JP2008183662A - Cylinder machining device and method - Google Patents

Cylinder machining device and method Download PDF

Info

Publication number
JP2008183662A
JP2008183662A JP2007019238A JP2007019238A JP2008183662A JP 2008183662 A JP2008183662 A JP 2008183662A JP 2007019238 A JP2007019238 A JP 2007019238A JP 2007019238 A JP2007019238 A JP 2007019238A JP 2008183662 A JP2008183662 A JP 2008183662A
Authority
JP
Japan
Prior art keywords
cylindrical body
cutting member
cutting
cylinder
moving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007019238A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kawai
康裕 川井
Takao Soma
孝夫 相馬
Yorihiro Kobayashi
順博 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2007019238A priority Critical patent/JP2008183662A/en
Publication of JP2008183662A publication Critical patent/JP2008183662A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turning (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cylinder machining device with high surface accuracy and its machining method not leaving uneven cutting marks comprising a plurality of cycles after the cylinder surface is cut, or not forming images including periodic marks after the cylinder is manufactured as a photosensitive drum. <P>SOLUTION: This cylinder machining device has a cylinder holding means for holding a cylinder to be machined, a cutting member positioning and turning means for positioning a cutting member into contact with a surface of the cylinder and turning it around the axis of the cylinder, a cutting member moving and holding means for holding the cutting member movably in an axial direction of the cylinder, a cutting member moving means for moving the cutting member, and a connection means for connecting the cutting member moving and holding means with the cutting member moving means. The connection means restrains the mutual positions of the cutting positioning and turning means and the cutting member moving means in the axial direction of the cylinder using fluid pressure, and connects the cutting member positioning and turning means with the cutting member moving means so that their mutual positions can freely move on a cross section perpendicular to the axis of the cylinder. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、円筒体の加工装置及びその加工方法に関する。より詳細には、本発明は、電子写真方式の複写機、レーザービームプリンター、ファクシミリ、印刷機等の画像形成装置における電子写真感光ドラムや現像スリーブとして使用される円筒体の加工装置及びその加工方法に関する。   The present invention relates to a cylindrical body processing apparatus and a processing method thereof. More specifically, the present invention relates to an apparatus for processing a cylindrical body used as an electrophotographic photosensitive drum and a developing sleeve in an image forming apparatus such as an electrophotographic copying machine, a laser beam printer, a facsimile machine, and a printing machine, and a processing method thereof. About.

従来において、電子写真方式の複写機、レーザービームプリンター、ファクシミリ、印刷機等の画像形成装置における電子写真感光ドラムや現像スリーブとして、所定の表面精度と寸法精度に仕上げられた円筒体が用いられている。電子写真感光ドラムはそのような円筒体(ドラム基体)の表面に感光膜を施すことによって製造されるが、円筒体の表面精度又は寸法精度が低いと感光膜に凹凸が生じ、このため画像形成装置によって形成される画像に欠陥が生じる。従って、精度の高い画像を得るために、円筒体の表面が所定の表面粗さに加工されることが要求されている。また、真直度及び真円度等の寸法精度にも極めて高い精度が求められている。   Conventionally, a cylindrical body finished with a predetermined surface accuracy and dimensional accuracy has been used as an electrophotographic photosensitive drum and a developing sleeve in an image forming apparatus such as an electrophotographic copying machine, a laser beam printer, a facsimile machine, and a printing machine. Yes. An electrophotographic photosensitive drum is manufactured by applying a photosensitive film to the surface of such a cylindrical body (drum base). However, if the surface accuracy or dimensional accuracy of the cylindrical body is low, the photosensitive film has irregularities, which causes image formation. Defects occur in the image formed by the device. Therefore, in order to obtain a highly accurate image, it is required that the surface of the cylindrical body be processed to a predetermined surface roughness. In addition, extremely high accuracy is required for dimensional accuracy such as straightness and roundness.

一般に、電子写真感光ドラムや現像スリーブ等に加工される円筒体の材料には、純度99.5%以上のAlや0.05〜0.20%のCuを含むCu−Al合金等が用いられる。また、0.05〜0.20%のCuと1.0〜1.5%のMnを含むCu−Mn−Al合金や、0.20〜0.60%のSiと0.45〜0.90%のMgを含むSi−Mg−Al合金等も用いられる。このような円筒体の加工方法としては一般的に、まず、押し出し、引き抜き及び曲がりの矯正等を高精度に行って表面精度や寸法精度の高い管材を製作し、これを所望の長さに切断したうえで両端部に面取り加工を施す方法がある。   In general, as a cylindrical material processed into an electrophotographic photosensitive drum, a developing sleeve, or the like, a Cu—Al alloy containing 99.5% or more purity Al or 0.05 to 0.20% Cu is used. . Moreover, Cu-Mn-Al alloy containing 0.05-0.20% Cu and 1.0-1.5% Mn, 0.20-0.60% Si and 0.45-0. A Si—Mg—Al alloy containing 90% Mg is also used. As a processing method of such a cylindrical body, generally, a tube material with high surface accuracy and dimensional accuracy is first manufactured by performing extrusion, drawing and bending correction, etc., and cutting it into a desired length. In addition, there is a method of chamfering both ends.

円筒体を加工して所定の表面粗さの円筒体表面に仕上げるための一般的な方法として、次の方法がある。まず、押し出し成型又は引き抜き成型によって製造された管材を所望の長さに切断して円筒体を製作する。次いで、両端部分を円筒の内径中心又は外径中心を基準として両端面に周方向に切削加工して稜線部を形成する。これにテーパー形状クランプ面を有する保持具を挿入して円筒体軸方向に押し当てることによって円筒体を保持する、又は開きクランプ等の保持部材を円筒体内部に挿入して保持する。そして、円筒体の外周面にバイト等の切削部材を当接させたうえで円筒体を回転させることによって切削加工を施す。また、外周面の切削効率をより高くすることを目的として、円筒体表面に軸方向に連続する浅溝を設け、円筒体の表面を切削部材が円筒中心軸周りに高速旋回することによって切削する方法(特許文献1参照)も開発されている。   As a general method for processing a cylindrical body to finish a cylindrical surface having a predetermined surface roughness, there is the following method. First, a tubular body manufactured by extrusion molding or pultrusion molding is cut into a desired length to manufacture a cylindrical body. Next, the edge portions are formed by cutting both end portions in the circumferential direction on both end surfaces with reference to the center of the inner diameter or the outer diameter of the cylinder. A holder having a taper-shaped clamp surface is inserted into this and held in the axial direction of the cylinder to hold the cylinder, or a holding member such as an open clamp is inserted and held inside the cylinder. Then, a cutting member such as a cutting tool is brought into contact with the outer peripheral surface of the cylindrical body, and then the cylindrical body is rotated to perform cutting. In addition, for the purpose of increasing the cutting efficiency of the outer peripheral surface, a shallow groove continuous in the axial direction is provided on the surface of the cylindrical body, and the surface of the cylindrical body is cut by turning the cutting member around the central axis of the cylinder at high speed. A method (see Patent Document 1) has also been developed.

このような円筒体の外周面を切削部材で切削加工して所定の表面粗さの円筒体表面に仕上げる方法では、少なからず切削痕が残る。この切削痕の深さは、基本的に切削部材先端形状の曲率と切削ピッチに従うが、この切削ピッチは切削痕の幅であり、切削部材が円筒体軸方向に進む速度と、円筒体の回転速度又は切削部材の旋回速度とによって決定される。従って、切削痕の表面粗さを低く抑えて加工することが求められる場合は、切削部材先端形状の曲率を大きくするか、又は切削ピッチを短く設定して加工する。特に、切削部材先端形状の曲率を最も大きくしたい場合は、通称平バイトと呼ばれる先端に曲率形状を持たない切削部材がしばしば用いられる。   In such a method of cutting the outer peripheral surface of the cylindrical body with a cutting member to finish the cylindrical body surface with a predetermined surface roughness, there are not a few cutting traces. The depth of this cutting trace basically follows the curvature and cutting pitch of the cutting member tip shape, but this cutting pitch is the width of the cutting trace, the speed at which the cutting member advances in the axial direction of the cylinder, and the rotation of the cylinder It is determined by the speed or the turning speed of the cutting member. Therefore, when it is required to process with the surface roughness of the cutting trace kept low, processing is performed by increasing the curvature of the cutting member tip shape or setting the cutting pitch short. In particular, when it is desired to maximize the curvature of the cutting member tip shape, a cutting member having a curvature shape at the tip, commonly called a flat tool, is often used.

また、切削速度、即ち円筒体の回転速度又は切削部材の旋回速度の設定に際しては、次のことが言える。即ち、円筒体には形状や回転バランスに個体差があるので、円筒体を回転させて切削加工するより、切削部材を旋回機構に設けて円筒体の軸周りに切削部材を旋回させて切削加工する方が、優れた旋回バランスの調整を施すことが可能である。これによって非常に高い回転数で旋回させ、従って高い切削速度を得ることが出来る。よって、円筒体の軸周りに切削部材を旋回させて切削加工する方法の方が、加工費をより低減させることが可能となる。また、円筒体の表面を全周にわたって加工するためには、円筒体を軸周りに回転させる方法においても、又は切削部材を円筒体の軸周りに旋回させる方法においても、次のことが求められる。つまり、両者ともに切削部材を円筒体の表面に当接するように位置決めする手段(以降、切削部材保持手段と記す)と円筒体との位置関係を円筒体の中心軸に平行に変化させることが求められる。言い換えれば、円筒体の保持手段又は切削部材保持手段のいずれか一方又は両方が、円筒体の軸に平行な方向のスライド機構を伴って位置決めされることが求められる。また、円筒体の保持手段と切削部材保持手段の両方をスライドさせる場合は、それらは共通のスライド機構に搭載されるか、又はそれぞれ別のスライド機構を互いの移動軌跡が平行になるように備えていることが一般的である。   In setting the cutting speed, that is, the rotational speed of the cylindrical body or the turning speed of the cutting member, the following can be said. That is, because there are individual differences in the shape and rotational balance of the cylindrical body, cutting is performed by turning the cutting member around the axis of the cylindrical body by providing a cutting member in the turning mechanism rather than rotating the cylindrical body for cutting. It is possible to adjust the turning balance better. This makes it possible to swivel at a very high rotational speed and thus to obtain a high cutting speed. Therefore, it is possible to further reduce the processing cost by the method of turning the cutting member around the axis of the cylindrical body for cutting. Further, in order to process the surface of the cylindrical body over the entire circumference, the following is also required in the method of rotating the cylindrical body around the axis or the method of rotating the cutting member around the axis of the cylindrical body. . That is, in both cases, it is required to change the positional relationship between the cylindrical body and the means for positioning the cutting member so as to contact the surface of the cylindrical body (hereinafter referred to as cutting member holding means) in parallel to the central axis of the cylindrical body. It is done. In other words, either one or both of the cylindrical body holding means and the cutting member holding means is required to be positioned with a slide mechanism in a direction parallel to the axis of the cylindrical body. Further, when both the cylindrical body holding means and the cutting member holding means are slid, they are mounted on a common slide mechanism or provided with different slide mechanisms so that their movement trajectories are parallel to each other. It is common to have.

また、ガイドレールやガイドシャフトによって位置規制された円筒体、又は切削部材保持手段を移動させる方法としては、次のようなものがある。即ち、らせん形状のネジ溝を施したボールネジを電気モータ、エアモータ又は振動モータ等によって回転させることによって移動させる方法である。また、ロッドエアシリンダやロッドレスエアシリンダ等の空圧動力を移動方向に直接作用させて移動させる等の方法も一般的である。前記のスライド機構、特にガイドレールやボールネジを用いて円筒体又は切削部材保持手段を移動させる方法は、円筒体と切削部材保持手段の円筒体軸方向の互いの位置変化が完全な直線上での移動によってなされることが好ましい。具体的に述べれば、次のような機構にされていることが望ましい。即ち、ガイドレールやガイドシャフト等といった高精度な軌道を用意する。複数のボールやローラーを循環出来るように内蔵したベアリング等を介して、円筒体の保持手段又は切削部材保持手段を、前記ガイドレールやガイドシャフト上を自在に移動出来るように継合するスライダーと呼ばれる摺動部材に固定する。一般に、非常に高い平滑性を備えるガイドレールやガイドシャフトを調達することは可能である。しかし、ガイドレールやガイドシャフトとスライダーが線方向に摺動する場合には、前述したようなベアリング部に内蔵する複数のボールやローラーの個体同士の寸法差等に起因する微小な動作隙間が存在してしまう。   Further, as a method of moving the cylindrical body whose position is regulated by the guide rail or the guide shaft or the cutting member holding means, there are the following methods. That is, it is a method of moving a ball screw provided with a helical thread groove by rotating it with an electric motor, an air motor, a vibration motor or the like. In addition, a method of moving a pneumatic power such as a rod air cylinder or a rodless air cylinder by directly acting in a moving direction is also common. In the method of moving the cylindrical body or the cutting member holding means using the slide mechanism, particularly the guide rail or the ball screw, the positional change between the cylindrical body and the cutting member holding means in the cylindrical body axial direction is on a completely straight line. It is preferably done by movement. Specifically, it is desirable to have the following mechanism. That is, a highly accurate track such as a guide rail or a guide shaft is prepared. It is called a slider that joins cylindrical body holding means or cutting member holding means so that it can freely move on the guide rail or guide shaft through a bearing or the like built in so that it can circulate a plurality of balls and rollers. Fix to the sliding member. In general, it is possible to procure guide rails and guide shafts having very high smoothness. However, when the guide rail or guide shaft and the slider slide in the linear direction, there is a small operating gap due to the dimensional difference between the individual balls or rollers incorporated in the bearing as described above. Resulting in.

一方、前述のボールネジについて述べれば、らせん状のネジ溝の加工に含まれる僅かなフレや、ベアリング部においても前記スライダーのベアリング部と同様な動作隙間が存在する。従って、それによって回転動作によるフレが少なからず発生し、特にボールネジを高い回転数で回転させる、又は特定の回転数で回転させる場合には、共振等によるより強い振動を発生することがある。このような振動は、その振幅の大小に関わらず円筒体の保持手段又は切削部材保持手段に伝達され、その振動のうち円筒体の軸に直交する方向に作用する成分は、切削部材と円筒体の当接深さに影響を与え、加工深さに変化をもたらす。その振動周期は、振動発生の原因がボールネジの回転であることから、ボールネジの回転と同期している。しかし、一般的な切削加工条件からすると、円筒体と切削部材保持機構との円筒体軸方向の移動速度に比べて、円筒体の回転速度又は切削部材の旋回速度は非常に速い。その結果、前記振動によって加工深さが変化するピッチと前記本来の切削痕のピッチは同期せずに、最終的な加工後の切削痕に不均一を生じさせる。   On the other hand, in the case of the above-described ball screw, there is a slight flare included in the processing of the helical thread groove, and an operation gap similar to the bearing portion of the slider exists also in the bearing portion. Accordingly, there is a considerable amount of flutter due to the rotation operation, and in particular, when the ball screw is rotated at a high rotation speed or rotated at a specific rotation speed, stronger vibration due to resonance or the like may be generated. Such vibration is transmitted to the cylindrical body holding means or the cutting member holding means regardless of the magnitude of the amplitude, and the components acting in the direction perpendicular to the axis of the cylindrical body are the cutting member and the cylindrical body. This affects the contact depth and changes the machining depth. The vibration period is synchronized with the rotation of the ball screw because the cause of the vibration is the rotation of the ball screw. However, under general cutting conditions, the rotational speed of the cylindrical body or the turning speed of the cutting member is very high compared to the moving speed of the cylindrical body and the cutting member holding mechanism in the axial direction of the cylindrical body. As a result, the pitch at which the machining depth changes due to the vibration and the pitch of the original cutting trace are not synchronized, and non-uniformity is generated in the final machining trace.

近年の電子写真感光ドラムにおいては、より高い画質形成、特に高分解能、耐ゴースト性等への要求、又はコストダウンを目的として塗膜の薄膜化が求められている。従って、ドラム基体表面に対して表面粗さを低く抑えることのみならず、切削痕のより高い均一性が重要となってきている。これに対して前記の不均一な切削痕は画像のムラを生じさせ、また製品としての目視外観上においても好ましくない。   In recent electrophotographic photosensitive drums, there is a demand for a thinner coating film for the purpose of higher image quality formation, particularly high resolution and ghost resistance, or cost reduction. Therefore, not only the surface roughness of the drum base surface is kept low, but also higher uniformity of the cutting trace is important. On the other hand, the non-uniform cutting marks cause image unevenness and are not preferable in terms of visual appearance as a product.

このような影響を避けるための方法として、一般に、ボールネジの位置決め部やモータとの接続部に樹脂製のカップリング等を用いて振動を緩和し、他の接続機器に振動が伝達しにくくする方法が用いられている。また、ボールネジと前記円筒体の保持手段又は切削部材保持手段の接続に際して、球形状の部材を用いたベアリング構造を介することによって振動を吸収する方法(特許文献2参照)も提案されている。
特開平06−328303号公報 特開2000−107971号公報
As a method for avoiding such influences, generally, a method of reducing vibration by using a resin coupling or the like for a ball screw positioning part or a connection part with a motor and making it difficult to transmit the vibration to other connection devices. Is used. In addition, a method of absorbing vibration by connecting a ball screw and the cylindrical body holding means or cutting member holding means through a bearing structure using a spherical member has been proposed (see Patent Document 2).
Japanese Patent Laid-Open No. 06-328303 JP 2000-107971 A

しかし、前述のボールネジの位置決め部やモータとの接続部に樹脂製のカップリング等を用いて振動を緩和する方法においては、次のような問題がある。つまり、それはボールネジの振れに起因する振動を緩和することは可能であるが、前記のようにスライダーのベアリング部に存在する微小な動作隙間によって発生する振動成分については大幅な緩和が見られない。   However, the above-described method for mitigating vibration using a resin coupling or the like for the ball screw positioning part or the motor connection part has the following problems. That is, it is possible to mitigate the vibration caused by the ball screw's vibration, but as described above, the vibration component generated by the minute operation gap existing in the bearing portion of the slider is not significantly relieved.

また、接続に際して球形状の部材を用いたベアリング構造によって振動を吸収する方法についても、次のような問題がある。つまり、その実際の機構においてはその球形状の部材を所定の位置に、即ち振動の方向に対して常に移動可能な余剰スペースを伴った状態に確保して保持することが求められる。そうするためには球体の当接部に窪みを設けるか、ブッシュ等をあてがって球体の位置を規制せざるを得ない。従って、この方法は基本的な球体の回転によるベアリング構造としての振動の吸収は期待出来るものの、球形状の部材が完全に負荷無く回転出来るわけではないので、大幅な振動の緩和は期待できない。   Further, the method for absorbing vibration by the bearing structure using a spherical member at the time of connection also has the following problems. In other words, in the actual mechanism, it is required to secure and hold the spherical member in a predetermined position, that is, in a state with an extra space that is always movable in the direction of vibration. In order to do so, the position of the sphere must be regulated by providing a depression in the contact portion of the sphere or by applying a bush or the like. Therefore, although this method can be expected to absorb vibration as a bearing structure by the rotation of a basic sphere, since the spherical member cannot be rotated completely without load, significant vibration relaxation cannot be expected.

ここで、前記のボールネジ動作に起因する振動の、円筒体の軸に直交する方向に作用する成分による切削部材の当接深さへの影響は、先に述べた2種類の切削方法ではそれぞれに対して及ぼす度合いが異なる。即ち、外周面に切削部材を当接させたうえで円筒体を回転させることによって切削加工する方法と、円筒体の表面を切削部材が円筒中心軸周りに回転することによって切削する方法とでは、影響が異なっている。   Here, the influence of the vibration caused by the ball screw operation on the contact depth of the cutting member due to the component acting in the direction perpendicular to the axis of the cylindrical body is different in each of the two types of cutting methods described above. The degree to which it affects is different. That is, with the method of cutting by rotating the cylindrical body after bringing the cutting member into contact with the outer peripheral surface, and the method of cutting the surface of the cylindrical body by rotating the cutting member around the central axis of the cylinder, The impact is different.

まず、円筒体を回転させることによって切削加工する方法を用いる場合について説明する。その場合、発生する振動に対して切削部材の位置と切削する加工深さ方向が固定されているので、切削部材を前記の振動の方向と加工深さ方向が直交するように配置すれば、振動の影響は円筒体表面に切削部材が当接するに際して接線方向に作用する。よって、加工深さへの変化を連続的に低減することが出来る。従って、完全にボールネジの振動を除去することが求められない。よって、例えば前記のボールネジと前記円筒体の保持手段又は切削部材保持手段の接続に際して、球形状の部材を用いたベアリング構造を介することによって振動を吸収する方法等を用いることによって、一定の効果を期待することが出来る。   First, the case where the method of cutting by rotating a cylindrical body is used is demonstrated. In this case, since the position of the cutting member and the cutting depth direction to be cut are fixed with respect to the generated vibration, if the cutting member is arranged so that the above-described vibration direction and the machining depth direction are orthogonal, the vibration When the cutting member comes into contact with the surface of the cylindrical body, the effect of is exerted in the tangential direction. Therefore, the change to the processing depth can be continuously reduced. Therefore, it is not required to completely eliminate the vibration of the ball screw. Therefore, for example, when the ball screw and the cylindrical body holding means or the cutting member holding means are connected, a certain effect can be obtained by using a method of absorbing vibration through a bearing structure using a spherical member. You can expect.

それに対し、円筒体の表面を切削部材が円筒中心軸周りに回転することによって切削する方法では、切削部材が加工に際して常に旋回している。よって、前記の振動の方向と切削部材の加工深さ方向が、切削部材の回転によって直交するときと平行になる時が繰り返すこととなり、円筒体を回転させることによって切削加工する方法のように連続的に低減することはできない。従って、前記したような近年の電子写真感光ドラムに求められる基体表面を得るためには、より確実な振動吸収機構が求められている。   On the other hand, in the method of cutting the surface of the cylindrical body by rotating the cutting member around the central axis of the cylinder, the cutting member is always swiveled during processing. Therefore, the vibration direction and the machining depth direction of the cutting member are repeated when they are orthogonal to and parallel with the rotation of the cutting member, which is continuous like a method of cutting by rotating the cylindrical body. Cannot be reduced. Therefore, in order to obtain the substrate surface required for the recent electrophotographic photosensitive drum as described above, a more reliable vibration absorbing mechanism is required.

本発明は、上記の課題に鑑みてなされたものである。本発明の目的は、円筒体表面切削後に複数の周期からなる不均一な切削痕を残したり、感光ドラムとして作製した後に周期的な痕跡を含む画像を形成したりすることの無い、表面精度の高い円筒体の加工装置及びその加工方法を提供することである。   The present invention has been made in view of the above problems. It is an object of the present invention to maintain surface accuracy without leaving a non-uniform cutting trace having a plurality of cycles after cutting a cylindrical body surface or forming an image including a periodic trace after being produced as a photosensitive drum. An object of the present invention is to provide a high cylindrical body processing apparatus and a processing method thereof.

本発明は、加工する円筒体を保持する円筒体保持手段と、切削部材を該円筒体の表面に当接するように位置決めかつ該円筒体の軸周りに旋回させる切削部材位置決め旋回手段と、該切削部材を該円筒体の軸方向に移動可能に保持する切削部材移動保持手段と、該切削部材を移動させる切削部材移動手段と、該切削部材移動保持手段と該切削部材移動手段とを接続する接続手段と、を少なくとも有する、円筒体の加工装置であって、該接続手段は、流体圧力を用いて前記切削部材位置決め旋回手段と前記切削部材移動手段の互いの位置を円筒体の軸方向において拘束し、かつ前記切削部材位置決め旋回手段と前記切削部材移動手段の互いの位置が円筒体の軸に直交する断面上において自在に移動できるように接続する手段であることを特徴とする。   The present invention provides a cylindrical body holding means for holding a cylindrical body to be processed, a cutting member positioning and turning means for positioning the cutting member so as to contact the surface of the cylindrical body and turning around the axis of the cylindrical body, and the cutting Cutting member moving and holding means for holding the member movably in the axial direction of the cylindrical body, cutting member moving means for moving the cutting member, and connection for connecting the cutting member moving and holding means and the cutting member moving means A cylindrical body processing apparatus, wherein the connection means restrains the positions of the cutting member positioning swiveling means and the cutting member moving means in the axial direction of the cylindrical body using fluid pressure. And a means for connecting the cutting member positioning swiveling means and the cutting member moving means so that they can move freely on a cross section perpendicular to the axis of the cylindrical body. .

また、本発明は、加工する円筒体を保持する円筒体保持手段と、切削部材を該円筒体の表面に当接するように位置決めかつ該円筒体の軸周りに旋回させる切削部材位置決め旋回手段と、該円筒体を該円筒体の軸方向に移動可能に保持する円筒体移動保持手段と、該円筒体を移動させる円筒体移動手段と、該円筒体移動保持手段と該円筒体移動手段を接続する接続手段と、を少なくとも有する、円筒体の加工装置であって、該接続手段は、流体圧力を用いて前記円筒体移動保持手段と前記円筒体移動手段の互いの位置を円筒体の軸方向において拘束し、かつ前記円筒体移動保持手段と前記円筒体移動手段の互いの位置が円筒体の軸に直交する断面上において自在に移動できるように接続する手段であることを特徴とする。   Further, the present invention provides a cylindrical body holding means for holding a cylindrical body to be processed, a cutting member positioning and turning means for positioning the cutting member so as to contact the surface of the cylindrical body and turning around the axis of the cylindrical body, A cylindrical body movement holding means for holding the cylindrical body movably in the axial direction of the cylindrical body, a cylindrical body movement means for moving the cylindrical body, and the cylindrical body movement holding means and the cylindrical body movement means are connected. A cylindrical body processing apparatus having at least a connecting means, wherein the connecting means uses fluid pressure to position the cylindrical body moving holding means and the cylindrical body moving means in the axial direction of the cylindrical body. It is a means for restraining and connecting the cylinder body movement holding means and the cylinder body movement means so that the mutual positions of the cylinder body movement means and the cylinder body movement means can be freely moved on a cross section orthogonal to the axis of the cylinder body.

また、本発明は、前記流体として気体を用いることを特徴とする。   Further, the present invention is characterized in that a gas is used as the fluid.

また、本発明は、前記接続手段は、流体が注入される流体供給口と、注入された流体が通過するための孔が設けられた少なくとも2つの静圧パッドと、を有し、該静圧パッドは該円筒体移動保持手段の少なくとも一部を挟むように対向して配置されてなることを特徴とする。又は、前記接続手段は、流体が注入される流体供給口と、注入された流体が通過するための孔が設けられた少なくとも2つの静圧パッドと、を有し、該静圧パッドは前記円筒体移動保持手段に固定されたアームの少なくとも一部を挟むように対向して配置されてなることを特徴とする。   Further, according to the present invention, the connecting means includes a fluid supply port into which a fluid is injected and at least two static pressure pads provided with holes for allowing the injected fluid to pass therethrough. The pads are arranged to face each other so as to sandwich at least a part of the cylindrical body movement holding means. Alternatively, the connection means includes a fluid supply port through which fluid is injected and at least two static pressure pads provided with holes for allowing the injected fluid to pass therethrough, the static pressure pad being the cylinder. It is arranged to face each other so as to sandwich at least a part of the arm fixed to the body movement holding means.

なお、前記静圧パッドの孔の内径断面積は、該静圧パッドの孔と直交する断面の面積に対して、0.5%以上15%以下であることを特徴とする。また、前記静圧パッドの孔の内径と長さは、長さが内径に対して1倍以上50倍以下の範囲となる関係にあることを特徴とする。また、前記静圧パッドは、多孔質鉱物又は発泡樹脂よりなる多孔質部材であることを特徴とする。   The inner diameter cross-sectional area of the hole of the static pressure pad is 0.5% or more and 15% or less with respect to the area of the cross section perpendicular to the hole of the static pressure pad. Further, the inner diameter and the length of the hole of the static pressure pad are in a relationship in which the length is in the range of 1 to 50 times the inner diameter. The hydrostatic pad is a porous member made of a porous mineral or a foamed resin.

更に、本発明は、切削部材を円筒体の軸周りに旋回させながら、該切削部材を該円筒体の軸方向に移動させて加工を行う円筒体の加工方法であって、前記の切削部材が円筒体に沿って移動する加工装置が該円筒体の加工に用いられていることを特徴とする。   Furthermore, the present invention relates to a cylindrical body machining method for performing machining by moving the cutting member in the axial direction of the cylindrical body while turning the cutting member around the axis of the cylindrical body. A processing apparatus that moves along a cylindrical body is used for processing the cylindrical body.

また更に、本発明は、切削部材を円筒体の軸周りに旋回させながら、該円筒体を該切削部材に対して該円筒体の軸方向に移動させて加工を行う円筒体の加工方法であって、前記の円筒体が該円筒体の軸に沿って移動する加工装置が該円筒体の加工に用いられていることを特徴とする。   Furthermore, the present invention is a processing method of a cylindrical body that performs processing by moving the cylindrical body relative to the cutting member in the axial direction of the cylindrical body while turning the cutting member around the axis of the cylindrical body. A processing apparatus in which the cylindrical body moves along the axis of the cylindrical body is used for processing the cylindrical body.

なお、本発明は、前記の加工方法によって加工されたことを特徴とする円筒体である。また、前記の円筒体を基体として製造されたことを特徴とする感光ドラムである。   In addition, this invention is a cylindrical body processed by the said processing method. A photosensitive drum is manufactured using the cylindrical body as a base.

本発明に従うことによって、円筒体表面切削後に複数の異なる周期からなる不均一な切削痕を残したり、感光ドラムとして作製した後に周期的な痕跡を含む画像を形成したりすることの無い、表面精度の高い円筒体を作製することが出来る。   According to the present invention, the surface accuracy without leaving non-uniform cutting traces having a plurality of different cycles after cutting the cylindrical surface or forming an image including periodic traces after being produced as a photosensitive drum. High cylindrical body can be produced.

以下、本発明を実施するための最良の形態を、図面を参照しながら詳細に説明するが、本発明はそれらに限定されるものではない。   The best mode for carrying out the present invention will be described below in detail with reference to the drawings, but the present invention is not limited thereto.

図1は、本発明による円筒体の加工装置の1つの実施形態を示している。それは、切削部材を円筒体の軸周りに旋回させながら、該切削部材を円筒体の軸方向に移動させて加工を行う、加工装置である。台座7上に、被加工物である円筒体8を所定の位置に保持する円筒体保持手段(保持具1)と、ボールネジ回転ユニット11と、が固定されている。ボールネジ回転ユニット11は、円筒体8の円筒中心軸と平行になるように切削部材を移動させる切削部材移動手段(ボールネジ6)を保持及びそれを回転させる部材である。また、台座7にはガイドレール4が、保持具1に保持された円筒体8の円筒中心軸に対して摺動軌道が平行になるように固定されている。加えて、ガイドレール4にはスライダー10を介して切削部材を円筒体8の軸方向に移動可能に保持する切削部材移動保持手段(切削ユニットベース12)が円筒中心軸と平行な方向に摺動可能に接続されている。   FIG. 1 shows one embodiment of a cylindrical body processing apparatus according to the present invention. It is a processing apparatus that performs processing by moving the cutting member in the axial direction of the cylindrical body while turning the cutting member around the axis of the cylindrical body. On the pedestal 7, a cylindrical body holding means (holding tool 1) that holds the cylindrical body 8 that is a workpiece in a predetermined position, and a ball screw rotating unit 11 are fixed. The ball screw rotating unit 11 is a member that holds and rotates the cutting member moving means (ball screw 6) that moves the cutting member so as to be parallel to the cylindrical central axis of the cylindrical body 8. Further, the guide rail 4 is fixed to the base 7 so that the sliding track is parallel to the cylindrical central axis of the cylindrical body 8 held by the holder 1. In addition, a cutting member moving and holding means (cutting unit base 12) for holding the cutting member movably in the axial direction of the cylindrical body 8 via the slider 10 slides on the guide rail 4 in a direction parallel to the central axis of the cylinder. Connected as possible.

図2は、前記図1の加工装置の円筒体8の円筒中心軸に直交する断面を示している。そこにおいて、切削ユニットベース12は、切削部材9を円筒体8の外表面に当接するように保持かつ切削部材9を円筒体8の円筒中心軸周りに旋回させる切削部材位置決め旋回手段(切削部材回転ユニット3)を内蔵している。切削部材9は粗バイト及び仕上げバイトそれぞれ1つからなり、粗バイト及び仕上げバイトは円筒体8の円筒中心軸を略中心として切削部材回転ユニット3の対向側に各々取り付けられている。従って、段階的に切削処理することによって、切削負荷を分散してスムーズに加工を行うことが出来る。   FIG. 2 shows a cross section orthogonal to the cylindrical central axis of the cylindrical body 8 of the processing apparatus of FIG. In this case, the cutting unit base 12 holds the cutting member 9 so as to come into contact with the outer surface of the cylindrical body 8, and the cutting member positioning and turning means (cutting member rotation) rotates the cutting member 9 about the cylindrical central axis of the cylindrical body 8. Built-in unit 3). The cutting member 9 is composed of one rough bit and one finishing bit, and the rough bit and the finishing bit are each attached to the opposite side of the cutting member rotating unit 3 around the cylindrical central axis of the cylindrical body 8. Therefore, by performing the cutting process stepwise, the cutting load can be dispersed and the machining can be performed smoothly.

同時に、切削ユニットベース12は、その下端部が接続手段(接続部材5)を介してボールネジ6に拘束されている。そして、ボールネジ回転ユニット11の回転作用を受けたボールネジ6によって、切削ユニットベース12はガイドレール4の軌道上を移動する。   At the same time, the lower end portion of the cutting unit base 12 is constrained to the ball screw 6 via the connecting means (connecting member 5). Then, the cutting unit base 12 moves on the track of the guide rail 4 by the ball screw 6 subjected to the rotating action of the ball screw rotating unit 11.

接続部材5を詳細に説明している図3に示すように、接続部材5には、高圧の流体が注入される流体供給口5aが設けられている。この流体供給口5aに対して流体を供給する手段については図示しないが、例えば送液ポンプ、エアーコンプレッサー、ガスボンベなど、所定の供給圧力が得られるものであれば特に限定されない。   As shown in FIG. 3 illustrating the connecting member 5 in detail, the connecting member 5 is provided with a fluid supply port 5a into which a high-pressure fluid is injected. The means for supplying fluid to the fluid supply port 5a is not shown in the figure, but is not particularly limited as long as a predetermined supply pressure can be obtained, such as a liquid feed pump, an air compressor, or a gas cylinder.

ここで、流体供給口5aから注入される流体は水、揮発性溶剤、又はオイル等の液体を用いるか、又はエアーや窒素ガス等の気体を用いてもよく、特に気体を用いる場合は、液体を用いる場合に比べて液体を受け皿等で回収するための機構が不要である。更には気体としてエアーを選定して用いると、その他の気体を用いるのに比べて安価かつ安全に設備を運用することができるので好ましい。従って、以降の説明に際しては、流体に関してはエアーを一例として述べることとする。   Here, the fluid injected from the fluid supply port 5a may be a liquid such as water, a volatile solvent, or oil, or may be a gas such as air or nitrogen gas. Compared to the case of using a liquid, there is no need for a mechanism for collecting the liquid with a receiving pan or the like. Furthermore, it is preferable to select and use air as the gas because the equipment can be operated cheaply and safely as compared with the case of using other gases. Accordingly, in the following description, air will be described as an example for the fluid.

また、前記の切削部材移動保持手段(切削ユニットベース12)を挟むように対向して、孔を有する静圧パッド5a及び5cを設けてもよい。この場合は、注入されたエアーは静圧パッド5b及び5cを通って切削ユニットベース12に向けて放出される。切削ユニットベース12は、この高い空気圧のエアーに挟まれることによって接続部材5に円筒体8の円筒中心軸に平行な方向について拘束される。ここで、エアー等の流体の供給は、圧力が高いほど拘束力、即ち位置の規制精度が向上し、特に0.1MPa以上であればボールネジ6の駆動が非常に正確に切削ユニットベース12を移動させることが可能で、切削結果に及ぼす影響も小さい。   Moreover, you may provide the static pressure pads 5a and 5c which have a hole in opposition so that the said cutting member movement holding means (cutting unit base 12) may be pinched | interposed. In this case, the injected air is discharged toward the cutting unit base 12 through the static pressure pads 5b and 5c. The cutting unit base 12 is constrained by the connecting member 5 in a direction parallel to the cylindrical central axis of the cylindrical body 8 by being sandwiched between the high-pressure air. Here, in the supply of fluid such as air, the higher the pressure, the higher the restraint force, that is, the accuracy of position regulation. In particular, when the pressure is 0.1 MPa or more, the drive of the ball screw 6 moves the cutting unit base 12 very accurately. The effect on the cutting result is small.

なお、静圧パッド5b及び5cは、それぞれ前記のように高圧のエアーが注入される流体供給口5aから切削ユニットベース12に向けてエアーを通過させるための、エアーが流入する面と流出する面とを備え、及び、この両面を繋ぐ孔、又はほぼ均等、等間隔に配置されかつ互いに平行にあけられた細孔が設けられた所定の大きさのブロックであり、エアーを切削ユニットベース12に向けて均一に分散させて面状に放出する。静圧パッド5b及び5cの材料は、金属、樹脂又は鉱物等細孔加工が可能なものであれば、特に限定はされない。また細孔の機能は、供給されたエアーが静圧パッドを通過する際に適度な圧力損失を発生させ、エアーを切削ユニットベース12に向けて放出する際に均一に分散させることを目的としており、その細孔加工においては、特に静圧パッドの細孔に直交する断面の面積に対する細孔の内径断面積の比率が重要となる。即ち、細孔の内径断面積は、静圧パッドの前記断面積に対して、0.5%以上15%以下であることが好ましい。また細孔の内径断面積が静圧パッドの前記断面積に対して15%以下であれば、供給されたエアーが静圧パッドを通過する際に、均一な分散に必要な圧力損失を得られ、偏りを生じにくく、加えて、細孔の内径断面積が静圧パッドの前記断面積に対して0.5%より小さいときは、供給されたエアーが静圧パッドを通過する際の圧力損失が過大になり、エアー供給装置の供給能力に過大なものを選定せざるを得なく、またエアー供給装置から静圧パッドまでのエアー供給経路に相応な耐圧機構を備えるなどの不必要な設備投資の増大を招いてしまう。加えてエアー等の流体が長さを持った孔を通過する際には、その内径と長さによって所定の圧力損失を伴なうことから、前記静圧パッドに設ける孔の内径と長さは前記の適正な圧力損失を確保する上で重要な要素である。即ち、孔の長さが内径に対して1倍以上50倍以下の範囲であることが好ましい。孔を通過する流体の圧力損失はその孔の長さに比例して増大することから、本発明の構成においては孔の長さが内径に対して50倍以下であれば前記の圧力損失が過大にならず適正な範囲に保つことができる。また孔の長さが内径に対して1倍以上あれば筐体としての静圧パッド自身の強度を確保する上で好ましい。   The static pressure pads 5b and 5c are respectively a surface through which air flows and a surface through which the air flows from the fluid supply port 5a through which high-pressure air is injected toward the cutting unit base 12 as described above. And a block of a predetermined size provided with holes that connect the both surfaces, or pores that are substantially equally spaced at equal intervals and that are opened in parallel to each other, and air is supplied to the cutting unit base 12. Disperse uniformly toward the surface and release. The material of the static pressure pads 5b and 5c is not particularly limited as long as pore processing such as metal, resin, or mineral is possible. The function of the pores is to generate an appropriate pressure loss when the supplied air passes through the static pressure pad, and to uniformly disperse the air when it is discharged toward the cutting unit base 12. In the pore processing, the ratio of the inner diameter cross-sectional area of the pore to the area of the cross section perpendicular to the pore of the static pressure pad is particularly important. That is, the inner diameter sectional area of the pores is preferably 0.5% or more and 15% or less with respect to the sectional area of the static pressure pad. Also, if the inner diameter cross-sectional area of the pore is 15% or less with respect to the cross-sectional area of the static pressure pad, the pressure loss necessary for uniform dispersion can be obtained when the supplied air passes through the static pressure pad. In addition, when the inner diameter cross-sectional area of the pores is less than 0.5% with respect to the cross-sectional area of the static pressure pad, the pressure loss when the supplied air passes through the static pressure pad Is unnecessarily capital investment, and there is no choice but to select an excessive supply capacity of the air supply device, and an unnecessary capital investment such as providing a pressure-resistant mechanism corresponding to the air supply path from the air supply device to the static pressure pad. Will increase. In addition, when a fluid such as air passes through a hole having a length, a predetermined pressure loss is caused depending on the inner diameter and length of the fluid. This is an important factor in securing the appropriate pressure loss. That is, the length of the hole is preferably in the range of 1 to 50 times the inner diameter. Since the pressure loss of the fluid passing through the hole increases in proportion to the length of the hole, in the configuration of the present invention, if the length of the hole is 50 times or less than the inner diameter, the pressure loss is excessive. It can be kept in an appropriate range. In addition, it is preferable that the length of the hole is 1 time or more with respect to the inner diameter in order to secure the strength of the static pressure pad itself as a housing.

従って、接続部材5がボールネジ回転ユニット11の回転作用を受けて切削ユニットベース12を移動させる際には、切削ユニットベース12はガイドレール4及び円筒体8の円筒中心軸に平行な方向のみに対して位置の規制を受けて移動する。しかし、前述のように切削ユニットベース12は高圧エアーを介して接続部材5に拘束されていることから、円筒体8の円筒中心軸に直交する方向に対しては、ガイドレール4の規制に従ってのみ位置が決められることになる。なお、図2に示されるように、接続部材5はガイドレール4に平行に固定された回転防止ガイドシャフト5kに接続されており、ボールネジ6の回転に伴って回転しないようにされている。なお、接続部材5と回転防止ガイドシャフト5kの接続部分には互いの摺動が可能なように微小な隙間が設けられており、この隙間によって接続部材5は僅かに回転、即ちガイドレール4及び円筒体8の軸に直交する方向の振動を発生することがある。しかし、この振動も、前述の高圧エアーを介して接続部材5が切削ユニットベース12を拘束する機構によって、切削ユニットベース12の動作に円筒体8の円筒中心軸に直交する方向の動作を与えることはない。   Therefore, when the connecting member 5 receives the rotational action of the ball screw rotating unit 11 and moves the cutting unit base 12, the cutting unit base 12 is only in the direction parallel to the guide rail 4 and the cylindrical central axis of the cylindrical body 8. Move according to position restrictions. However, since the cutting unit base 12 is restrained by the connecting member 5 through the high-pressure air as described above, the direction perpendicular to the cylindrical central axis of the cylindrical body 8 is only in accordance with the regulation of the guide rail 4. The position will be determined. As shown in FIG. 2, the connecting member 5 is connected to an anti-rotation guide shaft 5 k fixed in parallel to the guide rail 4, so that it does not rotate with the rotation of the ball screw 6. In addition, a minute gap is provided in the connecting portion between the connecting member 5 and the rotation prevention guide shaft 5k so that the connecting member 5 and the rotation preventing guide shaft 5k can slide with each other. In some cases, vibration in a direction perpendicular to the axis of the cylindrical body 8 may be generated. However, this vibration also causes the operation of the cutting unit base 12 to move in the direction perpendicular to the cylindrical central axis of the cylindrical body 8 by the mechanism in which the connecting member 5 restrains the cutting unit base 12 through the high-pressure air. There is no.

また、静圧パッド5b及び5cとして、図4に5d及び5eとして示してある、多孔質静圧パッド、即ち多孔質鉱物又は発泡樹脂等の多孔質部材を所定の形状に加工したものが用いられてもよい。このような多孔質部材はもともと略均等に配置した孔を有することから、前記したような静圧パッド、即ち加工によって細孔を施して通過するエアーをほぼ均一に分散させるものに近い効果を有し、かつ比較的安価に調達することができる。   Further, as the static pressure pads 5b and 5c, porous static pressure pads shown as 5d and 5e in FIG. 4, that is, a porous member such as porous mineral or foamed resin processed into a predetermined shape is used. May be. Since such a porous member originally has pores arranged substantially evenly, it has an effect close to that of the static pressure pad as described above, that is, the one that disperses the air passing through the pores by processing. And can be procured relatively inexpensively.

次に、本発明の別の実施形態を説明する。それは、図5に示してあるように、切削部材を円筒体の軸周りに旋回させながら、該円筒体を切削部材に対して円筒体の軸方向に移動させて加工する、加工装置である。図5に示す加工装置では、円筒体8を該円筒体8の軸方向に移動可能に保持する円筒体移動保持手段(円筒体保持ベース2)に、円筒体8を所定の位置に保持する円筒体保持手段(保持具1)が固定されている。またガイドレール4は台座7上に固定され、及びガイドレール4に円筒体保持ベース2がスライダー10を介して、円筒体8の円筒中心軸に対して平行な方向に摺動可能なように接続されている。同様に、台座7上に円筒体8の円筒中心軸に平行になるように、円筒体を移動させる円筒体移動手段(ボールネジ6)を保持かつ回転させるボールネジ回転ユニット11と、切削ユニットベース12と、が固定されている。   Next, another embodiment of the present invention will be described. As shown in FIG. 5, it is a processing apparatus for processing by moving the cylindrical body relative to the cutting member in the axial direction of the cylindrical body while turning the cutting member around the axis of the cylindrical body. In the processing apparatus shown in FIG. 5, the cylinder body 8 is held in a predetermined position by the cylinder body movement holding means (the cylinder body holding base 2) that holds the cylinder body 8 so as to be movable in the axial direction of the cylinder body 8. The body holding means (holding tool 1) is fixed. The guide rail 4 is fixed on the pedestal 7 and connected to the guide rail 4 via the slider 10 so that the cylindrical body holding base 2 can slide in a direction parallel to the cylindrical central axis of the cylindrical body 8. Has been. Similarly, a ball screw rotating unit 11 for holding and rotating a cylindrical body moving means (ball screw 6) for moving the cylindrical body on the base 7 so as to be parallel to the cylindrical central axis of the cylindrical body 8, and a cutting unit base 12 , Has been fixed.

更に、切削ユニットベース12は切削部材9を円筒体8の外表面に当接するように位置決めし、及び円筒体8の円筒中心軸周りに旋回させる切削部材保持旋回手段(切削部材回転ユニット3)を内蔵している。同時に、円筒体保持ベース2は接続手段(接続部材5)を介してボールネジ6と接続されており、それはボールネジ回転ユニット11の回転作用に従ってガイドレール4の軌道上を移動する。接続部材5には、図2、図3、図4に示されている実施形態と同様の機構が採用されている。そこにおいては同じく、前記の静圧パッド5b及び同5cによって、円筒体移動保持手段(円筒体保持ベース2)に固定されたアーム13を挟むように対向している静圧パッド5b及び同5cを介した高い空気圧のエアーによって接続部材5に拘束されている。それによって、前述の効果をこの実施形態においても等しく得ることが可能である。   Further, the cutting unit base 12 positions the cutting member 9 so as to contact the outer surface of the cylindrical body 8, and includes a cutting member holding and turning means (cutting member rotating unit 3) for turning around the central axis of the cylindrical body 8. Built-in. At the same time, the cylindrical body holding base 2 is connected to the ball screw 6 via the connecting means (connecting member 5), which moves on the track of the guide rail 4 according to the rotating action of the ball screw rotating unit 11. The connection member 5 employs the same mechanism as that of the embodiment shown in FIGS. 2, 3, and 4. Similarly, the static pressure pads 5b and 5c facing each other so as to sandwich the arm 13 fixed to the cylindrical body movement holding means (cylindrical body holding base 2) by the static pressure pads 5b and 5c. It is restrained by the connection member 5 by the air of high air pressure. Thereby, the above-described effects can be obtained even in this embodiment.

本発明の加工装置によって加工された円筒体は、様々な用途に用いられることが可能である。例えば、電子写真方式の複写機やレーザービームプリンター、同ファクシミリ、又は印刷装置の感光ドラムの基体として使用することが出来る。感光ドラムとして使用する場合、浸漬コーティング法等により上記の円筒体上に電荷発生層等を形成すればよい。   The cylindrical body processed by the processing apparatus of the present invention can be used for various applications. For example, it can be used as a substrate for a photosensitive drum of an electrophotographic copying machine, laser beam printer, facsimile, or printing apparatus. When used as a photosensitive drum, a charge generation layer or the like may be formed on the cylindrical body by a dip coating method or the like.

以下、本発明の実施例を説明するが、本発明はこれらの例に限定されるものではない。また、これより切削部材をバイトと記す。   Examples of the present invention will be described below, but the present invention is not limited to these examples. Further, the cutting member will be referred to as a cutting tool.

(実施例1)
本例においては、本発明に従って感光ドラムを製造した。
(Example 1)
In this example, a photosensitive drum was manufactured according to the present invention.

最初に、円筒体として、外径φ30.10mm、内径φ28.50mmのアルミニウム引抜円筒体(材質A6063)を円筒体長さ260mmに切断し、その両端の近傍の内面を切削して角度45°のテーパー面を施した。それから、この円筒体の外表面の母線方向に、カッターを用いて深さ0.02mmから0.04mmまでの4本の浅溝をピッチ約90°にて均等に配置して施した。   First, as a cylindrical body, an aluminum drawn cylindrical body (material A6063) having an outer diameter of φ30.10 mm and an inner diameter of φ28.50 mm is cut into a cylindrical body length of 260 mm, and the inner surface in the vicinity of both ends is cut to a taper of 45 °. Surface was given. Then, four shallow grooves having a depth of 0.02 mm to 0.04 mm were evenly arranged at a pitch of about 90 ° using a cutter in the generatrix direction of the outer surface of the cylindrical body.

続いて、図1に示す切削装置で、接続部材5に静圧パッドを内蔵させ、以下の条件で表面加工を行った。なお、静圧パッドの加工に際しては、鉄(S45C)を用いて、厚さ6mm、表と裏の両表面を20mm×20mmの正方形の平板ブロックを作製し、これの厚み方向にφ0.2mmの細孔を縦横0.7mmピッチで貫通させた。この静圧パッドに供給するエアーは、0.8MPaとした。各切削バイトの取りしろは、切削前円筒体表面を基準としたバイトの切り込み深さを狙いとした。   Subsequently, with the cutting apparatus shown in FIG. 1, a static pressure pad was built in the connection member 5 and surface processing was performed under the following conditions. In the processing of the static pressure pad, a square plate block having a thickness of 6 mm and a front and back surfaces of 20 mm × 20 mm was prepared using iron (S45C), and φ0.2 mm in the thickness direction thereof. The fine holes were penetrated at a pitch of 0.7 mm in length and width. The air supplied to this static pressure pad was 0.8 MPa. The cutting margin of each cutting tool was aimed at the cutting depth of the cutting tool on the basis of the cylindrical body surface before cutting.

粗削りバイト
材質:焼結ダイヤモンド
先端R:0.2mm
粗削りバイト取りしろ:40μm
Roughing tool Material: Sintered diamond Tip R: 0.2mm
Rough cutting bite removal: 40μm

仕上げバイト
材質:単結晶ダイヤモンド
先端R:8.0mm
仕上げバイト取りしろ:10μm
Finishing tool Material: Single crystal diamond Tip R: 8.0mm
Finish bite removal: 10μm

荒削りバイトと仕上げバイトの離間距離:1.5mm
回転速度:14,000rpm
ボールネジのピッチ:1.0mm
ボールネジの回転数:985rpm
切削送り量:0.07mm/reV
切削油:白灯油0.025cc/秒
Distance between roughing tool and finishing tool: 1.5mm
Rotational speed: 14,000 rpm
Ball screw pitch: 1.0 mm
Ball screw rotation speed: 985 rpm
Cutting feed rate: 0.07mm / reV
Cutting oil: White kerosene 0.025cc / sec

切削加工終了後の円筒体表面の粗さを、表面粗さ測定機(小坂研究所製サーフコーダーSE−3300)を用いて、測定スピード0.5mm/秒、測定長さ2.5mm、カットオフ0.8mmにて測定したところ、Ryは0.20μmであった。   The roughness of the cylindrical surface after the cutting process was measured using a surface roughness measuring machine (Surfcoder SE-3300 manufactured by Kosaka Laboratory), measuring speed 0.5 mm / second, measuring length 2.5 mm, cut-off. When measured at 0.8 mm, Ry was 0.20 μm.

次に、ポリアミド樹脂(商品名:アミランCM8000、東レ社製)10部及びメトキシメチル化6ナイロン樹脂(商品名:トレジンEF−30T、帝国化学社製)12部を用意した。それらの樹脂をメタノール300部及びn−ブタノール250部の混合溶媒中に溶解した塗料を浸漬コーティング法で円筒体に塗布し、95℃で15分間熱風乾燥させることによって、膜厚が0.5μmの下引き層を形成した。   Next, 10 parts of polyamide resin (trade name: Amilan CM8000, manufactured by Toray Industries, Inc.) and 12 parts of methoxymethylated 6 nylon resin (trade name: Toresin EF-30T, manufactured by Teikoku Chemical Co., Ltd.) were prepared. A coating material in which these resins are dissolved in a mixed solvent of 300 parts of methanol and 250 parts of n-butanol is applied to the cylindrical body by a dip coating method and dried with hot air at 95 ° C. for 15 minutes, whereby the film thickness is 0.5 μm. An undercoat layer was formed.

次に、クロロガリウムフタロシアニン7部、ポリビニルブチラール樹脂(商品名:BX−1、積水化学工業社製)3部及びシクロヘキサノン60部からなる溶液を用意した。また、前記クロロガリウムフタロシアニンはCuKαの特性X線回折におけるブラッグ角(2θ±0.2°)が7.4°、16.6°、25.5°及び28.2°に強いピークを有している。前記溶液を1mmφのガラスビーズを用いたサンドミルで8時間分散した後、エチルアセテート100部を加えて電荷発生層用の分散液を調合した。   Next, a solution comprising 7 parts of chlorogallium phthalocyanine, 3 parts of polyvinyl butyral resin (trade name: BX-1, manufactured by Sekisui Chemical Co., Ltd.) and 60 parts of cyclohexanone was prepared. The chlorogallium phthalocyanine has strong peaks at 7.4 °, 16.6 °, 25.5 ° and 28.2 ° in the Bragg angle (2θ ± 0.2 °) in the characteristic X-ray diffraction of CuKα. ing. The solution was dispersed in a sand mill using 1 mmφ glass beads for 8 hours, and then 100 parts of ethyl acetate was added to prepare a dispersion for a charge generation layer.

この分散液を中間層上に浸漬コーティング法で塗布し、95℃で10分間加熱乾燥することによって電荷発生層を形成した。電荷発生層の膜厚は0.18μmであった。   This dispersion was applied on the intermediate layer by a dip coating method, and dried by heating at 95 ° C. for 10 minutes to form a charge generation layer. The film thickness of the charge generation layer was 0.18 μm.

次に、下記構造式のアミン化合物8部、   Next, 8 parts of an amine compound of the following structural formula,

下記構造式のアミン化合物2.5部、   2.5 parts of an amine compound of the following structural formula,

及びビスフェノールZ型ポリカーボネート樹脂(商品名:ユーピロンZ−200、三菱ガス化学社製)10部をモノクロロベンゼン80部及びジメトキシメタン20部の混合溶媒に溶解した。この塗料を浸漬コーティング法で塗布し、125℃で1時間乾燥することによって、膜厚が11μmの電荷輸送層を形成し、感光ドラムとした。 And 10 parts of bisphenol Z-type polycarbonate resin (trade name: Iupilon Z-200, manufactured by Mitsubishi Gas Chemical Company) were dissolved in a mixed solvent of 80 parts of monochlorobenzene and 20 parts of dimethoxymethane. This paint was applied by a dip coating method and dried at 125 ° C. for 1 hour to form a charge transport layer having a film thickness of 11 μm, thereby forming a photosensitive drum.

上記と同様の工程を繰り返し行い、20本の感光ドラムを作成した。   The same process as described above was repeated to produce 20 photosensitive drums.

(実施例2)
切削加工に際して、図5に示す切削装置で、図3に示す接続部材5を用いて加工した以外は、全て実施例1と同様に加工し、感光ドラムを作成した。なお、切削加工終了後の円筒体表面の粗さを実施例1と同じ表面粗さ計にて測定したところ、Ryは0.19μmであった。
(Example 2)
5 was processed in the same manner as in Example 1 except that the connecting member 5 shown in FIG. 3 was used to process the photosensitive drum. When the roughness of the cylindrical body surface after the cutting process was measured with the same surface roughness meter as in Example 1, Ry was 0.19 μm.

実施例1と同様の工程を繰り返し、20本の感光ドラムを作成した。   The same steps as in Example 1 were repeated to prepare 20 photosensitive drums.

(比較例1)
切削加工に際して、図1に示す切削装置で、図1の接続部材5に図6で示されている球形状の部材を用いたベアリング機構を使用した以外は、全て実施例1と同様に加工し、感光ドラムを作成した。なお、切削加工終了後の円筒体表面の粗さを実施例1と同じ表面粗さ計にて測定したところ、Ryは0.26μmであった。実施例1と同様の工程を繰り返し、20本の感光ドラムを作成した。
(Comparative Example 1)
1 was processed in the same manner as in Example 1 except that the cutting apparatus shown in FIG. 1 used the bearing mechanism using the spherical member shown in FIG. 6 as the connecting member 5 in FIG. A photosensitive drum was prepared. In addition, when the roughness of the cylindrical body surface after the end of cutting was measured with the same surface roughness meter as in Example 1, Ry was 0.26 μm. The same steps as in Example 1 were repeated to prepare 20 photosensitive drums.

このとき、図6に示すベアリング機構では、球形状の部材として転動体5g及び5hとして高炭素クロム鋼(SUJ2、硬度HrC62)からなる球径φ9mmの硬球を用い、これを真鍮製ブッシュ5i及び5jを介して接続部材5に内蔵した。また、図6の図示左側にある切削送り後方のブッシュ5iは閉孔にして転動体5gを保持する。図示右側にある切削送り前方のブッシュ5jは皿バネ5fを内蔵している。この皿バネ5fによって、転動体5hが常に切削ユニットベース12及び転動体5gを押圧することによって、転動体5g及び5fが安定して切削ユニットベース12に当接することが出来るようにした。なお、皿バネ5fの与圧は125kgfとした。   At this time, in the bearing mechanism shown in FIG. 6, hard balls having a spherical diameter of 9 mm made of high carbon chrome steel (SUJ2, hardness HrC62) are used as rolling elements 5g and 5h as spherical members, and these are used as brass bushes 5i and 5j. It was built in the connection member 5 via Further, the bush 5i behind the cutting feed on the left side of FIG. 6 is closed to hold the rolling elements 5g. The bush 5j in front of the cutting feed on the right side in the drawing incorporates a disc spring 5f. By the disc spring 5f, the rolling element 5h always presses the cutting unit base 12 and the rolling element 5g, so that the rolling elements 5g and 5f can stably come into contact with the cutting unit base 12. The pressurizing force of the disc spring 5f was 125 kgf.

(比較例2)
切削加工に際して、図5に示す切削装置で、図5の接続部材5に比較例1と同様の球形状の部材を用いたベアリング機構を使用した以外は、全て実施例1と同様に加工し、感光ドラムを作成した。なお、切削加工終了後の円筒体表面の粗さを実施例1と同じ表面粗さ計にて測定したところ、Ryは0.25μmであった。実施例1と同様の工程を繰り返し、20本の感光ドラムを作成した。
(Comparative Example 2)
At the time of cutting, everything was processed in the same manner as in Example 1 except that a bearing mechanism using a spherical member similar to Comparative Example 1 was used for the connecting member 5 in FIG. A photosensitive drum was created. When the roughness of the cylindrical body surface after the cutting process was measured with the same surface roughness meter as in Example 1, Ry was 0.25 μm. The same steps as in Example 1 were repeated to prepare 20 photosensitive drums.

(評価)
上述のようにして作成した感光ドラムの外観を観察して表面状態を検査したところ、実施例1及び2の感光ドラムについては、切削ピッチのみ認められ、それ以外の周期的な痕跡は発見されなかった。一方、比較例1及び2の感光ドラムについては、切削ピッチに加え、ボールネジのピッチと同間隔(ほぼ規則的に1.0mm間隔)の縞模様が部分的に確認された。
(Evaluation)
When the surface state was inspected by observing the appearance of the photosensitive drum prepared as described above, only the cutting pitch was recognized for the photosensitive drums of Examples 1 and 2, and other periodic traces were not found. It was. On the other hand, in the photosensitive drums of Comparative Examples 1 and 2, in addition to the cutting pitch, a stripe pattern having the same interval as the ball screw pitch (almost regularly 1.0 mm interval) was partially confirmed.

次に、作製した全ての感光ドラムを、ヒューレット・パッカード社製プリンターLaser Jet 4000に装着して、黒画像及びハーフトーン画像をそれぞれ出力し画像評価を行った。ハーフトーン画像は黒線1本と白線2本分が交互に連続しているものであり、これら黒線及び白線が感光ドラムの円筒中心軸に対して平行な方向である縦方向、及び直交する方向である横方向にそれぞれ走査したものを使用した。なお表中の数字は、画像中に、感光ドラムの円筒中心軸に直交する方向での、ほぼ1.0mm間隔の周期的なスジが観察された個体の本数を示す。結果を表1に示す。   Next, all the produced photosensitive drums were mounted on a printer Laser Jet 4000 manufactured by Hewlett-Packard Co., and a black image and a halftone image were output and image evaluation was performed. In the halftone image, one black line and two white lines are alternately continued. These black lines and white lines are perpendicular to the cylindrical central axis of the photosensitive drum, and are orthogonal to each other. What was scanned in the horizontal direction which is the direction was used. The numbers in the table indicate the number of individuals in the image in which periodic streaks with an interval of approximately 1.0 mm were observed in the direction perpendicular to the cylindrical central axis of the photosensitive drum. The results are shown in Table 1.

表に示されているように、本発明に従う加工装置及び加工方法によって加工された円筒体を基体として用いた感光ドラムには、全画像試験で実施例1及び実施例2のどちらにおいても周期的なスジは確認されなかった。それに対して、接続部材に図6に示す球形状の部材を用いたベアリング機構を採用した従来技術においては、比較例1及び比較例2の両方において、縦ハーフトーン画像と横ハーフトーン画像とで周期的なスジが存在する個体が観察された。   As shown in the table, the photosensitive drum using the cylindrical body processed by the processing apparatus and the processing method according to the present invention as a substrate has a periodicity in both the first and second embodiments in all image tests. No streak was found. On the other hand, in the prior art employing the bearing mechanism using the spherical member shown in FIG. 6 as the connecting member, both the vertical halftone image and the horizontal halftone image in both Comparative Example 1 and Comparative Example 2. Individuals with periodic streaks were observed.

本発明に従う円筒体加工装置の1つの実施形態の側部立面図である。1 is a side elevational view of one embodiment of a cylindrical body processing apparatus in accordance with the present invention. 図1の円筒体加工装置の横断面図である。It is a cross-sectional view of the cylindrical body processing apparatus of FIG. 静圧パッドを用いた本発明の接続部材の詳細を示す図である。It is a figure which shows the detail of the connection member of this invention using a static pressure pad. 多孔質部材よりなる静圧パッドを用いた本発明の接続部材の詳細を示す図である。It is a figure which shows the detail of the connection member of this invention using the static pressure pad which consists of a porous member. 本発明に従う円筒体加工装置の別の実施形態を示す図である。It is a figure which shows another embodiment of the cylindrical body processing apparatus according to this invention. 従来技術の転動体を用いた接続部材の詳細を示す図である。It is a figure which shows the detail of the connection member using the rolling element of a prior art.

符号の説明Explanation of symbols

1 保持具
2 円筒体保持ベース
3 切削部材回転ユニット
4 ガイドレール
5 接続部材
5a 流体供給口
5b、5c 静圧パッド
5d、5e 多孔質静圧パッド
5f 皿バネ
5g、5h 転動体
5i、5j ブッシュ
5k 回転防止ガイドシャフト
6 ボールネジ
7 台座
8 円筒体
9 切削部材
10 スライダー
11 ボールネジ回転ユニット
12 切削ユニットベース
13 アーム
DESCRIPTION OF SYMBOLS 1 Holder 2 Cylindrical body holding base 3 Cutting member rotation unit 4 Guide rail 5 Connection member 5a Fluid supply port 5b, 5c Static pressure pad 5d, 5e Porous static pressure pad 5f Belleville spring 5g, 5h Rolling element 5i, 5j Bush 5k Anti-rotation guide shaft 6 Ball screw 7 Base 8 Cylindrical body 9 Cutting member 10 Slider 11 Ball screw rotating unit 12 Cutting unit base 13 Arm

Claims (12)

加工する円筒体を保持する円筒体保持手段と、切削部材を該円筒体の表面に当接するように位置決めかつ該円筒体の軸周りに旋回させる切削部材位置決め旋回手段と、該切削部材を該円筒体の軸方向に移動可能に保持する切削部材移動保持手段と、該切削部材を移動させる切削部材移動手段と、該切削部材移動保持手段と該切削部材移動手段とを接続する接続手段と、を少なくとも有する、円筒体の加工装置であって、
該接続手段は、流体圧力を用いて該切削部材位置決め旋回手段と該切削部材移動手段の互いの位置を円筒体の軸方向において拘束し、かつ該切削部材位置決め旋回手段と該切削部材移動手段の互いの位置が円筒体の軸に直交する断面上において自在に移動できるように接続する手段であることを特徴とする円筒体の加工装置。
A cylindrical body holding means for holding a cylindrical body to be processed; a cutting member positioning and turning means for positioning the cutting member so as to contact the surface of the cylindrical body and turning about the axis of the cylindrical body; and the cutting member for the cylinder A cutting member moving and holding means for holding the cutting member so as to be movable in the axial direction of the body, a cutting member moving means for moving the cutting member, and a connecting means for connecting the cutting member moving and holding means and the cutting member moving means. A cylindrical processing apparatus having at least
The connecting means restrains the positions of the cutting member positioning swiveling means and the cutting member moving means in the axial direction of the cylindrical body using fluid pressure, and the cutting member positioning swiveling means and the cutting member moving means An apparatus for processing a cylindrical body, characterized in that it is means for connecting the positions so that they can move freely on a cross section perpendicular to the axis of the cylindrical body.
加工する円筒体を保持する円筒体保持手段と、切削部材を該円筒体の表面に当接するように位置決めかつ該円筒体の軸周りに旋回させる切削部材位置決め旋回手段と、該円筒体を該円筒体の軸方向に移動可能に保持する円筒体移動保持手段と、該円筒体を移動させる円筒体移動手段と、該円筒体移動保持手段と該円筒体移動手段を接続する接続手段と、を少なくとも有する、円筒体の加工装置であって、
該接続手段は、流体圧力を用いて該円筒体移動保持手段と該円筒体移動手段の互いの位置を円筒体の軸方向において拘束し、かつ該円筒体移動保持手段と該円筒体移動手段の互いの位置が円筒体の軸に直交する断面上において自在に移動できるように接続する手段であることを特徴とする円筒体の加工装置。
A cylindrical body holding means for holding a cylindrical body to be processed; a cutting member positioning turning means for positioning the cutting member so as to contact the surface of the cylindrical body and turning about the axis of the cylindrical body; and the cylindrical body as the cylinder At least a cylindrical body movement holding means that holds the cylinder body so as to be movable, a cylindrical body movement means that moves the cylindrical body, and a connection means that connects the cylindrical body movement holding means and the cylindrical body movement means. A cylindrical body processing apparatus comprising:
The connecting means restrains the positions of the cylindrical body movement holding means and the cylindrical body movement means in the axial direction of the cylindrical body using fluid pressure, and the cylindrical body movement holding means and the cylindrical body movement means An apparatus for processing a cylindrical body, characterized in that it is means for connecting the positions so that they can move freely on a cross section perpendicular to the axis of the cylindrical body.
前記流体として、気体が用いられることを特徴とする請求項1又は2に記載の円筒体の加工装置。   The cylindrical body processing apparatus according to claim 1, wherein a gas is used as the fluid. 前記接続手段は、流体が注入される流体供給口と、注入された流体が通過するための孔が設けられた少なくとも2つの静圧パッドと、を有し、該静圧パッドは前記切削部材移動保持手段の少なくとも一部を挟むように対向して配置されてなることを特徴とする請求項1又は3に記載の円筒体の加工装置。   The connection means includes a fluid supply port through which fluid is injected and at least two static pressure pads provided with holes for allowing the injected fluid to pass through, the static pressure pad moving the cutting member The cylindrical body processing apparatus according to claim 1 or 3, wherein the cylindrical body processing apparatus is disposed so as to face at least a part of the holding means. 前記接続手段は、流体が注入される流体供給口と、注入された流体が通過するための孔が設けられた少なくとも2つの静圧パッドと、を有し、該静圧パッドは前記円筒体移動保持手段に固定されたアームの少なくとも一部を挟むように対向して配置されてなることを特徴とする請求項2又は3に記載の円筒体の加工装置。   The connecting means includes a fluid supply port through which fluid is injected and at least two static pressure pads provided with holes for allowing the injected fluid to pass through, the static pressure pad moving the cylindrical body 4. The cylindrical body processing apparatus according to claim 2, wherein the cylindrical body processing apparatus is disposed so as to face at least a part of the arm fixed to the holding means. 前記静圧パッドの孔の内径断面積は、該静圧パッドの孔と直交する断面の面積に対して、0.5%以上15%以下であることを特徴とする請求項4又は5に記載の円筒体の加工装置。   The inner diameter cross-sectional area of the hole of the static pressure pad is 0.5% or more and 15% or less with respect to the area of the cross section orthogonal to the hole of the static pressure pad. Cylindrical body processing equipment. 前記静圧パッドの孔の内径と長さは、長さが内径に対して1倍以上50倍以下の範囲となる関係にあることを特徴とする請求項4から6のいずれかに記載の円筒体の加工装置。   7. The cylinder according to claim 4, wherein the inner diameter and the length of the hole of the static pressure pad are in a range of 1 to 50 times the length of the inner diameter. Body processing equipment. 前記静圧パッドは、多孔質鉱物又は発泡樹脂よりなる多孔質部材であることを特徴とする請求項4又は5に記載の円筒体の加工装置。   6. The cylindrical body processing apparatus according to claim 4, wherein the static pressure pad is a porous member made of a porous mineral or a foamed resin. 切削部材を円筒体の軸周りに旋回させながら、該切削部材を該円筒体の軸方向に移動させて加工を行う円筒体の加工方法であって、
請求項1、3、4、6から8のいずれか1項に記載の加工装置が、該円筒体の加工に用いられていることを特徴とする円筒体の加工方法。
A cylindrical body processing method for performing processing by moving the cutting member in the axial direction of the cylindrical body while turning the cutting member around the axis of the cylindrical body,
A processing method for a cylindrical body, wherein the processing apparatus according to any one of claims 1, 3, 4, 6 to 8 is used for processing the cylindrical body.
切削部材を円筒体の軸周りに旋回させながら、該円筒体を該切削部材に対して該円筒体の軸方向に移動させて加工を行う円筒体の加工方法であって、
請求項2、3、5から8のいずれか1項に記載の加工装置が、該円筒体の加工に用いられていることを特徴とする円筒体の加工方法。
A cylindrical body processing method for performing processing by moving the cylindrical body in the axial direction of the cylindrical body while turning the cutting member around the axis of the cylindrical body,
A processing method for a cylindrical body, wherein the processing apparatus according to any one of claims 2, 3, 5 to 8 is used for processing the cylindrical body.
請求項9又は10に記載の加工方法によって加工されたことを特徴とする円筒体。   A cylindrical body processed by the processing method according to claim 9 or 10. 請求項11に記載の円筒体を基体として製造されたことを特徴とする感光ドラム。   A photosensitive drum manufactured using the cylindrical body according to claim 11 as a substrate.
JP2007019238A 2007-01-30 2007-01-30 Cylinder machining device and method Pending JP2008183662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007019238A JP2008183662A (en) 2007-01-30 2007-01-30 Cylinder machining device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007019238A JP2008183662A (en) 2007-01-30 2007-01-30 Cylinder machining device and method

Publications (1)

Publication Number Publication Date
JP2008183662A true JP2008183662A (en) 2008-08-14

Family

ID=39727024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007019238A Pending JP2008183662A (en) 2007-01-30 2007-01-30 Cylinder machining device and method

Country Status (1)

Country Link
JP (1) JP2008183662A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101058566B1 (en) * 2008-11-21 2011-08-24 교통안전공단 Undercarriage dynamometer drive roller groove rework device
CN109482908A (en) * 2018-12-26 2019-03-19 罗甸县金泰模具机械制造有限公司 Move horizontally outer circle spindle nose turning equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101058566B1 (en) * 2008-11-21 2011-08-24 교통안전공단 Undercarriage dynamometer drive roller groove rework device
CN109482908A (en) * 2018-12-26 2019-03-19 罗甸县金泰模具机械制造有限公司 Move horizontally outer circle spindle nose turning equipment
CN109482908B (en) * 2018-12-26 2024-05-07 罗甸县金泰模具机械制造有限公司 Turning equipment for horizontal movement of excircle shaft head

Similar Documents

Publication Publication Date Title
DE102006028164B4 (en) Grinding and polishing machine for grinding and / or polishing workpieces in optical quality
CN109277885A (en) A kind of method for grinding of tungsten carbide coating thin-walled guide tube
US20170036323A1 (en) Tool holder, polishing tool, polishing tool unit, and method of adjusting protruding amount of grinding member
US20170014971A1 (en) Method and device for grinding large crankshafts
JPS6119567A (en) Device for machine tool for measuring diameter of eccentrically rotating workpiece, particularly, grinder
CN100381237C (en) Method for manufacturing coaxial bore for workpiece with coaxial bore series in ultra long size
JP2008183662A (en) Cylinder machining device and method
CN101941020B (en) Piston rod finish-rolling device and processing process thereof
JP2005169496A (en) Micro-roll forming device of substantially columnar member
CN105738233A (en) High-speed friction testing method for ultrathin coating
CN201064867Y (en) Superfinishing device for inner hole of butt clamp jaw of metal stretching butt clamp testing machine
CN210254940U (en) Inner hole rolling device
CN105479341B (en) Aero-engine fatigue testing specimen grinding grinding wheel dressing tool and dressing method
CN105547996B (en) It is a kind of pre- to repair the secondary high-speed friction testing machine of friction and its application
JPS60146609A (en) Apparatus for revolving tool receiving apparatus
JP2015226971A (en) Groove finish machining method and device
Luca Investigations into the use of ball-burnishing of hardened steel components as a finishing process
CN115046669B (en) Double-end joint inspection assembly method for screw rod bearing seat
US20070217037A1 (en) Air bearing guided zoom lens for metrological measurements
JP4427750B2 (en) Fine recess processing apparatus and fine recess processing method
CN106239033A (en) A kind of endoporus Impulse Rolling instrument
JP4078252B2 (en) Cylindrical electrophotographic photoreceptor substrate manufacturing method, cylindrical electrophotographic substrate, electrophotographic photoreceptor, and cylindrical electrophotographic substrate manufacturing apparatus
CN114310539A (en) Bar chamfering robot system and method
KR20200004537A (en) Shim processing device
JP2001004071A (en) Metallic pipe

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Effective date: 20090324

Free format text: JAPANESE INTERMEDIATE CODE: A7421

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100201