JP2008184920A - Variable displacement compressor - Google Patents

Variable displacement compressor Download PDF

Info

Publication number
JP2008184920A
JP2008184920A JP2007016913A JP2007016913A JP2008184920A JP 2008184920 A JP2008184920 A JP 2008184920A JP 2007016913 A JP2007016913 A JP 2007016913A JP 2007016913 A JP2007016913 A JP 2007016913A JP 2008184920 A JP2008184920 A JP 2008184920A
Authority
JP
Japan
Prior art keywords
swash plate
rotor
receiving surface
variable capacity
tilt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007016913A
Other languages
Japanese (ja)
Inventor
Tomonori Kurosawa
友則 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2007016913A priority Critical patent/JP2008184920A/en
Publication of JP2008184920A publication Critical patent/JP2008184920A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To sufficiently absorb compression reaction force transmitted from a piston to a swash plate, on a swash plate receiving face of a rotor. <P>SOLUTION: In this variable displacement compressor, the rotor 21 is fixed to a drive shaft S, and a swash plate part 24 is mounted to the drive shaft S so as to be movable and tiltable to the axial direction. One portion of the swash plate part 24 is connected to one portion of the rotor 21, and the piston 29 is reciprocated by the rotating motion of the swash plate part 24. When a pressure inside a crank chamber 5 storing the rotor 21 and the swash plate part 24 becomes below a predetermined value, the other portion of the swash plate part 24 abuts on the swash plate receiving face 59 (not shown in Fig. 1) provided in the other portion of the rotor 21. When the pressure inside the crank chamber 5 exceeds the predetermined value, the other portion of the swash plate part 24 is separated from the swash plate receiving face 59 of the rotor 21. A rotor side cushioning material 53 and swash plate side cushioning material 54, comprising rubber materials are fixed to the swash plate receiving face 59 of the rotor 21, and the other portion of the swash plate part 24 abutting on the swash plate receiving face 59, by using fixation pins 61, 63, respectively. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、駆動軸の回転に伴う傾角変動部材の揺動によってピストンを往復移動させる可変容量圧縮機に関する。   The present invention relates to a variable capacity compressor in which a piston is reciprocated by swinging of an inclination angle varying member accompanying rotation of a drive shaft.

従来の可変容量型圧縮機としては、例えば下記特許文献1に記載されたものがある。この可変容量型圧縮機は、駆動軸の外周に、軸方向移動可能かつ駆動軸とともに回転可能なドライブハブが設けられ、このドライブハブに設けた揺動板の傾斜角度がクランク室内の圧力によって変化し、この傾斜角度の変化によって、揺動板の外周側に設けてあるピストンのストロークが変化して冷媒の吐出容量が変化する。   An example of a conventional variable capacity compressor is described in Patent Document 1 below. In this variable capacity compressor, a drive hub that is axially movable and rotatable with the drive shaft is provided on the outer periphery of the drive shaft, and the inclination angle of the swinging plate provided on the drive hub varies depending on the pressure in the crank chamber. The change in the inclination angle changes the stroke of the piston provided on the outer peripheral side of the swing plate, thereby changing the refrigerant discharge capacity.

また、上記した駆動軸の外周には、駆動軸とともに回転するスラストフランジを固定しており、スラストフランジの一端部とドライブハブの一端部とを互いに連結している。   A thrust flange that rotates with the drive shaft is fixed to the outer periphery of the drive shaft, and one end of the thrust flange and one end of the drive hub are connected to each other.

ここで、クランク室内の圧力が所定値未満になる冷媒吐出量増大時には、揺動板の傾斜角度が大きくなってドライブハブの他端部がスラストフランジの他端部に設けたドライブハブ受面に当接する一方、クランク室内の圧力が所定値以上になる冷媒吐出量減少時には、揺動板の傾斜角度が小さくなってドライブハブの他端部がスラストフランジのドライブハブ受面から離反する。
特開2001−323873号公報
Here, when the refrigerant discharge amount increases so that the pressure in the crank chamber is less than a predetermined value, the inclination angle of the swing plate increases, and the other end of the drive hub is brought into contact with the drive hub receiving surface provided at the other end of the thrust flange. On the other hand, when the refrigerant discharge amount decreases so that the pressure in the crank chamber becomes equal to or higher than a predetermined value, the inclination angle of the swing plate becomes small and the other end portion of the drive hub separates from the drive hub receiving surface of the thrust flange.
JP 2001-323873 A

ところで、上記した従来の可変容量圧縮機では、スラストフランジのドライブハブ受面を駆動軸に対してほぼ直角にすることで、最大吐出量状態になった場合に、ドライブハブの他端部がスラストフランジのドライブハブ受面に対してほぼ直角に当たるので、駆動軸に対して駆動軸の軸線と直角方向の荷重が掛からないようにして駆動軸の弾性変形を防止するとともに、ピストンからドライブハブに伝わる圧縮反力をスラストフランジのドライブハブ受面で吸収してドライブハブの振動の減衰を図っている。   By the way, in the conventional variable capacity compressor described above, the drive hub receiving surface of the thrust flange is made substantially perpendicular to the drive shaft so that the other end of the drive hub is thrust when the maximum discharge amount is reached. Since the flange is almost perpendicular to the drive hub receiving surface, the load is not applied to the drive shaft in a direction perpendicular to the axis of the drive shaft to prevent elastic deformation of the drive shaft, and it is transmitted from the piston to the drive hub. The vibration of the drive hub is damped by absorbing the compression reaction force at the drive hub receiving surface of the thrust flange.

ところが、ドライブハブの他端部とスラストフランジのドライブハブ受面との互いの当接面は、金属面のため、ピストンからドライブハブに伝わる圧縮反力をスラストフランジのドライブハブ受面で充分吸収できず、ドライブハブの振動減衰効果が不充分となって異音が発生するものとなる。   However, since the contact surface between the other end of the drive hub and the drive hub receiving surface of the thrust flange is a metal surface, the reaction force transmitted from the piston to the drive hub is sufficiently absorbed by the drive hub receiving surface of the thrust flange. This is not possible, and the vibration attenuating effect of the drive hub is insufficient and abnormal noise is generated.

そこで、本発明は、ピストンから傾角変動部材(揺動板)に伝わる圧縮反力を回転部材(スラストフランジ)で充分吸収できるようにすることを目的としている。   Accordingly, an object of the present invention is to enable a rotating member (thrust flange) to sufficiently absorb a compression reaction force transmitted from a piston to an inclination angle varying member (oscillating plate).

本発明は、駆動軸に回転部材を固定するとともに、前記駆動軸に軸方向に移動可能かつ傾斜可能に傾角変動部材を取り付け、前記回転部材の一部位に前記傾角変動部材の一部位を連結し、前記傾角変動部材の回転動作によりピストンを往復移動させ、前記回転部材および前記傾角変動部材を収容するクランク室内の圧力が所定値未満になると、前記傾角変動部材の他の部位が前記回転部材の他の部位に設けた傾角変動部材受面に当接する一方、前記クランク室内の圧力が所定値以上になると、前記傾角変動部材の他の部位が前記回転部材の傾角変動部材受面から離反する可変容量圧縮機において、前記回転部材の傾角変動部材受面と、該傾角変動部材受面に当接する前記傾角変動部材の他の部位との少なくともいずれか一方に、衝撃吸収部材を設けたことを最も主要な特徴とする。   According to the present invention, the rotation member is fixed to the drive shaft, and the tilt variation member is attached to the drive shaft so as to be movable and tiltable in the axial direction, and one portion of the tilt variation member is connected to one portion of the rotation member. When the piston is reciprocated by the rotation operation of the tilt variation member and the pressure in the crank chamber that houses the rotation member and the tilt variation member becomes less than a predetermined value, the other portions of the tilt variation member While contacting the inclination varying member receiving surface provided in another part, when the pressure in the crank chamber exceeds a predetermined value, the other part of the inclination varying member is separated from the inclination varying member receiving surface of the rotating member. In the capacity compressor, at least one of the tilt angle varying member receiving surface of the rotating member and the other portion of the tilt angle varying member in contact with the tilt angle varying member receiving surface is provided with an impact absorbing member. The most important feature that is provided.

本発明の可変容量型圧縮機によれば、最大吐出量状態になって傾角変動部材の他の部位が回転部材の傾角変動部材受面に当接する際には、回転部材の傾角変動部材受面と傾角変動部材の他の部位との少なくともいずれか一方に設けた衝撃吸収部材によって、ピストンから傾角変動部材に伝わる圧縮反力を、回転部材の傾角変動部材受面で充分吸収して傾角変動部材の振動を効果的に減衰することができ、異音発生を防止できるとともに、回転部材および傾角変動部材の弾性変形を抑えることができる。   According to the variable capacity type compressor of the present invention, when the other portion of the tilt variation member comes into contact with the tilt variation member receiving surface of the rotation member in the maximum discharge amount state, the tilt variation member reception surface of the rotation member The compression reaction force transmitted from the piston to the tilt variation member is sufficiently absorbed by the tilt variation member receiving surface of the rotation member by the shock absorbing member provided at least one of the other portions of the tilt variation member and the tilt variation member. Vibration can be effectively attenuated, abnormal noise can be prevented, and elastic deformation of the rotating member and the tilt angle varying member can be suppressed.

以下、本発明の実施の形態を図面に基づき説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[可変容量圧縮機の全体構造]
図1は本発明の第1の実施形態に係わる可変容量圧縮機の全体断面図である。ただし、回転部材としてのロータ21および、傾角変動部材としての斜板部24については、断面とせずに正面図としている。
[Overall structure of variable capacity compressor]
FIG. 1 is an overall sectional view of a variable capacity compressor according to a first embodiment of the present invention. However, the rotor 21 serving as the rotating member and the swash plate portion 24 serving as the tilt angle varying member are not shown in cross section but are shown in a front view.

本実施形態の圧縮機1は、図1に示すように、斜板式の可変容量圧縮機であり、例えば自動車などの車両に搭載される車両用空調装置の冷凍サイクルに使用する。この可変容量圧縮機1は、円周方向に複数の等間隔に配置されたシリンダボア3を有するシリンダブロック2と、該シリンダブロック2の図1中で左側の前端面に接合されシリンダブロック2との間にクランク室5を形成するフロントハウジング4と、シリンダブロック2の後端面にバルブプレート9を介して接合され吸入室7および吐出室8を形成するリアハウジング6と、を備えている。これらシリンダブロック2とフロントハウジング4とリアハウジング6とは、複数のスルーボルトBによって締結固定される。   As shown in FIG. 1, the compressor 1 of this embodiment is a swash plate type variable capacity compressor, and is used for a refrigeration cycle of a vehicle air conditioner mounted on a vehicle such as an automobile, for example. The variable capacity compressor 1 includes a cylinder block 2 having a plurality of cylinder bores 3 arranged at equal intervals in the circumferential direction, and a cylinder block 2 joined to the left front end surface of the cylinder block 2 in FIG. A front housing 4 that forms a crank chamber 5 therebetween, and a rear housing 6 that is joined to a rear end surface of the cylinder block 2 via a valve plate 9 to form a suction chamber 7 and a discharge chamber 8 are provided. The cylinder block 2, the front housing 4 and the rear housing 6 are fastened and fixed by a plurality of through bolts B.

バルブプレート9は、シリンダボア3と吸入室7とを連通する吸入孔(図示せぬ)と、シリンダボア3と吐出室8とを連通する吐出孔12と、を備えている。   The valve plate 9 includes a suction hole (not shown) that allows the cylinder bore 3 and the suction chamber 7 to communicate with each other, and a discharge hole 12 that allows the cylinder bore 3 and the discharge chamber 8 to communicate with each other.

バルブプレート9のシリンダブロック2側には、吸入孔を開閉する図示せぬ弁機構が設けられ、一方、バルブプレート9のリアハウジング6側には、吐出孔12を開閉する図示せぬ弁機構が設けられている。バルブプレート9とリアハウジング6との間にはガスケット14が介在し、吸入室7と吐出室8の密閉性が保持されている。   A valve mechanism (not shown) for opening and closing the suction hole is provided on the cylinder block 2 side of the valve plate 9, while a valve mechanism (not shown) for opening and closing the discharge hole 12 is provided on the rear housing 6 side of the valve plate 9. Is provided. A gasket 14 is interposed between the valve plate 9 and the rear housing 6 so that the airtightness of the suction chamber 7 and the discharge chamber 8 is maintained.

シリンダブロック2およびフロントハウジング4の中心の支持孔19,20には軸受17,18を介して駆動軸Sが軸支され、この駆動軸Sがクランク室5内で回転自在となっている。   A drive shaft S is pivotally supported via bearings 17 and 18 in the support holes 19 and 20 in the center of the cylinder block 2 and the front housing 4, and the drive shaft S is rotatable in the crank chamber 5.

クランク室5内には、前記駆動軸Sに固設された回転部材としてのロータ21と、駆動軸Sに摺動自在に装着されたヒンジボール22と、ヒンジボール22に傾動可能に装着された傾角変動部材としての斜板部24と、が設けられている。斜板部24は、ヒンジボール22に傾動および回動可能に装着されたハブ25と、このハブ25のボス部25aに固定された斜板本体26と、を備えてなる。   In the crank chamber 5, a rotor 21 as a rotating member fixed to the drive shaft S, a hinge ball 22 slidably mounted on the drive shaft S, and a tilt ball mounted on the hinge ball 22. And a swash plate portion 24 as an inclination angle varying member. The swash plate portion 24 includes a hub 25 attached to the hinge ball 22 so as to be tiltable and rotatable, and a swash plate body 26 fixed to a boss portion 25 a of the hub 25.

各シリンダボア3にはピストン29が摺動自在に収容されており、このピストン29は半球状の一対のピストンシュー30,30を介して斜板本体26に連結されている。   A piston 29 is slidably accommodated in each cylinder bore 3, and the piston 29 is connected to the swash plate body 26 via a pair of hemispherical piston shoes 30,30.

回転部材としてのロータ21の一部位と、傾角変動部材としての斜板部24のハブ25の一部位との間にはリンク機構40が介在しており、このリンク機構40により斜板部24の傾角の変動を許容しつつロータ21の回転トルクを斜板部24に伝達する。   A link mechanism 40 is interposed between a part of the rotor 21 as the rotating member and a part of the hub 25 of the swash plate part 24 as the tilt angle varying member. The rotational torque of the rotor 21 is transmitted to the swash plate portion 24 while allowing the tilt angle to vary.

リンク機構40は、ロータ21からハブ25に向けて突設されかつ回転トルク伝達方向に向けて対向する一対のアーム41,41と、ハブ25からロータ21に向けて突設されかつ回転トルク伝達方向に向けて対向する一対のアーム43,43と、前記互いに対向配置されたロータ21の一対のアーム41,41とハブ25の一対のアーム43、43との間に挿入されたリンク45と、を備えている。   The link mechanism 40 protrudes from the rotor 21 toward the hub 25 and is opposed to the rotational torque transmission direction, and is opposed to the rotational torque transmission direction. The link mechanism 40 projects from the hub 25 toward the rotor 21 and is in the rotational torque transmission direction. A pair of arms 43, 43 facing each other, and a link 45 inserted between the pair of arms 41, 41 of the rotor 21 and the pair of arms 43, 43 of the hub 25 that face each other. I have.

リンク45の一端部は、回転トルク方向に延びる第1の連結ピン46によりロータ21の一対のアーム41,41に回転自在に連結されるとともに、リンク45の他端部は、回転トルク方向に延びる第2の連結ピン47によりハブ25の一対のアーム43,43に回転自在に連結されている。   One end of the link 45 is rotatably connected to the pair of arms 41 and 41 of the rotor 21 by a first connecting pin 46 extending in the rotational torque direction, and the other end of the link 45 extends in the rotational torque direction. The second connecting pin 47 is rotatably connected to the pair of arms 43 and 43 of the hub 25.

前記した斜板部24の傾斜角は、ヒンジボール22がシリンダブロック2側に近接移動すると減少し、一方、ヒンジボール22がシリンダブロック2から離れる方向に移動すると増大する。   The inclination angle of the swash plate portion 24 decreases as the hinge ball 22 moves closer to the cylinder block 2, and increases as the hinge ball 22 moves away from the cylinder block 2.

駆動軸Sが回転するとこの駆動軸Sと一体にロータ21が回転し、このロータ21の回転がリンク機構40を介して斜板部24に伝達される。斜板部24の回転は、一対のピストンシュー30,30によってピストン29の往復動に変換され、ピストン29がシリンダボア3内を往復動する。このピストン29の往復動により、吸入室7内の冷媒がバルブプレート9の図示せぬ吸入孔を通じてシリンダボア3内に吸入されたのち圧縮され、バルブプレート9の吐出孔12を通じて吐出室8へと吐出される。   When the drive shaft S rotates, the rotor 21 rotates integrally with the drive shaft S, and the rotation of the rotor 21 is transmitted to the swash plate portion 24 via the link mechanism 40. The rotation of the swash plate portion 24 is converted into a reciprocating motion of the piston 29 by the pair of piston shoes 30, 30, and the piston 29 reciprocates in the cylinder bore 3. By the reciprocating motion of the piston 29, the refrigerant in the suction chamber 7 is sucked into the cylinder bore 3 through a suction hole (not shown) of the valve plate 9 and then compressed, and discharged into the discharge chamber 8 through the discharge hole 12 of the valve plate 9. Is done.

[可変容量の制御]
ここで、斜板部24は、傾斜角が変更可能であり、ピストン29側に設けたリターンスプリング52に抗してシリンダブロック2側に近接移動すると傾斜角が減少し、一方、ロータ21側に設けたリターンスプリング51に抗してシリンダブロック2から離れる方向に移動すると傾斜角が増大する。
[Control of variable capacity]
Here, the inclination angle of the swash plate portion 24 can be changed. When the swash plate portion 24 moves close to the cylinder block 2 against the return spring 52 provided on the piston 29 side, the inclination angle decreases, while on the rotor 21 side. If it moves in the direction away from the cylinder block 2 against the provided return spring 51, the inclination angle increases.

冷媒の吐出容量を変化させるには、斜板部24の傾斜角を変化させてピストンストロークを変化させる。より具体的には、ピストン29の後面側のクランク室圧Pcとピストン29の前面側の吸入室圧Psの差圧(圧力バランス)により、斜板部24の傾斜角を変化させてピストンストロークを変化させる。   In order to change the refrigerant discharge capacity, the piston stroke is changed by changing the inclination angle of the swash plate portion 24. More specifically, the piston stroke is changed by changing the inclination angle of the swash plate portion 24 by the differential pressure (pressure balance) between the crank chamber pressure Pc on the rear surface side of the piston 29 and the suction chamber pressure Ps on the front surface side of the piston 29. Change.

そのため、この可変容量圧縮機には、クランク室5と吸入室7とを連通する抽気通路(図示せぬ)および、クランク室5と吐出室8とを連通する給気通路(図示せぬ)および、この給気通路の途中に設けられ給気通路を開閉制御する制御弁33を有する圧力制御機構が設けられている。   For this reason, the variable capacity compressor includes an extraction passage (not shown) that connects the crank chamber 5 and the suction chamber 7, an air supply passage (not shown) that connects the crank chamber 5 and the discharge chamber 8, and A pressure control mechanism having a control valve 33 provided in the middle of the air supply passage for controlling opening and closing of the air supply passage is provided.

なお、図1はフルストローク時すなわち、斜板部24の傾斜角が最も大きくなる状態を示し、図2はその状態の要部を拡大して示している。図3はデストローク時すなわち、斜板部24の傾斜角が最も小さくなる状態を示している。   1 shows a state in which the inclination angle of the swash plate portion 24 is maximized at the time of a full stroke, and FIG. 2 shows an enlarged main part in that state. FIG. 3 shows a state at the time of destroke, that is, a state where the inclination angle of the swash plate portion 24 becomes the smallest.

[衝撃吸収部材]
次に、回転部材としてのロータ21の他の部位と傾角変動部材としての斜板部24の他の部位との間に設けた衝撃吸収部材について説明する。
[Shock absorbing member]
Next, the impact absorbing member provided between the other part of the rotor 21 as the rotating member and the other part of the swash plate portion 24 as the tilt angle varying member will be described.

ここでは、衝撃吸収部材として耐熱性および耐油性のあるアクリルゴムを使用したゴム材としている。このゴム材からなる衝撃吸収部材は、図2のA部を断面図として拡大して示す図4のように、ロータ21に取り付けたロータ側緩衝材53と、斜板部24のハブ25に取り付けた斜板側緩衝材54とを備え、これらロータ側緩衝材53と斜板側緩衝材54とが互いに対向する形態としている。   Here, a rubber material using acrylic rubber having heat resistance and oil resistance as an impact absorbing member is used. The shock absorbing member made of a rubber material is attached to the rotor-side cushioning material 53 attached to the rotor 21 and the hub 25 of the swash plate portion 24 as shown in FIG. The rotor-side cushioning material 53 and the swashplate-side cushioning material 54 face each other.

これらロータ側緩衝材53および斜板側緩衝材54は、駆動軸Sの図1中で紙面に直交する両側の2箇所に設定している。   The rotor-side cushioning material 53 and the swash plate-side cushioning material 54 are set at two locations on both sides of the drive shaft S perpendicular to the paper surface in FIG.

図5は、ロータ21のハブ25に対向する側から見た斜視図、図6は、ハブ25のロータ21に対向する側から見た斜視図である。斜板部24のハブ25の他の部位には、駆動軸Sの軸回りに沿って2箇所の突出部55,56をロータ21に向けて突出して設けてある。この各突出部55,56の先端面57,58に斜板側緩衝材54を設けるとともに、各先端面57,58に対向するロータ21の傾角変動部材受面となる斜板受面59にロータ側緩衝材53を設けている。   FIG. 5 is a perspective view of the rotor 21 as viewed from the side facing the hub 25, and FIG. 6 is a perspective view of the hub 25 as viewed from the side facing the rotor 21. At other portions of the hub 25 of the swash plate portion 24, two projecting portions 55 and 56 are provided so as to project toward the rotor 21 along the axis of the drive shaft S. The swash plate-side cushioning material 54 is provided on the front end surfaces 57 and 58 of the projecting portions 55 and 56, and the rotor is provided on the swash plate receiving surface 59 that serves as the inclination varying member receiving surface of the rotor 21 that faces the front end surfaces 57 and 58. A side cushioning material 53 is provided.

上記したロータ21の斜板受面59は、駆動軸Sの軸線に対してほぼ直角であり、また図2に示すフルストローク時には、ハブ25側の先端面57,58がロータ21の斜板受面59とほぼ平行となる。   The swash plate receiving surface 59 of the rotor 21 is substantially perpendicular to the axis of the drive shaft S, and the front end surfaces 57 and 58 on the hub 25 side are swash plate receiving of the rotor 21 during the full stroke shown in FIG. It is almost parallel to the surface 59.

図5に示すロータ側緩衝材53は、図7に拡大して示すように円板形状を呈し、中心部にピン挿入孔53aを形成するとともに、ピン挿入孔53aの周囲の表面側に段部53bを形成している。一方、斜板受面59には、ロータ側緩衝材53を嵌め込む円形の凹部59aを形成し、凹部59aの中心にはピン圧入穴59bを設けている。   The rotor-side cushioning material 53 shown in FIG. 5 has a disk shape as shown in an enlarged view in FIG. 7, has a pin insertion hole 53a at the center, and a stepped portion on the surface side around the pin insertion hole 53a. 53b is formed. On the other hand, the swash plate receiving surface 59 is formed with a circular recess 59a into which the rotor-side cushioning material 53 is fitted, and a pin press-fitting hole 59b is provided at the center of the recess 59a.

そして、鉄系の金属材で構成した固定具としての圧入ピン61の軸部61aを、ロータ側緩衝材53のピン挿入孔53aに挿入した状態でロータ21の圧入穴59bに圧入することで、図4に示すように、ロータ側緩衝材53がロータ21の凹部59aに取り付けられた状態となる。   Then, by pressing the shaft portion 61a of the press-fit pin 61 as a fixture composed of an iron-based metal material into the press-fit hole 59b of the rotor 21 while being inserted into the pin insertion hole 53a of the rotor-side cushioning material 53, As shown in FIG. 4, the rotor-side cushioning material 53 is attached to the recess 59 a of the rotor 21.

このとき、ロータ側緩衝材53の厚さ寸法は凹部59aの深さ寸法より大きく、したがって図4の取付状態では、ロータ側緩衝材53が斜板受面59から僅かに突出している。さらに、上記の取付状態では圧入ピン61の頭部61bがロータ側緩衝材53の段部53bに入り込むが、このとき段部53bの深さ寸法は頭部61bの厚さ寸法より大きく、したがって図4の取付状態での頭部61bの表面は、ロータ側緩衝材53の表面から突出することはなく、ロータ側緩衝材53の表面に対して凹んだ面を形成することになる。   At this time, the thickness dimension of the rotor-side cushioning material 53 is larger than the depth dimension of the recess 59a. Therefore, the rotor-side cushioning material 53 slightly protrudes from the swash plate receiving surface 59 in the attached state of FIG. Furthermore, in the mounting state described above, the head portion 61b of the press-fit pin 61 enters the stepped portion 53b of the rotor side cushioning material 53. At this time, the depth dimension of the stepped portion 53b is larger than the thickness dimension of the head portion 61b. 4, the surface of the head 61 b does not protrude from the surface of the rotor-side cushioning material 53, and forms a concave surface with respect to the surface of the rotor-side cushioning material 53.

図6に示す斜板側緩衝材54も上記したロータ側緩衝材53と同様にピン挿入孔54aおよび段部54bをそれぞれ備え、またハブ25側の先端面57(58)には斜板側緩衝材54を嵌め込む円形の凹部57a(58a)を、凹部57a(58a)の中心にはピン圧入穴57b(58b)をそれぞれ設けている。   The swash plate-side cushioning material 54 shown in FIG. 6 is also provided with a pin insertion hole 54a and a stepped portion 54b, respectively, similarly to the rotor-side cushioning material 53 described above. A circular recess 57a (58a) into which the material 54 is fitted is provided, and a pin press-fit hole 57b (58b) is provided at the center of the recess 57a (58a).

そして、斜板側緩衝材54を、軸部63aおよび頭部63bを備える圧入ピン63により先端面57(58)に取り付ける。この際、ロータ側緩衝材53と同様に、図4に示すように斜板側緩衝材54が先端面57(58)から僅かに突出した状態になるとともに、圧入ピン63の頭部63bの表面は、斜板側緩衝材54の表面から突出することはなく、斜板側緩衝材54の表面に対して凹んだ面を形成することになる。   Then, the swash plate-side cushioning material 54 is attached to the distal end surface 57 (58) by a press-fit pin 63 having a shaft portion 63a and a head portion 63b. At this time, similarly to the rotor-side cushioning material 53, the swash plate-side cushioning material 54 slightly protrudes from the tip end surface 57 (58) as shown in FIG. 4 and the surface of the head 63b of the press-fit pin 63. Does not protrude from the surface of the swash plate-side cushioning material 54, but forms a concave surface with respect to the surface of the swash plate-side cushioning material 54.

このため、図2のフルストローク時のように斜板部24のハブ25がロータ21に当接する状態では、図4に示すように、圧入ピン61,63同士が接触することはなく、ロータ側緩衝材53と斜板側緩衝材54とが互いに接触することになる。   Therefore, when the hub 25 of the swash plate portion 24 is in contact with the rotor 21 as in the full stroke of FIG. 2, the press-fit pins 61 and 63 do not contact each other as shown in FIG. The buffer material 53 and the swash plate side buffer material 54 come into contact with each other.

[可変容量圧縮機の動作]
図示しない車載エンジンの回転動力が駆動軸Sに伝達されると、ロータ21および斜板部24が駆動軸Sとともに回転し、その回転によって斜板部24が揺動し、その揺動によりピストン29がシリンダボア3内を往復動する。これによりシリンダボア3内の容積が変化し、この容積変化によって冷媒の吸入,圧縮および吐出が順次行われ、斜板部24の傾斜角度に応じた容量の冷媒が吐出される。
[Operation of variable capacity compressor]
When the rotational power of an in-vehicle engine (not shown) is transmitted to the drive shaft S, the rotor 21 and the swash plate portion 24 rotate with the drive shaft S, the rotation causes the swash plate portion 24 to swing, and the swing causes the piston 29 to rotate. Reciprocates in the cylinder bore 3. As a result, the volume in the cylinder bore 3 changes, and the suction, compression, and discharge of the refrigerant are sequentially performed by this volume change, and the refrigerant having a capacity corresponding to the inclination angle of the swash plate portion 24 is discharged.

本可変容量圧縮機が使用される車両用空調装置の熱負荷が小さくなって、制御弁33が給気通路を開き、吐出室8からクランク室5へ冷媒が流れてクランク室5内の圧力が増加すると、図2の状態に対し図3のように斜板部24の傾斜角度が小さくなり、その結果ピストン29のストロークが小さくなって冷媒の吐出容量が減少する。   The heat load of the vehicle air conditioner using this variable capacity compressor is reduced, the control valve 33 opens the air supply passage, the refrigerant flows from the discharge chamber 8 to the crank chamber 5, and the pressure in the crank chamber 5 is reduced. When it increases, the inclination angle of the swash plate portion 24 becomes smaller as shown in FIG. 3 with respect to the state of FIG. 2, and as a result, the stroke of the piston 29 becomes smaller and the refrigerant discharge capacity decreases.

一方、上記図3の状態から熱負荷が大きくなって、制御弁33が給気通路を閉じ、クランク室5内の圧力が低下して所定値未満になると、図2のフルストローク時のように斜板部24の傾斜角度が大きくなり、その結果、ピストン29のストロークが大きくなって冷媒の吐出容量が増加する。   On the other hand, when the heat load increases from the state of FIG. 3 and the control valve 33 closes the air supply passage and the pressure in the crank chamber 5 decreases and becomes less than a predetermined value, as in the full stroke of FIG. The inclination angle of the swash plate portion 24 increases, and as a result, the stroke of the piston 29 increases and the refrigerant discharge capacity increases.

上記図2のフルストローク時には、斜板部24側のハブ25の他の部位がロータ21の斜板受面59に当接するが、これら互いの当接面には、斜板側緩衝材54およびロータ側緩衝材53をそれぞれ設けてあって、これらが互いに当接することになる。   2, other portions of the hub 25 on the swash plate portion 24 side come into contact with the swash plate receiving surface 59 of the rotor 21, and the swash plate side cushioning material 54 and The rotor side cushioning material 53 is provided, and these abut against each other.

ロータ側緩衝材53および斜板側緩衝材54は、ゴム材で構成しているので、上記の当接時には、従来のような金属面同士の当接とは異なり、ピストン29から斜板部24に伝わる圧縮反力を、ロータ21の斜板受面59で充分吸収して斜板部24の振動を効果的に減衰することができ、異音発生を防止できるとともに、ロータ21および斜板部24の弾性変形を抑えることができる。   Since the rotor-side cushioning material 53 and the swash plate-side cushioning material 54 are made of a rubber material, at the time of the above-mentioned contact, unlike the conventional contact between the metal surfaces, the piston 29 to the swash plate portion 24 are used. The compression reaction force transmitted to the rotor 21 is sufficiently absorbed by the swash plate receiving surface 59 of the rotor 21 so that the vibration of the swash plate portion 24 can be effectively attenuated, and abnormal noise can be prevented, and the rotor 21 and the swash plate portion can be prevented. 24 elastic deformation can be suppressed.

また、上記のゴム材同士の当接時には、ロータ21の斜板受面59が駆動軸Sの軸線に対して直角となっているので、駆動軸Sと直角方向の荷重付与を回避でき、駆動軸Sの弾性変形を抑えることができる。   In addition, when the rubber materials are in contact with each other, the swash plate receiving surface 59 of the rotor 21 is perpendicular to the axis of the drive shaft S, so that it is possible to avoid applying a load in a direction perpendicular to the drive shaft S, and Elastic deformation of the shaft S can be suppressed.

また、ロータ側緩衝材53および斜板側緩衝材54は、圧入ピン61および63を用いて圧入により固定しているので、取り付け状態が安定し、振動による外れを防止することができる。   Further, since the rotor-side cushioning material 53 and the swash plate-side cushioning material 54 are fixed by press-fitting using the press-fit pins 61 and 63, the attached state is stabilized and the detachment due to vibration can be prevented.

[第2の実施形態]
図8および図9は、本発明の第2の実施形態に係わるロータ21Aおよびハブ25Aの前記図5および図6に対応する斜視図である。前記した第1の実施形態では、ロータ21およびハブ25に、ロータ側緩衝材53および斜板側緩衝材54をそれぞれ2箇所に設けているが、本実施形態では、これらロータ側緩衝材53および斜板側緩衝材54をそれぞれ1箇所に設けている。
[Second Embodiment]
8 and 9 are perspective views corresponding to FIGS. 5 and 6 of the rotor 21A and the hub 25A according to the second embodiment of the present invention. In the first embodiment described above, the rotor-side cushioning material 53 and the swash plate-side cushioning material 54 are provided at two locations on the rotor 21 and the hub 25, respectively. The swash plate side cushioning material 54 is provided in one place.

すなわち、第2の実施形態では、図9に示す斜板部24側のハブ25Aの他の部位に設けた突出部65は、前記図6における2つの突出部57,58を一体化したものに相当し、突出部65の先端面66の中央部に、斜板側緩衝材54を第1の実施形態と同様に圧入ピン63を用いて取り付けている。   That is, in the second embodiment, the protruding portion 65 provided at the other portion of the hub 25A on the swash plate portion 24 side shown in FIG. 9 is formed by integrating the two protruding portions 57 and 58 in FIG. Correspondingly, the swash plate-side cushioning material 54 is attached to the central portion of the front end surface 66 of the protruding portion 65 using the press-fit pin 63 as in the first embodiment.

これに対応して図8に示すロータ21Aの斜板受面67にも、1個のロータ側緩衝材53を圧入ピン61を用いて取り付けている。   Correspondingly, one rotor-side cushioning material 53 is attached to the swash plate receiving surface 67 of the rotor 21A shown in FIG.

なお、上記の先端面66も、第1の実施形態における先端面57,58と同様に、図10に示すフルストローク時にはロータ21Aの傾角変動部材受面となる斜板受面67と平行になっている。この斜板受面67は、図5の斜板受面59と同様に駆動軸Sに対してほぼ直角である。   Note that the tip surface 66 is also in parallel with the swash plate receiving surface 67 that serves as the tilt varying member receiving surface of the rotor 21A during the full stroke shown in FIG. 10, similarly to the tip surfaces 57 and 58 in the first embodiment. ing. The swash plate receiving surface 67 is substantially perpendicular to the drive shaft S, like the swash plate receiving surface 59 of FIG.

第2の実施形態においても、クランク室5内の圧力が低下して所定値未満になって、図10のように斜板部24の傾斜角度が大きくなったときに、斜板部24側のハブ25Aの他の部位がロータ21Aの斜板受面67に当接するが、これら互いの当接面には、斜板側緩衝材54およびロータ側緩衝材53をそれぞれ設けてあって、これらが互いに当接することになる。   Also in the second embodiment, when the pressure in the crank chamber 5 decreases and becomes less than a predetermined value, and the inclination angle of the swash plate portion 24 increases as shown in FIG. Other portions of the hub 25A abut against the swash plate receiving surface 67 of the rotor 21A, and the swash plate-side cushioning material 54 and the rotor-side cushioning material 53 are provided on the respective abutting surfaces, respectively. They will be in contact with each other.

このため、ピストン29から斜板部24に伝わる圧縮反力を、ロータ21Aの斜板受面67で充分吸収して斜板部24の振動を効果的に減衰することができ、異音発生を防止できるとともに、ロータ21Aおよび斜板部24の弾性変形を抑えることができるなど、第1の実施形態と同様の効果を得ることができる。   For this reason, the compression reaction force transmitted from the piston 29 to the swash plate portion 24 can be sufficiently absorbed by the swash plate receiving surface 67 of the rotor 21A, and the vibration of the swash plate portion 24 can be effectively attenuated, and abnormal noise is generated. While being able to prevent, the elastic deformation of the rotor 21A and the swash plate portion 24 can be suppressed, and the same effects as in the first embodiment can be obtained.

なお、第2の実施形態におけるロータ21Aの斜板受面67およびハブ25Aの突出部65の先端面66に、複数のロータ側緩衝材53および斜板側緩衝材54をそれぞれ設けてもよい。この場合、例えば、ロータ側緩衝材53および斜板側緩衝材54を、図9,図10の位置に加え、第1の実施形態での2箇所の取付位置に設けて3箇所に設けたり、あるいは図9,図10の位置に設けずに、第1の実施形態での取付位置にのみ設けて2箇所に設けることが考えられるが、その取付位置や個数を特定するものではない。   A plurality of rotor-side cushioning materials 53 and swashplate-side cushioning materials 54 may be provided on the swash plate receiving surface 67 of the rotor 21A and the tip surface 66 of the protrusion 65 of the hub 25A in the second embodiment. In this case, for example, the rotor-side cushioning material 53 and the swash plate-side cushioning material 54 are provided at the two attachment positions in the first embodiment in addition to the positions of FIGS. Alternatively, it is conceivable to provide only two attachment positions in the first embodiment without providing them in the positions of FIGS. 9 and 10, but this does not specify the attachment positions or the number of attachments.

このようにロータ側緩衝材53および斜板側緩衝材54をそれぞれ2個もしくは複数設けることで、ハブ25からロータ21に伝わる衝撃力を分散させることができ、これらロータ側緩衝材53および斜板側緩衝材54をそれぞれ1個設ける場合と比較して、斜板部24の振動をより効果的に減衰して、異音発生をより確実に防止できるとともに、ロータ21および斜板部24の弾性変形もより一層抑えることができる。   Thus, by providing two or a plurality of rotor side cushioning materials 53 and swash plate side cushioning materials 54, the impact force transmitted from the hub 25 to the rotor 21 can be dispersed. Compared with the case where one each of the side buffer materials 54 is provided, the vibration of the swash plate portion 24 can be more effectively damped, and abnormal noise can be prevented more reliably, and the elasticity of the rotor 21 and the swash plate portion 24 can be prevented. Deformation can be further suppressed.

さらに、ロータ側緩衝材53および斜板側緩衝材54をそれぞれ2個もしくは複数設けることで、1個の場合と比較して当接時の衝撃が分散されるので、これら各緩衝材53および54の寿命を高めることもできる。また、当接部位が複数箇所となるので、フルストローク時でのハブ25の姿勢が安定してガタを抑えやすくなり、信頼性を向上させることができる。   Further, by providing two or more rotor-side cushioning materials 53 and swash plate-side cushioning materials 54, the impact at the time of contact is dispersed compared to the case of one, so that each of the cushioning materials 53 and 54 is provided. It can also increase the lifespan. In addition, since there are a plurality of contact portions, the posture of the hub 25 at the time of a full stroke is stabilized and it becomes easy to suppress the play, and the reliability can be improved.

また、前記した各実施形態では、ロータ21(21A)とハブ25(ハブ25A)の双方に、ゴム材としてロータ側緩衝材53および斜板側緩衝材54をそれぞれ取り付けているが、どちらか一方にのみゴム材を設けるようにしてもよい。   In each of the embodiments described above, the rotor-side cushioning material 53 and the swash plate-side cushioning material 54 are attached to both the rotor 21 (21A) and the hub 25 (hub 25A) as rubber materials. A rubber material may be provided only in the case.

このようにロータ側緩衝材53と斜板側緩衝材54とのいずれか一方を取り付ける場合には、軸方向に移動および揺動しないロータ21(21A)にゴム材を取り付けるほうが、取付状態が安定するとともに、取付部に対する加工は広い面(斜板受面59,67)に対して行うことになって容易となるので好ましい。   In this way, when attaching either the rotor-side cushioning material 53 or the swash plate-side cushioning material 54, it is more stable to attach the rubber material to the rotor 21 (21A) that does not move or swing in the axial direction. In addition, it is preferable because the processing on the mounting portion is performed on a wide surface (swash plate receiving surfaces 59 and 67) and becomes easy.

また、ロータ側緩衝材53および斜板側緩衝材54を、固定具として圧入ピン61,63に代わる固定ねじにより、ロータ21の斜板受面59,67および斜板部24のハブ25,25Aの先端面57,58,66にそれぞれ設けたねじ部に螺合締結して取り付けてもよい。固定ねじを用いることで、ロータ側緩衝材53および斜板側緩衝材54の取り付け作業が容易になる。   Further, the rotor-side buffer material 53 and the swash plate-side buffer material 54 are fixed to the swash plate receiving surfaces 59 and 67 of the rotor 21 and the hubs 25 and 25A of the swash plate portion 24 by fixing screws instead of the press-fit pins 61 and 63. These may be attached by screwing and fastening to thread portions provided on the front end surfaces 57, 58 and 66, respectively. By using the fixing screw, the attachment work of the rotor side cushioning material 53 and the swash plate side cushioning material 54 becomes easy.

さらに、衝撃吸収部材として、図11に示すように、固定具を用いずに、ロータ21の斜板受面59,67もしくは斜板部24のハブ25,25Aの先端面57,58,66に設けた嵌合穴68にゴム材からなる緩衝材69を直接取り付けるようにしてもよい。この緩衝材69は、先端の嵌合突起69aを嵌合穴68に嵌合させることで、平板状の頭部69bが、ロータ21の斜板受面59,67もしくはハブ25,25Aの先端面57,58,66に対し突出した状態で露出することになる。   Further, as shown in FIG. 11, the shock absorbing member is formed on the swash plate receiving surfaces 59 and 67 of the rotor 21 or the front end surfaces 57, 58 and 66 of the hubs 25 and 25A of the swash plate portion 24 without using a fixture. The cushioning material 69 made of a rubber material may be directly attached to the provided fitting hole 68. The cushioning material 69 is formed by fitting the fitting protrusion 69a at the tip into the fitting hole 68, so that the flat head portion 69b is attached to the swash plate receiving surfaces 59 and 67 of the rotor 21 or the tip surfaces of the hubs 25 and 25A. It will be exposed while projecting from 57, 58, 66.

このように、緩衝材69を直接取り付ける構成とすることで、固定具を用いる場合と比較して部品点数が減少しコスト低下を図ることができる。   In this way, by adopting a configuration in which the cushioning material 69 is directly attached, the number of parts can be reduced and the cost can be reduced as compared with the case of using a fixture.

本発明の第1の実施形態に係わる可変容量圧縮機の全体断面図である。1 is an overall cross-sectional view of a variable capacity compressor according to a first embodiment of the present invention. 図1の可変容量圧縮機の斜板のフルストローク状態を説明する正面図である。It is a front view explaining the full stroke state of the swash plate of the variable capacity compressor of FIG. 図1の可変容量圧縮機の斜板のデストローク状態を説明する正面図である。It is a front view explaining the destroke state of the swash plate of the variable capacity compressor of FIG. 図2のA部を拡大した断面図である。It is sectional drawing to which the A section of FIG. 2 was expanded. 図1の可変容量圧縮機におけるロータのハブに対向する側から見た斜視図である。It is the perspective view seen from the side which opposes the hub of the rotor in the variable capacity compressor of FIG. 図1の可変容量圧縮機におけるハブのロータに対向する側から見た斜視図である。It is the perspective view seen from the side which opposes the rotor of the hub in the variable capacity compressor of FIG. 図5の要部の拡大した斜視図である。It is the perspective view to which the principal part of FIG. 5 was expanded. 本発明の第2の実施形態に係わるロータの図5に対応する斜視図である。It is a perspective view corresponding to FIG. 5 of the rotor concerning the 2nd Embodiment of this invention. 本発明の第2の実施形態に係わるハブの図6に対応する斜視図である。It is a perspective view corresponding to FIG. 6 of the hub concerning the 2nd Embodiment of this invention. 第2の実施形態における斜板のハブがロータの斜板受面に当接した状態(フルストローク状態)を示す正面図である。It is a front view which shows the state (full stroke state) which the hub of the swash plate in 2nd Embodiment contact | abutted to the swash plate receiving surface of the rotor. 衝撃吸収部材としてゴム材からなる緩衝材をロータもしくはハブに直接嵌合固定する形態を示す部分斜視図であるIt is a fragmentary perspective view which shows the form which fits and fixes the shock absorbing material which consists of rubber materials directly to a rotor or a hub as an impact-absorbing member.

符号の説明Explanation of symbols

S 駆動軸
5 クランク室
21,21A ロータ(回転部材)
24 斜板部(傾角変動部材)
29 ピストン
53 ロータ側緩衝材(衝撃吸収部材)
54 斜板側緩衝材(衝撃吸収部材)
59,67 斜板受面(傾角変動部材受面)
57b,58b,59b ピン圧入穴(圧入穴)
61,63 圧入ピン(固定具)
68 嵌合穴
69 緩衝材(衝撃吸収部材)
69a 嵌合突起
S drive shaft 5 crank chamber 21, 21A rotor (rotating member)
24 Swash plate part (inclination variable member)
29 Piston 53 Rotor side shock absorbing material (Shock absorbing member)
54 Swash plate cushioning material (shock absorbing member)
59,67 Swash plate receiving surface (inclination variable member receiving surface)
57b, 58b, 59b Pin press-fit holes (press-fit holes)
61,63 Press-fit pin (fixing tool)
68 Mating hole 69 Cushioning material (shock absorbing member)
69a Mating protrusion

Claims (6)

駆動軸(S)に回転部材(21)を固定するとともに、前記駆動軸(S)に軸方向に移動可能かつ傾斜可能に傾角変動部材(24)を取り付け、前記回転部材(21)の一部位に前記傾角変動部材(24)の一部位を連結し、前記傾角変動部材(24)の回転動作によりピストン(29)を往復移動させ、前記回転部材(21)および前記傾角変動部材(24)を収容するクランク室(5)内の圧力が所定値未満になると、前記傾角変動部材(24)の他の部位が前記回転部材(21)の他の部位に設けた傾角変動部材受面(59)に当接する一方、前記クランク室(5)内の圧力が所定値以上になると、前記傾角変動部材(24)の他の部位が前記回転部材(21)の傾角変動部材受面(59)から離反する可変容量圧縮機において、前記回転部材(21)の傾角変動部材受面(59)と、該傾角変動部材受面(59)に当接する前記傾角変動部材(24)の他の部位との少なくともいずれか一方に、衝撃吸収部材(53,54)を設けたことを特徴とする可変容量圧縮機。   A rotation member (21) is fixed to the drive shaft (S), and an inclination angle varying member (24) is attached to the drive shaft (S) so as to be movable and tiltable in the axial direction, and a part of the rotation member (21) A part of the tilt variation member (24) is connected to the piston, and the piston (29) is reciprocated by the rotational operation of the tilt variation member (24), so that the rotation member (21) and the tilt variation member (24) are moved. When the pressure in the accommodated crank chamber (5) becomes less than a predetermined value, the other part of the inclination changing member (24) is inclined to the inclination changing member receiving surface (59) provided at the other part of the rotating member (21). When the pressure in the crank chamber (5) reaches a predetermined value or more, the other part of the inclination changing member (24) separates from the inclination changing member receiving surface (59) of the rotating member (21). In the variable capacity compressor, An impact absorbing member is provided on at least one of the tilt angle varying member receiving surface (59) of the rolling member (21) and another part of the tilt angle varying member (24) in contact with the tilt angle varying member receiving surface (59). A variable capacity compressor provided with (53, 54). 前記衝撃吸収部材(53,54)は、固定具(61,63)により前記回転部材(21)の傾角変動部材受面(59)と前記傾角変動部材(24)の他の部位との少なくともいずれか一方に固定されていることを特徴とする請求項1に記載の可変容量圧縮機。   The impact absorbing member (53, 54) is at least one of the tilt varying member receiving surface (59) of the rotating member (21) and another portion of the tilt varying member (24) by the fixture (61, 63). The variable capacity compressor according to claim 1, wherein the variable capacity compressor is fixed to one of them. 前記固定具(61,63)は、前記回転部材(21)の傾角変動部材受面(59)と前記傾角変動部材(24)の他の部位との少なくともいずれか一方に設けた圧入穴(59b,58b)に圧入する圧入ピン(61,63)であることを特徴とする請求項2に記載の可変容量圧縮機。   The fixture (61, 63) is a press-fitting hole (59b) provided in at least one of the tilt angle varying member receiving surface (59) of the rotating member (21) and the other part of the tilt angle varying member (24). , 58b). The variable capacity compressor according to claim 2, characterized in that it is a press-fit pin (61, 63) that press-fits into the press-fit pin. 前記固定具(61,63)は、前記回転部材(21)の傾角変動部材受面(59)と前記傾角変動部材(24)の他の部位との少なくともいずれか一方に設けたねじ部に螺合締結する固定ねじであることを特徴とする請求項2に記載の可変容量圧縮機。   The fixture (61, 63) is screwed into a threaded portion provided on at least one of the tilt varying member receiving surface (59) of the rotating member (21) and another portion of the tilt varying member (24). The variable capacity compressor according to claim 2, wherein the variable capacity compressor is a fixing screw that is fastened together. 前記衝撃吸収部材(69)は嵌合突起(69a)を備え、該嵌合突起(69a)を、前記回転部材(21)の傾角変動部材受面(59)と前記傾角変動部材(24)の他の部位との少なくともいずれか一方に設けた嵌合穴(68)に嵌合固定することを特徴とする請求項1に記載の可変容量圧縮機。   The shock absorbing member (69) includes a fitting protrusion (69a), and the fitting protrusion (69a) is provided on the inclination varying member receiving surface (59) of the rotating member (21) and the inclination varying member (24). The variable capacity compressor according to claim 1, wherein the compressor is fitted and fixed in a fitting hole (68) provided in at least one of the other parts. 前記回転部材(21)の傾角変動部材受面(59)は、前記駆動軸(S)に対して直角であることを特徴とする請求項1ないし5のいずれか1項に記載の可変容量圧縮機。   The variable capacity compression according to any one of claims 1 to 5, wherein the tilt angle changing member receiving surface (59) of the rotating member (21) is perpendicular to the drive shaft (S). Machine.
JP2007016913A 2007-01-26 2007-01-26 Variable displacement compressor Pending JP2008184920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007016913A JP2008184920A (en) 2007-01-26 2007-01-26 Variable displacement compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007016913A JP2008184920A (en) 2007-01-26 2007-01-26 Variable displacement compressor

Publications (1)

Publication Number Publication Date
JP2008184920A true JP2008184920A (en) 2008-08-14

Family

ID=39728145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007016913A Pending JP2008184920A (en) 2007-01-26 2007-01-26 Variable displacement compressor

Country Status (1)

Country Link
JP (1) JP2008184920A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101776339B1 (en) * 2012-03-22 2017-09-07 한온시스템 주식회사 swash plate type variable capacity compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101776339B1 (en) * 2012-03-22 2017-09-07 한온시스템 주식회사 swash plate type variable capacity compressor

Similar Documents

Publication Publication Date Title
KR102480987B1 (en) Scroll compressor
JP4007637B2 (en) Variable capacity compressor
JP2009103118A (en) Capacity-variable type swash plate compressor
JP4751166B2 (en) Variable capacity compressor
JP2003065392A (en) Rotor and rotary machine
JP4439405B2 (en) Swing swash plate type variable capacity compressor
KR20100022824A (en) Power transmission apparatus for a compressor
JP2008184920A (en) Variable displacement compressor
JP2008064057A (en) Variable displacement compressor
US20030002991A1 (en) Compressor
JP2009068466A (en) Variable volume swash plate type compressor
JP2006207500A (en) Link mechanism and variable displacement compressor using the same
KR20090118513A (en) Swash pate type compressor
JP2002180955A (en) Swash plate type variable displacement compressor
WO2014112580A1 (en) Variable displacement compressor
JP4051203B2 (en) Compressor
WO2018221281A1 (en) Rocking plate type variable displacement compressor
JP4329053B2 (en) Variable capacity swash plate compressor
JPWO2006095565A1 (en) Variable capacity compressor
JP2002340143A (en) Compressor
JP2001323874A (en) Variable displacement compressor
JP2003214336A (en) Refrigerant compressor
JP2009121305A (en) Variable displacement swash plate type compressor
JP2010024918A (en) Variable displacement swash plate type compressor
KR20040089867A (en) Variable Displacement Swash Plate Type Compressor