JP2008182056A - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor Download PDF

Info

Publication number
JP2008182056A
JP2008182056A JP2007014468A JP2007014468A JP2008182056A JP 2008182056 A JP2008182056 A JP 2008182056A JP 2007014468 A JP2007014468 A JP 2007014468A JP 2007014468 A JP2007014468 A JP 2007014468A JP 2008182056 A JP2008182056 A JP 2008182056A
Authority
JP
Japan
Prior art keywords
solid electrolytic
electrolytic capacitor
metal powder
valve action
action metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007014468A
Other languages
Japanese (ja)
Inventor
Akihiro Ito
明弘 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2007014468A priority Critical patent/JP2008182056A/en
Publication of JP2008182056A publication Critical patent/JP2008182056A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid electrolytic capacitor which improves a quality of a dielectric film, has a small leakage current and has a high withstand voltage. <P>SOLUTION: In the solid electrolytic capacitor, a porous molded body is formed under pressure from a valve action metal powder which has been heated and a sintered body formed by sintering this porous molded body is used as an anode body. The valve action metal powder before forming under pressure is assorted into a secondary particle thermally aggregated or a primary particle not aggregated yet. Thereafter, the primary particle not aggregated yet is selectively removed, and the primary particle contained in the valve action metal powder is set at 20 wt.% or less. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、各種電子機器に使用される固体電解コンデンサに関し、特に、漏れ電流が少なく、耐電圧が高い固体電解コンデンサに関するものである。   The present invention relates to a solid electrolytic capacitor used in various electronic devices, and more particularly to a solid electrolytic capacitor with a small leakage current and a high withstand voltage.

従来の固体電解コンデンサは、タンタルまたはニオブ等の弁作用金属粉末である単独粒子(一次粒子)を、高温・高真空の熱処理によって熱凝集させて二次粒子化(造粒)し、これを加圧成形して多孔質成形体を形成する。そして、この多孔質成形体を焼結して多孔質焼結体を形成した後、この多孔質焼結体に誘電体皮膜を形成し、陰極として導電性高分子または二酸化マンガンからなる固体電解質層と、グラファイト層、銀層からなる陰極引出層を順次形成して構成される。   In conventional solid electrolytic capacitors, single particles (primary particles) that are valve metal powders such as tantalum or niobium are thermally agglomerated by high-temperature and high-vacuum heat treatment to form secondary particles (granulation). A porous molded body is formed by pressure forming. Then, after sintering the porous molded body to form a porous sintered body, a dielectric coating is formed on the porous sintered body, and a solid electrolyte layer made of a conductive polymer or manganese dioxide as a cathode And a cathode lead layer composed of a graphite layer and a silver layer.

理想的な固体電解コンデンサは、直流電圧印加時のインピーダンスが無限大となるので、電流が流れることはない。しかし、実際には、直流電圧印加時でもインピーダンスは無限大にならず、電流(漏れ電流)が流れてしまう。漏れ電流は、誘電体皮膜が薄い部分や、本来非晶質であるはずの誘電体皮膜の一部が結晶化し、導電性を有することとなった微小な欠陥部分において生じる。   An ideal solid electrolytic capacitor has an infinite impedance when a DC voltage is applied, so no current flows. However, in practice, even when a DC voltage is applied, the impedance does not become infinite, and a current (leakage current) flows. Leakage current is generated at a portion where the dielectric film is thin or at a minute defect portion where a part of the dielectric film which should be amorphous is crystallized and becomes conductive.

また、上記のような不均一な誘電体皮膜は、固体電解コンデンサの耐電圧低下の原因にもなっている。   In addition, the non-uniform dielectric film as described above also causes a decrease in withstand voltage of the solid electrolytic capacitor.

この固体電解コンデンサの誘電体皮膜の不均一を改善するための手段として、多孔質焼結体中の含有酸素濃度を低下させることが極めて有効であることが知られており、様々な試みがなされている。   As a means for improving the nonuniformity of the dielectric film of this solid electrolytic capacitor, it is known that reducing the oxygen concentration in the porous sintered body is extremely effective, and various attempts have been made. ing.

例えば、特許文献1では、弁作用金属粉末を加圧成形した多孔質成形体を焼結室で焼結させ、高真空下で強制冷却する。そして、焼結室の圧力を、大気リーク→再真空→大気リーク→再真空→・・・とし、リーク度を徐々に上げつつ大気リークを繰り返して段階的に大気圧にした後に、焼結室から多孔質焼結体を取り出すことによって、含有酸素濃度を低下させている。   For example, in patent document 1, the porous molded object which pressure-molded the valve action metal powder is sintered in a sintering chamber, and is forcedly cooled under a high vacuum. Then, the pressure of the sintering chamber was changed to atmospheric leak → re-vacuum → atmospheric leak → re-vacuum →.. The content of oxygen is reduced by removing the porous sintered body from the substrate.

この方法によれば、焼結した多孔質焼結体の自然酸化を防ぐことにより、多孔質焼結体中の含有酸素濃度を低下させることはできたが、弁作用金属粉末自体に含まれる酸素を低減することはできなかった。したがって、弁作用金属粉末自体に含まれる酸素が多い場合、依然として多孔質焼結体中の含有酸素濃度は高く、誘電体皮膜の品質を改善することは困難であった。
特開2001−135552公報
According to this method, it was possible to reduce the concentration of oxygen contained in the porous sintered body by preventing natural oxidation of the sintered porous sintered body, but the oxygen contained in the valve action metal powder itself. Could not be reduced. Therefore, when the oxygen contained in the valve action metal powder itself is large, the oxygen concentration in the porous sintered body is still high, and it is difficult to improve the quality of the dielectric film.
JP 2001-135552 A

したがって、本発明は、弁作用金属粉末の酸素濃度に着目して誘電体皮膜の品質を改善し、漏れ電流が少なく、耐電圧が高い固体電解コンデンサを提供することを課題とする。   Accordingly, an object of the present invention is to improve the quality of the dielectric film by paying attention to the oxygen concentration of the valve action metal powder, and to provide a solid electrolytic capacitor with low leakage current and high withstand voltage.

上記課題を解決するために、本発明者は、弁作用金属粉末である一次粒子を熱凝集させて生成した二次粒子の中に、表面に形成された酸化層によって一次粒子同士の結合が抑制されたために二次粒子化されなかった一次粒子が存在することに着目し、これを取り除いた後に加圧成形、焼結することで、含有酸素濃度が低い多孔質焼結体が得られることを見出し、発明を完成させた。   In order to solve the above-mentioned problems, the present inventor suppresses the binding of primary particles to each other by the oxidized layer formed on the surface in the secondary particles generated by thermally aggregating the primary particles that are the valve action metal powder. Focusing on the existence of primary particles that have not been converted into secondary particles because they have been removed, pressure removal and sintering are performed after removing them, and a porous sintered body having a low oxygen concentration can be obtained. The headline and invention were completed.

本発明は、熱処理を行った弁作用金属粉末を加圧成形し、得られた加圧成形体を焼結してなる焼結体を陽極体とし、誘電体皮膜、固体電解質層、および陰極引出層を順次形成してなる固体電解コンデンサであって、
前記弁作用金属粉末中に含まれる未凝集の単独粒子を20wt%以下にしたことを特徴とする。
The present invention provides a sintered body obtained by pressure-molding a heat-treated valve action metal powder and sintering the obtained pressure-formed body as an anode body, a dielectric film, a solid electrolyte layer, and a cathode lead A solid electrolytic capacitor in which layers are sequentially formed,
The non-aggregated single particles contained in the valve action metal powder are 20 wt% or less.

また、本発明において、前記弁作用金属粉末は、タンタルまたはニオブであることが好ましい。   In the present invention, the valve metal powder is preferably tantalum or niobium.

本発明によれば、含有酸素濃度が低い多孔質焼結体が得られるため、誘電体皮膜の品質が改善し、漏れ電流が少なく、耐電圧が高い固体電解コンデンサを提供することができる。   According to the present invention, since a porous sintered body having a low oxygen concentration is obtained, the quality of the dielectric film can be improved, and a solid electrolytic capacitor having a low leakage current and a high withstand voltage can be provided.

各実施例および各比較例では、まず、高温・高真空での熱処理を行ったタンタル粉末を、熱凝集した二次粒子(平均粒子径:約2〜300μm)と、未凝集の一次粒子(平均粒子径:約0.3〜2.0μm)とに、ふるいを用いて分別する。   In each example and each comparative example, first, tantalum powder subjected to heat treatment at high temperature and high vacuum was subjected to thermal aggregation of secondary particles (average particle size: about 2 to 300 μm) and unaggregated primary particles (average) (Particle size: about 0.3 to 2.0 μm), and using a sieve.

[実施例1]
実施例1では、二次粒子化したタンタル粉末のみを用いた。
この粉末をタンタルリード線とともに加圧成形して多孔質成形体を生成し、これを高温で真空焼結して多孔質焼結体を作製する。そして、酸性液中で、この多孔質焼結体に陽極酸化電圧20Vを3時間印加して、細孔内部に誘電体皮膜を形成する。次に、陰極として、二酸化マンガンからなる固体電解質層と、陰極引出層となるグラファイト層、銀層を順次形成して、コンデンサ素子を構成した。
[Example 1]
In Example 1, only the tantalum powder made into secondary particles was used.
This powder is pressure-molded together with a tantalum lead wire to produce a porous molded body, which is vacuum sintered at a high temperature to produce a porous sintered body. Then, an anodic oxidation voltage of 20 V is applied to the porous sintered body in an acidic solution for 3 hours to form a dielectric film inside the pores. Next, as a cathode, a solid electrolyte layer made of manganese dioxide, a graphite layer as a cathode lead layer, and a silver layer were sequentially formed to constitute a capacitor element.

続いて、上記コンデンサ素子に溶接によってリード線と陽極端子を接続し、さらに、コンデンサ素子の銀層と陰極端子とを導電性接着剤によって接続した後、トランスファーモールドを行い、定格6.3V−10μFのチップ形固体電解タンタルコンデンサを作製した。   Subsequently, the lead wire and the anode terminal are connected to the capacitor element by welding, and further, the silver layer and the cathode terminal of the capacitor element are connected by a conductive adhesive, and then transfer molding is performed, and the rating is 6.3 V-10 μF. A chip-type solid electrolytic tantalum capacitor was manufactured.

[実施例2]
実施例2では、一次粒子を20wt%含むタンタル粉末を用い、これ以外の条件は実施例1と同様にして、定格6.3V−10μFのチップ形固体電解タンタルコンデンサを作製した。
[Example 2]
In Example 2, a tantalum powder containing 20 wt% of primary particles was used, and a chip-type solid electrolytic tantalum capacitor having a rating of 6.3 V-10 μF was produced in the same manner as in Example 1 except for this.

[比較例1]
比較例1では、一次粒子と二次粒子の分別を行わない従来のタンタル粉末を想定した、一次粒子を30wt%含むタンタル粉末を用い、これ以外の条件は実施例1と同様にして、定格6.3V−10μFのチップ形固体電解タンタルコンデンサを作製した。
[Comparative Example 1]
In Comparative Example 1, a tantalum powder containing 30 wt% primary particles was used, assuming a conventional tantalum powder in which primary particles and secondary particles were not separated, and the other conditions were the same as in Example 1 except that the rating was 6 A chip type solid electrolytic tantalum capacitor of 3 V-10 μF was produced.

[比較例2]
比較例2では、比較例1よりもさらに極端な従来例として、一次粒子を50wt%含むタンタル粉末を用い、これ以外の条件は実施例1と同様にして、定格6.3V−10μFのチップ形固体電解タンタルコンデンサを作製した。
[Comparative Example 2]
In Comparative Example 2, a tantalum powder containing 50 wt% of primary particles was used as a more extreme conventional example than Comparative Example 1, and the other conditions were the same as in Example 1 except that the chip shape was rated 6.3 V-10 μF. A solid electrolytic tantalum capacitor was produced.

表1に、各実施例および各比較例における、多孔質焼結体の含有酸素濃度を比較した結果を示す。   Table 1 shows the results of comparison of the oxygen concentration of the porous sintered body in each example and each comparative example.

Figure 2008182056
Figure 2008182056

前述したように、熱処理後に残った未凝集の一次粒子は、その表面に形成された酸化層によって一次粒子同士の結合が抑制されたために二次粒子化されなかったものである。すなわち、表1から明らかなように、熱処理後のタンタル粉末から、未凝集の一次粒子を選択的に取り除くことで、多孔質焼結体中の含有酸素濃度を低減させることができる。   As described above, the non-aggregated primary particles remaining after the heat treatment are those that are not converted into secondary particles because the bonding between the primary particles is suppressed by the oxide layer formed on the surface thereof. That is, as is apparent from Table 1, the concentration of oxygen contained in the porous sintered body can be reduced by selectively removing unaggregated primary particles from the tantalum powder after heat treatment.

次に、各実施例および各比較例のチップ形固体電解タンタルコンデンサ(各100個)について、漏れ電流試験(図1)、耐電圧試験(図2)および高温負荷試験(図3)を行った結果につき説明する。   Next, a leakage current test (FIG. 1), a withstand voltage test (FIG. 2), and a high temperature load test (FIG. 3) were performed on the chip-type solid electrolytic tantalum capacitors (100 each) of each example and each comparative example. The results will be described.

図1は、漏れ電流試験の結果を示すグラフである。この試験では、直流電圧6.3Vを陰極−陽極端子間に1分間印加した直後の漏れ電流を測定した。
この結果から、多孔質焼結体中の含有酸素濃度が2500ppm(実施例2と比較例1の間)付近を超えると、漏れ電流が急激に上昇することが確認された。
FIG. 1 is a graph showing the results of a leakage current test. In this test, the leakage current immediately after a DC voltage of 6.3 V was applied for 1 minute between the cathode and anode terminals was measured.
From this result, it was confirmed that when the concentration of oxygen contained in the porous sintered body exceeds around 2500 ppm (between Example 2 and Comparative Example 1), the leakage current rapidly increases.

図2は、耐電圧試験の結果を示すグラフである。この試験では、陰極−陽極端子間に印加する直流電圧を徐々に増加し、誘電体皮膜が損傷した際の印加電圧(耐電圧)を測定した。
この結果から、多孔質焼結体中の含有酸素濃度が2500ppm(実施例2と比較例1の間)付近を超えると耐電圧が急激に低下することが確認された。
FIG. 2 is a graph showing the results of the withstand voltage test. In this test, the DC voltage applied between the cathode and anode terminals was gradually increased, and the applied voltage (withstand voltage) when the dielectric film was damaged was measured.
From this result, it was confirmed that the withstand voltage sharply decreased when the oxygen concentration in the porous sintered body exceeded 2500 ppm (between Example 2 and Comparative Example 1).

図3は、高温負荷試験の結果を示すグラフである。この試験では、まず、リフロー炉による加熱処理を行う前の漏れ電流(初期値)を測定し、次に、260℃のリフロー炉を通過させた後の漏れ電流(リフロー後)を測定した。続いて、125℃で定格の直流電圧6.3Vを所定の時間(500、1500、2000、2500時間)印加した後の漏れ電流をそれぞれ測定した。漏れ電流の測定条件は、図1の漏れ電流試験と同様にした。
この結果から、多孔質焼結体中の含有酸素濃度が2500ppmを超える比較例1、2では、漏れ電流が経時的に劣化することが確認された。その一方で、一次粒子の含有量が少ない、すなわち、多孔質焼結体中の含有酸素濃度が低い実施例1、2は、125℃で定格の直流電圧6.3Vを2500時間印加した後においても、漏れ電流は、初期値からほとんど変化しないことが分かる。
FIG. 3 is a graph showing the results of the high temperature load test. In this test, first, the leakage current (initial value) before performing the heat treatment in the reflow furnace was measured, and then the leakage current (after reflow) after passing through the 260 ° C. reflow furnace was measured. Subsequently, the leakage current after applying a rated DC voltage of 6.3 V at 125 ° C. for a predetermined time (500, 1500, 2000, 2500 hours) was measured. The leakage current measurement conditions were the same as the leakage current test of FIG.
From this result, it was confirmed that in Comparative Examples 1 and 2 in which the concentration of oxygen contained in the porous sintered body exceeded 2500 ppm, the leakage current deteriorated with time. On the other hand, in Examples 1 and 2 in which the content of primary particles is small, that is, the oxygen concentration in the porous sintered body is low, after applying a rated DC voltage of 6.3 V at 125 ° C. for 2500 hours, However, it can be seen that the leakage current hardly changes from the initial value.

以上のように、熱処理後のタンタル粉末を二次粒子と未凝集の一次粒子とに分別し、加圧成形するタンタル粉末中に含まれる一次粒子を20wt%以下にすることによって、漏れ電流が少なく、かつ耐電圧が高い固体電解コンデンサが得られることが確認された。   As described above, the tantalum powder after heat treatment is separated into secondary particles and unaggregated primary particles, and the primary particles contained in the tantalum powder to be pressure-molded are reduced to 20 wt% or less, thereby reducing leakage current. Further, it was confirmed that a solid electrolytic capacitor having a high withstand voltage can be obtained.

なお、上記各実施例では弁作用金属の一例としてタンタルを用いたが、ニオブ等の他の公知の弁作用金属でも同等の効果を得ることができた。   In each of the above examples, tantalum was used as an example of the valve action metal, but other known valve action metals such as niobium could achieve the same effect.

固体電解コンデンサの漏れ電流試験結果を示すグラフである。It is a graph which shows the leakage current test result of a solid electrolytic capacitor. 固体電解コンデンサの耐電圧試験結果を示すグラフである。It is a graph which shows the withstand voltage test result of a solid electrolytic capacitor. 固体電解コンデンサの高温負荷試験結果を示すグラフである。It is a graph which shows the high temperature load test result of a solid electrolytic capacitor.

Claims (2)

熱処理を行った弁作用金属粉末を加圧成形し、得られた加圧成形体を焼結してなる焼結体を陽極体とし、誘電体皮膜、固体電解質層、および陰極引出層を順次形成してなる固体電解コンデンサであって、
前記弁作用金属粉末中に含まれる未凝集の単独粒子を20wt%以下にしたことを特徴とする固体電解コンデンサ。
Press-molded heat-treated valve action metal powder, and the sintered body obtained by sintering the obtained pressure-molded body is used as an anode body, and a dielectric film, a solid electrolyte layer, and a cathode lead layer are sequentially formed. A solid electrolytic capacitor comprising:
A solid electrolytic capacitor characterized in that unaggregated single particles contained in the valve action metal powder are 20 wt% or less.
前記弁作用金属粉末が、タンタルまたはニオブであることを特徴とする請求項1に記載の固体電解コンデンサ。   The solid electrolytic capacitor according to claim 1, wherein the valve action metal powder is tantalum or niobium.
JP2007014468A 2007-01-25 2007-01-25 Solid electrolytic capacitor Pending JP2008182056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007014468A JP2008182056A (en) 2007-01-25 2007-01-25 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007014468A JP2008182056A (en) 2007-01-25 2007-01-25 Solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JP2008182056A true JP2008182056A (en) 2008-08-07

Family

ID=39725718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007014468A Pending JP2008182056A (en) 2007-01-25 2007-01-25 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2008182056A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014022746A (en) * 2012-07-19 2014-02-03 Avx Corp Solid electrolytic capacitor with enhanced wet-to-dry capacitance
US10121600B2 (en) 2012-07-19 2018-11-06 Avx Corporation Solid electrolytic capacitor with improved performance at high voltages
US10297392B2 (en) 2012-07-19 2019-05-21 Avx Corporation Temperature stable solid electrolytic capacitor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03232213A (en) * 1990-02-08 1991-10-16 Hitachi Aic Inc Manufacture of tantalum solid electrolytic capacitor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03232213A (en) * 1990-02-08 1991-10-16 Hitachi Aic Inc Manufacture of tantalum solid electrolytic capacitor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014022746A (en) * 2012-07-19 2014-02-03 Avx Corp Solid electrolytic capacitor with enhanced wet-to-dry capacitance
JP2018110256A (en) * 2012-07-19 2018-07-12 エイヴィーエックス コーポレイション Solid electrolytic capacitor increasing wet versus dry capacitance
US10121600B2 (en) 2012-07-19 2018-11-06 Avx Corporation Solid electrolytic capacitor with improved performance at high voltages
US10297392B2 (en) 2012-07-19 2019-05-21 Avx Corporation Temperature stable solid electrolytic capacitor
JP2020025136A (en) * 2012-07-19 2020-02-13 エイヴィーエックス コーポレイション Solid electrolytic capacitor increasing wet versus dry capacitance

Similar Documents

Publication Publication Date Title
US6350406B1 (en) Method of manufacturing anode unit for solid electrolytic capacitor, anode unit for solid electrolytic capacitor, continuous sintering apparatus, and method of manufacturing secondary particles of valve-action metal powder
JP2008235949A (en) Electrolytic capacitor
WO2010050558A1 (en) Method for manufacturing capacitor element
JP2004349658A (en) Electrolytic capacitor
US7729104B2 (en) Tantalum powder and solid electrolyte capacitor including the same
JP2008300463A (en) Solid-state electrolytic capacitor and its manufacturing method
CN105339512A (en) Method for producing low-oxygen valve-metal sintered bodies having large surface area
JP2005167230A (en) Solid electrolytic capacitor
JP2008182056A (en) Solid electrolytic capacitor
JP2017022281A (en) Electrolytic capacitor
JP2008010719A (en) Solid electrolytic capacitor, and its manufacturing method
JP4596541B2 (en) Anode body for solid electrolytic capacitor and solid electrolytic capacitor
JP4139354B2 (en) Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor
JP2006108626A (en) Solid electrolytic capacitor and its manufacturing method
JP2885101B2 (en) Manufacturing method of electrolytic capacitor
TWI266661B (en) Niobium powder and solid electrolytic capacitor
JP5824190B1 (en) Method for manufacturing solid electrolytic capacitor element
JP2010080600A (en) Chip-shaped solid electrolytic capacitor
WO2016009680A1 (en) Method for producing solid electrolytic capacitor element
US20230395329A1 (en) Method of Producing a Tantalum Capacitor Anode
JP2009176887A (en) Solid electrolytic capacitor
JP2006013031A (en) Solid-state electrolytic capacitor and its manufacturing method
JP2003342603A (en) Niobium powder and solid electrolytic capacitor
JP4947888B2 (en) Manufacturing method of solid electrolytic capacitor
JP2005057255A (en) Method for manufacturing solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111116