JP2008184964A - Plasma ignition device - Google Patents

Plasma ignition device Download PDF

Info

Publication number
JP2008184964A
JP2008184964A JP2007018685A JP2007018685A JP2008184964A JP 2008184964 A JP2008184964 A JP 2008184964A JP 2007018685 A JP2007018685 A JP 2007018685A JP 2007018685 A JP2007018685 A JP 2007018685A JP 2008184964 A JP2008184964 A JP 2008184964A
Authority
JP
Japan
Prior art keywords
plasma
ground electrode
ignition device
plasma ignition
discharge space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007018685A
Other languages
Japanese (ja)
Other versions
JP4582097B2 (en
Inventor
Hideyuki Kato
秀幸 加藤
Toru Yoshinaga
融 吉永
Koshin Tani
康臣 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007018685A priority Critical patent/JP4582097B2/en
Priority to DE200710055873 priority patent/DE102007055873A1/en
Publication of JP2008184964A publication Critical patent/JP2008184964A/en
Application granted granted Critical
Publication of JP4582097B2 publication Critical patent/JP4582097B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/50Sparking plugs having means for ionisation of gap

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)
  • Spark Plugs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma ignition device stabilizing an ignition direction of plasma gas and having excellent ignitability. <P>SOLUTION: The plasma ignition device 1 is installed on an internal combustion engine, and is provided with: a plasma ignition plug 10 provided with an insulation member 120 insulating a center electrode 110 and a ground electrode 131; and high voltage power sources 20, 30 applying high voltage on the plasma ignition plug 10. Gas in an electric discharge space 140 with an inner wall part 126 provided in the insulation member 120 is put into a high temperature and high voltage plasma condition by high voltage applied between the center electrode 110 and the ground electrode 131, the gas is injected into the internal combustion engine 40 and is ignited. A turn imparting mechanism part 160 is provided on the inner wall part 126 of the electric discharge space 140 to inject gas under the plasma condition while imparting turning. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、内燃機関の点火に用いられるプラズマ式点火装置におけるプラズマ状態気体の噴射安定化に関するものである。   The present invention relates to stabilization of plasma state gas injection in a plasma ignition device used for ignition of an internal combustion engine.

自動車エンジン等の内燃機関において、図8に示すようなプラズマ式点火装置1iでは、エンジンヘッド40に装着されたプラズマ式点火プラグ10iの中心電極110と接地電極131iとの間に放電用電源20から高電圧を印加し、中心電極110と接地電極131iと絶縁部材120iとによって形成された放電空間140i内で放電が開始される瞬間に、プラズマ発生用電源30から大電流を供給して、放電空間140i内の気体を高温高圧のプラズマ状態にして、プラズマ式点火プラグ10iの先端開口部132iから噴射して点火をおこなうことができる。
プラズマ式点火装置1iから噴射されるプラズマ状態の気体は、指向性に富み、かつ容積的に大きな範囲で数千から数万Kの極めて高い温度域を持つので、直噴エンジンの燃焼において希薄な混合気を燃焼させるため、混合気中の燃料濃度の高い部分を狙い打ちして燃焼を容易にする成層燃焼への応用が期待されている。
In an internal combustion engine such as an automobile engine, in a plasma ignition device 1i as shown in FIG. 8, a discharge power source 20 is provided between a center electrode 110 and a ground electrode 131i of a plasma ignition plug 10i attached to the engine head 40. When a high voltage is applied and a discharge is started in the discharge space 140i formed by the center electrode 110, the ground electrode 131i, and the insulating member 120i, a large current is supplied from the plasma generating power source 30 to discharge the discharge space. The gas in 140i can be made into a high-temperature and high-pressure plasma state, and can be ignited by being injected from the tip opening 132i of the plasma spark plug 10i.
The plasma state gas injected from the plasma ignition device 1i is rich in directivity and has a very high temperature range of several thousand to several tens of thousands K in a large volumetric range, so that it is rare in combustion of a direct injection engine. In order to burn the air-fuel mixture, it is expected to be applied to stratified combustion that makes combustion easy by aiming at a portion having a high fuel concentration in the air-fuel mixture.

この様なプラズマ式点火装置として、特許文献1には、中心電極の汚染を防止すべく、中心電極と中心に該中心電極を保持し縦に伸びる挿入孔を設けた絶縁部材と該絶縁部材を覆い下端に挿入孔と連通する開口を設けた接地電極とによって構成し、上記挿入孔内に放電ギャップを形成した表面ギャップ型点火プラグが開示されている。
米国特許第3581141号明細書
As such a plasma ignition device, Patent Document 1 discloses an insulating member provided with an insertion hole extending vertically and holding the center electrode at the center in order to prevent contamination of the center electrode and the insulating member. A surface gap type spark plug is disclosed which is constituted by a ground electrode provided with an opening communicating with the insertion hole at the lower end of the cover, and in which a discharge gap is formed in the insertion hole.
US Pat. No. 3,581,141

ところで、従来のプラズマ式点火装置1iでは、図7(a)、(b)、(c)に示すように点火の度ごとに放電経路A、B、Cが異なるので、放電空間140i内に放出される電子51の濃度に分布が生じ、発生する陽イオン50の濃度に分布が生じる。
また、噴射後に放電空間140i内に残留する気体量も一定ではないと推察される。
この為、プラズマ状態気体の噴射方向A、B、Cも点火の度ごとに変動し、内燃機関の着火性に影響を及ぼす虞がある。
By the way, in the conventional plasma ignition device 1i, as shown in FIGS. 7A, 7B, and 7C, the discharge paths A, B, and C differ depending on the degree of ignition, so that they are discharged into the discharge space 140i. Distribution occurs in the concentration of the generated electrons 51, and distribution occurs in the concentration of the generated cations 50.
Further, it is assumed that the amount of gas remaining in the discharge space 140i after injection is not constant.
For this reason, the injection directions A, B, and C of the plasma state gas also vary with the degree of ignition, which may affect the ignitability of the internal combustion engine.

そこで、本願発明は、かかる実情に鑑み、プラズマ式点火装置において、プラズマ状態気体の噴射方向を安定化し、着火性に優れたプラズマ式点火装置を提供することを目的とするものである。   Therefore, in view of such circumstances, the present invention has an object to provide a plasma ignition device that stabilizes the injection direction of the plasma state gas and has excellent ignitability in the plasma ignition device.

請求項1の発明では、内燃機関に装着され、中心電極と接地電極との間を絶縁する絶縁部材が配設されたプラズマ式点火プラグと、中心電極と接地電極との間に高電圧を印加する高電圧電源と、を具備し、高電圧の印加によって、絶縁部材内に内壁部を有して形成された放電空間内の気体を高温高圧のプラズマ状態にして内燃機関内に噴射して点火するプラズマ式点火装置において、内壁部の表面部位には、放電空間より噴出されるプラズマ状態の気体が旋回しながら噴射すように形成される旋回付与機構部を具備する。   According to the first aspect of the present invention, a high voltage is applied between the center electrode and the ground electrode, and the plasma ignition plug mounted on the internal combustion engine and provided with an insulating member that insulates between the center electrode and the ground electrode. A high-voltage power supply, and by applying a high voltage, the gas in the discharge space formed with the inner wall portion in the insulating member is turned into a high-temperature and high-pressure plasma state and injected into the internal combustion engine for ignition. In the plasma ignition device, the surface portion of the inner wall portion includes a turning imparting mechanism portion that is formed so that a gas in a plasma state ejected from the discharge space is ejected while swirling.

請求項1の発明によれば、放電空間内に発生したプラズマ状態の気体が旋回しながら噴射されるので、旋回によるジャイロ効果によって、噴射方向の直進性が向上する。従って、希薄混合気の成層燃焼において、点火源となるプラズマ火炎核を精度よく狙い打ちすることが可能となり、プラズマ式点火装置による着火を安定化することができる。   According to the first aspect of the present invention, since the plasma state gas generated in the discharge space is jetted while turning, the straightness in the injection direction is improved by the gyro effect by the turning. Therefore, in the stratified combustion of the lean air-fuel mixture, it is possible to accurately aim at the plasma flame nucleus serving as the ignition source, and the ignition by the plasma ignition device can be stabilized.

請求項2の発明では、旋回付与機構部は、中心電極側から接地電極側に向かって放電空間内を噴出するプラズマ状態の気体の噴出方向に対し、所定角度に傾斜させて設けられ、表面部位に凹状に形成される凹条部、または、表面部位に凸状に形成される凸条部の少なくともいずれかである。   In the invention of claim 2, the swivel imparting mechanism portion is provided to be inclined at a predetermined angle with respect to the ejection direction of the gas in a plasma state ejecting from the center electrode side toward the ground electrode side in the discharge space. Or at least one of a ridge formed in a convex shape on the surface portion.

請求項2の発明によれば、プラズマ状態の気体が放電空間内から噴射されるときに、内壁部に形成された凸条部、または、凹条部に沿って、プラズマ状態気体の噴射方向が整流される。
また、凸条部、または、凹条部は、絶縁部材の内壁表面の軸方向に対して所定の角度に傾斜させて形成されているので、プラズマ状態気体の噴射力を大きく減衰することなく旋回力を与えることが可能となる。
According to the invention of claim 2, when the plasma state gas is injected from the inside of the discharge space, the plasma state gas is injected along the protruding strip portion or the recessed strip portion formed on the inner wall portion. Rectified.
Further, since the ridge portion or the ridge portion is formed to be inclined at a predetermined angle with respect to the axial direction of the inner wall surface of the insulating member, the ridge portion or the ridge portion is swirled without greatly reducing the plasma state gas injection force. It becomes possible to give power.

請求項3の発明では、凹条部、または、凸条部を、1条あるいは多数条の螺旋状に形成する。   In the invention of claim 3, the concave strip portion or the convex strip portion is formed in a single or multiple spiral form.

請求項3の発明によれば、プラズマ状態気体の噴射方向がより滑らかに整流するので、プラズマ状態気体の噴射力を大きく減衰することなく、強い旋回力を与えることが可能となる。
従って、更にプラズマ状態気体噴射の直進性が向上し、プラズマ式点火装置の着火安定性を更に向上することができる。
According to the invention of claim 3, since the injection direction of the plasma state gas rectifies more smoothly, a strong turning force can be applied without significantly reducing the injection force of the plasma state gas.
Therefore, the straightness of the plasma state gas injection is further improved, and the ignition stability of the plasma ignition device can be further improved.

請求項4の発明では、凹条部、または、凸条部を、放電空間の内周方向の形成領域に対して、形成する領域としての形成領域と、形成しない領域としての形成領域以外の非形成領域とを設定する。   In the invention of claim 4, the recess or protrusion is formed with respect to the formation area in the inner circumferential direction of the discharge space, and the non-formation area other than the formation area as the formation area is not formed. The formation area is set.

プラズマ状態の気体は、旋回付与機構部により、整流される反面、その噴出力が弱められてしまう。
そこで、請求項4の発明にあるように、形成領域と非形成領域とを区分けて設けることにより、噴出力とプラズマ状態の気体の旋回力とのバランスを調整することができる。
従って、内燃機関の特性に応じて、最適の噴射条件を設定することが可能となり、プラズマ式点火装置の着火安定性を更に向上することができる。
The gas in the plasma state is rectified by the turning imparting mechanism, but the jet power is weakened.
Therefore, as in the invention of claim 4, by providing the formation region and the non-formation region separately, the balance between the jet power and the turning force of the gas in the plasma state can be adjusted.
Therefore, it is possible to set an optimal injection condition according to the characteristics of the internal combustion engine, and the ignition stability of the plasma ignition device can be further improved.

請求項5の発明では、非形成領域は、内壁部の表面部位に、中心電極側から接地電極側に向かって該非形成領域のみが連なるように形成される。   In the invention of claim 5, the non-formation region is formed on the surface portion of the inner wall portion so that only the non-formation region continues from the center electrode side to the ground electrode side.

請求項5の発明によれば、非形成領域は、中心電極側から接地電極側に向かって該非形成領域のみが軸方向に連なって設けられる構成としたので、プラズマ状態の気体の旋回力を所定量確保しながら、中心電極側から接地電極側に向かって噴出するプラズマ状態の気体の噴出力を増強させることができる。
従って、プラズマ式点火装置において、更に狙い打ち精度が向上する。
According to the invention of claim 5, since the non-formation region is configured such that only the non-formation region is provided continuously in the axial direction from the center electrode side to the ground electrode side, the swirl force of the plasma state gas is controlled. While ensuring the fixed quantity, it is possible to enhance the jet power of the gas in the plasma state that is jetted from the center electrode side toward the ground electrode side.
Therefore, the aiming accuracy is further improved in the plasma ignition device.

請求項6の発明では、旋回付与機構部は、上記放電空間の軸方向に対する該旋回付与機構部の形成領域につき、この形成領域を形成しない領域を中心電極側とし、この形成領域を形成する領域を上記接地電極側として区分けて設定する。   In a sixth aspect of the present invention, the swivel imparting mechanism section is a region where the formation area of the swivel imparting mechanism section with respect to the axial direction of the discharge space is defined as an area where the formation area is not formed, and the formation area is formed. Are set separately on the ground electrode side.

請求項6の発明によれば、中心電極側でプラズマ化した気体が抵抗を受けないので、接地電極方向へ向かう噴射力を確保し、接地電極側で旋回付与機構部によって旋回力を確保することができる。
従って、プラズマ式点火装置において、更に狙い打ち精度が向上する。
According to the invention of claim 6, since the gas converted into plasma on the center electrode side does not receive resistance, the injection force toward the ground electrode is ensured, and the turning force is secured on the ground electrode side by the turning imparting mechanism section. Can do.
Therefore, the aiming accuracy is further improved in the plasma ignition device.

請求項7の発明では、絶縁部材は、軸状に形成した上記中心電極の外周を覆い、かつ上記中心電極の先端面よりも下方に伸びる筒状に形成され、接地電極は、絶縁部材の外周を覆い、かつ、先端が放電空間の中心に向かって屈曲して、絶縁部材の内径と連通する接地電極開口部を有する有底筒状に形成される。   According to a seventh aspect of the invention, the insulating member is formed in a cylindrical shape that covers the outer periphery of the central electrode formed in the shape of a shaft and extends downward from the tip surface of the central electrode, and the ground electrode is the outer periphery of the insulating member And the tip is bent toward the center of the discharge space, and is formed in a bottomed cylindrical shape having a ground electrode opening communicating with the inner diameter of the insulating member.

請求項7の発明によれば、絶縁部材内部に放電空間を形成したプラズマ式点火装置の実現が可能となる。   According to the invention of claim 7, it is possible to realize a plasma ignition device in which a discharge space is formed in the insulating member.

以下、本発明の第1の実施形態について、図1〜2を参照して説明する。
図1は、本発明の第1の実施形態におけるプラズマ点火装置1の構成を示す。
図2(a)、(b)は、本発明に適用される回路図である。
図1に示すように、プラズマ式点火装置1は、プラズマ式点火プラグ10と高電圧電源として放電用電源20とプラズマ発生用電源30とで構成されている。
プラズマ式点火プラグ10は、軸状の中心電極110と上記中心電極110を絶縁保持する筒状の絶縁部材120と絶縁部材120を覆う有底筒状の金属製のハウジング130と、ハウジング130に先端に設けられた接地電極131とで構成され、絶縁部材120の内壁部126には後述する旋回付与機構部として螺旋状に溝が穿設され凹条部160を形成している。
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 shows a configuration of a plasma ignition device 1 according to a first embodiment of the present invention.
2A and 2B are circuit diagrams applied to the present invention.
As shown in FIG. 1, the plasma ignition device 1 includes a plasma ignition plug 10 and a discharge power source 20 and a plasma generation power source 30 as a high voltage power source.
The plasma spark plug 10 includes an axial center electrode 110, a cylindrical insulating member 120 that insulates and holds the center electrode 110, a bottomed cylindrical metal housing 130 that covers the insulating member 120, and a distal end of the housing 130. The inner wall 126 of the insulating member 120 is spirally grooved as a turning imparting mechanism to be described later to form a concave portion 160.

中心電極110の先端側は高融点の導電性材料によって形成され、内部には鉄鋼材料等の良電導性で高熱伝導性の金属材料からなる中心電極中軸111が形成され、基端側には絶縁部材120から露出し外部の放電用電源20とプラズマ発生用電源30とに接続される中心電極端子部112が形成されている。   The distal end side of the center electrode 110 is formed of a conductive material having a high melting point, and a central electrode middle shaft 111 made of a metal material having good electrical conductivity and high thermal conductivity such as a steel material is formed inside, and an insulation is formed on the proximal end side. A center electrode terminal portion 112 exposed from the member 120 and connected to the external discharge power source 20 and the plasma generation power source 30 is formed.

絶縁部材120は耐熱性、機械的強度、高温における絶縁耐力、熱伝導率などに優れた高純度のアルミナ等からなり、略筒状に形成されている。
絶縁部材120の先端側は中心電極110の先端面より下方に伸びる筒状の放電空間140を形成し、基端側は中心電極120とハウジング130とを絶縁し、高電圧が上記電極以外に逃げるのを防止する絶縁部材頭部121が形成されている。
The insulating member 120 is made of high-purity alumina or the like excellent in heat resistance, mechanical strength, high-temperature dielectric strength, thermal conductivity, and the like, and is formed in a substantially cylindrical shape.
The distal end side of the insulating member 120 forms a cylindrical discharge space 140 extending downward from the distal end surface of the central electrode 110, and the proximal end side insulates the central electrode 120 and the housing 130, so that a high voltage escapes to other than the above electrodes. An insulating member head 121 is formed to prevent this.

ハウジング130の先端には、絶縁部材120を覆い、先端が内側に向かって屈曲する環状の接地電極131が形成されている。
接地電極131には接地電極開口部132が形成され、接地電極開口部132の先端には先端に向かって径大となるテーパ133が形成されている。
An annular ground electrode 131 that covers the insulating member 120 and is bent toward the inside is formed at the tip of the housing 130.
A ground electrode opening 132 is formed in the ground electrode 131, and a taper 133 having a diameter increasing toward the tip is formed at the tip of the ground electrode opening 132.

ハウジング130は、導電性金属材料からなり、接地電極131は、高融点、高硬度、高熱伝導率の導電性金属材料または導電性セラミック材料等からなる。
ハウジング130の中腹外周部には、図略の内燃機関内に接地電極131が露出するように内燃機関のエンジンブロック40に固定するとともにハウジング130とエンジンブロック40とを電気的に接地状態とするためのハウジングネジ部134が形成されている。
ハウジング130の基端側外周部にはネジ部134を締め付けるためのハウジング六角部135が形成されている。
The housing 130 is made of a conductive metal material, and the ground electrode 131 is made of a conductive metal material or a conductive ceramic material having a high melting point, high hardness, and high thermal conductivity.
The housing 130 is fixed to the engine block 40 of the internal combustion engine so that the ground electrode 131 is exposed in the internal combustion engine (not shown), and the housing 130 and the engine block 40 are electrically grounded. The housing screw portion 134 is formed.
A housing hexagonal portion 135 for tightening the screw portion 134 is formed on the outer peripheral portion on the proximal end side of the housing 130.

放電空間140を構成する絶縁部材120の内壁部126の表面には、旋回付与機構部として、放電空間に対向して凹陥する溝を、中心電極側110側から接地電極131に向かって伸びる螺旋状に形成した凹条部160が設けられている。   On the surface of the inner wall portion 126 of the insulating member 120 constituting the discharge space 140, a groove that is recessed facing the discharge space as a turning imparting mechanism portion extends in a spiral shape extending from the central electrode side 110 side toward the ground electrode 131. A concave line portion 160 formed in the above is provided.

図2(a)は、プラズマ式点火プラグ10の中心電極110を陰極とし、接地電極131を陽極として高電圧を印加する回路を示し、図2(b)はプラズマ式点火プラグ10の中心電極110を陽極とし、接地電極131を陰極として高電圧を印加する回路を示し、本発明はいずれの回路も適用し得るものである。   2A shows a circuit for applying a high voltage using the center electrode 110 of the plasma spark plug 10 as a cathode and the ground electrode 131 as an anode, and FIG. 2B shows the center electrode 110 of the plasma spark plug 10. Is a positive electrode and a ground electrode 131 is a negative electrode to apply a high voltage, and the present invention can be applied to any circuit.

放電用電源20は、第1バッテリ21、イグニッションキー22、点火コイル23、トランジスタからなるイグナイタ24、電子制御装置25によって構成され、整流素子26を介してプラズマ式点火プラグ10に接続されている。 第1バッテリ21は陰極側が接地されている。   The discharge power source 20 includes a first battery 21, an ignition key 22, an ignition coil 23, an igniter 24 including a transistor, and an electronic control unit 25, and is connected to the plasma ignition plug 10 via a rectifying element 26. The first battery 21 is grounded on the cathode side.

プラズマ発生用電源30は、第2バッテリ31、抵抗体32、プラズマ発生用コンデンサ33によって構成され、整流素子34を介してプラズマ式点火プラグ10に接続されている。第2バッテリ31は、陽極側が接地されている。   The plasma generating power source 30 includes a second battery 31, a resistor 32, and a plasma generating capacitor 33, and is connected to the plasma ignition plug 10 via a rectifying element 34. The second battery 31 is grounded on the anode side.

イグニッションスイッチ22が投入され、ECU25からの点火信号により、第1バッテリ21から低電圧で正の一次電圧が点火コイル23の一次コイル231に印加され、イグナイタ24のスイッチングによって一次電圧が遮断されると、点火コイル23内の磁界が変化し、自己誘導作用により点火コイル23の二次コイル232に−10〜−30kVの負の二次電圧が誘起される。
一方、第2バッテリ31によりプラズマ発生用コンデンサ33が充電される(例えば、−450V、120A)。
印加された上記二次電圧が中心電極110と接地電極131との間の放電電圧を超えると両電極間に放電が開始され、放電空間140内の気体が小領域でプラズマ状態となる。このプラズマ状態の気体は、導電性を有し、プラズマ発生用コンデンサ33の両極間に蓄えられた電荷の放電を引き起こし、放電空間140内の気体の更なるプラズマ状態化を誘発、領域を拡大する。このプラズマ状態の気体は、高温・高圧となり、内燃機関の燃焼室内へ噴射される。
When the ignition switch 22 is turned on, a low positive primary voltage is applied from the first battery 21 to the primary coil 231 of the ignition coil 23 by the ignition signal from the ECU 25, and the primary voltage is cut off by the switching of the igniter 24. The magnetic field in the ignition coil 23 changes, and a negative secondary voltage of −10 to −30 kV is induced in the secondary coil 232 of the ignition coil 23 by the self-induction action.
On the other hand, the plasma generating capacitor 33 is charged by the second battery 31 (for example, −450 V, 120 A).
When the applied secondary voltage exceeds the discharge voltage between the center electrode 110 and the ground electrode 131, a discharge is started between both electrodes, and the gas in the discharge space 140 becomes a plasma state in a small region. The gas in the plasma state has electrical conductivity, causes discharge of electric charges stored between both electrodes of the plasma generating capacitor 33, induces further gas state of the gas in the discharge space 140, and expands the region. . This plasma state gas becomes high temperature and high pressure and is injected into the combustion chamber of the internal combustion engine.

この時発生する高温・高圧のプラズマ状態気体142の噴射に対する本発明の効果を、図3を参照して説明する。
中心電極110と絶縁部材120と接地電極131とで形成された放電空間140内の気体がプラズマ発生用電源30からの大電流の放出によりプラズマ状態となり、体積が急激に膨張する。
放電空間140の基端側は中心電極110によって封止されているので、接地電極131に設けられた開口部132方向への流れが形成される。
この時、絶縁部材120の内壁部126の表面に螺旋状に形成された凹溝状の凹条部160内に沿ってプラズマ状態気体の流れが整流される。
この流れが、旋回力となって高温・高圧のプラズマ状態気体142を回転しながら噴射する。
プラズマ式点火プラグ10から噴射されたプラズマ状態気体142は、回転しているためにジャイロ効果が生まれ直進する。
放電経路が点火の度ごとに変わるので、放電空間140内の電離気体の分布が変わるが、放電空間内140で回転することにより、常に一定の方向へ噴射することができる。
また、噴射直後には、放電空間140内に空気が回転しながら入れ替わるので、毎回安定したプラズマ状態気体の噴射が得られる。
The effect of the present invention on the injection of the high-temperature and high-pressure plasma state gas 142 generated at this time will be described with reference to FIG.
The gas in the discharge space 140 formed by the center electrode 110, the insulating member 120, and the ground electrode 131 becomes a plasma state due to the discharge of a large current from the plasma generating power source 30, and the volume rapidly expands.
Since the proximal end side of the discharge space 140 is sealed by the center electrode 110, a flow in the direction of the opening 132 provided in the ground electrode 131 is formed.
At this time, the flow of the plasma state gas is rectified along the concave groove 160 formed in a spiral shape on the surface of the inner wall 126 of the insulating member 120.
This flow becomes a swirl force and jets while rotating the high temperature / high pressure plasma state gas 142.
Since the plasma state gas 142 injected from the plasma type spark plug 10 is rotating, a gyro effect is produced and it goes straight.
Since the discharge path changes with each ignition, the distribution of ionized gas in the discharge space 140 changes. However, by rotating in the discharge space 140, it is always possible to inject in a certain direction.
Further, immediately after the injection, air is exchanged in the discharge space 140 while rotating, so that stable plasma state gas injection can be obtained each time.

図4に本発明の第2の実施形態における要部断面を示す。本実施形態において基本となる構造は第1の実施形態と同様であり、同じ構成については同じ符号を付したので説明を省略する(以下において同じ)。
本実施形態においては、旋回付与機構部として、絶縁部材120の内壁部126の表面に中心電極110側から接地電極131側に向かって螺旋状に伸び、放電空間140に向かって突出する凸条部160bを設けた。
凸条部160bが障壁となり、凸条部160bに挟まれた空間に流路が形成され、放電空間140内に発生したプラズマ状態気体に旋回力が発生し、第1の実施形態と同様にプラズマ状態気体142が回転しながら噴射される。
FIG. 4 shows a cross section of the main part in the second embodiment of the present invention. The basic structure in this embodiment is the same as that of the first embodiment, and the same components are denoted by the same reference numerals, and the description thereof will be omitted (the same applies hereinafter).
In the present embodiment, as the swivel imparting mechanism portion, a ridge that extends spirally from the center electrode 110 side toward the ground electrode 131 side on the surface of the inner wall portion 126 of the insulating member 120 and projects toward the discharge space 140. 160b was provided.
The ridge 160b serves as a barrier, a flow path is formed in the space sandwiched between the ridges 160b, and a swirling force is generated in the plasma state gas generated in the discharge space 140, and plasma is generated as in the first embodiment. The state gas 142 is injected while rotating.

図5(a)、(b)、(c)、(d)にそれぞれ本発明の第3、4、5、6の実施形態をしめす。
第3の実施形態においては、図5(a)に示すように螺旋状の凸条部160cを絶縁部材120の内壁部126のみならず接地電極131の内壁部132に螺旋が連続するように設ける。放電空間140の内壁全体に旋回付与機構部が設けられることでプラズマ噴流の回転力が増し、更に直進性が安定すると考えられる。
また、本実施形態において旋回付与機構部は凹条部で構成しても良い。
FIGS. 5 (a), (b), (c) and (d) show third, fourth, fifth and sixth embodiments of the present invention, respectively.
In the third embodiment, as shown in FIG. 5A, the spiral ridge 160c is provided not only on the inner wall 126 of the insulating member 120 but also on the inner wall 132 of the ground electrode 131. . It is considered that the rotation imparting mechanism is provided on the entire inner wall of the discharge space 140, thereby increasing the rotational force of the plasma jet and further stabilizing the straightness.
Moreover, in this embodiment, you may comprise a rotation provision mechanism part with a concave-line part.

第4の実施形態においては、図5(b)に示すように、放電空間140内壁の周方向に対して非形成領域として部分的に断続するように凸条部160dを設ける。
放電空間140内壁の周方向に対して旋回付与をしない領域を設けることで、第3の実施形態に比べて旋回力は低下するが、噴射圧力を高くし、到達距離を長くすることができると考えられる。
従って、適用される内燃機関の容量、成層燃焼の発生位置等の条件に応じた最適な旋回力と噴射力とのバランス調整が期待できる。
また、本実施形態において当然の事ながら旋回付与機構部は凹条部で構成しても良い。
In the fourth embodiment, as shown in FIG. 5 (b), the ridge 160 d is provided so as to be partially interrupted as a non-formed region with respect to the circumferential direction of the inner wall of the discharge space 140.
By providing a region that does not impart turning to the circumferential direction of the inner wall of the discharge space 140, the turning force is reduced as compared to the third embodiment, but the injection pressure can be increased and the reach distance can be increased. Conceivable.
Accordingly, it is possible to expect an optimal balance between the turning force and the injection force in accordance with conditions such as the capacity of the internal combustion engine to be applied and the generation position of stratified combustion.
In the present embodiment, as a matter of course, the turning imparting mechanism portion may be constituted by a concave portion.

第5の実施形態においては、図5(c)に示すように、放電空間140内壁の周方向に対して非形成領域を、内壁部の表面部位に、中心電極側110から接地電極側131に向かって該領域(非形成領域)のみが連なるように部分的に断続して凸条部160dを設ける。
放電空間140内壁の周方向に対して旋回付与をしない領域が、軸方向に連なるように設けることで、噴射圧力の低減をより抑え、到達距離を長くすることができると考えられる。
従って、更にねらい打ち精度を高くしたプラズマ状態の気体の噴射が期待できる。
また、本実施形態において当然の事ながら旋回付与機構部は凹条部で構成しても良い。
In the fifth embodiment, as shown in FIG. 5C, the non-formation region with respect to the circumferential direction of the inner wall of the discharge space 140 is formed on the surface portion of the inner wall portion from the center electrode side 110 to the ground electrode side 131. A convex strip 160d is provided by being partially interrupted so that only the region (non-formed region) continues.
It is considered that the reduction of the injection pressure can be further suppressed and the reach distance can be lengthened by providing the region where the rotation is not imparted with respect to the circumferential direction of the inner wall of the discharge space 140 so as to be continuous in the axial direction.
Therefore, it is possible to expect the injection of plasma gas with higher aiming accuracy.
In the present embodiment, as a matter of course, the turning imparting mechanism portion may be constituted by a concave portion.

第6の実施形態においては、放電空間140の内壁部126の軸方向に対して非形成領域を設定して、凸条部160eを設ける。
放電空間140内壁の軸方向に対して中心電極110に近い位置に旋回付与をしない領域を設けることで、軸方向への噴射推進力の低下を防止できる。
また、接地電極131に近い位置に旋回付与をしない領域を設けることで、接地電極開口部132での抵抗を小さくし、噴射時の乱れを防止できる。
従って、放電空間140内壁の軸方向に対して部分的に断続するように凸条部160eを設けることで、適用される内燃機関の容量、成層燃焼の発生位置等の条件に応じて旋回力と噴射力とのバランスを適宜調整できると考えられる。
また、本実施形態において旋回付与機構部は凹条部で構成しても良い。
In the sixth embodiment, the non-formation region is set with respect to the axial direction of the inner wall portion 126 of the discharge space 140, and the ridge 160e is provided.
By providing a region where no turning is provided at a position close to the center electrode 110 with respect to the axial direction of the inner wall of the discharge space 140, it is possible to prevent a reduction in the jet driving force in the axial direction.
Further, by providing a region where no turning is provided at a position close to the ground electrode 131, resistance at the ground electrode opening 132 can be reduced, and disturbance during injection can be prevented.
Therefore, by providing the protruding portion 160e so as to be partially interrupted with respect to the axial direction of the inner wall of the discharge space 140, the swirl force and It is considered that the balance with the injection force can be adjusted as appropriate.
Moreover, in this embodiment, you may comprise a rotation provision mechanism part with a concave-line part.

図6(a)、(b)、(c)に、それぞれ本発明の第7、8、9の実施形態を示す。
第7の実施形態においては、絶縁部材120と接地電極131との境界に例えば酸化錫とハフニウムとからなる半導体部150fを設け、旋回付与機構部として、中心電極110側から接地電極131側に向かって螺旋状に伸びる凸条部160fを絶縁部材120の内壁部126表面と半導体部150fの表面と接地電極131の開口部132の表面とに渡って設ける。
第2の実施形態と同様、旋回付与効果が大きく噴射の直進性が向上するのに加え、半導体部150fは電子を放出しやすく、放電経路が絶縁部材120の内壁から浮き上がるので、チャネリングを形成し難くなり、プラズマ噴射の安定性が更に向上する。
また、本実施形態においては、図2(b)に示す回路を用いるのがより好ましい。接地電極131側が陰極となり、接地電極131に当接する半導体部150fから電子の放出が容易となる。
従って放電電圧が安定し、プラズマ状態の気体の噴射性能がより安定する。
更に、本実施形態において旋回付与機構部は凹条部で構成しても良い。
FIGS. 6 (a), (b), and (c) show seventh, eighth, and ninth embodiments of the present invention, respectively.
In the seventh embodiment, a semiconductor portion 150f made of, for example, tin oxide and hafnium is provided at the boundary between the insulating member 120 and the ground electrode 131, and the turning imparting mechanism portion is directed from the center electrode 110 side toward the ground electrode 131 side. A protruding strip 160 f extending in a spiral shape is provided across the surface of the inner wall 126 of the insulating member 120, the surface of the semiconductor portion 150 f, and the surface of the opening 132 of the ground electrode 131.
Similar to the second embodiment, the swirl imparting effect is great and the straightness of the jet is improved. In addition, the semiconductor part 150f easily emits electrons, and the discharge path is lifted from the inner wall of the insulating member 120, thereby forming channeling. It becomes difficult and the stability of plasma injection is further improved.
In the present embodiment, it is more preferable to use the circuit shown in FIG. The ground electrode 131 side becomes a cathode, and electrons can be easily emitted from the semiconductor portion 150f in contact with the ground electrode 131.
Accordingly, the discharge voltage is stabilized, and the gas injection performance of the plasma state is further stabilized.
Further, in the present embodiment, the turning imparting mechanism part may be constituted by a concave line part.

第8の実施形態においては、絶縁部材120と接地電極131との境界に例えば酸化錫とハフニウムとからなる半導体部150gを設け、旋回付与機構部として、中心電極110側から接地電極131側に向かって螺旋状に伸びる凸条部160fを絶縁部材120の内壁表面にのみ設ける。
第3、第4の実施形態と同様、噴出力の低下を抑え、到達距離を長くする効果が期待できるのに加え、半導体部150fは電子を放出しやすく、放電経路が絶縁部材120の内壁から浮き上がるので、チャネリングを形成し難くなり、プラズマ噴射の安定性が更に向上する。
また、本実施形態においては第7実施形態と同様、図2(b)に示す回路を用いるのがより好適である。
更に、本実施形態において旋回付与機構部は凹条部で構成しても良い。
In the eighth embodiment, a semiconductor portion 150g made of, for example, tin oxide and hafnium is provided at the boundary between the insulating member 120 and the ground electrode 131, and the turning imparting mechanism portion is directed from the center electrode 110 side to the ground electrode 131 side. The protrusions 160 f extending in a spiral shape are provided only on the inner wall surface of the insulating member 120.
As in the third and fourth embodiments, in addition to suppressing the decrease in the jet power and increasing the reachable distance, the semiconductor portion 150f is easy to emit electrons, and the discharge path extends from the inner wall of the insulating member 120. Since it floats, it becomes difficult to form channeling, and the stability of plasma injection is further improved.
In the present embodiment, as in the seventh embodiment, it is more preferable to use the circuit shown in FIG.
Further, in the present embodiment, the turning imparting mechanism part may be constituted by a concave line part.

第9の実施形態においては、絶縁部材120hの内径を先端に向かって径大となるようテーパ状に形成し、絶縁部材120hと接地電極131との境界に例えば酸化錫とハフニウムとからなる半導体部150hを設け、旋回付与機構部として、中心電極110側から接地電極131側に向かって螺旋状に伸びる凸条部160fを絶縁部材120hと半導体部150hの内壁表面とに設ける。
放電空間140が先端に向かって径大となっているので、噴射前後の放電空間140内の気体を速やかに入れ替えできるのに加え、半導体部150fは電子を放出しやすく、放電経路が絶縁部材120の内壁から浮き上がるので、チャネリングを形成し難くなり、プラズマ噴射の安定性が更に向上する。
また、本実施形態においては第7実施形態と同様、図2(b)に示す回路を用いるのがより好適である。
また、本実施形態において旋回付与機構部は凹条部で構成しても良い。
In the ninth embodiment, the inner diameter of the insulating member 120h is tapered so as to increase toward the tip, and a semiconductor portion made of, for example, tin oxide and hafnium is formed at the boundary between the insulating member 120h and the ground electrode 131. 150 h is provided, and as the turning imparting mechanism portion, a protruding portion 160 f that spirally extends from the center electrode 110 side toward the ground electrode 131 side is provided on the insulating member 120 h and the inner wall surface of the semiconductor portion 150 h.
Since the discharge space 140 becomes larger in diameter toward the tip, the gas in the discharge space 140 before and after the injection can be quickly replaced, and the semiconductor portion 150f easily emits electrons, and the discharge path becomes the insulating member 120. Since it floats from the inner wall, channeling becomes difficult to form, and the stability of plasma injection is further improved.
In the present embodiment, as in the seventh embodiment, it is more preferable to use the circuit shown in FIG.
Moreover, in this embodiment, you may comprise a rotation provision mechanism part with a concave-line part.

当然のことながら、本発明は上記実施形態に限定するものではなく、本発明の趣旨を逸脱しない範囲で適宜変更可能である。
例えば、上記実施形態においては、一つのプラズマ式点火プラグで構成されるプラズマ式点火装置について説明したが、本発明が多数の点火プラグを含む多気筒エンジンにも適用し得るものであることは言うまでもない。
更に、上記実施形態においては、高電圧電源を放電用電源20とプラズマ発生用電源30との二の電源により構成した場合について説明したが、一の電源からDc−Dcコンバータ等を介して異なる電圧に調整して放電用電源20とプラズマ発生用電源30として高電圧と高電流とを引加する構成としても良い。
As a matter of course, the present invention is not limited to the above embodiment, and can be appropriately changed without departing from the gist of the present invention.
For example, in the above-described embodiment, the plasma ignition device including one plasma ignition plug has been described. However, it goes without saying that the present invention can also be applied to a multi-cylinder engine including a large number of ignition plugs. Yes.
Further, in the above embodiment, the case where the high voltage power source is constituted by the two power sources of the discharge power source 20 and the plasma generating power source 30 has been described. However, different voltages are supplied from one power source via a Dc-Dc converter or the like. The discharge power supply 20 and the plasma generation power supply 30 may be adjusted to a high voltage and a high current.

本発明の第1実施形態におけるプラズマ式点火装置の構成を示す一部断面図。The partial cross section figure which shows the structure of the plasma type ignition device in 1st Embodiment of this invention. (a)は本発明に用いられる第1の回路図、(b)は本発明に用いられる第2の回路図。(A) is the 1st circuit diagram used for this invention, (b) is the 2nd circuit diagram used for this invention. 本発明の第1実施形態における効果を示す要部断面図。The principal part sectional view showing the effect in a 1st embodiment of the present invention. 本発明の第2の実施形態における効果を示す要部断面図。The principal part sectional drawing which shows the effect in the 2nd Embodiment of this invention. (a)は本発明の第3実施形態における要部断面図、(b)は本発明の第4実施形態における要部断面図、(c)は本発明の第5実施形態における要部断面図、(d)は本発明の第6の実施形態における要部断面図。(A) is principal part sectional drawing in 3rd Embodiment of this invention, (b) is principal part sectional drawing in 4th Embodiment of this invention, (c) is principal part sectional drawing in 5th Embodiment of this invention. (D) is principal part sectional drawing in the 6th Embodiment of this invention. (a)は本発明の第7実施形態における要部断面図、(b)は本発明の第8実施形態における要部断面図、(c)は本発明の第9実施形態における要部断面図。(A) is principal part sectional drawing in 7th Embodiment of this invention, (b) is principal part sectional drawing in 8th Embodiment of this invention, (c) is principal part sectional drawing in 9th Embodiment of this invention. . 従来のプラズマ式点火装置の問題点である噴射方向の変化を(a)〜(c)に示す要部断面図。The principal part sectional drawing which shows the change of the injection direction which is a problem of the conventional plasma ignition device to (a)-(c). 従来のプラズマ式点火装置の構成を示す一部断面図。The partial cross section figure which shows the structure of the conventional plasma ignition device.

符号の説明Explanation of symbols

1 プラズマ式点火装置
10 プラズマ式点火プラグ
110 中心電極
120 絶縁部材
126 内壁部131 接地電極
132 接地電極開口部
140 放電空間
160 旋回付与機構部
20 放電用電源(高電圧電源)
30 プラズマ発生用電源(高電圧電源)
40 エンジンブロック(内燃機関)
DESCRIPTION OF SYMBOLS 1 Plasma type ignition device 10 Plasma type spark plug 110 Center electrode 120 Insulating member 126 Inner wall part 131 Ground electrode 132 Ground electrode opening part 140 Discharge space 160 Turning imparting mechanism part 20 Power supply for discharge (high voltage power supply)
30 Power supply for plasma generation (high voltage power supply)
40 Engine block (internal combustion engine)

Claims (7)

内燃機関に装着され、中心電極と接地電極との間を絶縁する絶縁部材が配設されたプラズマ式点火プラグと、上記中心電極と上記接地電極との間に高電圧を印加する高電圧電源と、を具備し、
上記高電圧の印加によって、上記絶縁部材内に内壁部を有して形成された放電空間内の気体を高温高圧のプラズマ状態にして内燃機関内に噴射して点火するプラズマ式点火装置において、
上記内壁部の表面部位には、上記放電空間より噴出されるプラズマ状態の気体が旋回しながら噴射すように形成される旋回付与機構部を具備することを特徴とするプラズマ式点火装置。
A plasma ignition plug mounted on an internal combustion engine and provided with an insulating member that insulates between a center electrode and a ground electrode; and a high-voltage power source that applies a high voltage between the center electrode and the ground electrode , And
In the plasma ignition device for igniting by injecting the gas in the discharge space formed with the inner wall portion in the insulating member into a high-temperature and high-pressure plasma state into the internal combustion engine by applying the high voltage,
A plasma ignition device characterized in that the surface portion of the inner wall portion is provided with a turning imparting mechanism portion formed such that a gas in a plasma state ejected from the discharge space is ejected while swirling.
上記旋回付与機構部は、上記中心電極側から上記接地電極側に向かって上記放電空間内を噴出するプラズマ状態の気体の噴出方向に対し、所定角度に傾斜させて設けられ、上記表面部位に凹状に形成される凹条部、または、上記表面部位に凸状に形成される凸条部の少なくともいずれかであることを特徴とする請求項1に記載のプラズマ式点火装置。   The swivel imparting mechanism portion is provided to be inclined at a predetermined angle with respect to the direction of the gas in a plasma state that is ejected from the center electrode side toward the ground electrode side toward the ground electrode side, and has a concave shape on the surface portion. 2. The plasma ignition device according to claim 1, wherein the plasma ignition device is at least one of a ridge formed on the surface and a ridge formed in a convex shape on the surface portion. 上記凹条部、または、上記凸条部は、1条あるいは多数条の螺旋状に形成されることを特徴とする請求項2に記載のプラズマ式点火装置。   The plasma igniter according to claim 2, wherein the concave stripe portion or the convex stripe portion is formed in a single or multiple spiral shape. 上記凹条部、または、上記凸条部は、上記放電空間の内周方向の形成領域に対して、形成する領域としての形成領域と、形成しない領域としての上記形成領域以外の非形成領域とが設定されることを特徴とする請求項2ないし3のいずれか1項に記載のプラズマ式点火装置。   The concave stripe or the convex stripe is formed with respect to a formation area in the inner circumferential direction of the discharge space, and a non-formation area other than the formation area as a non-formation area. The plasma ignition device according to any one of claims 2 to 3, wherein is set. 上記非形成領域は、上記内壁部の上記表面部位に、上記中心電極側から上記接地電極側に向かって該非形成領域のみが連なるように形成されることを特徴とする請求項4項に記載のプラズマ式点火装置。   The said non-formation area | region is formed so that only this non-formation area | region may be continued from the said center electrode side toward the said ground electrode side at the said surface site | part of the said inner wall part. Plasma ignition device. 上記旋回付与機構部は、上記放電空間の軸方向に対する該旋回付与機構部の形成領域につき、この形成領域を形成しない領域を中心電極側とし、この形成領域を形成する領域を上記接地電極側として区分けて設定することを特徴とする請求項1ないし3のいずれか1項に記載のプラズマ式点火装置。   The swivel imparting mechanism section has a region where the swivel imparting mechanism section is formed with respect to the axial direction of the discharge space, a region where the formation region is not formed as the center electrode side, and a region where the formation region is formed as the ground electrode side. The plasma ignition device according to any one of claims 1 to 3, wherein the plasma ignition device is set separately. 上記絶縁部材は、軸状に形成した上記中心電極の外周を覆い、かつ上記中心電極の先端面よりも下方に伸びる筒状に形成され、
上記接地電極は、上記絶縁部材の外周を覆い、かつ、先端が上記放電空間の中心に向かって屈曲して、上記絶縁部材内径と連通する接地電極開口部を有する有底筒状に形成されることを特徴とする請求項1ないし6のいずれか1項に記載のプラズマ式点火装置。
The insulating member is formed in a cylindrical shape that covers the outer periphery of the central electrode formed in a shaft shape and extends downward from the front end surface of the central electrode,
The ground electrode is formed in a bottomed cylindrical shape that covers the outer periphery of the insulating member, has a tip bent toward the center of the discharge space, and has a ground electrode opening that communicates with the inner diameter of the insulating member. The plasma ignition device according to any one of claims 1 to 6, characterized in that:
JP2007018685A 2007-01-30 2007-01-30 Plasma ignition device Expired - Fee Related JP4582097B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007018685A JP4582097B2 (en) 2007-01-30 2007-01-30 Plasma ignition device
DE200710055873 DE102007055873A1 (en) 2007-01-30 2007-12-19 Plasma ignition device, has spin producing unit arranged at surface of inner wall of insulator device, where spin producing unit is discharged with reversed gas from discharge chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007018685A JP4582097B2 (en) 2007-01-30 2007-01-30 Plasma ignition device

Publications (2)

Publication Number Publication Date
JP2008184964A true JP2008184964A (en) 2008-08-14
JP4582097B2 JP4582097B2 (en) 2010-11-17

Family

ID=39597727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007018685A Expired - Fee Related JP4582097B2 (en) 2007-01-30 2007-01-30 Plasma ignition device

Country Status (2)

Country Link
JP (1) JP4582097B2 (en)
DE (1) DE102007055873A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010185317A (en) * 2009-02-10 2010-08-26 Toyota Motor Corp Plasma igniter
JP2012021446A (en) * 2010-07-14 2012-02-02 Ngk Spark Plug Co Ltd Ignition apparatus for plasma jet ignition plug and ignition system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5015910B2 (en) 2008-03-28 2012-09-05 株式会社日本自動車部品総合研究所 Ignition device
US8217560B2 (en) * 2010-09-04 2012-07-10 Borgwarner Beru Systems Gmbh Corona ignition device and method for its manufacture

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3581141A (en) * 1969-04-07 1971-05-25 Ethyl Corp Surface gap spark plug
JPH01240763A (en) * 1988-03-18 1989-09-26 Mitsubishi Heavy Ind Ltd Fuel injection valve
JPH02211333A (en) * 1989-02-08 1990-08-22 Natl Aerospace Lab Plasma jet ignition system
JP2005131539A (en) * 2003-10-30 2005-05-26 Yoshinobu Shimoitani Injection nozzle
JP2006294257A (en) * 2005-04-05 2006-10-26 Denso Corp Ignition device for internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3581141A (en) * 1969-04-07 1971-05-25 Ethyl Corp Surface gap spark plug
JPH01240763A (en) * 1988-03-18 1989-09-26 Mitsubishi Heavy Ind Ltd Fuel injection valve
JPH02211333A (en) * 1989-02-08 1990-08-22 Natl Aerospace Lab Plasma jet ignition system
JP2005131539A (en) * 2003-10-30 2005-05-26 Yoshinobu Shimoitani Injection nozzle
JP2006294257A (en) * 2005-04-05 2006-10-26 Denso Corp Ignition device for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010185317A (en) * 2009-02-10 2010-08-26 Toyota Motor Corp Plasma igniter
JP2012021446A (en) * 2010-07-14 2012-02-02 Ngk Spark Plug Co Ltd Ignition apparatus for plasma jet ignition plug and ignition system

Also Published As

Publication number Publication date
DE102007055873A1 (en) 2008-08-14
JP4582097B2 (en) 2010-11-17

Similar Documents

Publication Publication Date Title
JP2008177142A (en) Plasma type ignition device
JP4778301B2 (en) Plasma jet ignition plug and its ignition device
KR20100098494A (en) Plazma jet ignition plug ignition control
JPS62145678A (en) Spark plug with combination of surface and air spark paths
JP2008045449A (en) Ignition device for internal combustion engine
JP5015910B2 (en) Ignition device
JP4582097B2 (en) Plasma ignition device
JP4760780B2 (en) Plasma ignition device
JP4424384B2 (en) Plasma ignition device
JP4777463B2 (en) Plasma jet ignition plug
JP5477253B2 (en) Internal combustion engine ignition device
JP2011018593A (en) Plasma ignition device
JP2009146636A (en) Ignition device
JP2008186743A (en) Plasma type ignition device
JP2008111371A (en) Ignition device of reciprocating engine
JP2010218768A (en) Plasma type ignition plug
JPWO2013099672A1 (en) Ignition device, ignition method and engine
JP2010001771A (en) Igniter
JP5520257B2 (en) Ignition device, ignition system, and plasma jet ignition plug
JP5217862B2 (en) Plasma ignition device
JP4968203B2 (en) Plasma ignition device
JP2014043859A (en) Ignition device
JP2011044268A (en) Ignition plug for internal combustion engine
JP2010174691A (en) Method for controlling ignition of plasma-type igniter and plasma-type igniter using the method
JP2010185317A (en) Plasma igniter

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080724

Free format text: JAPANESE INTERMEDIATE CODE: A621

TRDD Decision of grant or rejection written
A977 Report on retrieval

Effective date: 20100730

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20100803

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100816

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees