JP2008183588A - Pulsed arc welding control method - Google Patents

Pulsed arc welding control method Download PDF

Info

Publication number
JP2008183588A
JP2008183588A JP2007019284A JP2007019284A JP2008183588A JP 2008183588 A JP2008183588 A JP 2008183588A JP 2007019284 A JP2007019284 A JP 2007019284A JP 2007019284 A JP2007019284 A JP 2007019284A JP 2008183588 A JP2008183588 A JP 2008183588A
Authority
JP
Japan
Prior art keywords
voltage
welding
value
waveform
welding voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007019284A
Other languages
Japanese (ja)
Other versions
JP4890281B2 (en
Inventor
Futoshi Nishisaka
太志 西坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2007019284A priority Critical patent/JP4890281B2/en
Publication of JP2008183588A publication Critical patent/JP2008183588A/en
Application granted granted Critical
Publication of JP4890281B2 publication Critical patent/JP4890281B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc Welding Control (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform the excellent arc length control by removing the abnormal voltage on the welding voltage Vw for a long time in association with the deviation of a cathode point in the consumable electrode pulsed arc welding. <P>SOLUTION: In the pulsed arc welding control method, the welding voltage Vw of the pulse waveform is detected, the welding voltage limit value Vft is calculated by limiting the detected welding voltage value within the predetermined fluctuation range Vc±ΔVc from the reference voltage waveform of the pulse waveform; the reference voltage waveform is automatically updated to the voltage waveform generated by performing the moving average of the welding voltage limit value Vft; and the output of a welding power source is controlled so that the average value of the welding voltage limit value obtained by averaging the welding voltage limit value Vft is substantially equal to a predetermined voltage set value. The average value Vav of the welding voltage detected value Vw is calculated, the updating of the reference voltage waveform is interrupted when the raising rate Bv of the average value of the welding voltage reaches the reference raising rate Vt1, and the updating of the reference voltage waveform is re-started when the reducing rate Bv of the welding voltage average value reaches the reference reducing rate Bt2 thereafter. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、アーク長と比例関係にない異常電圧を除去した溶接電圧によってアーク長を制御するパルスアーク溶接制御方法に関するものである。   The present invention relates to a pulse arc welding control method for controlling an arc length by a welding voltage from which an abnormal voltage not proportional to the arc length is removed.

図5は、本発明が対象とする消耗電極パルスアーク溶接における溶接電流Iw及び溶接電圧Vwの波形図である。以下、同図を参照して説明する。   FIG. 5 is a waveform diagram of a welding current Iw and a welding voltage Vw in consumable electrode pulse arc welding targeted by the present invention. Hereinafter, a description will be given with reference to FIG.

時刻t1〜t2のピーク立上り期間Tup中は、同図(A)に示すように、ベース電流Ibからピーク電流Ipへと上昇する遷移電流が通電し、同図(B)に示すように、ベース電圧Vbからピーク電圧Vpへと上昇する遷移電圧が電極・母材間に印加する。時刻t2〜t3のピーク期間Tp中は、同図(A)に示すように、溶滴移行させるための大電流値のピーク電流Ipが通電し、同図(B)に示すように、ピーク電圧Vpが電極・母材間に印加する。時刻t3〜t4のピーク立下り期間Tdw中は、同図(A)に示すように、ピーク電流Ipからベース電流Ibへと下降する遷移電流が通電し、同図(B)に示すように、ピーク電圧Vpからベース電圧Vbへと下降する遷移電圧が電極・母材間に印加する。時刻t4〜t5のベース期間Tb中は、同図(A)に示すように、溶滴を成長させないための小電流値のベース電流Ibが通電し、同図(B)に示すように、ベース電圧Vbが電極・母材間に印加する。上記の時刻t1〜t5の期間をパルス周期Tfとして繰り返し溶接が行われる。上記のピーク立上り期間Tup及びピーク立下り期間Tdwは、溶接電源の内部及び外部に存在するリアクトル等による場合は0.3ms程度と短時間である。この場合、略矩形波の溶接電流Iw及び溶接電圧Vwとなる。他方、溶接条件によってはピーク立上り期間Tup及びピーク立下り期間Tdwを数ms程度に設定する場合もある。この場合、台形波の溶接電流Iw及び溶接電圧Vwとなる。   During the peak rising period Tup from time t1 to t2, a transition current that rises from the base current Ib to the peak current Ip is energized as shown in FIG. 9A, and as shown in FIG. A transition voltage rising from the voltage Vb to the peak voltage Vp is applied between the electrode and the base material. During the peak period Tp from time t2 to t3, as shown in FIG. 6A, the peak current Ip having a large current value for transferring droplets is energized, and as shown in FIG. Vp is applied between the electrode and the base material. During the peak fall period Tdw from time t3 to t4, as shown in FIG. 6A, a transition current that falls from the peak current Ip to the base current Ib is applied, and as shown in FIG. A transition voltage that drops from the peak voltage Vp to the base voltage Vb is applied between the electrode and the base material. During the base period Tb from time t4 to t5, as shown in FIG. 6A, the base current Ib having a small current value for preventing the droplets from growing is energized, and as shown in FIG. A voltage Vb is applied between the electrode and the base material. Welding is performed repeatedly with the period of time t1 to t5 as the pulse period Tf. The peak rising period Tup and the peak falling period Tdw are as short as about 0.3 ms in the case of a reactor or the like existing inside and outside the welding power source. In this case, the welding current Iw and the welding voltage Vw are substantially rectangular waves. On the other hand, depending on the welding conditions, the peak rising period Tup and the peak falling period Tdw may be set to about several ms. In this case, the welding current Iw and the welding voltage Vw are trapezoidal waves.

同図(A)に示すパルス波形の溶接電流Iwを平均化したのが溶接電流平均値Iavであり、同図(B)に示すように、パルス波形の溶接電圧Vwを平均化したのが溶接電圧平均値Vavである。さらに、同図(B)に示すように、各周期のピーク電圧Vpだけを取り出した平均値がピーク電圧平均値Vpaとなり、各周期のベース電圧Vbだけを取り出した平均値がベース電圧平均値Vbaとなる。   The welding current average value Iav is obtained by averaging the welding current Iw of the pulse waveform shown in FIG. 5A, and the welding voltage Vw is averaged by the welding voltage Vw of the pulse waveform as shown in FIG. The voltage average value Vav. Furthermore, as shown in FIG. 5B, the average value obtained by taking out only the peak voltage Vp in each cycle becomes the peak voltage average value Vpa, and the average value obtained by taking out only the base voltage Vb in each cycle is the base voltage average value Vba. It becomes.

パルスアーク溶接のアーク長制御は、以下のように行われる。以下で説明するアーク長とは見かけのアーク長のことを意味し、見かけのアーク長とは溶接ワイヤ直下の母材までの距離である。この見かけのアーク長が溶接品質と重大な関係にある。したがって、アーク長制御とは一般的に見かけのアーク長制御を意味する。アーク長(見かけのアーク長)と上記の溶接電圧平均値Vavとは略比例関係にあるので、溶接中のアーク長を溶接電圧平均値Vavによって検出することができる。そして、この溶接電圧平均値Vavの検出値が目標値である電圧設定値Vsと略等しくなるように、パルス周期Tf、ピーク期間Tp、ピーク電流Ip又はベース電流Ibの少なくとも1つ以上を変化させて溶接電流平均値Iavを変化させることによって、ワイヤ溶融速度を変化させてアーク長を適正値に制御する。以下の説明においては、フィードバック制御によってパルス周期Tfが変化する場合を例示する。したがって、このアーク長制御では、上記の溶接電圧平均値Vavによってアーク長を正確に検出できることが、良好なアーク長制御の前提条件となる。   The arc length control of pulse arc welding is performed as follows. The arc length described below means the apparent arc length, and the apparent arc length is the distance to the base material directly under the welding wire. This apparent arc length is critically related to welding quality. Therefore, arc length control generally means apparent arc length control. Since the arc length (apparent arc length) and the welding voltage average value Vav are substantially proportional to each other, the arc length during welding can be detected by the welding voltage average value Vav. Then, at least one of the pulse period Tf, the peak period Tp, the peak current Ip, or the base current Ib is changed so that the detected value of the welding voltage average value Vav is substantially equal to the target voltage setting value Vs. By changing the welding current average value Iav, the wire melting rate is changed to control the arc length to an appropriate value. In the following description, a case where the pulse period Tf is changed by feedback control will be exemplified. Therefore, in this arc length control, it is a precondition for good arc length control that the arc length can be accurately detected by the welding voltage average value Vav.

ところで、パルスアーク溶接においては、消耗電極である溶接ワイヤと母材とが短絡しその短絡が解除されてアークが再点弧したとき、母材表面の酸化皮膜の不均一に起因するアーク陰極点のふらつき現象が発生したとき等において、異常電圧が溶接電圧Vwに重畳することがある。この異常電圧は、これ以外にも種々の原因によって発生する。
この異常電圧はアーク長とは比例しない電圧であるので、アーク長を検出するためには溶接電圧Vwに重畳した異常電圧を除去する必要がある。この除去のための方法としては、パルス波形の基準電圧波形Vc及び変動幅ΔVcを予め設定し、溶接電圧VwがVc±ΔVcの範囲外になる部分は異常電圧であるとしてカットして制限する従来技術が提案されている。以下、この従来技術について説明する(特許文献1、2参照)。
By the way, in pulse arc welding, when the welding wire that is a consumable electrode and the base material are short-circuited and the short-circuit is released and the arc is re-ignited, the arc cathode spot caused by non-uniformity of the oxide film on the surface of the base material When a wobbling phenomenon occurs, an abnormal voltage may be superimposed on the welding voltage Vw. This abnormal voltage is generated due to various other causes.
Since this abnormal voltage is a voltage that is not proportional to the arc length, it is necessary to remove the abnormal voltage superimposed on the welding voltage Vw in order to detect the arc length. As a method for this removal, a reference voltage waveform Vc and a fluctuation range ΔVc of a pulse waveform are set in advance, and a portion where the welding voltage Vw falls outside the range of Vc ± ΔVc is cut and limited as an abnormal voltage. Technology has been proposed. Hereafter, this prior art is demonstrated (refer patent document 1, 2).

図6は、上記の基準電圧波形Vcの設定方法を示す図である。まず、溶接ワイヤの種類、送給速度等に応じて、基準ピーク電圧値Vpc、基準ベース電圧値Vbc及び変動幅ΔVcを、実験等によって予め設定する。そして、同図に示すように、ピーク立上り期間Tupの開始時点を0秒とする経過時間tによって、下式のように基準電圧波形Vcが定義される。
0≦t<Tup
Vc=((Vpc−Vbc)/Tup)・t+Vbc (11)式
Tup≦t<Tup+Tp
Vc=Vpc (12)式
Tup+Tp≦t<Tup+Tp+Tdw
Vc=((Vbc−Vpc)/Tdw)・(t−Tup−Tp)+Vpc (13)式
Tup+Tp+Tdw≦t<Tup+Tp+Tdw+Tb
Vc=Vbc (14)式
FIG. 6 is a diagram showing a method for setting the reference voltage waveform Vc. First, the reference peak voltage value Vpc, the reference base voltage value Vbc, and the fluctuation range ΔVc are set in advance by experiments or the like according to the type of welding wire, the feeding speed, and the like. Then, as shown in the figure, the reference voltage waveform Vc is defined by the following equation by the elapsed time t when the start time of the peak rising period Tup is 0 second.
0 ≦ t <Tup
Vc = ((Vpc−Vbc) / Tup) · t + Vbc (11) Expression Tup ≦ t <Tup + Tp
Vc = Vpc (12) Expression Tup + Tp ≦ t <Tup + Tp + Tdw
Vc = ((Vbc−Vpc) / Tdw) · (t−Tup−Tp) + Vpc (13) Expression Tup + Tp + Tdw ≦ t <Tup + Tp + Tdw + Tb
Vc = Vbc (14) Formula

例えば、同図に示すように、経過時間taにおける溶接電圧検出値がVd1であったとする。経過時間taはTup+Tp≦ta<Tup+Tp+Tdwのときであるので、上記(13)式に代入して、基準電圧波形の中心電圧値Vc1は以下となる。
Vc1=((Vbc−Vpc)/Tdw)・(ta−Tup−Tp)+Vpc
したがって、経過時間taのときの溶接電圧検出値Vd1は、変動幅Vc1±ΔVc内に制限される。すなわち、Vd1≧Vc1+ΔVcのときにはVd1=Vc+ΔVcに制限され、Vd1≦Vc1−ΔVcのときにはVd1=Vc−ΔVcに制限される。このようにして算出された溶接電圧制限値Vftは、異常電圧が略除去されたアーク長に略比例する電圧値となる。
For example, as shown in the figure, it is assumed that the welding voltage detection value at the elapsed time ta is Vd1. Since the elapsed time ta is when Tup + Tp ≦ ta <Tup + Tp + Tdw, the central voltage value Vc1 of the reference voltage waveform is substituted as follows by substituting into the above equation (13).
Vc1 = ((Vbc-Vpc) / Tdw). (Ta-Tup-Tp) + Vpc
Therefore, the welding voltage detection value Vd1 at the elapsed time ta is limited within the fluctuation range Vc1 ± ΔVc. That is, when Vd1 ≧ Vc1 + ΔVc, it is limited to Vd1 = Vc + ΔVc, and when Vd1 ≦ Vc1−ΔVc, it is limited to Vd1 = Vc−ΔVc. The welding voltage limit value Vft calculated in this way is a voltage value that is substantially proportional to the arc length from which the abnormal voltage is substantially eliminated.

図7は、短絡解除直後のアーク再点弧に伴う異常電圧発生時の電圧波形図である。同図(A)は溶接電圧Vwの時間変化を示し、同図(B)は基準電圧波形によって異常電圧を除去した後の溶接電圧制限値Vftの時間変化を示す。同図(B)に示すように、溶接電圧Vwは基準電圧波形を中心電圧値Vcとする変動幅Vc±ΔVc内に制限される。この結果、時刻t1〜t2の短絡期間中の溶接電圧制限値Vft=Vc−ΔVcとなり、時刻t2〜t3の異常電圧発生期間中の溶接電圧制限値Vft=Vc+ΔVcとなる。このように、異常電圧を略除去することができる。   FIG. 7 is a voltage waveform diagram when an abnormal voltage is generated due to arc re-ignition immediately after the short circuit is released. FIG. 4A shows the time change of the welding voltage Vw, and FIG. 4B shows the time change of the welding voltage limit value Vft after the abnormal voltage is removed by the reference voltage waveform. As shown in FIG. 5B, the welding voltage Vw is limited within a fluctuation range Vc ± ΔVc having the reference voltage waveform as the center voltage value Vc. As a result, the welding voltage limit value Vft = Vc−ΔVc during the short-circuit period from time t1 to t2, and the welding voltage limit value Vft = Vc + ΔVc during the abnormal voltage generation period from time t2 to t3. Thus, the abnormal voltage can be substantially eliminated.

図8は、図6で上述した基準電圧波形Vcを自動設定する方法を説明するための溶接電圧制限値Vftの時間変化を示す図である。同図において、現時点は時刻tnであり、第n回目のパルス周期Tf(n)の開始時点である。また、第n−1回目のパルス周期Tf(n-1)におけるピーク期間のみの溶接電圧制限値の平均値がピーク電圧制限値Vpf(n-1)であり、ベース期間のみの溶接電圧制限値の平均値がベース電圧制限値Vbf(n-1)である。同様に、第n−m回目のパルス周期Tf(n-m)におけるピーク期間のみの溶接電圧制限値の平均値がピーク電圧制限値Vpf(n-m)であり、ベース期間のみの溶接電圧制限値の平均値がベース電圧制限値Vbf(n-m)である。   FIG. 8 is a diagram showing a change over time in the welding voltage limit value Vft for explaining a method of automatically setting the reference voltage waveform Vc described above with reference to FIG. In the figure, the current time is time tn, which is the start time of the nth pulse cycle Tf (n). Further, the average value of the welding voltage limit value only during the peak period in the (n-1) th pulse cycle Tf (n-1) is the peak voltage limit value Vpf (n-1), and the welding voltage limit value only during the base period. Is the base voltage limit value Vbf (n-1). Similarly, the average value of the welding voltage limit value only during the peak period in the (n−m) th pulse cycle Tf (nm) is the peak voltage limit value Vpf (nm), and the average value of the welding voltage limit value only during the base period. Is the base voltage limit value Vbf (nm).

時刻tnにおいて、上記の第(n-1)〜第(n-m)回目のピーク電圧制限値Vpfを入力として、下式のようにピーク電圧移動平均値Vpr(n)を算出する。
Vpr(n)=(Vpf(n-1)+…+Vpf(n-m))/m (21)式
同様に、時刻tnにおいて、上記の第(n-1)〜第(n-m)回目のベース電圧制限値Vbfを入力として、下式のようにベース電圧移動平均値Vbr(n)を算出する。
Vbr(n)=(Vbf(n-1)+…+Vbf(n-m))/m (22)式
At time tn, the peak voltage moving average value Vpr (n) is calculated as shown in the following equation using the (n-1) to (nm) -th peak voltage limit value Vpf as an input.
Vpr (n) = (Vpf (n-1) +... + Vpf (nm)) / m Similar to the equation (21), at the time tn, the above (n-1) th to (nm) th base voltage limit Using the value Vbf as an input, the base voltage moving average value Vbr (n) is calculated as in the following equation.
Vbr (n) = (Vbf (n-1) +... + Vbf (nm)) / m (22)

そして、上述した(11)〜(14)式において、基準ピーク電圧値Vpcに上記のピーク電圧移動平均値Vprを代入し、かつ、基準ベース電圧値Vbcに上記のベース電圧移動平均値Vbrを代入すると、下式のように第n回目のパルス周期Tf(n)期間中の基準電圧波形が自動設定される。
0≦t<Tup
Vc(n)=((Vpr(n)−Vbr(n))/Tup)・t+Vbr(n) (31)式
Tup≦t<Tup+Tp
Vc(n)=Vpr(n) (32)式
Tup+Tp≦t<Tup+Tp+Tdw
Vc(n)=((Vbr(n)−Vpr(n))/Tdw)・(t−Tup−Tp)+Vpr(n) (33)式
Tup+Tp+Tdw≦t<Tup+Tp+Tdw+Tb
Vc(n)=Vbr(n) (34)式
In the equations (11) to (14), the peak voltage moving average value Vpr is substituted for the reference peak voltage value Vpc, and the base voltage moving average value Vbr is substituted for the reference base voltage value Vbc. Then, the reference voltage waveform during the nth pulse period Tf (n) is automatically set as shown in the following equation.
0 ≦ t <Tup
Vc (n) = ((Vpr (n) −Vbr (n)) / Tup) · t + Vbr (n) (31) Expression Tup ≦ t <Tup + Tp
Vc (n) = Vpr (n) (32) Expression Tup + Tp ≦ t <Tup + Tp + Tdw
Vc (n) = ((Vbr (n) −Vpr (n)) / Tdw) · (t−Tup−Tp) + Vpr (n) (33) Expression Tup + Tp + Tdw ≦ t <Tup + Tp + Tdw + Tb
Vc (n) = Vbr (n) (34)

上述したように、パルス周期の開始時点ごとに、上記のピーク電圧移動平均値Vpr及びベース電圧移動平均値Vbrを算出し、上記(31)式〜(34)式によって基準電圧波形が自動設定される。上記において、ピーク電圧移動平均値Vprを算出するときに、ピーク電圧制限値Vpfを重み付け移動平均して算出してもよい。同様に、ベース電圧移動平均値Vbrを算出するときに、ベース電圧制限値Vbfを重み付け移動平均して算出してもよい。また、移動平均する期間の長さは、過去数周期〜数十周期程度に設定する。   As described above, the peak voltage moving average value Vpr and the base voltage moving average value Vbr are calculated for each start point of the pulse period, and the reference voltage waveform is automatically set by the above equations (31) to (34). The In the above description, when the peak voltage moving average value Vpr is calculated, the peak voltage limit value Vpf may be calculated by weighted moving average. Similarly, when the base voltage moving average value Vbr is calculated, the base voltage limit value Vbf may be calculated by weighted moving average. Also, the length of the moving average period is set to the past several cycles to several tens of cycles.

特開2003−311409号公報JP 2003-31409 A 特開2006−68784号公報JP 2006-68784 A

アルゴンガス、ヘリウム等の不活性ガスと炭酸ガスとの混合ガスを使用して鉄鋼材料を溶接するパルスマグ溶接及び不活性ガス100%でアルミニウム材料を溶接するパルスミグ溶接においては、図7に示すように、パルス周期Tfの一部の期間又は2周期程度にまたがった期間に異常電圧が重畳することが多い、このような異常電圧に対しては従来技術の異常電圧除去方法によって異常電圧を略除去することができ、良好なパルスアーク溶接を行うことができる。   As shown in FIG. 7, in pulsed MAG welding in which a steel material is welded using a mixed gas of an inert gas such as argon gas or helium and carbon dioxide, and an aluminum material is welded in 100% of an inert gas. In many cases, an abnormal voltage is superimposed on a part of the pulse period Tf or a period extending over about two cycles. For such an abnormal voltage, the abnormal voltage is substantially removed by the conventional abnormal voltage removing method. And good pulse arc welding can be performed.

他方、不活性ガス100%を使用してステンレス鋼、インコネル等の鉄鋼系材料を溶接する場合、母材表面上に酸化皮膜が極端に少ないために、酸化皮膜のあるところに形成されやすいという性質を有する陰極点が溶接ワイヤ直下から大きく離れた位置に酸化被膜を求めて瞬間的に移動して形成される現象が生じることがある。一度大きく離れた位置に陰極点が形成されると、その位置で陰極点が安定してしまい、数百ms〜数秒間は陰極点が溶接ワイヤ直下に戻ってこない現象が発生する。このような状態では、溶接電圧Vwは溶接ワイヤ直下から母材までの距離であるアーク長とは比例せず、電圧が大きく持ち上がった異常電圧(以下、長期間異常電圧という)になる。以下、図を参照してこの長期間異常電圧が発生したときの従来技術の課題について説明する。   On the other hand, when steel materials such as stainless steel and Inconel are welded using 100% inert gas, the oxide film is extremely small on the surface of the base material, so it is easy to form where there is an oxide film. There may occur a phenomenon in which the cathode spot having the point is formed by moving instantaneously in search of an oxide film at a position far away from directly under the welding wire. Once the cathode spot is formed at a position far away from the cathode spot, the cathode spot becomes stable at that position, and a phenomenon occurs in which the cathode spot does not return directly below the welding wire for several hundred ms to several seconds. In such a state, the welding voltage Vw is not proportional to the arc length, which is the distance from the position immediately below the welding wire to the base metal, and becomes an abnormal voltage (hereinafter referred to as an abnormal voltage for a long period of time) in which the voltage has increased greatly. Hereinafter, the problems of the prior art when this abnormal voltage occurs for a long time will be described with reference to the drawings.

図9は、上述した長期間異常電圧が発生したときの溶接電圧Vw及び溶接電圧制限値Vftの時間変化を示す。同図において、時刻t1〜t2の期間、陰極点がワイヤ直下から大きく離れた位置に数百msの間突然形成されて、長期間異常電圧が発生している場合である。同図(A)に示すように、時刻t1〜t2の期間中、パルス波形の溶接電圧Vwは電圧値が持ち上げられた波形になっている。同図において、斜線で囲まれた四角は基準電圧波形の中心電圧値Vc及び変動幅Vc±ΔVcを模式的に示している。各パルス周期の溶接電圧Vwはこの変動幅Vc±ΔVc内に制限されて、同図(B)に示す溶接電圧制限値Vftが生成される。同図では、説明を分かりやすくするために、パルス波形が矩形波の場合を例示する。台形波の場合でも同様である。以下、同図を参照して、説明する。   FIG. 9 shows temporal changes in the welding voltage Vw and the welding voltage limit value Vft when the above-described abnormal voltage occurs for a long time. In the figure, during the period from time t1 to time t2, the cathode spot is suddenly formed at a position far away from directly below the wire for several hundred ms, and an abnormal voltage is generated for a long time. As shown in FIG. 5A, the welding voltage Vw of the pulse waveform has a waveform in which the voltage value is raised during the period of time t1 to t2. In the figure, the squares surrounded by diagonal lines schematically show the center voltage value Vc and the fluctuation range Vc ± ΔVc of the reference voltage waveform. The welding voltage Vw of each pulse period is limited within this fluctuation range Vc ± ΔVc, and a welding voltage limit value Vft shown in FIG. In the figure, for ease of explanation, the case where the pulse waveform is a rectangular wave is illustrated. The same applies to trapezoidal waves. Hereinafter, a description will be given with reference to FIG.

パルス周期Tf(1)中は、同図(A)に示すように、溶接電圧Vwには異常電圧は重畳しておらず基準電圧波形からの変動幅Vc±ΔVc内にあるので、同図(B)に示すように、溶接電圧制限値Vftは溶接電圧Vwと等しくなる。パルス周期Tf(2)において上述した長期間異常電圧が発生するために、同図(A)に示すように、溶接電圧Vwは全体的に電圧が持ち上がり変動幅の上限値Vc+ΔVcを超えた波形になっている。このために、同図(B)に示すように、溶接電圧制限値Vftは変動幅の上限値Vc+ΔVcに制限される。このときの基準電圧波形の中心電圧値Vcはパルス周期Tf(1)のときと略同一である。   During the pulse period Tf (1), as shown in FIG. 5A, the abnormal voltage is not superimposed on the welding voltage Vw and is within the fluctuation range Vc ± ΔVc from the reference voltage waveform. As shown in B), the welding voltage limit value Vft is equal to the welding voltage Vw. Since the above-described long-term abnormal voltage is generated in the pulse period Tf (2), the welding voltage Vw rises as a whole and has a waveform exceeding the upper limit value Vc + ΔVc of the fluctuation range as shown in FIG. It has become. For this reason, as shown in FIG. 5B, the welding voltage limit value Vft is limited to the upper limit value Vc + ΔVc of the fluctuation range. The center voltage value Vc of the reference voltage waveform at this time is substantially the same as that in the pulse period Tf (1).

パルス周期Tf(3)においても、同図(A)に示すように、長期間異常電圧が発生した状態であるので、同図(B)に示すように、溶接電圧制限値Vftは変動幅の上限値Vc+ΔVcに制限される。また、この周期における基準電圧波形の中心電圧値Vcは、過去所定周期の溶接電圧制限値Vftの移動平均値によって算出されるので、前周期よりも大きくなる。同様に、パルス周期Tf(4)においても、溶接電圧制限値Vftは前周期よりも大きくなり、基準電圧波形の中心電圧値Vcも大きくなる。長期間異常電圧が発生している間(時刻t1〜t2の間)、この状態が続くことになる。   Also in the pulse period Tf (3), since abnormal voltage has been generated for a long time as shown in FIG. 3A, the welding voltage limit value Vft has a fluctuation range as shown in FIG. It is limited to the upper limit value Vc + ΔVc. Further, the center voltage value Vc of the reference voltage waveform in this cycle is calculated by the moving average value of the welding voltage limit value Vft in the past predetermined cycle, and thus becomes larger than the previous cycle. Similarly, also in the pulse period Tf (4), the welding voltage limit value Vft is larger than the previous period, and the center voltage value Vc of the reference voltage waveform is also increased. This state continues while the abnormal voltage is generated for a long time (between times t1 and t2).

この長期間異常電圧が発生した時点では、陰極点が離れた位置に移動しただけであり、アーク長(見かけのアーク長)は適正状態のままであるのでアーク長に比例する電圧波形は、パルス周期Tf(1)の電圧波形と同じである。しかし、上述したように、溶接電圧制限値Vft及び中心電圧値Vcは徐々に大きくなるために、長期間異常電圧発生期間が数百ms〜数秒間も継続すると溶接電圧制限値Vftは異常電圧で持ち上がった溶接電圧Vwと変わらなくなる。この結果、フィードバック信号である溶接電圧制限値の平均値Vfaが次第に大きくなるために、パルス周期も次第に長くなり、アーク量は適正値よりも短くなり、溶接状態は不安定になる。   When this abnormal voltage is generated for a long period of time, the cathode spot has just moved away, and the arc length (apparent arc length) remains in an appropriate state. This is the same as the voltage waveform of the period Tf (1). However, as described above, since the welding voltage limit value Vft and the center voltage value Vc gradually increase, the welding voltage limit value Vft is an abnormal voltage when the abnormal voltage generation period continues for several hundreds of milliseconds to several seconds. It becomes the same as the raised welding voltage Vw. As a result, the average value Vfa of the welding voltage limit value, which is a feedback signal, gradually increases, so that the pulse period also gradually increases, the arc amount becomes shorter than the appropriate value, and the welding state becomes unstable.

そこで、本発明では、長期間異常電圧が発生しても異常電圧を除去して安定した溶接状態を維持することができるパルスアーク溶接制御方法を提供する。   Therefore, the present invention provides a pulse arc welding control method capable of removing abnormal voltage and maintaining a stable welding state even if abnormal voltage occurs for a long period of time.

上述した課題を解決するために、第1の発明は、ピーク電流及びベース電流を1周期とするパルス波形の溶接電流をアークに通電すると共に、消耗電極と母材との間のパルス波形の溶接電圧を検出しこの溶接電圧検出値をパルス波形の基準電圧波形からの所定変動幅内で制限して溶接電圧制限値を算出し、前記基準電圧波形は前記溶接電圧制限値を移動平均して生成した電圧波形に自動的に更新し、前記溶接電圧制限値を平均化した溶接電圧制限平均値が予め定めた電圧設定値と略等しくなるように溶接電源の出力を制御するパルスアーク溶接制御方法において、
前記溶接電圧検出値の平均値を算出し、この溶接電圧平均値の上昇率が基準上昇率に達したときは前記基準電圧波形の更新を中断し、その後に前記溶接電圧平均値の減少率が基準減少率に達したときは前記基準電圧波形の更新を再開する、ことを特徴とするパルスアーク溶接制御方法である。
In order to solve the above-described problem, the first invention is to apply a welding current having a pulse waveform with a peak current and a base current as one cycle to the arc, and to weld a pulse waveform between the consumable electrode and the base material. The welding voltage limit value is calculated by limiting the welding voltage detection value within a predetermined fluctuation range from the reference voltage waveform of the pulse waveform, and the reference voltage waveform is generated by moving the welding voltage limit value. In a pulse arc welding control method for automatically updating the welding voltage waveform and controlling the output of the welding power source so that a welding voltage limit average value obtained by averaging the welding voltage limit values is substantially equal to a predetermined voltage setting value. ,
The average value of the welding voltage detection value is calculated, and when the increase rate of the welding voltage average value reaches the reference increase rate, the update of the reference voltage waveform is interrupted, and then the decrease rate of the welding voltage average value is The pulse arc welding control method is characterized in that the update of the reference voltage waveform is resumed when the reference reduction rate is reached.

また、第2の発明は、前記基準電圧波形の更新の中断を、前記変動幅を0に変化させることによって等価的に行う、ことを特徴とする第1の発明記載のパルスアーク溶接制御方法である。   The second invention is the pulse arc welding control method according to the first invention, characterized in that the updating of the reference voltage waveform is equivalently performed by changing the fluctuation range to zero. is there.

上記第1の発明によれば、溶接電圧平均値の上昇率が基準上昇率に達した時点から減少率が基準減少率に達するまでの期間中は、基準電圧波形の中心電圧値の更新を中断することによって、長期間異常電圧を略除去することができる。このために、長期間異常電圧が発生しても見掛けのアーク長を適正値に維持することができ、良好な溶接品質を得ることができる。   According to the first aspect of the invention, the updating of the center voltage value of the reference voltage waveform is interrupted during the period from when the increase rate of the welding voltage average value reaches the reference increase rate until the decrease rate reaches the reference decrease rate. By doing so, the abnormal voltage can be substantially removed for a long period of time. For this reason, even if an abnormal voltage occurs for a long time, the apparent arc length can be maintained at an appropriate value, and good welding quality can be obtained.

上記第2の発明によれば、溶接電圧平均値の上昇率が基準上昇率に達した時点から減少率が基準減少率に達するまでの期間中は、基準電圧波形の変動幅を0にすることによって、長期間異常電圧を略除去することができる。このために、長期間異常電圧が発生しても見掛けのアーク長を適正値に維持することができ、良好な溶接品質を得ることができる。   According to the second aspect of the present invention, the fluctuation range of the reference voltage waveform is set to 0 during the period from when the increase rate of the welding voltage average value reaches the reference increase rate until the decrease rate reaches the reference decrease rate. Therefore, the abnormal voltage can be substantially removed for a long time. For this reason, even if an abnormal voltage occurs for a long time, the apparent arc length can be maintained at an appropriate value, and good welding quality can be obtained.

以下、図面を参照して本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

[実施の形態1]
図1は、本発明の実施の形態1に係るパルスアーク溶接制御方法を示す電圧波形図である。同図(A)は溶接電圧Vwを示し、同図(B)は溶接電圧平均値Vavの微分値Bvを示し、同図(C)は溶接電圧制限値Vftを示す。同図は上述した図9と対応しており、時刻t1〜t2の間は長期間異常電圧が発生している。同図(A)に示すように、各パルス波形の上に記載した数字(1)〜(7)は、パルス周期Tf(1)〜パルス周期Tf(7)を表している。また、同図(C)に示す斜線の四角は、基準電圧波形の中心電圧値Vcからの変動幅Vc±ΔVcを示す。同図はパルス波形が矩形波の場合であるが、台形波の場合も同様である。以下、同図を参照して説明する。
[Embodiment 1]
FIG. 1 is a voltage waveform diagram showing a pulse arc welding control method according to Embodiment 1 of the present invention. FIG. 4A shows the welding voltage Vw, FIG. 4B shows the differential value Bv of the welding voltage average value Vav, and FIG. 4C shows the welding voltage limit value Vft. This figure corresponds to FIG. 9 described above, and an abnormal voltage is generated for a long period of time from time t1 to time t2. As shown in FIG. 5A, numerals (1) to (7) described above each pulse waveform represent pulse period Tf (1) to pulse period Tf (7). In addition, the hatched squares shown in FIG. 5C indicate the fluctuation range Vc ± ΔVc from the center voltage value Vc of the reference voltage waveform. The figure shows the case where the pulse waveform is a rectangular wave, but the same applies to the case of a trapezoidal wave. Hereinafter, a description will be given with reference to FIG.

同図(A)に示すように、溶接電圧平均値Vavは、溶接電圧Vwを移動平均した値である。また、同図(B)に示す溶接電圧平均微分値Bvは、溶接電圧平均値Vavを微分した値(Bv=G・dVav/dt、Gは増幅率)であり、溶接電圧平均値Vavが上昇するときは正の値になり、減少するときは負の値になる。   As shown in FIG. 5A, the welding voltage average value Vav is a value obtained by moving average the welding voltage Vw. Further, the welding voltage average differential value Bv shown in FIG. 5B is a value obtained by differentiating the welding voltage average value Vav (Bv = G · dVav / dt, G is an amplification factor), and the welding voltage average value Vav increases. When it does, it becomes a positive value, and when it decreases, it becomes a negative value.

パルス周期Tf(1)においては、同図(A)に示すように、異常電圧は発生しておらず安定した溶接状態にあり、同図(C)に示すように、溶接電圧制限値Vftは、溶接電圧Vwが基準電圧波形の中心電圧値Vcからの変動幅Vc±ΔVc内にあるので溶接電圧Vwと等しくなる。   In the pulse period Tf (1), as shown in FIG. 5A, no abnormal voltage is generated and the welding state is stable. As shown in FIG. Since the welding voltage Vw is within the fluctuation range Vc ± ΔVc from the center voltage value Vc of the reference voltage waveform, it becomes equal to the welding voltage Vw.

パルス周期Tf(2)において、同図(A)に示すように、長期間異常電圧が発生して電圧が持ち上げられた波形になる。この周期における基準電圧波形の中心電圧値Vcは、前周期までの溶接電圧制限値Vftが変動幅Vc±ΔVc内にあるので、前周期と略同一になる。そして、溶接電圧Vwが変動幅の上限値Vc+ΔVcを越えているので、溶接電圧制限値Vftは、変動幅の上限値Vc+ΔVcに制限された波形となる。   In the pulse period Tf (2), as shown in FIG. 4A, an abnormal voltage is generated for a long period of time, resulting in a waveform in which the voltage is raised. The center voltage value Vc of the reference voltage waveform in this cycle is substantially the same as the previous cycle because the welding voltage limit value Vft up to the previous cycle is within the fluctuation range Vc ± ΔVc. Since the welding voltage Vw exceeds the fluctuation range upper limit value Vc + ΔVc, the welding voltage limit value Vft has a waveform limited to the fluctuation range upper limit value Vc + ΔVc.

パルス周期Tf(2)中の時刻t12において、同図(B)に示すように、溶接電圧平均微分値Bvが予め定めた基準上昇率Bt1に達すると、基準電圧波形の移動平均による更新を中断する。したがって、次のパルス周期Tf(3)の基準電圧波形はパルス周期Tf(2)と同一となる。このために、同図(C)に示すように、パルス周期Tf(3)における溶接電圧制限値Vftは、前周期と同一となる。同様に、パルス周期Tf(4)〜(5)における溶接電圧制限値Vftはパルス周期Tf(2)と同一となる。この結果、時刻t1〜t2の
長期間異常電圧発生期間中、溶接電圧制限値Vftは異常電圧が除去された波形になるので、アーク長(見かけのアーク長)はパルス周期Tf(1)のときと同様に適正な値を維持することができる。
At time t12 in the pulse period Tf (2), when the welding voltage average differential value Bv reaches a predetermined reference increase rate Bt1 as shown in FIG. To do. Therefore, the reference voltage waveform of the next pulse period Tf (3) is the same as the pulse period Tf (2). For this reason, as shown in FIG. 5C, the welding voltage limit value Vft in the pulse period Tf (3) is the same as the previous period. Similarly, the welding voltage limit value Vft in the pulse periods Tf (4) to (5) is the same as the pulse period Tf (2). As a result, during the long-term abnormal voltage generation period from time t1 to t2, the welding voltage limit value Vft has a waveform from which the abnormal voltage has been removed, so that the arc length (apparent arc length) is the pulse period Tf (1). It is possible to maintain an appropriate value in the same manner as.

パルス周期Tf(6)において、長期間異常電圧の発生は終了して陰極点がワイヤ直下に復帰するので、同図(A)に示すように、溶接電圧Vwは正常値に減少する。このパルス周期Tf(6)における基準電圧波形はまだ更新が中断されたままであるために、パルス周期Tf(2)と同一のままである。しかし、溶接電圧Vwが変動幅Vc±ΔVc内にあるために、同図(C)に示すように、溶接電圧制限値Vftは溶接電圧Vwと等しくなる。   In the pulse period Tf (6), the generation of the abnormal voltage for a long time is completed and the cathode spot returns to the position immediately below the wire, so that the welding voltage Vw decreases to a normal value as shown in FIG. The reference voltage waveform in the pulse period Tf (6) remains the same as the pulse period Tf (2) because the update is still interrupted. However, since the welding voltage Vw is within the fluctuation range Vc ± ΔVc, the welding voltage limit value Vft is equal to the welding voltage Vw as shown in FIG.

パルス周期Tf(6)中において、同図(B)に示すように、溶接電圧平均微分値Bvが基準減少率Bt2に達した時点t12から基準電圧波形の更新を再開する。このために、パルス周期Tf(7)において、基準電圧波形の中心電圧値Vcの移動平均による更新が再開される。移動平均は、長期間異常電圧発生期間中のパルス周期を使用せずにパルス周期Tf(2)以前の所定周期で行っても良いし、パルス周期Tf(6)以前の所定周期によって行っても良い。このパルス周期Tf(7)以降の動作は従来技術と同一である。   In the pulse period Tf (6), as shown in FIG. 5B, the update of the reference voltage waveform is resumed from the time t12 when the welding voltage average differential value Bv reaches the reference decrease rate Bt2. For this reason, in the pulse cycle Tf (7), the update by the moving average of the center voltage value Vc of the reference voltage waveform is resumed. The moving average may be performed at a predetermined period before the pulse period Tf (2) without using the pulse period during the abnormal voltage generation period for a long time, or may be performed at a predetermined period before the pulse period Tf (6). good. The operation after this pulse period Tf (7) is the same as in the prior art.

図2は、実施の形態1に係るパルスアーク溶接制御方法を実施するための溶接電源のブロック図である。以下、同図を参照して各ブロックについて説明する。   FIG. 2 is a block diagram of a welding power source for carrying out the pulse arc welding control method according to the first embodiment. Hereinafter, each block will be described with reference to FIG.

電源主回路PMは、商用交流電源(3相200V等)を入力として、後述する電流誤差増幅信号Eiに従って、インバータ制御、チョッパ制御等の出力制御を行い、溶接に適した溶接電圧Vw及び溶接電流Iwを出力する。溶接ワイヤ1は、ワイヤ送給装置の送給ロール5の回転によって溶接トーチ4内を通って送給されて、母材2との間でアーク3が発生する。   The power supply main circuit PM receives a commercial AC power supply (3-phase 200V, etc.) as input, performs output control such as inverter control and chopper control in accordance with a current error amplification signal Ei described later, and a welding voltage Vw and welding current suitable for welding. Iw is output. The welding wire 1 is fed through the welding torch 4 by the rotation of the feeding roll 5 of the wire feeding device, and an arc 3 is generated between the welding wire 1 and the base material 2.

電圧検出回路VDは、上記の溶接電圧Vwを検出して、溶接電圧検出信号Vdを出力する。溶接電圧平均値算出回路VAVは、この溶接電圧検出信号Vdを所定周期(1〜十数周期)で移動平均して溶接電圧平均値信号Vavを出力する。微分回路BVは、この溶接電圧平均値信号Vavを微分して溶接電圧平均微分値信号Bvを出力する。比較回路CPは、図1(B)に示すように、この溶接電圧平均微分値信号Bvが基準上昇率Bt1に達するとHighレベルにセットされ、その後基準減少率に達するとLowレベルにリセットされる比較信号Cpを出力する。すなわち、この比較信号CpがHighレベルの期間は長期間異常電圧が発生している期間に略相当する。   The voltage detection circuit VD detects the welding voltage Vw and outputs a welding voltage detection signal Vd. The welding voltage average value calculation circuit VAV outputs a welding voltage average value signal Vav by moving and averaging the welding voltage detection signal Vd at a predetermined cycle (1 to a dozen cycles). The differentiation circuit BV differentiates the welding voltage average value signal Vav and outputs a welding voltage average differentiation value signal Bv. As shown in FIG. 1B, the comparison circuit CP is set to the High level when the welding voltage average differential value signal Bv reaches the reference increase rate Bt1, and then reset to the Low level when the reference decrease rate is reached. The comparison signal Cp is output. That is, the period in which the comparison signal Cp is at a high level substantially corresponds to a period in which an abnormal voltage has been generated for a long time.

溶接電圧制限移動平均値算出回路VRAは、後述する溶接電圧制限値信号Vft、後述する経過時間信号St及び上記の比較信号Cpを入力として、図8で上述したように、比較信号CpがLowレベルのときは溶接電圧制限値信号Vftを移動平均してピーク電圧移動平均値信号Vpr及びベース電圧移動平均値信号Vbrを更新し、比較信号CpがHighレベルのときは更新を中断して出力する。基準電圧波形生成回路VCは、上述したように、これらのピーク電圧移動平均値信号Vpr及びベース電圧移動平均値信号Vbrによって自動設定された基準電圧波形を生成し、後述する経過時間信号Stに対応する中心電圧値信号Vcを出力する。したがって、上記の比較信号CpがLowレベルのとき(長期間異常電圧が発生していないとき)は、上記の中心電圧値信号Vcはパルス周期ごとに更新され、Highレベルのとき(長期間異常電圧が発生しているとき)は、更新は中断される。   The welding voltage limit moving average value calculation circuit VRA receives a welding voltage limit value signal Vft, which will be described later, an elapsed time signal St, which will be described later, and the comparison signal Cp, and the comparison signal Cp is at a low level as described above with reference to FIG. In this case, the moving voltage average value of the welding voltage limit value signal Vft is averaged to update the peak voltage moving average value signal Vpr and the base voltage moving average value signal Vbr. When the comparison signal Cp is at the high level, the updating is interrupted and output. As described above, the reference voltage waveform generation circuit VC generates a reference voltage waveform automatically set by the peak voltage moving average value signal Vpr and the base voltage moving average value signal Vbr, and corresponds to an elapsed time signal St described later. The center voltage value signal Vc is output. Therefore, when the comparison signal Cp is at the Low level (when no abnormal voltage is generated for a long period of time), the center voltage value signal Vc is updated every pulse period, and when the comparison signal Cp is at the High level (for an abnormal voltage for a long period of time). The update will be interrupted.

変動幅設定回路ΔVCは、予め定めた変動幅信号ΔVcを出力する。制限フィルタ回路FTは、上記の溶接電圧検出信号Vdを入力として、上記の中心電圧値からの変動幅Vc±ΔVc内に制限して、溶接電圧制限値信号Vftを出力する。平均値算出回路VFAは、上記の溶接電圧制限値信号Vftを入力として平均値を算出し、溶接電圧制限平均値信号Vfaを出力する。   The fluctuation range setting circuit ΔVC outputs a predetermined fluctuation range signal ΔVc. The limit filter circuit FT receives the welding voltage detection signal Vd as an input, limits the fluctuation range Vc ± ΔVc from the center voltage value, and outputs a welding voltage limit value signal Vft. The average value calculation circuit VFA receives the welding voltage limit value signal Vft as an input, calculates an average value, and outputs a welding voltage limit average value signal Vfa.

電圧設定回路VSは、予め定めた電圧設定信号Vsを出力する。電圧誤差増幅回路EVは、上記の溶接電圧制限平均値信号Vfaと電圧設定信号Vsとの誤差を増幅して、電圧誤差増幅信号Evを出力する。電圧・周波数変換回路V/Fは、上記の電圧誤差増幅信号Evの値に比例した周波数に変換し、その周波数(パルス周期)ごとに短時間Highレベルとなるパルス周期信号Tfを出力する。経過時間計数回路STは、上記のパルス周期信号TfがHighレベルに変化した時点(ピーク立上り期間の開始時点)からの経過時間を計数して、経過時間信号Stを出力する。   The voltage setting circuit VS outputs a predetermined voltage setting signal Vs. The voltage error amplification circuit EV amplifies the error between the welding voltage limit average value signal Vfa and the voltage setting signal Vs, and outputs a voltage error amplification signal Ev. The voltage / frequency conversion circuit V / F converts the frequency to a frequency proportional to the value of the voltage error amplification signal Ev, and outputs a pulse period signal Tf that becomes a high level for a short time for each frequency (pulse period). The elapsed time counting circuit ST counts the elapsed time from the time point when the pulse period signal Tf changes to the high level (the start time of the peak rising period), and outputs the elapsed time signal St.

ピーク電流設定回路IPSは、予め定めたピーク電流設定信号Ipsを出力する。ベース電流設定回路IBSは、予め定めたベース電流設定信号Ibsを出力する。電流制御設定回路ISCは、上記の経過時間信号Stを入力として、ピーク立上り期間Tup中は上記のベース電流設定信号Ibsから上記のピーク電流設定信号Ipsへと上昇する電流制御設定信号Iscを出力し、その後のピーク期間Tp中は上記のピーク電流設定信号Ipsを電流制御設定信号Iscとして出力し、その後のピーク立下り期間Tdw中は上記のピーク電流設定信号Ipsから上記のベース電流設定信号Ibsへと下降する電流制御設定信号Iscを出力し、その後のベース期間Tb中は上記のベース電流設定信号Ibsを電流制御設定信号Iscとして出力する。電流検出回路IDは、上記の溶接電流Iwを検出して、電流検出信号Idを出力する。電流誤差増幅回路EIは、上記の電流制御設定信号Iscと電流検出信号Idとの誤差を増幅して、電流誤差増幅信号Eiを出力する。上記ブロックにより、上記の電流制御設定信号Iscに相当する図5で上述した溶接電流Iwが通電する。   The peak current setting circuit IPS outputs a predetermined peak current setting signal Ips. The base current setting circuit IBS outputs a predetermined base current setting signal Ibs. The current control setting circuit ISC receives the elapsed time signal St and outputs a current control setting signal Isc that rises from the base current setting signal Ibs to the peak current setting signal Ips during the peak rising period Tup. During the subsequent peak period Tp, the peak current setting signal Ips is output as the current control setting signal Isc, and during the subsequent peak falling period Tdw, the peak current setting signal Ips is changed to the base current setting signal Ibs. The falling current control setting signal Isc is output, and the base current setting signal Ibs is output as the current control setting signal Isc during the subsequent base period Tb. The current detection circuit ID detects the welding current Iw and outputs a current detection signal Id. The current error amplification circuit EI amplifies the error between the current control setting signal Isc and the current detection signal Id and outputs a current error amplification signal Ei. By the block, the welding current Iw described above with reference to FIG. 5 corresponding to the current control setting signal Isc is supplied.

上述した実施の形態1によれば、溶接電圧平均値の微分値が基準上昇率に達した時点から基準減少率に達するまでの期間中は、基準電圧波形の中心電圧値の更新を中断することによって、長期間異常電圧を略除去することができる。このために、長期間異常電圧が発生しても見掛けのアーク長を適正値に維持することができ、良好な溶接品質を得ることができる。   According to the first embodiment described above, the update of the center voltage value of the reference voltage waveform is interrupted during the period from when the differential value of the welding voltage average value reaches the reference increase rate to the reference decrease rate. Therefore, the abnormal voltage can be substantially removed for a long time. For this reason, even if an abnormal voltage occurs for a long time, the apparent arc length can be maintained at an appropriate value, and good welding quality can be obtained.

[実施の形態2]
図3は、本発明の実施の形態2に係るパルスアーク溶接制御方法を示す電圧波形図である。同図(A)は溶接電圧Vwを示し、同図(B)は溶接電圧平均値Vavの微分値Bvを示し、同図(C)は溶接電圧制限値Vftを示す。同図は上述した図1と対応しており、時刻t1〜t2の間は長期間異常電圧が発生している。同図(A)に示すように、各パルス波形の上に記載した数字(1)〜(7)は、パルス周期Tf(1)〜パルス周期Tf(7)を表している。また、同図(C)に示す斜線の四角は、基準電圧波形の中心電圧値Vcからの変動幅Vc±ΔVcを示す。以下、同図を参照して上述した図1と異なる点について説明する。
[Embodiment 2]
FIG. 3 is a voltage waveform diagram showing the pulse arc welding control method according to the second embodiment of the present invention. FIG. 4A shows the welding voltage Vw, FIG. 4B shows the differential value Bv of the welding voltage average value Vav, and FIG. 4C shows the welding voltage limit value Vft. This figure corresponds to FIG. 1 described above, and an abnormal voltage has been generated for a long time from time t1 to t2. As shown in FIG. 5A, numerals (1) to (7) described above each pulse waveform represent pulse period Tf (1) to pulse period Tf (7). In addition, the hatched squares shown in FIG. 5C indicate the fluctuation range Vc ± ΔVc from the center voltage value Vc of the reference voltage waveform. Hereinafter, the difference from FIG. 1 described above will be described with reference to FIG.

同図(B)に示すように、溶接電圧平均微分値Bvが基準上昇率Bt1に達する時刻t11から基準減少率Bt2に達する時刻t12までの期間中は、図1で上述した実施の形態1では、基準電圧波形の中心電圧値Vcの更新を中断する。これに対して、本実施の形態では、同図(C)に示すように、基準電圧波形の中心電圧値Vcの更新は継続するが、変動幅ΔVc=0に一時的にセットする。これによって、パルス周期Tf(2)〜(5)における長期間異常電圧は除去されて、正常値の溶接電圧制限値Vftになる。この結果、長期間異常電圧が発生しているときも、アーク長(見かけのアーク長)を適正値に維持することができる。   As shown in FIG. 1B, during the period from the time t11 when the welding voltage average differential value Bv reaches the reference increase rate Bt1 to the time t12 when the welding voltage average differential value Bt reaches the reference decrease rate Bt2, the first embodiment described above with reference to FIG. The updating of the center voltage value Vc of the reference voltage waveform is interrupted. On the other hand, in the present embodiment, as shown in FIG. 5C, the center voltage value Vc of the reference voltage waveform is continuously updated, but the fluctuation range ΔVc = 0 is temporarily set. As a result, the long-term abnormal voltage in the pulse periods Tf (2) to (5) is removed, and the welding voltage limit value Vft becomes a normal value. As a result, the arc length (apparent arc length) can be maintained at an appropriate value even when an abnormal voltage has been generated for a long time.

図4は、上述した実施の形態2に係るパルスアーク溶接制御方法を実施するための溶接電源のブロック図である。同図において上述した図2と同一のブロックには同一符号をふしてそれらの説明は省略する。以下、同図を参照して、図2とは異なる点線で示すブロックについて説明する。   FIG. 4 is a block diagram of a welding power source for carrying out the pulse arc welding control method according to the second embodiment described above. In the figure, the same blocks as those in FIG. 2 described above are denoted by the same reference numerals, and description thereof is omitted. Hereinafter, blocks indicated by dotted lines different from FIG. 2 will be described with reference to FIG.

第2 変動幅設定回路ΔVC2は、比較信号CpがLowレベルのとき(長期間異常電圧が発生していないとき)は予め定めた値の変動幅信号ΔVcを出力し、Highレベルのとき(長期間異常電圧が発生しているとき)はその値を0にして変動幅信号ΔVcを出力する。   The second fluctuation range setting circuit ΔVC2 outputs a fluctuation range signal ΔVc having a predetermined value when the comparison signal Cp is at the Low level (when no abnormal voltage is generated for a long period of time), and when the comparison signal Cp is at the High level (for a long period of time). When an abnormal voltage is generated), the value is set to 0 and the fluctuation range signal ΔVc is output.

上述した実施の形態2によれば、溶接電圧平均値の微分値が基準上昇率に達した時点から基準減少率に達するまでの期間中は、基準電圧波形の変動幅を0にすることによって、長期間異常電圧を略除去することができる。このために、長期間異常電圧が発生しても見掛けのアーク長を適正値に維持することができ、良好な溶接品質を得ることができる。   According to the second embodiment described above, during the period from when the differential value of the welding voltage average value reaches the reference increase rate to the reference decrease rate, the fluctuation range of the reference voltage waveform is set to 0, Abnormal voltage can be substantially removed for a long time. For this reason, even if an abnormal voltage occurs for a long time, the apparent arc length can be maintained at an appropriate value, and good welding quality can be obtained.

上述した実施の形態1〜2では、溶接電圧Vwの平均値Vavを微分しているが、ピーク電圧又はベース電圧を微分しても良い。また、溶接電圧平均値Vavが基準値よりも大きい期間を長期間異常電圧の発生期間として判別しても良い。   In Embodiments 1 and 2 described above, the average value Vav of the welding voltage Vw is differentiated, but the peak voltage or the base voltage may be differentiated. Further, a period in which the welding voltage average value Vav is larger than the reference value may be determined as a period in which the abnormal voltage is generated for a long time.

本発明の実施の形態1に係るパルスアーク溶接制御方法を示す電圧波形図である。It is a voltage waveform diagram which shows the pulse arc welding control method which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るパルスアーク溶接制御方法を実施するための溶接電源のブロック図である。It is a block diagram of the welding power supply for implementing the pulse arc welding control method which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係るパルスアーク溶接制御方法を示す電圧波形図である。It is a voltage waveform diagram which shows the pulse arc welding control method which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係るパルスアーク溶接制御方法を実施するための溶接電源のブロック図である。It is a block diagram of the welding power supply for implementing the pulse arc welding control method which concerns on Embodiment 2 of this invention. 従来技術における消耗電極パルスアーク溶接の溶接電流Iw及び溶接電圧Vwの波形図である。It is a wave form diagram of welding current Iw and welding voltage Vw of consumable electrode pulse arc welding in a prior art. 従来技術における基準電圧波形Vcの設定方法を示す図である。It is a figure which shows the setting method of the reference voltage waveform Vc in a prior art. 従来技術における短絡解除直後のアーク再点弧に伴う異常電圧発生時の電圧波形図である。It is a voltage waveform figure at the time of the abnormal voltage generation | occurrence | production accompanying the arc re-ignition immediately after short circuit cancellation in a prior art. 図6で上述した基準電圧波形Vcを自動設定する方法を説明するための溶接電圧制限値Vftの時間変化を示す図である。It is a figure which shows the time change of the welding voltage limiting value Vft for demonstrating the method of setting automatically the reference voltage waveform Vc mentioned above in FIG. 従来技術の課題を説明するための長期間異常電圧が発生したときの電圧波形図である。It is a voltage waveform diagram when the abnormal voltage for a long time generate | occur | produces for demonstrating the subject of a prior art.

符号の説明Explanation of symbols

1 溶接ワイヤ
2 母材
3 アーク
4 溶接トーチ
5 送給ロール
Bt1 基準上昇率
Bt2 基準減少率
BV 微分回路
Bv 溶接電圧平均微分値(信号)
CP 比較回路
Cp 比較信号
EI 電流誤差増幅回路
Ei 電流誤差増幅信号
EV 電圧誤差増幅回路
Ev 電圧誤差増幅信号
FT 制限フィルタ回路
Iav 溶接電流平均値
Ib ベース電流
IBS ベース電流設定回路
Ibs ベース電流設定信号
ID 電流検出回路
Id 電流検出信号
Ip ピーク電流
IPS ピーク電流設定回路
Ips ピーク電流設定信号
ISC 電流制御設定回路
Isc 電流制御設定信号
Iw 溶接電流
PM 電源主回路
ST 経過時間計数回路
St 経過時間信号
ta 経過時間
Tb ベース期間
Tdw ピーク立下り期間
Tf パルス周期(信号)
Tp ピーク期間
Tup ピーク立上り期間
V/F 電圧・周波数変換回路
VAV 溶接電圧平均値算出回路
Vav 溶接電圧平均値(信号)
Vb ベース電圧
Vba ベース電圧平均値
Vbc 基準ベース電圧値
Vbf ベース電圧制限値
Vbr ベース電圧移動平均値(信号)
VC 基準電圧波形生成回路
Vc 基準電圧波形の中心電圧値(信号)
VD 電圧検出回路
Vd 溶接電圧検出信号
VFA 平均値算出回路
Vfa 溶接電圧制限平均値(信号)
Vft 溶接電圧制限値(信号)
Vp ピーク電圧
Vpa ピーク電圧平均値
Vpc 基準ピーク電圧値
Vpf ピーク電圧制限値
Vpr ピーク電圧移動平均値(信号)
VRA 溶接電圧制限移動平均値算出回路
VS 電圧設定回路
Vs 電圧設定信号
Vw 溶接電圧
ΔVC 変動幅設定回路
ΔVc 変動幅(信号)
ΔVC2 第2変動幅設定回路
1 Welding wire 2 Base material 3 Arc 4 Welding torch 5 Feeding roll Bt1 Standard increase rate Bt2 Standard decrease rate BV Differentiating circuit Bv Welding voltage average differential value (signal)
CP comparison circuit Cp comparison signal EI current error amplification circuit Ei current error amplification signal EV voltage error amplification circuit Ev voltage error amplification signal FT limiting filter circuit Iav welding current average value Ib base current IBS base current setting circuit Ibs base current setting signal ID current Detection circuit Id Current detection signal Ip Peak current IPS Peak current setting circuit Ips Peak current setting signal ISC Current control setting circuit Isc Current control setting signal Iw Welding current PM Power supply main circuit ST Elapsed time counting circuit St Elapsed time signal ta Elapsed time Tb Base Period Tdw Peak falling period Tf Pulse period (signal)
Tp Peak period Tup Peak rising period V / F Voltage / frequency conversion circuit VAV Welding voltage average value calculation circuit Vav Welding voltage average value (signal)
Vb Base voltage Vba Base voltage average value Vbc Reference base voltage value Vbf Base voltage limit value Vbr Base voltage moving average value (signal)
VC Reference voltage waveform generation circuit Vc Center voltage value (signal) of reference voltage waveform
VD voltage detection circuit Vd welding voltage detection signal VFA average value calculation circuit Vfa welding voltage limit average value (signal)
Vft welding voltage limit value (signal)
Vp peak voltage Vpa peak voltage average value Vpc reference peak voltage value Vpf peak voltage limit value Vpr peak voltage moving average value (signal)
VRA welding voltage limit moving average value calculation circuit VS voltage setting circuit Vs voltage setting signal Vw welding voltage ΔVC fluctuation range setting circuit ΔVc fluctuation range (signal)
ΔVC2 Second fluctuation range setting circuit

Claims (2)

ピーク電流及びベース電流を1周期とするパルス波形の溶接電流をアークに通電すると共に、消耗電極と母材との間のパルス波形の溶接電圧を検出しこの溶接電圧検出値をパルス波形の基準電圧波形からの所定変動幅内で制限して溶接電圧制限値を算出し、前記基準電圧波形は前記溶接電圧制限値を移動平均して生成した電圧波形に自動的に更新し、前記溶接電圧制限値を平均化した溶接電圧制限平均値が予め定めた電圧設定値と略等しくなるように溶接電源の出力を制御するパルスアーク溶接制御方法において、
前記溶接電圧検出値の平均値を算出し、この溶接電圧平均値の上昇率が基準上昇率に達したときは前記基準電圧波形の更新を中断し、その後に前記溶接電圧平均値の減少率が基準減少率に達したときは前記基準電圧波形の更新を再開する、ことを特徴とするパルスアーク溶接制御方法。
A welding current having a pulse waveform with a peak current and a base current as one cycle is applied to the arc, a welding voltage having a pulse waveform between the consumable electrode and the base material is detected, and the detected value of the welding voltage is used as a reference voltage of the pulse waveform. A welding voltage limit value is calculated by limiting within a predetermined fluctuation range from the waveform, and the reference voltage waveform is automatically updated to a voltage waveform generated by moving average of the welding voltage limit value, and the welding voltage limit value In the pulse arc welding control method for controlling the output of the welding power source so that the welding voltage limit average value obtained by averaging is substantially equal to a predetermined voltage setting value,
The average value of the welding voltage detection value is calculated, and when the increase rate of the welding voltage average value reaches the reference increase rate, the update of the reference voltage waveform is interrupted, and then the decrease rate of the welding voltage average value is The pulse arc welding control method characterized by restarting the update of the reference voltage waveform when a reference reduction rate is reached.
前記基準電圧波形の更新の中断を、前記変動幅を0に変化させることによって等価的に行う、ことを特徴とする請求項1記載のパルスアーク溶接制御方法。   The pulse arc welding control method according to claim 1, wherein the updating of the reference voltage waveform is equivalently performed by changing the fluctuation range to zero.
JP2007019284A 2007-01-30 2007-01-30 Pulse arc welding control method Active JP4890281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007019284A JP4890281B2 (en) 2007-01-30 2007-01-30 Pulse arc welding control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007019284A JP4890281B2 (en) 2007-01-30 2007-01-30 Pulse arc welding control method

Publications (2)

Publication Number Publication Date
JP2008183588A true JP2008183588A (en) 2008-08-14
JP4890281B2 JP4890281B2 (en) 2012-03-07

Family

ID=39726960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007019284A Active JP4890281B2 (en) 2007-01-30 2007-01-30 Pulse arc welding control method

Country Status (1)

Country Link
JP (1) JP4890281B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101362246B (en) * 2008-09-23 2011-01-12 四川电子焊接设备公司 Pulse energy control method for carbon dioxide shield-arc welding and drug-core no gas welding
CN107617805A (en) * 2016-07-15 2018-01-23 株式会社达谊恒 The output control method of electric arc welding power supply
CN114789285A (en) * 2022-04-22 2022-07-26 深圳市爱达思技术有限公司 Welding waveform generation method, device, equipment and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003311409A (en) * 2002-02-22 2003-11-05 Daihen Corp Method for controlling arch length in pulse arc welding
JP2006068784A (en) * 2004-09-03 2006-03-16 Daihen Corp Pulsed arc welding control method at arc starting time
JP2006175453A (en) * 2004-12-21 2006-07-06 Daihen Corp Control method for arc length of pulse arc welding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003311409A (en) * 2002-02-22 2003-11-05 Daihen Corp Method for controlling arch length in pulse arc welding
JP2006068784A (en) * 2004-09-03 2006-03-16 Daihen Corp Pulsed arc welding control method at arc starting time
JP2006175453A (en) * 2004-12-21 2006-07-06 Daihen Corp Control method for arc length of pulse arc welding

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101362246B (en) * 2008-09-23 2011-01-12 四川电子焊接设备公司 Pulse energy control method for carbon dioxide shield-arc welding and drug-core no gas welding
CN107617805A (en) * 2016-07-15 2018-01-23 株式会社达谊恒 The output control method of electric arc welding power supply
CN107617805B (en) * 2016-07-15 2021-08-03 株式会社达谊恒 Output control method for arc welding power supply
CN114789285A (en) * 2022-04-22 2022-07-26 深圳市爱达思技术有限公司 Welding waveform generation method, device, equipment and storage medium
CN114789285B (en) * 2022-04-22 2023-12-05 深圳市爱达思技术有限公司 Welding waveform generation method, device, equipment and storage medium

Also Published As

Publication number Publication date
JP4890281B2 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
JP5214859B2 (en) Output control method for consumable electrode arc welding power supply
JP4263886B2 (en) Arc length control method for pulse arc welding
JP4334930B2 (en) Arc length control method for pulse arc welding
JP6100607B2 (en) Output control method of pulse arc welding
JP2006263757A (en) Method for controlling arc length in pulse arc welding
JP2009072826A (en) Control method for pulse arc welding
JP2007075827A (en) Method of detecting/controlling constriction in consumable electrode arc welding
JP4890281B2 (en) Pulse arc welding control method
JP4663309B2 (en) Arc length control method for pulse arc welding
JP2003230958A (en) Control method for arc length of pulse arc welding
JP2008105095A (en) Output control method for pulsed arc welding
JP2022099368A (en) Pulse arc welding power supply
JP5506580B2 (en) Plasma MIG welding method
JP5349152B2 (en) AC pulse arc welding control method
JP5495758B2 (en) Plasma MIG welding method
JPH08267239A (en) Output control method of power source for consumable electrode type gas shielded pulsed arc welding
JP2006068784A (en) Pulsed arc welding control method at arc starting time
JP4438359B2 (en) Arc length control method for aluminum MIG welding
JP4805012B2 (en) Arc length control method for pulse arc welding
JP2012061477A (en) Arc start control method for plasma mig welding
JP7482581B2 (en) Arc welding method
JP2012152772A (en) Method for controlling arc start of plasma mig welding
JP2021186821A (en) Pulse arc welding power source
JP2009045662A (en) Welding power supply
JP2006088180A (en) Welding current control method in alternating current pulse arc welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111214

R150 Certificate of patent or registration of utility model

Ref document number: 4890281

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250