くなるから、そうして内部EGRガス量が所定以下になる期間は、従来例(特許文献1)に記載のエンジンと同様に、所謂成層燃焼を行うようにしてもよい。   On the other hand, in the operation state with a relatively low load and rotational speed, the temperature of the cylinder is correspondingly lowered. Therefore, even if assisting by ignition of the stratified mixture as described above, the premixture is stabilized. May not be able to self-ignite. That is, for example, when switching from the self-ignition mode to the spark ignition mode, the amount of internal EGR gas in the cylinder gradually decreases, and accordingly, the premixed gas gradually becomes difficult to self-ignite. During the period when the amount of EGR gas is less than or equal to the predetermined value, so-called stratified combustion may be performed as in the engine described in the conventional example (Patent Document 1).

つまり、エンジンが低負荷低回転領域にあるときに、モード切換えに際して気筒内の残留既燃ガス量が所定以下になる期間は、略均一な予混合気の形成を行わずに燃料噴射弁により圧縮行程で燃料を噴射させて、点火プラグ周りの成層化混合気に点火して燃焼させることが好ましく(請求項3)、こうすれば、低負荷低回転領域においても切換え時に燃焼の不安定化等の不具合が生じることを防止できる。   In other words, when the engine is in the low-load low-rotation region, when the mode is changed, the amount of residual burned gas in the cylinder is compressed by the fuel injection valve without forming a substantially uniform premixed gas during a period when the amount of residual burned gas in the cylinder is below a predetermined level Preferably, fuel is injected in the stroke, and the stratified mixture around the spark plug is ignited and combusted. (Claim 3) In this way, instability of combustion at the time of switching even in a low load and low speed region Can be prevented from occurring.

また、前記のようなエンジン制御装置において好ましいのは、負のオーバーラップ期間において燃料噴射弁により気筒内に燃料を直接、噴射させて、着火性の高い活性化混合気を形成することであり(請求項4)、こうすれば、予混合気中に含まれる活性化混合気によって自己着火を促進することができる。   Further, in the engine control device as described above, it is preferable that fuel is directly injected into the cylinder by the fuel injection valve in the negative overlap period to form an activated air-fuel mixture having high ignitability ( In this way, self-ignition can be promoted by the activated air-fuel mixture contained in the pre-air mixture.

また、好ましいのは、気筒内に燃料を直接、噴射する燃料噴射弁とは別に、吸気通路に燃料を噴射するように燃料噴射弁を設け、気筒内に略均一な予混合気を形成するために、その別の燃料噴射弁により燃料を噴射させるようにすることである(請求項5)。   Also, it is preferable to provide a fuel injection valve so as to inject fuel into the intake passage separately from the fuel injection valve that directly injects fuel into the cylinder, thereby forming a substantially uniform premixed gas in the cylinder. The fuel is injected by the other fuel injection valve.

そうして吸気通路に燃料を噴射するのであれば、吸気弁が開く前に燃料を噴射することもできるので、気筒内に直接噴射するのに比べて燃焼の気化霧化の時間を確保し易い。また、前記したように成層化混合気を形成するための燃料は少量の方が好ましい一方で、予混合気形成のための燃料噴射量は、エンジンへ要求される出力に対応して多くしなくてはならないから、両者を同じ燃料噴射弁により行おうとすると無理があり、この点からも燃料噴射弁は流量特性の異なるものを複数、設ける方がよいのである。   If the fuel is injected into the intake passage, the fuel can be injected before the intake valve is opened. Therefore, it is easy to secure the time for atomization of combustion compared to the direct injection into the cylinder. . Further, as described above, a small amount of fuel for forming the stratified mixture is preferable, but the fuel injection amount for forming the premixed mixture does not increase in accordance with the output required for the engine. For this reason, it is impossible to perform both using the same fuel injection valve. From this point of view, it is better to provide a plurality of fuel injection valves having different flow characteristics.

以上、説明したように本発明に係るガソリンエンジンの制御装置によると、自己着火モード(HCCI燃焼)と火花点火モード(SI燃焼)との切換えに際し過渡的に、内部EGRガス量がHCCI燃焼には不足する一方、SI燃焼には多すぎる状態になっても、点火プラグ周りの成層化混合気に点火して燃焼させることで、予混合気の自己着火をアシストすることで、燃焼の不安定化等を防止できるとともに、その際の窒素酸化物の生成を抑えて、排気エミッションの悪化を抑制することができる。   As described above, according to the control device for a gasoline engine according to the present invention, the internal EGR gas amount transiently changes in the HCCI combustion when switching between the self-ignition mode (HCCI combustion) and the spark ignition mode (SI combustion). On the other hand, even if it becomes too much for SI combustion, the stratified mixture around the spark plug is ignited and burned, assisting the self-ignition of the premixed mixture and destabilizing the combustion Etc. can be prevented, and generation of nitrogen oxides at that time can be suppressed, and deterioration of exhaust emission can be suppressed.

特に、エンジンの運転状態に応じて、切換え過渡時の制御を行う期間を変更するようにすれば、過渡時の燃焼による窒素酸化物の生成を極小化して、排気エミッションの悪化を最小限に抑制できる。   In particular, if the period of control during switching transition is changed according to the operating state of the engine, the generation of nitrogen oxides due to combustion during transition is minimized, and deterioration of exhaust emissions is minimized. it can.

以下、本発明の実施形態を図面に基づいて詳細に説明する。尚、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. It should be noted that the following description of the preferred embodiment is merely illustrative in nature, and is not intended to limit the present invention, its application, or its use.

(全体構成)
図1は本発明に係るエンジン制御装置Aの全体構成を示し、符号1は、車両に搭載された多気筒ガソリンエンジンである。このエンジン1の本体は、複数の気筒2,2,…(1つのみ図示する)が設けられたシリンダブロック3上にシリンダヘッド4が配置されてなり、各気筒2内にはピストン5が嵌挿されて、その頂面とシリンダヘッド4の底面との間に燃焼室6が形成されている。ピストン5はコネクティングロッドによってクランク軸7に連結されており、クランク軸7の一端側にはその回転角(クランク角)を検出するためのクランク角センサ8が配設されている。
(overall structure)
FIG. 1 shows an overall configuration of an engine control apparatus A according to the present invention, and reference numeral 1 denotes a multi-cylinder gasoline engine mounted on a vehicle. The main body of the engine 1 has a cylinder head 4 disposed on a cylinder block 3 provided with a plurality of cylinders 2, 2,... (Only one is shown), and a piston 5 is fitted in each cylinder 2. A combustion chamber 6 is formed between the top surface of the cylinder head 4 and the bottom surface of the cylinder head 4. The piston 5 is connected to the crankshaft 7 by a connecting rod, and a crank angle sensor 8 for detecting the rotation angle (crank angle) is disposed on one end side of the crankshaft 7.

前記シリンダヘッド4には、各気筒2毎に燃焼室6の天井部に開口するように吸気ポート9及び排気ポート10が形成されている。吸気ポート9は燃焼室6の天井部から斜め上方に向かって延びて、シリンダヘッド4の一側面に開口しており、排気ポート10は反対側の他側面に開口している。吸気ポート9及び排気ポート10は、それぞれ吸気弁11及び排気弁12によって開閉されるようになっており、これら吸排気弁11,12は、シリンダヘッド4に配設された動弁機構13のカム軸(図示せず)によりクランク軸7の回転に同期して駆動されるようになっている。   An intake port 9 and an exhaust port 10 are formed in the cylinder head 4 so as to open to the ceiling portion of the combustion chamber 6 for each cylinder 2. The intake port 9 extends obliquely upward from the ceiling of the combustion chamber 6 and opens on one side of the cylinder head 4, and the exhaust port 10 opens on the other side opposite to the cylinder head 4. The intake port 9 and the exhaust port 10 are opened and closed by an intake valve 11 and an exhaust valve 12, respectively. These intake and exhaust valves 11 and 12 are cams of a valve mechanism 13 disposed in the cylinder head 4. The shaft (not shown) is driven in synchronism with the rotation of the crankshaft 7.

前記動弁機構13には、吸気側及び排気側にそれぞれ、弁リフト量を連続的に変更可能な公知のリフト可変機構14(以下、VVLと略称する)と、弁リフトのクランク回転に対する位相角を連続的に変更可能な公知の位相可変機構15(以下、VVTと略称する)と、が組み込まれており、それらの作動によって吸排気弁11,12のリフト特性を変更し、気筒2への吸気の充填量や残留既燃ガス(内部EGRガス)の量を調整することができる。尚、VVL14については例えば特開2006−329022号公報、2006−329023号公報等に記載されたものを使用すればよい。   The valve mechanism 13 includes a known variable lift mechanism 14 (hereinafter abbreviated as VVL) capable of continuously changing the valve lift amount on the intake side and the exhaust side, and a phase angle of the valve lift with respect to crank rotation. And a known phase variable mechanism 15 (hereinafter abbreviated as VVT) that can be continuously changed are incorporated, and the lift characteristics of the intake and exhaust valves 11 and 12 are changed by their operation to It is possible to adjust the amount of intake air and the amount of residual burnt gas (internal EGR gas). For VVL14, for example, those described in Japanese Patent Application Laid-Open Nos. 2006-329022 and 2006-329023 may be used.

また、各気筒2の燃焼室6の天井部に電極を臨ませて点火プラグ16が配設され、点火回路17によって所定の点火タイミングにて通電されるようになっている。一方、燃焼室6の吸気側の周縁部に先端を臨ませて気筒2内に燃料直接、噴射する直噴インジェクタ18が配設されている。この直噴インジェクタ18は、比較的少量の燃料を噴射するときに高い精度で流量制御が可能な小容量のものであり、これにより気筒2の圧縮行程の中盤以降に少量の燃料を噴射すると、点火プラグ16の電極近傍に偏在する混合気塊(成層化混合気)が形成される。   In addition, a spark plug 16 is disposed with an electrode facing the ceiling of the combustion chamber 6 of each cylinder 2 and is energized by the ignition circuit 17 at a predetermined ignition timing. On the other hand, a direct injection injector 18 that directly injects fuel into the cylinder 2 with its tip facing the peripheral edge of the intake side of the combustion chamber 6 is disposed. The direct injection injector 18 has a small capacity capable of controlling the flow rate with high accuracy when a relatively small amount of fuel is injected. With this, when a small amount of fuel is injected after the middle stage of the compression stroke of the cylinder 2, An air-fuel mixture mass (stratified air-fuel mixture) is formed in the vicinity of the electrode of the spark plug 16.

また、この実施形態では、吸気ポート9に臨んで燃料を噴射するようにポートインジェクタ19(別の燃料噴射弁)が配設されている。このポートインジェクタ19は、エンジン1の最大トルクに対応して多量の燃料を噴射可能な大容量のものであり、気筒2の圧縮行程から膨張、排気及び吸気行程にかけて燃料を噴射することで、高回転域でも十分な噴射時間を確保することができる。そうして噴射された燃料噴霧は吸気と共に気筒2内に流入し、ピストン5の下降に伴い容積の拡大する気筒2内に広く分散して、概ね均一な予混合気を形成する。   In this embodiment, a port injector 19 (another fuel injection valve) is disposed so as to inject fuel facing the intake port 9. The port injector 19 has a large capacity capable of injecting a large amount of fuel corresponding to the maximum torque of the engine 1. By injecting fuel from the compression stroke to the expansion, exhaust and intake stroke of the cylinder 2, A sufficient injection time can be secured even in the rotation range. The fuel spray thus injected flows into the cylinder 2 together with the intake air, and is widely dispersed in the cylinder 2 whose volume increases as the piston 5 descends to form a substantially uniform premixed gas.

尚、前記各気筒2毎のインジェクタ18,19には、図示しないが、それぞれ高圧及び低圧燃料供給ラインが接続されている。低圧の供給ラインには低圧燃料ポンプにより燃料タンクから吸い上げられた燃料が供給され、この低圧の供給ラインから分岐した高圧の供給ラインには、燃料を昇圧させて送り出す高圧燃料ポンプが介設されている。   Although not shown, high pressure and low pressure fuel supply lines are connected to the injectors 18 and 19 for each cylinder 2. The low-pressure supply line is supplied with the fuel sucked up from the fuel tank by the low-pressure fuel pump, and the high-pressure supply line branched from the low-pressure supply line is provided with a high-pressure fuel pump for boosting and sending the fuel. Yes.

図においてエンジン1の右側に位置するシリンダヘッド4の一側には吸気系が配設され、各気筒2の吸気ポート9には吸気通路20が連通している。この吸気通路20は、エンジン1の各気筒2の燃焼室6に対して図外のエアクリーナにより濾過した空気を供給するためのものであり、サージタンク21の上流の共通通路には電気式スロットル弁22とが配設されている。サージタンク21の下流で吸気通路20は各気筒2毎に分岐して、それぞれ吸気ポート9に連通している。   In the figure, an intake system is disposed on one side of the cylinder head 4 located on the right side of the engine 1, and an intake passage 20 communicates with the intake port 9 of each cylinder 2. The intake passage 20 is for supplying air filtered by an air cleaner (not shown) to the combustion chamber 6 of each cylinder 2 of the engine 1. An electric throttle valve is provided in the common passage upstream of the surge tank 21. 22 are arranged. The intake passage 20 is branched for each cylinder 2 downstream of the surge tank 21 and communicates with the intake port 9.

一方、シリンダヘッド4の他側には排気系が配設され、各気筒2の排気ポート10にはそれぞれ、各気筒2毎に分岐した排気通路25(排気マニホルド)が接続されている。この排気マニホルドの集合部には排気中の酸素濃度を検出するセンサ26が配設されている。また、排気マニホルドよりも下流側の排気通路25には、排気中の有害成分を浄化するための触媒27が配設されている。   On the other hand, an exhaust system is disposed on the other side of the cylinder head 4, and an exhaust passage 25 (exhaust manifold) branched for each cylinder 2 is connected to the exhaust port 10 of each cylinder 2. A sensor 26 for detecting the oxygen concentration in the exhaust gas is disposed at the collection portion of the exhaust manifold. In addition, a catalyst 27 for purifying harmful components in the exhaust is disposed in the exhaust passage 25 downstream of the exhaust manifold.

上述の如く構成されたエンジン1の運転制御を行うために、パワートレインコントロールモジュール30(以下、PCMという)が設けられている。これは、周知の如くCPU、メモリ、I/Oインターフェース回路等を備えており、図2にも示すように、クランク角センサ8、酸素濃度センサ26等からの信号を入力するとともに、吸気通路20における空気の流量を計測するエアフローセンサ31からの信号と、図示しないアクセルペダルの操作量(アクセル開度)を検出するアクセル開度センサ32からの信号と、車両の走行速度を検出する車速センサ33からの信号と、を少なくとも入力する。   In order to control the operation of the engine 1 configured as described above, a powertrain control module 30 (hereinafter referred to as PCM) is provided. As is well known, this includes a CPU, a memory, an I / O interface circuit, and the like. As shown in FIG. 2, the signals from the crank angle sensor 8, the oxygen concentration sensor 26, etc. are input, and the intake passage 20 A signal from an air flow sensor 31 that measures the flow rate of air in the vehicle, a signal from an accelerator opening sensor 32 that detects an operation amount (accelerator opening) of an accelerator pedal (not shown), and a vehicle speed sensor 33 that detects the traveling speed of the vehicle. And at least a signal from.

そして、PCM30は、前記各種センサからの信号等に基づいて、エンジン1の運転状態(例えば負荷状態及びエンジン回転速度)を判定し、これに応じてVVL14、VVT15、点火回路17、直噴インジェクタ18、ポートインジェクタ19、電気式スロットル弁22等を制御する。すなわち、PCM30は、主にVVL14の作動によって吸排気弁11,12のリフト量を調整し、気筒2への吸気(空気)の充填量を制御するとともに、主にVVT15の作動によって吸排気弁11,12のオーバーラップ期間を調整し、内部EGRガス量を制御する。   The PCM 30 determines the operating state (for example, the load state and the engine speed) of the engine 1 based on signals from the various sensors, and the VVL 14, the VVT 15, the ignition circuit 17, and the direct injection injector 18 according to this. The port injector 19 and the electric throttle valve 22 are controlled. That is, the PCM 30 adjusts the lift amount of the intake / exhaust valves 11 and 12 mainly by the operation of the VVL 14 to control the amount of intake (air) charged into the cylinder 2 and mainly controls the intake / exhaust valve 11 by the operation of the VVT 15. , 12 are adjusted to control the internal EGR gas amount.

それらVVL14及びVVT15の制御によって吸排気弁11,12のリフトカーブLin,Lexは、図3に模式的に示すようにそれぞれ最小リフトから最大リフトまでの間で連続的に変化する。吸排気弁11,12のリフト量は、エンジン1の負荷(目標トルク)や回転速度が高いほど大きくなり、これに伴いオーバーラップ期間(正のオーバーラップ期間)が生じるようになる。一方、相対的に低負荷、低回転側では吸排気弁11,12の双方が閉じる負のオーバーラップ期間が生じ、内部EGRガス量がかなり多くなる。   The lift curves Lin and Lex of the intake and exhaust valves 11 and 12 are continuously changed from the minimum lift to the maximum lift as schematically shown in FIG. 3 by the control of the VVL 14 and VVT 15. The lift amount of the intake / exhaust valves 11 and 12 becomes larger as the load (target torque) and the rotational speed of the engine 1 are higher, and an overlap period (positive overlap period) is generated accordingly. On the other hand, on the relatively low load and low rotation side, a negative overlap period in which both the intake and exhaust valves 11 and 12 are closed occurs, and the amount of internal EGR gas is considerably increased.

そうして主にVVL14の制御によって気筒2への吸気の充填量を広い範囲で変更することができるので、この実施形態のエンジン1ではスロットル弁22の制御によらず出力を制御することができる。よって、吸気通路20に設けられたスロットル弁22は、主にフェールセーフのためのものであり、通常はエンジン1の部分負荷域においても全開とされて、ポンピングロスの低減が図られている。   Thus, since the amount of intake air charged into the cylinder 2 can be changed over a wide range mainly by controlling the VVL 14, the engine 1 of this embodiment can control the output regardless of the control of the throttle valve 22. . Therefore, the throttle valve 22 provided in the intake passage 20 is mainly for fail-safe, and is normally fully opened even in the partial load region of the engine 1 to reduce the pumping loss.

また、PCM30は、2つのインジェクタ18,19のそれぞれを、後述の如き所定のタイミングで作動させることにより、気筒2内の空燃比や混合気の形成状態を切換えるとともに、前記のように主にVVT15の作動によって気筒2内の内部EGRガス量を制御し、さらに点火プラグ16の作動状態を切換えることで、エンジン1の燃焼状態を以下に述べるHCCI燃焼とSI燃焼とに切換えるようになっている。   In addition, the PCM 30 switches the air-fuel ratio and the mixture formation state in the cylinder 2 by operating each of the two injectors 18 and 19 at a predetermined timing as will be described later, and mainly uses the VVT 15 as described above. By controlling the internal EGR gas amount in the cylinder 2 by the operation of, and further switching the operation state of the spark plug 16, the combustion state of the engine 1 is switched between HCCI combustion and SI combustion described below.

(エンジン制御の概要)
具体的には図4に制御マップの一例を示すように、相対的に低負荷且つ低回転側の運転領域(I)においては、気筒2内に形成した予混合気に直接は点火することなく、これをピストン5の上昇により圧縮して自己着火させる(自己着火モード)。このときには基本的に、気筒2の吸気行程においてポートインジェクタ19により燃料を吸気ポート9内に噴射させ、吸気と混合させながら気筒2内へ供給して概ね均一な予混合気を形成する。この際、燃料噴射量はエアフローセンサ31等の信号により求められる気筒2への吸気充填量に応じて、該気筒内2の空燃比がリーンになるように制御する。
(Outline of engine control)
Specifically, as shown in an example of the control map in FIG. 4, in the operation region (I) on the relatively low load and low rotation side, the premixed gas formed in the cylinder 2 is not directly ignited. This is compressed by the rise of the piston 5 and self-ignited (self-ignition mode). At this time, basically, in the intake stroke of the cylinder 2, the fuel is injected into the intake port 9 by the port injector 19 and supplied into the cylinder 2 while being mixed with the intake air to form a substantially uniform premixed gas. At this time, the fuel injection amount is controlled so that the air-fuel ratio in the cylinder 2 becomes lean according to the intake charge amount into the cylinder 2 obtained by a signal from the air flow sensor 31 or the like.

また、気筒2の排気行程ないし吸気行程において排気弁11が閉じてから吸気弁12が開くまでの期間(吸排気弁11,12の双方が閉じる負のオーバーラップ期間)を設け、多量の内部EGRガスによって気筒2内の温度を高めることにより、予混合気の自己着火を促進する。負のオーバーラップ期間が相対的に長くなれば内部EGRガス量も増大し、自己着火のタイミングが進角する。   Further, in the exhaust stroke or intake stroke of the cylinder 2, a period from when the exhaust valve 11 is closed to when the intake valve 12 is opened (a negative overlap period in which both the intake and exhaust valves 11 and 12 are closed) is provided, and a large amount of internal EGR is provided. By increasing the temperature in the cylinder 2 with gas, self-ignition of the premixed gas is promoted. If the negative overlap period is relatively long, the amount of internal EGR gas also increases, and the self-ignition timing is advanced.

そのような予混合気の圧縮による自己着火については従来よりHCCI(Homogenious Charge Compression Ignition)と呼ばれている。このHCCIによる燃焼は、図5に模式的に示すように、気筒2内の燃焼室6における多数の箇所で予混合気が略一斉に自己着火して燃焼を開始するものと考えられており、従来一般的な火炎伝播による燃焼(Spark Ignition:SI燃焼)に比べて燃焼期間が短くなって、熱効率が高くなる。   Such self-ignition by compression of the premixed gas is conventionally called HCCI (Homogenious Charge Compression Ignition). As schematically shown in FIG. 5, this combustion by HCCI is considered that the premixed gas is self-ignited almost simultaneously at a number of locations in the combustion chamber 6 in the cylinder 2 and starts combustion. Compared with conventional combustion by flame propagation (Spark Ignition: SI combustion), the combustion period is shortened and the thermal efficiency is increased.

また、そうして予混合気が自己着火するHCCI燃焼は、SI燃焼の実現が困難な超希薄(リーン)な予混合気や多量の内部EGRガスによって希釈した予混合気であっても実現可能であり、前記のように燃焼期間は短くても燃焼温度は低いことから、窒素酸化物の生成は非常に少なくなる。一方で、あまり希薄でない予混合気や希釈度合いの低い予混合気では自己着火のタイミングが早くなり過ぎて、HCCI燃焼を実現できない。   In addition, HCCI combustion in which the premixed gas is self-ignited can be realized even with an ultra-lean premixed gas that is difficult to realize SI combustion or a premixed gas diluted with a large amount of internal EGR gas. As described above, since the combustion temperature is low even if the combustion period is short, the generation of nitrogen oxides is very small. On the other hand, a premixed gas that is not very lean or a premixed gas with a low degree of dilution makes the timing of self-ignition too early, and HCCI combustion cannot be realized.

つまり、HCCI燃焼はかなりリーンな予混合気か、或いは多量のEGRによって希釈した予混合気において実現されるものであり、本来、あまり高い出力は得られないものなので、この実施形態においても、前記の制御マップ(図4)に示すように相対的に高負荷ないし高回転側の運転領域(II)においては、SI燃焼を行うようにしている。すなわち、ポートインジェクタ19により気筒2の圧縮行程ないし吸気行程で燃料を吸気ポート9に噴射させ、吸気と混合させながら気筒2内へ供給して概ね均一な予混合気を形成する(火花点火モード)。このときには気筒内2の空燃比が略理論空燃比になるように燃料噴射量を制御する。   That is, HCCI combustion is realized in a premixed gas mixture that is considerably lean or a premixed gas diluted with a large amount of EGR, and originally, a very high output cannot be obtained. As shown in the control map (FIG. 4), SI combustion is performed in the operation region (II) on the relatively high load or high rotation side. That is, fuel is injected into the intake port 9 by the port injector 19 during the compression stroke or intake stroke of the cylinder 2 and supplied into the cylinder 2 while being mixed with intake air to form a substantially uniform premixed gas (spark ignition mode). . At this time, the fuel injection amount is controlled so that the air-fuel ratio in the cylinder 2 becomes substantially the stoichiometric air-fuel ratio.

さらに、前記HCCI領域(I)よりもさらに低負荷、低回転側の運転領域(III)は、エンジン1のアイドリング及びその近傍の非常に運転頻度の低い領域であるが、ここでは前記のように多量の内部EGRガスによって気筒2内の温度を高めるようにしても、安定した自己着火は難しいので、この運転領域(III)においても前記運転領域(II)と同様に略理論空燃比の予混合気に火花点火して、SI燃焼を行うようにしている(火花点火モード)。以下、前記運転領域(I)をHCCI領域(I)と呼び、運転領域(II)(III)はいずれもSI領域(II)(III)と呼ぶ。   Further, the operation region (III) on the lower load and low rotation side than the HCCI region (I) is a region where the idling of the engine 1 and the vicinity thereof are very infrequent, but here as described above. Even if the temperature in the cylinder 2 is increased by a large amount of internal EGR gas, stable self-ignition is difficult. Therefore, in this operating region (III), the pre-mixing of the substantially stoichiometric air-fuel ratio is performed as in the operating region (II). The spark is ignited and SI combustion is performed (spark ignition mode). Hereinafter, the operation region (I) is referred to as HCCI region (I), and the operation regions (II) and (III) are both referred to as SI region (II) and (III).

尚、前記HCCI領域(I)における相対的に低負荷、低回転側の領域(図4に斜めハッチングを入れて示す領域)においては、吸排気弁11,12の負のオーバーラップ期間中に直噴インジェクタ18による燃料噴射(第1噴射)を行うようにしている。こうして高温の内部EGRガスに曝された燃料噴霧は直ちに気化するとともに、分子の鎖が切れてラジカルを生成したり、部分酸化反応が進んだりして、自己着火し易い活性化混合気を形成すると考えられている。   In the HCCI region (I), the region on the relatively low load and low rotation side (the region shown with diagonal hatching in FIG. 4) is directly connected during the negative overlap period of the intake and exhaust valves 11 and 12. Fuel injection (first injection) is performed by the injector 18. In this way, the fuel spray exposed to the high temperature internal EGR gas immediately vaporizes, and the chain of molecules breaks to generate radicals or the partial oxidation reaction proceeds to form an activated gas mixture that easily ignites. It is considered.

ところで、前記図4に白抜きの矢印で示すように、エンジン1の運転状態が変化して、HCCI領域(I)とSI領域(II)(III)との間で移行するときには、これに応じてHCCI燃焼(自己着火モード)とSI燃焼(火花点火モード)とに切換えるために、燃料の噴射形態や空燃比、或いは内部EGRガス量を変更しなくてはならないが、特に内部EGRガス量についてはVVL14やVVT15の作動によって徐々に変化するものであり、噴射態様や空燃比のように瞬時に切換えることはできない。   By the way, as shown by the white arrow in FIG. 4, when the operating state of the engine 1 changes and shifts between the HCCI region (I) and the SI region (II) (III), In order to switch between HCCI combustion (self-ignition mode) and SI combustion (spark ignition mode), the fuel injection mode, air-fuel ratio, or internal EGR gas amount must be changed. Is gradually changed by the operation of VVL14 and VVT15, and cannot be switched instantaneously as in the injection mode or air-fuel ratio.

そして、安定したHCCI燃焼のためにはEGR率で約60%以上の多量の内部EGRガス量が求められる一方で、均一予混合気のSI燃焼は、EGR率が約30%未満の状態で行われるから、両者の切換えの際にはエンジン1の燃焼サイクルで2〜5サイクル程度の期間、過渡的にEGR率が約30〜60%の状態、即ち安定したHCCI燃焼が難しく、さりとてSI燃焼とするには内部EGRガス量が多すぎる状態になってしまう。   For stable HCCI combustion, a large amount of internal EGR gas having an EGR rate of about 60% or more is required, while SI combustion of uniform premixed gas is performed with an EGR rate of less than about 30%. Therefore, when switching between the two, the engine 1 has a combustion cycle of 2 to 5 cycles, and the EGR rate is transiently about 30 to 60%, that is, stable HCCI combustion is difficult. To do so, the amount of internal EGR gas is too large.

そこで、この実施形態では、前記のような燃焼状態の切換えに際し過渡的に、成層化混合気への点火燃焼によってリーン予混合気の自己着火を誘発するようにしたものである。すなわち、図6に一例を示すように、燃焼切換えの際には吸排気の負のオーバーラップ期間が変化しても、その負のオーバーラップ期間中に直噴インジェクタ18による燃料噴射(第1噴射)を行い、自己着火し易い活性化混合気を形成する。   Therefore, in this embodiment, when the combustion state is switched as described above, the self-ignition of the lean premixture is induced by ignition combustion to the stratified mixture. That is, as shown in an example in FIG. 6, even when the negative overlap period of intake and exhaust changes at the time of combustion switching, fuel injection (first injection) by the direct injection injector 18 during the negative overlap period. ) To form an activated air-fuel mixture that easily ignites.

それから吸気行程でポートインジェクタ19により燃料を噴射させて(第2噴射)、気筒2内に略均一な予混合気を形成し、その後、圧縮行程終盤に直噴インジェクタ18により少量の燃料を噴射させて(第3噴射)、点火プラグ16の電極付近に偏在する混合気塊(成層化混合気)を形成し、これに圧縮上死点(TDC)直後の所定タイミングで点火して、燃焼させる。   Then, fuel is injected by the port injector 19 in the intake stroke (second injection) to form a substantially uniform premixed gas in the cylinder 2, and then a small amount of fuel is injected by the direct injection injector 18 at the end of the compression stroke. (Third injection), an air-fuel mixture mass (stratified air-fuel mixture) that is unevenly distributed in the vicinity of the electrode of the spark plug 16 is formed, and this is ignited and burned at a predetermined timing immediately after the compression top dead center (TDC).

そうして成層化混合気の点火、燃焼により予混合気の自己着火を誘発することによって、切換の過渡時に気筒2内のEGRガス量が不足する状態にあっても、リーン予混合気を安定的に自己着火させることができる。第3噴射の量は、火花点火が可能な成層化混合気を形成するための必要最小量でよく、必要なエンジン出力は主に予混合気の自己着火燃焼によって得られる。以下、そうして予混合気の自己着火を誘発(アシスト)するエンジン運転モードを自己着火アシストモードとも呼び、そのときの燃焼をHCCI燃焼と区別して、SCCI(Stratified Charge Compression Ignition)燃焼と呼ぶ。   In this way, self-ignition of the premixed gas is induced by ignition and combustion of the stratified gas mixture, thereby stabilizing the lean premixed gas even when the EGR gas amount in the cylinder 2 is insufficient at the time of switching transition. Can be self-ignited. The amount of the third injection may be a minimum amount necessary to form a stratified mixture capable of spark ignition, and the required engine output is obtained mainly by the self-ignition combustion of the premix. Hereinafter, the engine operation mode that induces (assists) self-ignition of the premixed gas is also referred to as a self-ignition assist mode, and the combustion at that time is distinguished from HCCI combustion and is referred to as SCCI (Stratified Charge Compression Ignition) combustion.

(具体的な制御手順)
次に、エンジン制御の具体的な手順を図7〜9のフローチャートに基づいて説明すると、まず、図7のフローではHCCI燃焼(自己着火モード)とSI燃焼(火花点火モード)との切換えの判定手順を示し、スタート後のステップSA1では、クランク角センサ8、エアフローセンサ31、アクセル開度センサ32、車速センサ33等からの信号を入力し、ステップSA2ではエンジン1への要求トルク(負荷)とエンジン回転速度とを求める。すなわち、エンジン回転速度はクランク角センサ8からの信号によりダイレクトに演算すればよく、要求トルクは例えば車速及びアクセル開度に基づいて、或いはエアフローセンサ31からの信号とエンジン回転速度とに基づき内部EGR量を加味して、演算すればよい。
(Specific control procedure)
Next, a specific procedure of engine control will be described based on the flowcharts of FIGS. 7 to 9. First, in the flow of FIG. 7, determination of switching between HCCI combustion (self-ignition mode) and SI combustion (spark ignition mode) is performed. In step SA1 after starting, signals from the crank angle sensor 8, the airflow sensor 31, the accelerator opening sensor 32, the vehicle speed sensor 33, etc. are input. In step SA2, the required torque (load) to the engine 1 is obtained. Obtain the engine speed. That is, the engine rotational speed may be directly calculated by a signal from the crank angle sensor 8, and the required torque is determined based on, for example, the vehicle speed and the accelerator opening or the internal EGR based on the signal from the air flow sensor 31 and the engine rotational speed. What is necessary is just to calculate in consideration of the amount.

そうして求めた要求トルクとエンジン回転速度とに基づいて、ステップSA3では、図4の制御マップを参照してエンジン1がHCCI領域(I)にあるかどうか判定する。この判定がNOであればSI領域(II)(III)にあるので、後述のステップSA5に進む一方、判定がYESであればステップSA4に進んで、今度はHCCI燃焼中であるかどうか判定する。この判定がNOであればSI燃焼からHCCI燃焼への切換え中であるから、図8のフローに進む一方、判定がYESであればHCCI燃焼のための制御を継続する。   Based on the required torque and the engine rotational speed thus obtained, in step SA3, it is determined whether or not the engine 1 is in the HCCI region (I) with reference to the control map of FIG. If this determination is NO, since it is in the SI region (II) (III), the process proceeds to step SA5, which will be described later. If the determination is YES, the process proceeds to step SA4 to determine whether HCCI combustion is being performed this time. . If this determination is NO, switching from SI combustion to HCCI combustion is in progress, and thus the flow proceeds to the flow of FIG. 8, while if the determination is YES, control for HCCI combustion is continued.

すなわち、まず、VVL14及びVVT15の制御によって負のオーバーラップ期間が生じるように吸排気弁11,12の作動タイミングを制御する。これは例えば、目標トルク及びエンジン回転速度に基づき、予め実験的に設定してあるマップを参照して、所要の内部EGR量となるような吸排気弁11,12のオーバーラップ量を決定し、そうなるように主にVVT15を制御すればよい。   That is, first, the operation timings of the intake and exhaust valves 11 and 12 are controlled so that a negative overlap period is generated by the control of the VVL 14 and the VVT 15. For example, on the basis of the target torque and the engine rotation speed, the overlap amount of the intake / exhaust valves 11 and 12 that determines the required internal EGR amount is determined with reference to a map set experimentally in advance. What is necessary is just to control VVT15 mainly so that it may become.

尚、VVL14についても目標トルク及びエンジン回転速度に基づき、予め実験的に設定してあるマップを参照して決定したリフト量となるように制御すればよい。このマップにおいて吸排気弁11,12のリフト量は、気筒2への燃料供給量に対応して適切な空燃比となるように予め実験等により求めて設定されている。   The VVL 14 may be controlled so as to have a lift amount determined by referring to a map set experimentally in advance based on the target torque and the engine speed. In this map, the lift amount of the intake / exhaust valves 11 and 12 is determined and set in advance by experiments or the like so as to have an appropriate air-fuel ratio corresponding to the fuel supply amount to the cylinder 2.

そうして吸排気弁11,12の作動に負のオーバーラップ期間を設け、多量の内部EGRガスによって気筒2内の温度を高めるとともに、吸気行程でポートインジェクタ19により燃料を噴射させて、気筒2内に略均一なリーン予混合気を形成する。そして、圧縮行程の終盤以降に予混合気に点火することなく自己着火させて、燃焼させる。また、相対的に低負荷、低回転側であれば、前記負のオーバーラップ期間中に直噴インジェクタ18により燃料を噴射させて、予混合気の着火性を高めるようにする。   Thus, a negative overlap period is provided for the operation of the intake and exhaust valves 11 and 12, the temperature in the cylinder 2 is increased by a large amount of internal EGR gas, and fuel is injected by the port injector 19 in the intake stroke. A substantially uniform lean premixed gas is formed inside. Then, after the end of the compression stroke, the premixed gas is ignited without being ignited and burned. On the other hand, if the load is relatively low and the rotation speed is low, fuel is injected by the direct injection injector 18 during the negative overlap period to improve the ignitability of the premixed gas.

一方、前記ステップSA3にてNOと判定して進んだステップSA5では、前記ステップSA4と同様にSI燃焼中であるかどうか判定し、この判定がNOでHCCI燃焼からSI燃焼への切換え中であれば、図9のフローに進む一方、判定がYESであれば、SI燃焼中であるから、そのための制御を継続する。すなわち、ポートインジェクタ1により気筒2の圧縮行程から吸気行程にかけて吸気ポート9へ燃料を噴射し、気筒2内に略理論空燃比の均一混合気を形成して、点火プラグ16により点火する。   On the other hand, in step SA5, which has been determined to be NO in step SA3 and advanced to step SA4, it is determined whether SI combustion is being performed as in step SA4. If this determination is NO and switching from HCCI combustion to SI combustion is being performed. For example, while proceeding to the flow of FIG. 9, if the determination is YES, SI combustion is in progress, and control for that is continued. That is, fuel is injected into the intake port 9 from the compression stroke to the intake stroke of the cylinder 2 by the port injector 1 to form a uniform air / fuel mixture having a substantially stoichiometric air / fuel ratio in the cylinder 2 and ignited by the spark plug 16.

−HCCI燃焼への切換え−
次に、SI燃焼からHCCI燃焼への切換えについて説明すると、まず、図8のフローのステップSB1において、HCCI燃焼に適した吸排気弁11,12の作動タイミングとなるようにVVL14及びVVT15を制御する。すなわち、主にVVT15の作動によって吸気弁11の作動タイミングが遅角する一方、排気弁12の作動タイミングは進角し、徐々に負のオーバーラップ期間が大きくなって、内部EGRガスの量も増大する。
-Switching to HCCI combustion-
Next, switching from SI combustion to HCCI combustion will be described. First, in step SB1 of the flow of FIG. 8, VVL 14 and VVT 15 are controlled so that the operation timing of intake and exhaust valves 11 and 12 suitable for HCCI combustion is reached. . That is, the operation timing of the intake valve 11 is retarded mainly by the operation of the VVT 15, while the operation timing of the exhaust valve 12 is advanced, the negative overlap period gradually increases, and the amount of internal EGR gas also increases. To do.

続いてステップSB2において、エンジン1の運転状態から成層燃焼を行うかどうか判定する。これは要するに、HCCI領域(I)に高負荷、高回転側のSI領域(II)から移行するのか、それとも低負荷、低回転側のSI領域(III)から移行するのか、を判別するものであり、相対的に高負荷、高回転側の燃焼切換え時であれば、気筒2の温度が高く、成層燃焼を行う必要はないので(判定はNO)、後述のステップSB7に進む。   Subsequently, in step SB2, it is determined whether or not stratified combustion is performed from the operating state of the engine 1. In short, this is to determine whether to shift to the HCCI area (I) from the SI area (II) on the high load / high rotation side or from the SI area (III) on the low load / low rotation side. Yes, if the combustion is switched at the relatively high load and high rotation side, the temperature of the cylinder 2 is high, and it is not necessary to perform stratified combustion (determination is NO), so the process proceeds to Step SB7 described later.

一方、相対的に低負荷、低回転側の燃焼切換え時であれば、気筒2の温度も低いので、前記VVT15等の作動によって徐々に増大する内部EGRガスの量が所定量(EGR率で例えば35〜40%くらい)以下の期間は、如何にしても予混合気を安定して自己着火させることは難しく、この期間は成層燃焼とすることで燃焼の安定化を図る。即ち、まずステップSB3では気筒2の圧縮行程における第3の燃料噴射の量及び時期を決定し、その噴射時期になればステップSB4で第3噴射を実行する。そして、ステップSB5では点火プラグ16により成層化混合気に点火して燃焼させる。   On the other hand, when the combustion is switched at a relatively low load and low rotation side, the temperature of the cylinder 2 is also low, so that the amount of internal EGR gas that gradually increases due to the operation of the VVT 15 or the like is a predetermined amount (eg, EGR rate) In the following period, it is difficult to cause the premixed gas to be stably self-ignited anyway. In this period, the combustion is stabilized by stratified combustion. That is, first, in step SB3, the amount and timing of the third fuel injection in the compression stroke of the cylinder 2 are determined, and if the injection timing comes, the third injection is executed in step SB4. In step SB5, the stratified mixture is ignited and burned by the spark plug 16.

尚、前記第3噴射の量も、例えば目標トルク及びエンジン回転速度に基づき、予め実験的に設定してあるマップを参照して決定すればよい。また、噴射時期は、噴射量及び点火時期等に対応する圧縮行程後期の適切な時期にすればよく、これも目標トルク及びエンジン回転速度に基づき、予め実験的に設定してあるマップを参照して決定するようにすればよい。   The amount of the third injection may be determined with reference to a map set experimentally in advance based on, for example, the target torque and the engine speed. The injection timing may be set to an appropriate timing in the latter half of the compression stroke corresponding to the injection amount, the ignition timing, and the like, which is also referred to a map set experimentally in advance based on the target torque and the engine speed. To do so.

そして、ステップSB6において、前記のような成層燃焼からSCCI燃焼への切換えのタイミングになったかどうか判定し、この判定がNOであれば前記ステップSB3に戻って成層燃焼を継続する。一方、VVT15等の作動によって内部EGRガス量が徐々に増大し、それが前記所定量を越えて、成層化混合気の火花点火により予混合気の自己着火を誘発(アシスト)できるようになれば(判定がYES)、ステップSB6に進んで、以下のような自己着火アシストモードに切換える。   In step SB6, it is determined whether or not the timing for switching from stratified combustion to SCCI combustion has been reached. If this determination is NO, the flow returns to step SB3 to continue stratified combustion. On the other hand, if the internal EGR gas amount is gradually increased by the operation of the VVT 15 or the like and exceeds the predetermined amount, the self-ignition of the pre-mixture can be induced (assist) by the spark ignition of the stratified mixture. (Determination is YES), the process proceeds to step SB6, and the self-ignition assist mode is switched to the following.

尚、前記切換えのタイミングになったかどうかの判定は、前記ステップSB1においてVVL14及びVVT15の制御を開始してからの時間経過に基づいて行うことができ、或いはVVL14及びVVT15の制御開始からの燃焼サイクル数をカウントして、判定するようにしてもよい。   The determination as to whether or not the switching timing has come can be made based on the passage of time from the start of control of VVL14 and VVT15 in step SB1, or the combustion cycle from the start of control of VVL14 and VVT15. You may make it determine by counting a number.

そうして切換えのタイミングになった(YES)と判定して進んだステップSB7では、インジェクタ18,19の各々による都合3回のそれぞれの燃料噴射量、即ち活性化混合気を形成するための直噴インジェクタ18による第1噴射量と、予混合気を形成するためのポートインジェクタ19による第2噴射量と、成層化混合気を形成するための直噴インジェクタ18による第3噴射量と、をそれぞれ予め実験的に設定してある噴射量マップから読み込んで、決定する。   In step SB7, which proceeds after determining that the switching timing has been reached (YES), the fuel injection amounts for the three times by each of the injectors 18 and 19, that is, the direct injection for forming the activated air-fuel mixture are performed. The first injection amount by the injector 18, the second injection amount by the port injector 19 for forming the premixed gas, and the third injection amount by the direct injector 18 for forming the stratified mixture, respectively. It is determined by reading from an injection amount map set experimentally in advance.

この噴射量マップも、エンジン1の目標トルク及び回転速度に対応して第1、第2及び第3の各噴射量の最適値を予め実験等により設定したものであり、詳しい説明は省略するが、例えば第1、第2噴射量はそれぞれ目標トルクの増大に応じて増量すればよく、一方、第3噴射量は、火花点火が可能な成層化混合気を形成するための必要最小量とするのが好ましい。   This injection amount map is also an experiment in which optimum values for the first, second, and third injection amounts are set in advance corresponding to the target torque and rotational speed of the engine 1, and detailed description thereof is omitted. For example, the first and second injection amounts may be increased in accordance with the increase in the target torque, respectively, while the third injection amount is a minimum amount necessary for forming a stratified mixture capable of spark ignition. Is preferred.

また、ステップSB7では、前記第1、第2及び第3の各噴射時期(目標噴射時期)もそれぞれ予め実験的に設定してある噴射時期マップから読み込んで、決定する。例えば第1噴射の時期は、直噴インジェクタ18の開弁期間が吸排気弁11,12の負のオーバーラップ期間内に含まれるようにし、第2噴射の時期は吸気行程の中期から吸気弁11が開かれるまでの間に設定する。また、第3噴射の時期は圧縮行程終盤に設定するのがよい。   In step SB7, the first, second, and third injection timings (target injection timings) are also determined by reading from an injection timing map that has been experimentally set in advance. For example, the timing of the first injection is such that the valve opening period of the direct injection injector 18 is included in the negative overlap period of the intake and exhaust valves 11 and 12, and the timing of the second injection is from the middle stage of the intake stroke. Set until the is opened. The timing of the third injection is preferably set at the end of the compression stroke.

そして、ステップSB8では、前記ステップSB7にて決定した第1、第2及び第3噴射の時期において、それぞれ、第1噴射の時期に直噴インジェクタ18を、第2噴射の時期にポートインジェクタ19を、さらに第3噴射の時期に再び直噴インジェクタ18を作動させる。続くステップSB9ではTDC近傍(TDC直後が望ましい)の所定の点火時期において点火回路17を作動させ、点火プラグ16に通電して、前記第3噴射によって点火プラグ16の近傍に形成された混合気塊(成層化混合気)に点火して燃焼させる。   In step SB8, at the first, second and third injection timings determined in step SB7, the direct injection injector 18 is set at the first injection timing, and the port injector 19 is set at the second injection timing. Further, the direct injection injector 18 is operated again at the timing of the third injection. In the following step SB9, the ignition circuit 17 is operated at a predetermined ignition timing in the vicinity of TDC (desirably immediately after TDC), the ignition plug 16 is energized, and the air-fuel mixture formed in the vicinity of the ignition plug 16 by the third injection. Ignite and burn (stratified mixture).

続いてステップSB10において、前記SCCI燃焼からHCCI燃焼への切換えのタイミングになったかどうか判定し、この判定がNOであれば前記ステップSB7に戻って自己着火アシストモードでの運転を継続する一方、内部EGRガス量が十分に多くなって、アシストなしでも予混合気が安定して自己着火するようになれば(判定がYES)、ステップSB11に進んで、前記したHCCI燃焼のための制御を実行し、しかる後にリターンする。   Subsequently, in step SB10, it is determined whether or not the timing for switching from the SCCI combustion to the HCCI combustion is reached. If this determination is NO, the process returns to step SB7 to continue the operation in the self-ignition assist mode. If the amount of EGR gas becomes sufficiently large and the premixed gas is stably ignited even without assistance (determination is YES), the routine proceeds to step SB11, where the above-described control for HCCI combustion is executed. Then return.

尚、前記HCCI燃焼への切換えタイミングの判定も、ステップSB5における判定と同様に、前記ステップSB1においてVVL14及びVVT15の制御を開始してからの時間経過や燃焼サイクル数に基づいて行うことができる。また、その判定基準となる時間経過や燃焼サイクル数については、燃焼の切換え時におけるエンジン1の運転状態に応じて、相対的に高負荷側ないし高回転側ほど短い時間(少ない燃焼サイクル数)に設定するのが好ましい。   Note that the timing for switching to the HCCI combustion can also be determined based on the passage of time and the number of combustion cycles since the control of the VVL 14 and VVT 15 is started in the step SB1, similarly to the determination in step SB5. Further, with respect to the time lapse and the number of combustion cycles serving as the determination criteria, depending on the operating state of the engine 1 at the time of switching the combustion, the relatively short time (the number of combustion cycles) is shorter on the higher load side or higher rotation side. It is preferable to set.

これは、相対的にエンジン1の負荷や回転速度の高い運転状態であれば、気筒2の温度も高いので、予混合気が自己着火し易くなるから、その分は相対的に内部EGRガス量が少なめな状態でもHCCI燃焼を安定的に実現できるからである。こうすれば、結果として燃焼切換えの過渡的な制御を行う期間を短くすることが可能になって、この過渡時のSCCI燃焼や成層燃焼に伴う窒素酸化物の生成が極小化される。   This is because the temperature of the cylinder 2 is high when the engine 1 is in a relatively high load and rotation speed, and the premixed gas is likely to self-ignite, so that the amount of internal EGR gas is relatively large. This is because HCCI combustion can be stably realized even in a state where the amount is small. As a result, it is possible to shorten the period during which the transitional control of the combustion switching is performed, and the generation of nitrogen oxides associated with the SCCI combustion and the stratified combustion during the transition is minimized.

前記のように、SI燃焼からHCCI燃焼への切換えに際し過渡的に、HCCI燃焼には内部EGRガス量が少なく、予混合気を安定して自己着火させることができない状態になったとき、成層化混合気の火花点火によって自己着火をアシストするようにしている。また、低負荷低回転領域での切換えで前記のようにアシストしても予混合気の自己着火が難しい状況では、一時的に成層燃焼を行うようにしている。   As described above, when switching from SI combustion to HCCI combustion is transient, HCCI combustion has a small amount of internal EGR gas and stratifies when premixed gas cannot be stably ignited automatically. Self-ignition is assisted by spark ignition of the mixture. Further, in the situation where the self-ignition of the premixed gas is difficult even if the assist is performed as described above by switching in the low load and low rotation region, stratified combustion is temporarily performed.

−SI燃焼への切換え−
次に、HCCI燃焼からSI燃焼への切換えについて図9のフローに基づき、図10のタイムチャートを参照しながら説明する。この場合の制御の手順は、基本的に前記図8に示すSI燃焼からHCCI燃焼への切換えと逆のものであり、同じ手順についての詳しい説明は省略する。
-Switching to SI combustion-
Next, switching from HCCI combustion to SI combustion will be described with reference to the time chart of FIG. 10 based on the flow of FIG. The control procedure in this case is basically the reverse of the switching from SI combustion to HCCI combustion shown in FIG. 8, and a detailed description of the same procedure is omitted.

まず、図9のフローのステップSC1では、前記図8のフローのステップSB1と同様に主にVVT15を制御して、SI燃焼に適した内部EGRガス量となるように吸排気弁11,12の作動タイミングを制御する。これにより、図10(b)に示すように、時刻t0から時刻t2にかけて吸気弁11のリフトカーブLinが進角側へ変位する一方、排気弁12のリフトカーブLexは遅角側へ変位し、負のオーバーラップ期間が徐々に小さくなって、同図(d)に示すように内部EGRガス量が徐々に減少するようになる(同図ではEGR率で表している)。   First, in step SC1 of the flow of FIG. 9, the VVT 15 is mainly controlled in the same manner as in step SB1 of the flow of FIG. 8, and the intake and exhaust valves 11 and 12 are controlled so that the internal EGR gas amount suitable for SI combustion is obtained. Control the operation timing. As a result, as shown in FIG. 10 (b), the lift curve Lin of the intake valve 11 is displaced toward the advance side from time t0 to time t2, while the lift curve Lex of the exhaust valve 12 is displaced toward the retard side. The negative overlap period gradually decreases, and the internal EGR gas amount gradually decreases as shown in (d) of the figure (in the figure, expressed by the EGR rate).

その内部EGRガス量の減少に対応して、ステップSC2〜4では、図8のフローのステップSB7〜9と同じ手順でエンジン1を自己着火アシストモードで運転する。これにより図10(a)の如く燃焼状態はSCCI燃焼となる。この際、排気エミッションを考慮して空燃比を瞬時に理論空燃比(A/F=14.7)に切換えるために(同図(e)参照)、燃料噴射量(主に第2噴射量)を増量するとともに(図(f)参照)、これによるトルクの変動を抑えるために、VVL14の作動によって吸気弁11のリフト量を減少させる(図(c)参照)。   In response to the decrease in the internal EGR gas amount, in steps SC2 to SC4, the engine 1 is operated in the self-ignition assist mode in the same procedure as steps SB7 to SB9 in the flow of FIG. As a result, the combustion state becomes SCCI combustion as shown in FIG. At this time, in order to instantaneously switch the air-fuel ratio to the theoretical air-fuel ratio (A / F = 14.7) in consideration of exhaust emissions (see (e) in the figure), the fuel injection amount (mainly the second injection amount) is increased. At the same time (see FIG. (F)), the lift amount of the intake valve 11 is decreased by the operation of the VVL 14 (see FIG. (C)) in order to suppress the fluctuation of the torque due to this.

続いてステップSC5では、図8のフローのステップSB2と同様にして、成層燃焼を行うかどうか判定する。そして、高負荷、高回転側の燃焼切換え時であって成層燃焼を行う必要がなければ(判定はNO)、後述のステップSC12に進む一方、低負荷、低回転側の燃焼切換え時であって成層燃焼を行う必要があれば(判定はYES)、ステップSC6に進む。   Subsequently, in step SC5, it is determined whether or not stratified combustion is performed in the same manner as in step SB2 of the flow of FIG. If it is not necessary to perform stratified combustion at the time of switching the combustion on the high load, high rotation side (determination is NO), the process proceeds to step SC12 described later, while the combustion switching on the low load, low rotation side is performed. If it is necessary to perform stratified combustion (determination is YES), the routine proceeds to step SC6.

このステップSC6では、図8のフローのステップSB6と同様にして、成層燃焼への切換えタイミングになったかどうか判定する。すなわち、図10(d)に示すように徐々に減少する内部EGRガス量が所定量(図には星印★で示す)以上であり、アシストすれば予混合気の安定した自己着火が可能なうちは(判定がNO)、前記ステップSC2に戻ってSCCI燃焼を継続する。   In step SC6, as in step SB6 of the flow of FIG. 8, it is determined whether it is time to switch to stratified combustion. That is, as shown in FIG. 10 (d), the amount of internal EGR gas that gradually decreases is equal to or greater than a predetermined amount (indicated by an asterisk in the figure), and stable self-ignition of the premixed gas is possible with assistance. Uchiha (determination is NO), the process returns to step SC2 to continue SCCI combustion.

一方、内部EGRガス量がさらに減少して前記所定量未満になれば(図10の時刻t1でステップSC6の判定がYES)、アシストしても安定した自己着火は望めないので、ステップSC7〜9に進み、図8のフローのステップSB3〜5と同様にしてエンジン1を成層燃焼状態で運転する。すなわち、気筒2の圧縮行程において第3の燃料噴射を行い、これに点火して燃焼させる。   On the other hand, if the internal EGR gas amount is further reduced to be less than the predetermined amount (YES at step SC6 at time t1 in FIG. 10), stable self-ignition cannot be expected even with assistance, so steps SC7-9 Then, the engine 1 is operated in the stratified combustion state in the same manner as Steps SB3 to SB5 in the flow of FIG. That is, the third fuel injection is performed in the compression stroke of the cylinder 2, and this is ignited and burned.

続くステップSC10では、図8のフローのステップSB10と同様にして、SI燃焼への切換えタイミングになったかどうか判定し、この判定がNOであればステップSC7に戻って成層燃焼を継続する一方、図10(d)のように徐々に減少した内部EGRガス量が、SI燃焼に適した状態になれば(時刻t2で判定がYES)、ステップSC11に進んで前記したSI燃焼のための制御に切換え、しかる後にリターンする。   In the subsequent step SC10, as in step SB10 in the flow of FIG. 8, it is determined whether or not the timing for switching to SI combustion has come. If this determination is NO, the process returns to step SC7 to continue stratified combustion. When the amount of internal EGR gas gradually decreased as in 10 (d) becomes suitable for SI combustion (determination is YES at time t2), the process proceeds to step SC11 to switch to the control for SI combustion described above. Then return.

また、前記ステップSC5にて成層燃焼を行わない(NO)と判定して進んだステップSC12では、前記ステップSC10と同じくSI燃焼への切換えタイミングになったかどうか判定し、判定がNOであればステップSC2に戻ってSCCI燃焼を継続する。そして、図10には示さないが、内部EGRガス量の減少に伴い前記ステップSC12にてYESと判定されれば、ステップSC11に進んでSI燃焼のための制御に切換え、しかる後にリターンする。   Further, in step SC12 which proceeds after determining that stratified combustion is not performed (NO) in step SC5, it is determined whether or not the timing for switching to SI combustion is reached as in step SC10. If the determination is NO, step SC12 is performed. Returning to SC2, SCCI combustion is continued. Then, although not shown in FIG. 10, if YES is determined in step SC12 as the internal EGR gas amount decreases, the process proceeds to step SC11 to switch to control for SI combustion, and then returns.

尚、前記したHCCI燃焼からSI燃焼への切換え時においても、SI燃焼からHCCI燃焼への切換え時と同じように、切換えの過渡的な制御を行う期間はできるだけ短くするのが好ましい。そのためには、例えば燃焼の切換え時におけるエンジン1の運転状態に応じて、相対的に高負荷側ないし高回転側ほど、切換え過渡時の制御を開始する(つまりHCCI燃焼からSCCI燃焼に切換える)内部EGRガス量を少なめに設定するとともに、この過渡時の制御を終了する(つまりSI燃焼に切換える)までの時間経過や燃焼サイクル数を少なめに設定するればよい。   Even when switching from HCCI combustion to SI combustion as described above, it is preferable to make the period for performing the transitional transition control as short as possible as in the case of switching from SI combustion to HCCI combustion. For this purpose, for example, depending on the operating state of the engine 1 at the time of switching of combustion, the control at the time of switching transition is started on the relatively high load side or high rotation side (that is, switching from HCCI combustion to SCCI combustion). The EGR gas amount is set to be small, and the time elapsed until the control at the time of transition is finished (that is, switching to SI combustion) and the number of combustion cycles may be set to be small.

前記図8、9のフロー全体により、自己着火モード及び火花点火モードの切換えに際して、吸排気弁11,12の負のオーバーラップ期間を設けるとともに、ポートインジェクタ19により吸気行程で燃料を噴射させて、気筒2内に略均一なリーン予混合気を形成し、その後、直噴インジェクタ18により圧縮行程で燃料を噴射させて、点火プラグ16周りに成層化混合気を形成し、これに点火して燃焼させることにより、予混合気の自己着火を誘発する切換え過渡時制御手段が構成されている。   8 and 9, when switching between the self-ignition mode and the spark ignition mode, a negative overlap period of the intake and exhaust valves 11 and 12 is provided, and fuel is injected in the intake stroke by the port injector 19. A substantially uniform lean pre-mixture is formed in the cylinder 2, and then fuel is injected in the compression stroke by the direct injection injector 18 to form a stratified mixture around the spark plug 16, which is ignited and burned. Thus, the switching transient control means for inducing the self-ignition of the premixed gas is configured.

この実施形態の切換え過渡時制御手段は、吸排気弁11,12の負のオーバーラップ期間中に直噴インジェクタ18により燃料を噴射(第1噴射)させて、予混合気の着火性を高めるようにしている。   The switching transition time control means of this embodiment injects fuel by the direct injection injector 18 during the negative overlap period of the intake and exhaust valves 11 and 12 (first injection) so as to improve the ignitability of the premixed gas. I have to.

また、この実施形態の切換え過渡時制御手段は、エンジン1がHCCI領域(I)と低負荷、低回転側のSI領域(III)との間を移行する際、過渡的に内部EGRガス量が所定量未満になって、アシストしても安定した自己着火が望めない状態では、エンジン1を成層燃焼状態で運転することで、燃焼安定性を確保するようにしている。   Further, the switching transition time control means of this embodiment is such that when the engine 1 moves between the HCCI region (I) and the low load, low rotation side SI region (III), the internal EGR gas amount is transiently changed. In a state where the amount is less than a predetermined amount and stable self-ignition cannot be expected even when assisting, the engine 1 is operated in a stratified combustion state to ensure combustion stability.

前記図7〜9のフローの制御は、PCM30のメモリに電子的に格納されている制御プログラムの実行によって実現するものであり、その意味ではPCM30自体が、前記切換え過渡時制御手段を構成しているといえる。   7 to 9 is realized by executing a control program electronically stored in the memory of the PCM 30. In this sense, the PCM 30 itself constitutes the switching transient control means. It can be said that.

したがって、この実施形態に係るエンジン制御装置Aによると、エンジン1の運転状態の変化に伴いその運転モードを自己着火モードと火花点火モードとの間で切換える際に、過渡的に気筒2の内部EGRガス量がHCCI燃焼には不足する一方、SI燃焼には多すぎる状態になっても、高温の内部EGRガス中に燃料を噴射して活性化混合気を形成するとともに、点火プラグ16周りに成層化混合気を形成し、これに点火して燃焼させることによって予混合気の自己着火を誘発(アシスト)する自己着火アシストモード(SCCI燃焼)とすることで、燃焼の不安定化等を防止することができる。   Therefore, according to the engine control apparatus A according to this embodiment, the internal EGR of the cylinder 2 is transiently switched when the operation mode is switched between the self-ignition mode and the spark ignition mode in accordance with a change in the operation state of the engine 1. Even if the amount of gas is insufficient for HCCI combustion but too much for SI combustion, fuel is injected into the high-temperature internal EGR gas to form an activated mixture and stratify around the spark plug 16 A self-ignition assist mode (SCCI combustion) that induces (assist) self-ignition of the premixed gas by forming a combusted gas mixture and igniting it to prevent combustion is prevented. be able to.

その自己着火アシストモードでは、エンジン1の運転状態を維持するために必要なトルクが主に予混合気の自己着火燃焼によって得られ、自己着火のアシストのための燃料噴射量は、火花点火が可能な成層化混合気を形成するための必要最小量としているので、この燃料の燃焼に伴い生成される窒素酸化物の量は非常に少なくなり、切換え過渡時の排気エミッションの悪化は十分に抑制できる。   In the self-ignition assist mode, the torque required to maintain the operating state of the engine 1 is obtained mainly by the self-ignition combustion of the premixed gas, and the fuel injection amount for the self-ignition assist can be spark ignition. Therefore, the amount of nitrogen oxides generated by combustion of this fuel is extremely small, and the deterioration of exhaust emissions during switching transients can be sufficiently suppressed. .

しかも、前記のような切換え過渡時の制御を行う期間をエンジン1の運転状態に応じて、相対的に高負荷側ないし高回転側ほど短くすることで、過渡時の燃焼による窒素酸化物の生成を極小化することもできる。   In addition, the period during which the switching transition control as described above is performed is relatively shortened from the high load side to the high rotation side in accordance with the operating state of the engine 1, thereby generating nitrogen oxides by combustion during the transition. Can be minimized.

一方で、相対的に負荷や回転速度の低い運転状態では、切換に際し過渡的に自己着火アシストモードでも燃焼安定性を確保できない場合があるが、このときには所謂成層燃焼を行うことで、燃焼安定性を確保することができる。   On the other hand, in an operation state with a relatively low load and rotational speed, combustion stability may not be ensured even in the self-ignition assist mode transiently at the time of switching. Can be secured.

(他の実施形態)
本発明の構成は、前記した実施形態のものに限定されることなく、それ以外の種々の構成を包含する。すなわち、前記の実施形態では、HCCI燃焼とSI燃焼との切換えの際のSCCI燃焼において、直噴インジェクタ18により活性化混合気を形成するための第1噴射を行うようにしているが、燃料性状によっては第1噴射が不要になる場合もある。
(Other embodiments)
The configuration of the present invention is not limited to the above-described embodiment, and includes various other configurations. That is, in the above-described embodiment, in the SCCI combustion at the time of switching between the HCCI combustion and the SI combustion, the first injection for forming the activated air-fuel mixture is performed by the direct injection injector 18. Depending on the case, the first injection may be unnecessary.

また、前記の実施形態では、予混合気を形成するための第2噴射を吸気行程で行うようにしているが、これはポートインジェクタ19によるものであるから、排気行程或いはそれ以前の膨張行程や圧縮行程で行うようにしてもよい。   In the above-described embodiment, the second injection for forming the premixed gas is performed in the intake stroke. However, since this is due to the port injector 19, the exhaust stroke or the expansion stroke before that is performed. You may make it carry out by a compression process.

或いはエンジン1にポートインジェクタ19を設けずに、直噴インジェクタ18のみにより第1、第2及び第3の噴射を行うようにすることもできる。但し、窒素酸化物の生成を抑制するという観点から第3噴射量は少量の方が好ましい一方で、エンジン1の最高出力を考慮して第2噴射量はかなり多くしなくてはならない場合があるから、両者を単一のインジェクタにより行うのは無理があり、前記実施形態のように流量特性の異なる2つのインジェクタ18,19を用いる方がよい。   Alternatively, the first injector, the second injector, and the third injector can be performed only by the direct injector 18 without providing the port injector 19 in the engine 1. However, from the viewpoint of suppressing the generation of nitrogen oxides, a small amount of the third injection amount is preferable, but the second injection amount may have to be considerably increased in consideration of the maximum output of the engine 1. Therefore, it is impossible to perform both with a single injector, and it is better to use two injectors 18 and 19 having different flow characteristics as in the above embodiment.

さらに、前記の実施形態では、吸排気弁11,12のリフト特性をVVL14及びVVT15の作動によって連続的に変更するようにしているが、これに限らず、リフト量及び位相角のいずれか一方は段階的に切換わるような構造としてもよい。また、吸排気弁11,12を個別に電磁アクチュエータによって開閉するような動弁機構を用いてもよいことは言うまでもない。   Furthermore, in the above-described embodiment, the lift characteristics of the intake and exhaust valves 11 and 12 are continuously changed by the operation of the VVL 14 and VVT 15, but not limited to this, either the lift amount or the phase angle is It is good also as a structure which switches in steps. Needless to say, a valve operating mechanism that opens and closes the intake and exhaust valves 11 and 12 individually by an electromagnetic actuator may be used.

以上、説明したように本発明は、HCCI燃焼とSI燃焼とを切換えて行うようにしたガソリンエンジンにおいて、その切換え過渡時の燃焼安定性を確保しながら、その際の排気エミッションの悪化も抑制することができるので、有用である。   As described above, according to the present invention, in a gasoline engine that switches between HCCI combustion and SI combustion, while ensuring combustion stability at the time of switching transition, it also suppresses deterioration of exhaust emission at that time. It is useful because it can.

本発明の実施形態に係るエンジン制御装置の全体構成を示す図である。It is a figure showing the whole engine control device composition concerning an embodiment of the present invention. 制御の概略を示すブロック図である。It is a block diagram which shows the outline of control. 吸排気弁のリフト特性の変化を示す説明図である。It is explanatory drawing which shows the change of the lift characteristic of an intake / exhaust valve. 燃焼状態を切換える制御マップの一例を示す説明図である。It is explanatory drawing which shows an example of the control map which switches a combustion state. HCCI燃焼のイメージ図である。It is an image figure of HCCI combustion. 2つのインジェクタによる燃料噴射の態様を示す説明図である。It is explanatory drawing which shows the aspect of the fuel injection by two injectors. 燃焼状態の切換えの判定手順を示すフローチャート図である。It is a flowchart figure which shows the determination procedure of switching of a combustion state. SI燃焼からHCCI燃焼への切換え過渡時の判定手順を示すフローチャート図である。It is a flowchart figure which shows the determination procedure at the time of the switching transition from SI combustion to HCCI combustion. HCCI燃焼からSI燃焼への切換え過渡時についての図8相当図である。FIG. 9 is a diagram corresponding to FIG. 8 at the time of switching transition from HCCI combustion to SI combustion. HCCI燃焼からSI燃焼への切換え過渡時における吸排気オーバーラップ、吸気弁リフト、EGR率、空燃比及び燃料噴射量のそれぞれの変化を示すタイムチャート図である。It is a time chart which shows each change of intake / exhaust overlap, intake valve lift, EGR rate, air-fuel ratio, and fuel injection amount at the time of switching transition from HCCI combustion to SI combustion.

符号の説明Explanation of symbols

A エンジン制御装置
1 ガソリンエンジン
2 気筒
9 吸気ポート
11 吸気弁
12 排気弁
16 点火プラグ
18 直噴インジェクタ(燃料噴射弁)
19 ポートインジェクタ(別のインジェクタ)
30 PCM(切換え過渡時制御手段)
A Engine control device 1 Gasoline engine 2 Cylinder 9 Intake port 11 Intake valve 12 Exhaust valve 16 Spark plug 18 Direct injection injector (fuel injection valve)
19 Port injector (another injector)
30 PCM (switching transient control means)

Claims (5)

気筒の排気行程ないし吸気行程において吸気弁及び排気弁の双方を閉じる負のオーバーラップ期間を設けて、既燃ガスを残留させ、圧縮行程の終盤以降において空燃比のリーンな予混合気を自己着火させる自己着火モードと、前記気筒内の略理論空燃比の予混合気に点火する火花点火モードと、のいずれかに切換えて、エンジンを運転するようにしたガソリンエンジンの制御装置であって、
エンジンには気筒内に燃料を直接、噴射する燃料噴射弁が設けられ、
前記自己着火モード及び火花点火モードのいずれか一方から他方への切換えに際して、前記負のオーバーラップ期間を設けるとともに、気筒内には略均一な予混合気を形成した後に前記燃料噴射弁により圧縮行程で燃料を噴射させて、点火プラグ周りに偏在する成層化混合気を形成し、この成層化混合気に点火して燃焼させることにより、予混合気の自己着火を誘発する切換え過渡時制御手段を備える
ことを特徴とするガソリンエンジンの制御装置。
In the exhaust stroke or intake stroke of the cylinder, a negative overlap period is provided to close both the intake valve and the exhaust valve so that the burned gas remains, and the air-fuel ratio lean premixed gas is self-ignited after the end of the compression stroke. A control device for a gasoline engine that is operated by switching between a self-ignition mode to be performed and a spark ignition mode for igniting a pre-air-fuel mixture having a substantially stoichiometric air-fuel ratio in the cylinder,
The engine is provided with a fuel injection valve that directly injects fuel into the cylinder,
When switching from one of the self-ignition mode and the spark ignition mode to the other, the negative overlap period is provided, and a compression stroke is generated by the fuel injection valve after a substantially uniform premixed gas is formed in the cylinder. In this case, the fuel is injected to form a stratified mixture that is unevenly distributed around the spark plug, and the stratified mixture is ignited and burned, thereby providing a switching transient control means for inducing self-ignition of the premixed mixture. A control device for a gasoline engine, comprising:
請求項1の制御装置において、
切換え過渡時制御手段は、モード切換えの際のエンジンの運転状態に応じて、相対的に高負荷側ないし高回転側ほど、切換え過渡時の制御を行う期間を短くするものであることを特徴とするガソリンエンジンの制御装置。
The control device according to claim 1,
The switching transition time control means is characterized in that the period during which the switching transition control is performed is shortened relatively toward the higher load side or higher rotation side according to the operating state of the engine at the time of mode switching. Gasoline engine control device.
請求項1又は2のいずれかの制御装置において、
切換え過渡時制御手段は、エンジンが低負荷低回転領域にあるとき、モード切換えに際して気筒内の残留既燃ガス量が所定以下になる期間は、略均一な予混合気の形成を行わずに燃料噴射弁により圧縮行程で燃料を噴射させ、点火プラグ周りの成層化混合気に点火して燃焼させるものであることを特徴とするガソリンエンジンの制御装置。
In the control device according to claim 1 or 2,
When the engine is in a low-load low-rotation region, the switching transition time control means performs fuel switching without forming a substantially uniform premixed gas during a period in which the amount of residual burned gas in the cylinder is below a predetermined level when switching the mode. A control apparatus for a gasoline engine, wherein fuel is injected by a compression stroke by an injection valve, and a stratified mixture around an ignition plug is ignited and burned.
請求項1〜3のいずれか1つ制御装置において、
切換え過渡時制御手段は、負のオーバーラップ期間において燃料噴射弁により気筒内に燃料を直接、噴射させて、着火性の高い活性化混合気を形成するものであることを特徴とするガソリンエンジンの制御装置。
The control device according to any one of claims 1 to 3,
The switching transition time control means directly injects fuel into a cylinder by a fuel injection valve during a negative overlap period to form an activated mixture with high ignitability. Control device.
請求項1〜4のいずれか1つ制御装置において、
吸気通路に燃料を噴射するように別の燃料噴射弁が設けられ、
切換え過渡時制御手段は、前記別の燃料噴射弁により燃料を噴射させて気筒内に略均一な予混合気を形成するものであることを特徴とするガソリンエンジンの制御装置。
The control device according to any one of claims 1 to 4,
Another fuel injection valve is provided to inject fuel into the intake passage,
The control device for a gasoline engine, wherein the switching transition time control means is configured to inject fuel by the separate fuel injection valve to form a substantially uniform premixed gas in the cylinder.
JP2007018981A 2007-01-30 2007-01-30 Control unit for gasoline engine Active JP4737103B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007018981A JP4737103B2 (en) 2007-01-30 2007-01-30 Control unit for gasoline engine
EP07025226A EP1953375A1 (en) 2007-01-30 2007-12-28 Method and computer program product of operating an internal combustion engine as well as engine operating system
US12/013,360 US7669578B2 (en) 2007-01-30 2008-01-11 Method of operating an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007018981A JP4737103B2 (en) 2007-01-30 2007-01-30 Control unit for gasoline engine

Publications (2)

Publication Number Publication Date
JP2008184968A true JP2008184968A (en) 2008-08-14
JP4737103B2 JP4737103B2 (en) 2011-07-27

Family

ID=39728184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007018981A Active JP4737103B2 (en) 2007-01-30 2007-01-30 Control unit for gasoline engine

Country Status (1)

Country Link
JP (1) JP4737103B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106773A (en) * 2008-10-30 2010-05-13 Hitachi Automotive Systems Ltd Controller for compression self-ignition type internal combustion engine
JP2011202590A (en) * 2010-03-25 2011-10-13 Honda Motor Co Ltd Control device for internal combustion engine
JP2011241716A (en) * 2010-05-17 2011-12-01 Mazda Motor Corp Device for control of spark-ignition type engine
JP2012062779A (en) * 2010-09-14 2012-03-29 Honda Motor Co Ltd Control device of internal combustion engine
JP2012072743A (en) * 2010-09-29 2012-04-12 Mazda Motor Corp Premixed compression self-ignition engine
CN102483007A (en) * 2009-06-26 2012-05-30 Mtu腓特烈港有限责任公司 Method for operating an internal combustion engine
JP2012172663A (en) * 2011-02-24 2012-09-10 Mazda Motor Corp Control device for spark ignition type gasoline engine
JP2012172662A (en) * 2011-02-24 2012-09-10 Mazda Motor Corp Control device for spark-ignited gasoline engine
JP2012207631A (en) * 2011-03-30 2012-10-25 Mazda Motor Corp Control device of spark ignition type gasoline engine
JP2012241592A (en) * 2011-05-18 2012-12-10 Mazda Motor Corp Gasoline engine
JP2013087705A (en) * 2011-10-19 2013-05-13 Toyota Motor Corp Control device for internal combustion engine
JP2013538983A (en) * 2010-10-07 2013-10-17 ダイムラー・アクチェンゲゼルシャフト Operation method with water jet
JP2014009630A (en) * 2012-06-29 2014-01-20 Mazda Motor Corp Fuel injection device of direct-injection engine
JP2016070173A (en) * 2014-09-30 2016-05-09 三菱自動車工業株式会社 Engine control device
JP2016089740A (en) * 2014-11-06 2016-05-23 スズキ株式会社 Fuel injection device
CN109555615A (en) * 2017-09-27 2019-04-02 马自达汽车株式会社 Engine with booster
EP3722581A1 (en) * 2019-04-11 2020-10-14 Mazda Motor Corporation Method and device for controlling internal combustion engine, and engine system
JP7435414B2 (en) 2020-11-13 2024-02-21 マツダ株式会社 engine system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6191837B2 (en) 2015-02-19 2017-09-06 マツダ株式会社 Engine control device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001152919A (en) * 1999-09-14 2001-06-05 Nissan Motor Co Ltd Compressed self-ignition gasoline engine
JP2001152914A (en) * 1999-09-10 2001-06-05 Toyota Motor Corp Combustion control device for internal combustion engine
JP2001193464A (en) * 1999-12-28 2001-07-17 Nissan Motor Co Ltd Compressed self-ignition gasoline internal combustion engine
JP2001263067A (en) * 2000-03-14 2001-09-26 Nissan Motor Co Ltd Compressed self-ignition type gasoline engine
JP2007016685A (en) * 2005-07-07 2007-01-25 Nissan Motor Co Ltd Internal combustion engine control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001152914A (en) * 1999-09-10 2001-06-05 Toyota Motor Corp Combustion control device for internal combustion engine
JP2001152919A (en) * 1999-09-14 2001-06-05 Nissan Motor Co Ltd Compressed self-ignition gasoline engine
JP2001193464A (en) * 1999-12-28 2001-07-17 Nissan Motor Co Ltd Compressed self-ignition gasoline internal combustion engine
JP2001263067A (en) * 2000-03-14 2001-09-26 Nissan Motor Co Ltd Compressed self-ignition type gasoline engine
JP2007016685A (en) * 2005-07-07 2007-01-25 Nissan Motor Co Ltd Internal combustion engine control device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106773A (en) * 2008-10-30 2010-05-13 Hitachi Automotive Systems Ltd Controller for compression self-ignition type internal combustion engine
CN102483007A (en) * 2009-06-26 2012-05-30 Mtu腓特烈港有限责任公司 Method for operating an internal combustion engine
JP2012530867A (en) * 2009-06-26 2012-12-06 エム・テー・ウー・フリードリッヒスハーフェン・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method of operating an internal combustion engine
JP2011202590A (en) * 2010-03-25 2011-10-13 Honda Motor Co Ltd Control device for internal combustion engine
JP2011241716A (en) * 2010-05-17 2011-12-01 Mazda Motor Corp Device for control of spark-ignition type engine
JP2012062779A (en) * 2010-09-14 2012-03-29 Honda Motor Co Ltd Control device of internal combustion engine
JP2012072743A (en) * 2010-09-29 2012-04-12 Mazda Motor Corp Premixed compression self-ignition engine
JP2013538983A (en) * 2010-10-07 2013-10-17 ダイムラー・アクチェンゲゼルシャフト Operation method with water jet
JP2012172663A (en) * 2011-02-24 2012-09-10 Mazda Motor Corp Control device for spark ignition type gasoline engine
JP2012172662A (en) * 2011-02-24 2012-09-10 Mazda Motor Corp Control device for spark-ignited gasoline engine
JP2012207631A (en) * 2011-03-30 2012-10-25 Mazda Motor Corp Control device of spark ignition type gasoline engine
JP2012241592A (en) * 2011-05-18 2012-12-10 Mazda Motor Corp Gasoline engine
JP2013087705A (en) * 2011-10-19 2013-05-13 Toyota Motor Corp Control device for internal combustion engine
JP2014009630A (en) * 2012-06-29 2014-01-20 Mazda Motor Corp Fuel injection device of direct-injection engine
JP2016070173A (en) * 2014-09-30 2016-05-09 三菱自動車工業株式会社 Engine control device
JP2016089740A (en) * 2014-11-06 2016-05-23 スズキ株式会社 Fuel injection device
US9897032B2 (en) 2014-11-06 2018-02-20 Suzuki Motor Corporation Fuel injection device
CN109555615A (en) * 2017-09-27 2019-04-02 马自达汽车株式会社 Engine with booster
US10914247B2 (en) 2017-09-27 2021-02-09 Mazda Motor Corporation Boosted engine with boost controller and control unit
EP3722581A1 (en) * 2019-04-11 2020-10-14 Mazda Motor Corporation Method and device for controlling internal combustion engine, and engine system
JP7435414B2 (en) 2020-11-13 2024-02-21 マツダ株式会社 engine system

Also Published As

Publication number Publication date
JP4737103B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
JP4737103B2 (en) Control unit for gasoline engine
US10914247B2 (en) Boosted engine with boost controller and control unit
US7669578B2 (en) Method of operating an internal combustion engine
JP4472932B2 (en) Engine combustion control device
US9702316B2 (en) Spark-ignition direct injection engine
KR101693895B1 (en) Variable ignition type engine for complex combustion using diesel and gasoline, method for controlling of the same and complex combustion system using diesel and gasoline
US9932916B2 (en) Combustion control apparatus for internal combustion engine
JP6056776B2 (en) Control device for internal combustion engine
US20100242901A1 (en) Control of internal combustion engine
JP3849703B2 (en) Diesel engine control device
WO2012124573A1 (en) Fuel injection device
WO2006090884A1 (en) Inernal combustion engine
JP6252647B1 (en) Control device for premixed compression ignition engine
JP6056775B2 (en) Control device for internal combustion engine
JP5040772B2 (en) Engine intake valve control method and intake valve control apparatus
JP2020176572A (en) Control device of premixing compression ignition-type engine
JP2018105150A (en) Control device of internal combustion engine
JP2018040263A (en) Control device for internal combustion engine
JP2009085175A (en) Control device for gasoline engine
JP2010196517A (en) Control device for internal combustion engine
JP6432635B2 (en) Control device for compression self-ignition engine
JP2008184970A (en) Control device of gasoline engine
JP2014185624A (en) Control device of spark ignition type engine
JP2011058372A (en) Control method for engine, and control device for the same
JP2006052686A (en) Control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4737103

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3