JP2008181085A - バイオメトリックパラメータを安全にデータベースに記憶する方法 - Google Patents
バイオメトリックパラメータを安全にデータベースに記憶する方法 Download PDFInfo
- Publication number
- JP2008181085A JP2008181085A JP2007304706A JP2007304706A JP2008181085A JP 2008181085 A JP2008181085 A JP 2008181085A JP 2007304706 A JP2007304706 A JP 2007304706A JP 2007304706 A JP2007304706 A JP 2007304706A JP 2008181085 A JP2008181085 A JP 2008181085A
- Authority
- JP
- Japan
- Prior art keywords
- biometric
- syndrome
- vector
- data
- feature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/12—Fingerprints or palmprints
- G06V40/1347—Preprocessing; Feature extraction
- G06V40/1353—Extracting features related to minutiae or pores
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/32—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
- H04L9/3226—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using a predetermined code, e.g. password, passphrase or PIN
- H04L9/3231—Biological data, e.g. fingerprint, voice or retina
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/32—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
- H04L9/3236—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using cryptographic hash functions
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- General Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Theoretical Computer Science (AREA)
- Multimedia (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Biodiversity & Conservation Biology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Collating Specific Patterns (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
【課題】バイオメトリックパラメータを安全にデータベースに記憶する。
【解決手段】人間の顔、音声、指紋、および虹彩から取得されるバイオメトリックパラメータが、ユーザ認証およびアクセス制御に使用される。バイオメトリックパラメータは連続しており、読み取り値毎に変化するため、シンドローム符号が適用されて、バイオメトリックシンドロームベクトルが求められる。バイオメトリックシンドロームベクトルは、バイオメトリックデータに固有の可変性に耐えながら安全に記憶することができる。記憶されたバイオメトリックシンドロームベクトルは、ユーザ認証中に、そのときに取得されるバイオメトリックパラメータを使用して復号化される。シンドローム符号も、データの暗号化および復号化に使用することができる。
【選択図】図3
【解決手段】人間の顔、音声、指紋、および虹彩から取得されるバイオメトリックパラメータが、ユーザ認証およびアクセス制御に使用される。バイオメトリックパラメータは連続しており、読み取り値毎に変化するため、シンドローム符号が適用されて、バイオメトリックシンドロームベクトルが求められる。バイオメトリックシンドロームベクトルは、バイオメトリックデータに固有の可変性に耐えながら安全に記憶することができる。記憶されたバイオメトリックシンドロームベクトルは、ユーザ認証中に、そのときに取得されるバイオメトリックパラメータを使用して復号化される。シンドローム符号も、データの暗号化および復号化に使用することができる。
【選択図】図3
Description
本発明は、包括的には、暗号法の分野に関し、より詳細には、ユーザ認証用およびデータ暗号化用のバイオメトリックパラメータを取得し、符号化し、そして記憶することに関する。
従来のパスワードに基づくセキュリティシステム
従来のパスワードに基づくセキュリティシステムは、通常、2つのフェーズを含む。具体的には、登録フェーズの期間中、ユーザは、パスワードを選択し、このパスワードは、サーバ等の認証デバイスに記憶される。認証フェーズの期間中、資源またはデータにアクセスするために、ユーザは、自身のパスワードを入力し、このパスワードが、パスワードの記憶されたものと照合される。パスワードがプレーンテキストとして記憶される場合、システムにアクセスする攻撃者は、あらゆるパスワードを得ることができる。したがって、攻撃が1回成功した場合であっても、システム全体のセキュリティが危険にさらされる可能性がある。
従来のパスワードに基づくセキュリティシステムは、通常、2つのフェーズを含む。具体的には、登録フェーズの期間中、ユーザは、パスワードを選択し、このパスワードは、サーバ等の認証デバイスに記憶される。認証フェーズの期間中、資源またはデータにアクセスするために、ユーザは、自身のパスワードを入力し、このパスワードが、パスワードの記憶されたものと照合される。パスワードがプレーンテキストとして記憶される場合、システムにアクセスする攻撃者は、あらゆるパスワードを得ることができる。したがって、攻撃が1回成功した場合であっても、システム全体のセキュリティが危険にさらされる可能性がある。
図1に示すように、従来のパスワードに基づくセキュリティシステム100は、登録フェーズ10中に、暗号化された(110)パスワード101をパスワードデータベース120に記憶する(115)。具体的には、Xが、記憶される(115)パスワード101である場合、システム100は、実際にはf(X)を記憶する。ここで、f( )は、ある暗号化関数またはハッシュ関数110である。認証フェーズ20の期間中、ユーザは、候補のパスワードY102を入力し、システムは、f(Y)を求め(130)、そして、f(Y)が、記憶されたパスワードf(X)と一致する(140)場合にのみ、システムへのアクセスを許可し(150)、そうでない場合、アクセスは拒否される(160)。
利点としては、暗号化されたパスワードは、暗号化関数なしでは攻撃者にとって役に立たないことである。暗号化されたパスワードは、通例、戻すことが非常に困難である。
従来のバイオメトリックに基づくセキュリティシステム
バイオメトリックセキュリティシステムは、物理的なバイオメトリック特徴を測定して、観測値(observation)と呼ばれることもあるバイオメトリックパラメータを取得する。従来のバイオメトリックセキュリティシステムは、暗号化されないパスワードを記憶するパスワードベースのシステムと同じ脆弱性を有する。特に、データベースに暗号化されてないバイオメトリックパラメータが記憶される場合、パラメータは、攻撃および不正使用の対象となる。
バイオメトリックセキュリティシステムは、物理的なバイオメトリック特徴を測定して、観測値(observation)と呼ばれることもあるバイオメトリックパラメータを取得する。従来のバイオメトリックセキュリティシステムは、暗号化されないパスワードを記憶するパスワードベースのシステムと同じ脆弱性を有する。特に、データベースに暗号化されてないバイオメトリックパラメータが記憶される場合、パラメータは、攻撃および不正使用の対象となる。
例えば、顔認識システムまたは音声認識を使用するセキュリティシステムでは、攻撃者は、その攻撃者とよく似たバイオメトリックパラメータを検索することができる。適切なバイオメトリックパラメータが突き止められた後、攻撃者は、それらパラメータを変更して、攻撃者の外見または音声と一致させ、認可されないアクセスを行うことができる。同様に、指紋認識または虹彩認識を使用するセキュリティシステムでは、攻撃者は、一致する指紋または虹彩を模倣するデバイスを構築して、認可されないアクセスを行うことができる。例えば、このデバイスは、偽造した指または眼である。
基本となるバイオメトリック特徴に考えられるばらつきのみならず、その特徴が測定される方法によっても、バイオメトリックパラメータは、常に暗号化できるとは限らない。この差は「ノイズ」と呼ぶことができる。
特に、バイオメトリックパラメータXは、登録フェーズ中に入力される。例えば、パラメータXが暗号化またはハッシュ関数f(X)を使用して暗号化され、記憶されるものとする。認証フェーズ中に同じユーザから取得されるバイオメトリックパラメータは異なり得る。例えば、顔認識を使用するセキュリティシステムでは、登録に使用されるカメラと認証に使用されるカメラとが異なる向き、感度、および解像度を有し得る。通常、照明は、かなり異なる。肌の色合い、髪型、および顔の他の特徴は、変わりやすい。このため、認証中、新たに観測されたパラメータYが同じ暗号関数fを経た場合、その結果であるf(Y)がf(X)に合致せず、拒絶に繋がる。虹彩パターンおよび指紋パターン等の他のバイオメトリックスベースのユーザ認証にも同様の問題が存在する。
誤り訂正符号
アルファベットQ上の(N、K)誤り訂正符号(ECC)Cは、長さNのQKベクトルを含む。線形(N、K)ECCは、N行およびK列を有する生成行列Gを使用することによるか、または、N−K行およびN列を有するパリティチェック行列Hを使用することにより、記述することができる。「生成行列」という名称は、ベクトルwとして表された符号語が、w=vGに従って、任意の長さKの入力された行ベクトルvを行列Gに右乗算することにより、ベクトルvから生成できるということに基づいている。同様に、ベクトルwが符号語であるかどうかをチェックするために、HwT=0であるかどうかをチェックすることができる。ここで、列ベクトルwTは、行wの転置である。
アルファベットQ上の(N、K)誤り訂正符号(ECC)Cは、長さNのQKベクトルを含む。線形(N、K)ECCは、N行およびK列を有する生成行列Gを使用することによるか、または、N−K行およびN列を有するパリティチェック行列Hを使用することにより、記述することができる。「生成行列」という名称は、ベクトルwとして表された符号語が、w=vGに従って、任意の長さKの入力された行ベクトルvを行列Gに右乗算することにより、ベクトルvから生成できるということに基づいている。同様に、ベクトルwが符号語であるかどうかをチェックするために、HwT=0であるかどうかをチェックすることができる。ここで、列ベクトルwTは、行wの転置である。
誤り訂正符号の標準的な使用では、入力ベクトルvが、ベクトルwに符号化され、記憶されるか、または、送信される。ベクトルwの破損したものが受信されると、復号器は、符号の冗長性を使用して誤りを訂正する。直感的に、符号の誤りの耐性は、符号の冗長量に依存する。
Slepian−Wolf符号、Wyner−Ziv符号、およびシンドローム符号
ある意味で、Slepian−Wolf(SW)符号は、誤り訂正符号とは逆のものである。誤り訂正符号は、冗長性を追加してデータを拡張するのに対して、SW符号は、冗長性を取り除いてデータを圧縮する。具体的には、ベクトルxおよびベクトルyが、相関したデータのベクトルを表す。符号化器が、すでにベクトルyを有する復号器にベクトルxを通信したい場合、符号化器は、復号器がベクトルyを有することを考慮してデータを圧縮することができる。
ある意味で、Slepian−Wolf(SW)符号は、誤り訂正符号とは逆のものである。誤り訂正符号は、冗長性を追加してデータを拡張するのに対して、SW符号は、冗長性を取り除いてデータを圧縮する。具体的には、ベクトルxおよびベクトルyが、相関したデータのベクトルを表す。符号化器が、すでにベクトルyを有する復号器にベクトルxを通信したい場合、符号化器は、復号器がベクトルyを有することを考慮してデータを圧縮することができる。
極端な例として、ベクトルxおよびベクトルyが1ビットしか異ならない場合、符号化器は、ベクトルxおよびその相違した位置を単に記述するだけで圧縮を行うことができる。もちろん、より現実的な相関モデルには、より高度な符号が必要とされる。
SW符号化の基本理論、および、関連したWyner−Ziv(WZ)符号化は、SlepianおよびWolf著「Noiseless coding of correlated information sources」(IEEE Transactions on Information Theory, Vol. 19, pp. 471-480, July 1973)ならびに、WynerおよびZiv著「The rate-distortion function for source coding with side information at the decoder」(IEEE Transactions on Information Theory, Vol. 22, pp. 1-10, January 1976)に記載されている。より最近では、PradhanおよびRamachandranが、「Distributed Source Coding Using Syndromes (DISCUS): Design and Construction」(IEEE Transactions on Information Theory, Vol. 49, pp. 626-643, March 2003)に、このような符号の実用的な実施態様が記載されている。
基本的に、シンドローム符号は、N−K行およびN列を有するパリティチェック行列Hを使用することによって動作する。長さNのバイナリベクトルxを長さKのシンドロームベクトルに圧縮するために、S=Hxが求められる。復号は、多くの場合、使用される特定のシンドローム符号の詳細に依存する。例えば、シンドローム符号がトレリスに基づくものである場合、既知のビタビアルゴリズム等のさまざまな動的計画法に基づく探索アルゴリズムを使用して、Pradhan他によって記載されているようなシンドロームベクトルSに対応する最も可能性のあるソースシーケンスx、および、一連のサイド情報を見つけることができる。
代替的に、低密度のパリティチェックシンドローム符号が使用される場合、Coleman他著「On some new approaches to practical Slepian-Wolf compression inspired by channel coding」(Proceedings of the Data Compression Conference, March, 2004, pages 282-291)に記載されているように、確率伝播復号を適用することもできる。
因子グラフ
従来技術では、上述した符号は、多くの場合、「因子グラフ」と呼ばれる二部グラフで表される。F. R. Kschischang、B. J. Frey、およびH. -A. Loeliger著「Factor Graphs and the Sum-Product Algorithm」(IEEE Transactions on Information Theory, vol. 47, pp. 498-519, February 2001)、G. D. Forney, Jr.著「Codes on Graphs: Normal Realizations」(IEEE Transactions on Information Theory, vol. 47, pp. 520-549, February 2001)、およびR. M. Tanner著「A Recursive Approach to Low-Complexity Codes」(IEEE Transactions on Information Theory, vol. 27, pp. 533-547, September, 1981)参照(すべて参照により本明細書に援用される)。
従来技術では、上述した符号は、多くの場合、「因子グラフ」と呼ばれる二部グラフで表される。F. R. Kschischang、B. J. Frey、およびH. -A. Loeliger著「Factor Graphs and the Sum-Product Algorithm」(IEEE Transactions on Information Theory, vol. 47, pp. 498-519, February 2001)、G. D. Forney, Jr.著「Codes on Graphs: Normal Realizations」(IEEE Transactions on Information Theory, vol. 47, pp. 520-549, February 2001)、およびR. M. Tanner著「A Recursive Approach to Low-Complexity Codes」(IEEE Transactions on Information Theory, vol. 27, pp. 533-547, September, 1981)参照(すべて参照により本明細書に援用される)。
一般に、因子グラフは、「変数ノード」および「因子ノード」と呼ばれる2種類のノードを含む二部グラフである。変数ノードは、因子ノードのみに接続され、この逆も同様である。因子ノードは、従来、正方形を使用して描かれ、変数ノードは、従来、円を使用して描かれ、変数ノードと因子ノードとの間の接続は、対応する円および正方形を結ぶ線で示される。時として記号、すなわち「+」が因子ノード内部に描かれて、課す制約の種類を表す。
変数ノードは、符号に使用される記号を表し、因子ノードは、記号への制約を表す。変数ノードは、対応する制約を受ける場合には、因子ノードのみに接続される。
従来技術によるバイオメトリックパラメータ符号化
本発明に関連する従来技術は、3つのカテゴリに分類される。第1に、このようなバイオメトリックパラメータの安全な記憶に関連しない特徴の抽出、記録、およびバイオメトリックパラメータの使用について述べた多数の従来技術がある。本発明は、安全な記憶に関し、かつバイオメトリックパラメータがどのように取得されるかの詳細には概して無関係であるため、このカテゴリの従来技術の詳細は省く。
本発明に関連する従来技術は、3つのカテゴリに分類される。第1に、このようなバイオメトリックパラメータの安全な記憶に関連しない特徴の抽出、記録、およびバイオメトリックパラメータの使用について述べた多数の従来技術がある。本発明は、安全な記憶に関し、かつバイオメトリックパラメータがどのように取得されるかの詳細には概して無関係であるため、このカテゴリの従来技術の詳細は省く。
第2のクラスの従来技術は、本発明に関連し、バイオメトリックスを安全に記憶し認証するように設計された以下のシステムを含む。すなわち、米国特許第6,038,315号「Method and system for normalizing biometric variations to authenticate users from a public database and that ensures individual biometric data privacy」、Davida, G. I.、Frankel, Y.、Matt, B. J.による「On enabling secure applications through off-line biometric identification」(Proceedings of the IEEE symposium on Security and Privacy, May 1998)、Juels, A.、Sudan, M.による「A Fuzzy Vault Scheme」(Proceedings of the 2002 IEEE International Symposium on Information Theory, June 2002)、米国特許出願第09/994,476号「Order invariant fuzzy commitment system」(2001年11月26日出願)、JuelsおよびWatternberg「A fuzzy commitment scheme」(In Proc. 5th ACM Conf. on Comp. and Commun. Security, New York, NY, pgs 28-36, 1999)、S. YangおよびI. M. Verbauwhede「Secure fuzzy vault based fingerprint verification system」(Asilomar Conf. on Signals, Systems, and Comp., vol. 1, pp. 577-581, November 2004)、U. UludagおよびA. Jain「Fuzzy fingerprint vault」(Proc. Workshop: Biometrics: Challenges arising from theory to practice, pp. 13-16, August 2004)。
図2は、米国特許第6,038,315号に記載されている基本的な方法の詳細のいくつかを示している。登録フェーズ210において、バイオメトリックパラメータが、E201で表記されるビットシーケンスの形で取得される。次に、ランダムな符号語W202が、バイナリ誤り訂正符号から選択され、排他的OR(XOR)関数220を使用してパラメータEと加法結合されて、参照値R221が生成される。オプションとして、参照値Rをさらに符号化することができる(230)。いずれの場合も、参照値Rは、パスワードデータベース240に記憶される。
認証フェーズ220において、バイオメトリックパラメータE’205が認証用に提示される。この方法は、基本的には、2つの差分をとることによって、RとE’とのXORを求め(250)、Z=R−E’=W+E−E’が得られる(251)。次に、この結果は、誤り訂正符号を用いて復号され(260)、W’が生成される(261)。ステップ270において、W’がWと一致する場合、アクセスが許可され(271)、そうでない場合、アクセスは拒否される(272)。
この方法は、基本的に、ハミング距離、すなわち、登録されたバイオメトリックE201と認証バイオメトリックE’205との間で異なるビット数を測定する。この相違が、ある所定のしきい値よりも小さい場合、アクセスが許可される。この方法は、参照値Rのみを記憶し、実際のバイオメトリックパラメータEを記憶しないので、安全である。
Davida他およびJuels他は、図2に示す方法を変形したものを記載している。具体的には、両者は、登録フェーズの期間中に誤り訂正符号を有するバイオメトリックデータを符号化し、その後、その結果生成された符号語を安全にするオペレーションが続く。Davida他は、チェックビットの送信のみによって符号語を隠蔽するのに対して、Juels他は、「チャフ(chaff)」と呼ばれるある量の雑音を追加する。
米国特許第6,363,485号「マルチファクタバイオメトリック認証装置および認証方法」は、バイオメトリックデータを誤り訂正符号およびある秘密情報と結合して、秘密鍵を生成するための方法を記載している。ある秘密情報は、パスワードまたは個人識別番号(PIN)等である。Goppa符号またはBCH符号等の誤り訂正符号が、さまざまなXOR演算と共に使用される。
図2に示す固定データベースアクセス制御システムに加えて、第3の分類の従来技術は、データ保護、具体的にはラップトップ、PDA、携帯電話、およびデジタルカメラ等の、メモリを含む携帯機器のデータ保護にバイオメトリクスを使用することを含む。携帯機器は、紛失しやすい、または盗まれやすいため、携帯機器に記憶されているデータを保護することが必要になる。
従来技術に関連した問題
図4は、データD401を記憶するための既存の手法に伴う問題を示す。符号化プロセス410において、バイオメトリックパラメータP402がユーザから取得され、これが鍵として使用されてデータDが暗号化され(440)、暗号文C441を生成する。PおよびCが両方とも記憶装置450に保存される。ユーザがデータ401を復号化(420)したい場合、バイオメトリックパラメータP’460がユーザから取得され、これが記憶されているバイオメトリックP402と比較される。P’がPと一致する場合(470)、システムは、アクセスを許可し、Pを使用して記憶されている暗号文Cを復号化し、データD401を生成する。P’がPと一致しない場合、データは、復号化されない(471)。
図4は、データD401を記憶するための既存の手法に伴う問題を示す。符号化プロセス410において、バイオメトリックパラメータP402がユーザから取得され、これが鍵として使用されてデータDが暗号化され(440)、暗号文C441を生成する。PおよびCが両方とも記憶装置450に保存される。ユーザがデータ401を復号化(420)したい場合、バイオメトリックパラメータP’460がユーザから取得され、これが記憶されているバイオメトリックP402と比較される。P’がPと一致する場合(470)、システムは、アクセスを許可し、Pを使用して記憶されている暗号文Cを復号化し、データD401を生成する。P’がPと一致しない場合、データは、復号化されない(471)。
このような従来技術によるシステムは、記憶媒体が危機にさらされない場合に限ってのみ有効である。攻撃者がこのような媒体にアクセスすることができる場合、攻撃者は、Pを取得してデータを復号化する。
第1に、ビットに基づく従来技術の方法が提供するセキュリティは、疑わしいものである。これに加えて、バイオメトリックパラメータは、多くの場合、バイナリ値ではなく、実数値または整数値である。この従来技術は、一般に、バイオメトリックパラメータが一様に分布したランダムなビットで構成され、記憶されたバイオメトリックからこれらのビットを正確に求めることは、困難であると仮定する。実際には、バイオメトリックパラメータは、多くの場合、偏っており、これは、セキュリティに悪影響を与える。また、たとえ、攻撃者が、記憶されたバイオメトリックに近似したものしか復元しないとしても、その攻撃は、重大な損害を引き起こす可能性がある。従来技術の方法は、攻撃者が、実際のバイオメトリックを符号化したものから推定することを防止するようには設計されていない。
例えば、米国特許第6,038,315号は、ランダムな符号語Wを追加することによって、参照値R=W+EがバイオメトリックEを有効に暗号化することに依拠している。しかしながら、その方法が達成するセキュリティは、不十分である。RからEを復元する複数の方法がある。例えば、ベクトルEが、1に等しいビットを数ビットしか有しない場合、RとWとの間のハミング距離は、小さくなる。したがって、誤り訂正復号器は、RからWを容易に復元することができ、したがって、Eを復元することもできる。代替的に、例えば、符号の重みスペクトルが小さく、多くの符号語がオールゼロベクトルの周りに密集する場合といった、符号語の分布が不十分である場合に、攻撃者は、RからEの良好な近似を得ることができる。
第2に、セキュリティが疑わしいことに加えて、従来技術の方法は、記憶されるデータ量が増加するという実用上の不都合も有する。バイオメトリックデータベースは、多くの場合、多数の個人ユーザのデータを記憶するので、ストレージが追加されることによって、システムのコストおよび複雑度は、大幅に増加する。
第3に、多くの従来技術の方法は、高い計算複雑度を有する誤り訂正符号またはアルゴリズムを必要とする。例えば、従来技術のリード−ソロモン復号アルゴリズムおよびリード−マラー復号アルゴリズムは、一般に、符号化されたバイオメトリックの長さにおいて、少なくとも2次の計算複雑度を有し、多くの場合、それよりも高次の計算複雑度を有する。
第4に、従来技術において既知の携帯セキュリティシステムの基本構造に伴う基本的な問題がある。図4に示すような携帯セキュリティシステムは、携帯セキュリティシステム自体が危険にさらされない場合にしか有効であり得ない。ラップトップの携帯セキュリティシステムの例に戻ると、セキュリティは、攻撃者が、PおよびCが記憶されている媒体に物理的にアクセスできない場合にしか有効であり得ない。攻撃者がこのような媒体に、例えば、ハードディスクをラップトップから取り出すことによってアクセスすることができる場合、攻撃者は、Cの生成に使用された暗号鍵であったPを即座に取得し、ひいては、Cを復号化する。
従来の携帯セキュリティシステムに伴う主な問題は、ユーザのバイオメトリックパラメータに対応する暗号鍵がその装置に記憶されることである。このため、装置が盗まれれば、記憶されているパラメータを使用してデータが復号化される恐れがある。
第5に、バイオメトリックスに固有のノイズ構造に対して誤り訂正符号化またはシンドローム符号復号化を行うよい方法がなく、ノイズ構造のモデリングにさえもあまり考えが及んでいないため、セキュアバイオメトリックシステムの大半の従来技術は、メモリレスノイズモデルまたはノイズの性質を過度に簡略化した他のモデルを使用し、実際の動作状況を反映しない。すなわち、従来技術によるモデルは、バイオメトリック特徴、取得プロセス、および測定プロセスの経時変化ダイナミクスを正確に表さない。これらのモデルは、正確に表すことに代えて、ノイズがメモリレスであり、空間的または時間的な構造を有しないものと仮定する。
多くの場合、バイオメトリック特徴は、測定毎に異なる。例えば、指紋バイオメトリックスでは、多くの場合、「特徴」点が特徴セットとして使用される。特徴点の相対位置および向きは、登録および認証中にかなり異なり得る。これは、認証プロセスを難しくする。この問題を解く大半の単純な試みでは、過度に高次元であり、したがって、実際に実施するには非実用的であるモデルが使用される。
したがって、構造化ノイズを含むバイオメトリックデータのモデルを提供することが望まれている。
バイオメトリックパラメータは、例えば、人間の顔、音声、指紋、および虹彩から取得され、多くの場合、ユーザ認証およびデータアクセス制御に使用される。バイオメトリックパラメータは、パスワードで行われるように、ハッシュされた形態または暗号化された形態でデータベースに記憶することはできない。その理由は、パラメータが通常は連続的であり、同じユーザについて、ある読み取りから次の読み取りまでに変化することがあるためである。例えば、サンプリングされた顔の外観、指紋または音声のトーンは、経時変化することがある。
本発明の1つの実施の形態は、シンドローム符号、例えば、Wyner−Ziv符号化またはSlepian−Wolf符号化に基づくシンドローム符号を使用してバイオメトリックデータを保護する。シンドロームベクトルと呼んでいるシンドローム符号化の出力は、データベースに安全に記憶することが可能でありながら、依然として未処理のバイオメトリックデータに固有の可変性を許容する。
具体的には、本発明によるバイオメトリックシンドロームベクトルは、以下の特性を有する。
第1に、シンドロームデータベースが危険にさらされた場合、記憶されたシンドローム符号が、システムのセキュリティを巧みに回避するのにほとんど役立たないように、シンドロームは、元のバイオメトリックの特徴に関する情報を有効に隠蔽するか、または、暗号化する。
第2に、各バイオメトリックの第2のノイズ測定値が与えられ、それに対応して記憶された各シンドロームベクトルを復号して、元のバイオメトリックパラメータを生成し、暗号化されたデータを元のバイオメトリックパラメータを用いて復号することができる。
第3に、シンドローム符号化方法は、ユーザ認証に用いることができる。
本発明の第2の実施形態では、バイオメトリック特徴の変化により経時変化し得るバイオメトリックパラメータを効率的にモデリングするとともに、測定プロセスをさらにモデリングする方法について述べる。
この方法では、計算的に効率的にバイオメトリック特徴の複数の読み取り値間の関係を正確に利用することができる。特に、この方法では、既存の従来技術による方法よりもはるかに良好に、このようなバイオメトリック特徴のシンドローム復号化を首尾よく行うことができる。
本発明の実施の形態は、以下の構成要素:シンドローム符号化器およびバイオメトリックパラメータを安全に記憶するためのハッシュ方法、バイオメトリック鍵を使用して暗号化されたデータを安全に記憶するためのシンドローム符号に基づく暗号方法、ならびに前者の2つの方法等の安全なバイオメトリック用途に使用されるシンドローム符号を最適化する方法を含む。
安全なバイオメトリックパラメータのためのシンドロームおよびハッシュ方法
図3は、本発明によるシンドロームおよびハッシングに基づくバイオメトリックセキュリティシステム300を示している。ユーザのバイオメトリック特徴が、バイオメトリックパラメータ(データまたは実測)を得るために測定される。本発明による方法は、シンドローム符号をもつバイオメトリックパラメータを圧縮して、圧縮されたシンドロームベクトルを生成する。
図3は、本発明によるシンドロームおよびハッシングに基づくバイオメトリックセキュリティシステム300を示している。ユーザのバイオメトリック特徴が、バイオメトリックパラメータ(データまたは実測)を得るために測定される。本発明による方法は、シンドローム符号をもつバイオメトリックパラメータを圧縮して、圧縮されたシンドロームベクトルを生成する。
従来の圧縮と異なり、元のバイオメトリックデータは、シンドローム符号により生成されるシンドロームベクトルのみから再構築または近似することができない。シンドロームベクトルおよび元のバイオメトリックパラメータのハッシュが、バイオメトリックデータベースに記憶される。
ユーザを認証するために、バイオメトリックパラメータが再び測定される。このバイオメトリックパラメータは、記憶されているシンドロームベクトルと組み合わせられて、元のバイオメトリックパラメータが復号化される。シンドロームの符号化に失敗した場合、元のバイオメトリックスパラメータは復元されず、復号化されたパラメータのハッシュは、記憶されているハッシュに合致しない。したがって、ユーザは、アクセス拒絶される。シンドローム復号化に成功した場合、元のバイオメトリックパラメータのハッシュは、復号化されたパラメータのハッシュに合致し、これは、ユーザの真正性を証明する。ハッシュの役割は、ユーザ入力制御を提供し、ユーザにより提供されるバイオメトリックパラメータが元のバイオメトリックパラメータを正確に再構築するのに十分に良好であることを確実にすることである。シンドローム符号器およびハッシュの両方が多対一マッピングであるが、シンドローム符号は、元のバイオメトリックパラメータの再構築に有用な構造を有する。一方、ハッシュ関数は、例えば、元のバイオメトリックの推定に有用な情報を提供しない暗号ハッシュであり得る。
登録フェーズ
登録フェーズ310では、ユーザの物理的特徴であるバイオメトリックデータが取得される。例えば、バイオメトリックデータは、顔の画像、音声の記録、指紋の画像、または虹彩をスキャンしたものから導き出される。
登録フェーズ310では、ユーザの物理的特徴であるバイオメトリックデータが取得される。例えば、バイオメトリックデータは、顔の画像、音声の記録、指紋の画像、または虹彩をスキャンしたものから導き出される。
以下、バイオメトリックデータは、ユーザの物理的特徴から感知、測定、またはその他の方法で取得される未処理のバイオメトリック信号を指す。特徴がバイオメトリックデータから抽出される。この特徴は、d次元特徴ベクトルに配置される。この特徴ベクトルは、登録バイオメトリックパラメータ301を形成する。様々な形式のバイオメトリックデータから特徴を抽出する方法は、上述したように当該技術分野において既知である。特徴ベクトルをバイオメトリックパラメータおよび最適なシンドローム符号に変換することについて、さらに詳細に、以下説明する。
バイオメトリックパラメータE301は、シンドローム符号化器330を使用して符号化され、登録シンドロームべクトルS331が生成される。次に、メッセージ認証符号またはハッシュ関数が、バイオメトリックパラメータEに適用され(340)、登録ハッシュH341が生成される。このハッシュ関数は、Ron Rivest著「The MD5 Message Digest Algorithm」(RFC 1321, April 1992)に記載されている既知のMD5暗号ハッシュ関数とすることができる。登録シンドロームベクトル−ハッシュの対(S,H)331、341が、バイオメトリックデータベース350に記憶される。
任意のタイプのシンドローム符号、例えば、上述したSW符号またはWZ符号を使用することができる。本発明の好ましい実施の形態は、いわゆる「繰り返し累積符号(repeat-accumulate code)」、すなわち「積累積符号(product-accumulate code)」から導出された符号、および、本発明において「拡張ハミング累積符号(extended Hamming-accumulate code)」と呼ぶ符号を使用する。
本発明では、一般に、これらの符号を直列連鎖累績(SCA:serially concatenated accumulate)符号と呼ぶ。一般的な意味でのこれらの部類の符号に関する、より多くの情報については、J. Li、K.R. Narayanan、C.N. およびGeorghiades著「Product Accumulate Codes: A Class of Codes With Near-Capacity Performance and Low Decoding Complexity」(IEEE Transactions on Information Theory, Vol. 50, pp. 31-46, January 2004)IEEE Communications Letters, 2004に投稿されたM. IsakaおよびM. Fossorier著「High Rate Serially Concatenated Coding with Extended Hamming Codes」、ならびにD. DivsalarおよびS. Dolinar著「Concatenation of Hamming Codes and Accumulator Codes with High Order Modulation for High Speed Decoding」(IPN Progress Report 42-156, Jet Propulsion Laboratory, Feb. 15, 2004)を参照願いたい。
Yedidia他によって2004年8月27日に出願された「Compressing Signals Using Serially-Concatenated Accumulate Codes」という発明の名称の米国特許出願番号第10/928448号(参照により本明細書に援用される)は、本発明によって使用されるようなSCA符号に基づく、本発明の好ましいシンドローム符号化器のオペレーションを記載している。
バイオメトリックパラメータ301の本発明のシンドローム符号化器330は、多数の利点を有する。このシンドローム符号化器330は、整数値の入力に対してオペレーションを行うことができる。これとは対照的に、従来技術の符号化器は、一般に、バイナリ値の入力に対してオペレーションを行う。このシンドローム符号化器は、バイオメトリックデータベース350の記憶要件を最小にするために、非常に高い圧縮率を有する。このシンドローム符号化器は、レート適合型となるように設計可能であり、インクリメンタル形にオペレーションを行うことができる。
認証フェーズ
認証フェーズ320では、バイオメトリックデータが、ユーザから再び取得される。特徴が抽出されて、認証バイオメトリックパラメータE’360が得られる。データベース350が検索されて、このユーザの一致する登録シンドロームベクトルS331および登録ハッシュH341が突き止められる。
認証フェーズ320では、バイオメトリックデータが、ユーザから再び取得される。特徴が抽出されて、認証バイオメトリックパラメータE’360が得られる。データベース350が検索されて、このユーザの一致する登録シンドロームベクトルS331および登録ハッシュH341が突き止められる。
この検索は、データベース350のあらゆるエントリ(S−H対)をチェックすることもできるし、ヒューリスティックに順序付けられた検索を使用して、一致するエントリを見つけるプロセスを高速化することもできる。具体的には、本発明においてデータベースにおけるi番目のシンドロームベクトル−ハッシュの対を(Si,Hi)と示す場合、全数検索は、まず、シンドローム復号をE’およびS1に適用し、シンドローム復号器の出力のハッシュをH1と比較する。アクセスが拒否される場合、同じプロセスが(S2,H2)で試みられ、次いで(S3,H3)で試みられ、すべてのエントリが試行されるか、または、アクセスが許可されるまで、以下同様に試みられる。
登録ユーザ名等のさらなる情報が利用可能である場合、検索を高速化することができる。例えば、登録ユーザ名のハッシュ(バイオメトリックパラメータのハッシュHと混同しないように)が,登録フェーズの期間中にS−Hの対で記憶される。次に、認証フェーズでは、ユーザが認証ユーザ名を供給し、システムがその認証ユーザ名のハッシュを求め、一致する、ハッシュされた登録ユーザ名を有するS−H対を求めてデータベースを検索し、そして、その結果のS−H対でE’の認証を試みる。
具体的には、シンドローム復号器370が、登録シンドロームベクトルSに適用され、認証パラメータE’360が「サイド」情報として働く。シンドローム復号器は、一般に、当該技術分野において既知である。通常、確率伝播またはターボ符号を使用する復号器は、低い複雑度で優れた誤差耐性を有する。シンドローム復号器370の出力は、復号された登録パラメータE’’371である。復号された値E’’371は、シンドロームベクトルS331を生成するのに使用される元のバイオメトリックパラメータE301の推定値である。ハッシュ関数340がE’’371に適用されて、認証ハッシュH’381が生成される。
登録値H341と認証値H’381とが比較される(390)。それらの値が一致しない場合、アクセスは、拒否される(392)。そうでない場合、値E’’381は、元のバイオメトリックE301と実質的に一致する。この場合、ユーザは、アクセス許可を受けることができる(391)。
これに加えて、復号されたパラメータE’’381と認証バイオメトリックパラメータE’360との間で直接比較を行って、ユーザを認証することもできる。例えば、E’およびE’’が顔認識システムのバイオメトリックパラメータに対応する場合、顔の類似性を比較するための従来のアルゴリズムをパラメータE’およびパラメータE’’に適用することができる。
シンドロームに基づくデータ暗号
図5は、データ501の符号化510および復号化520の方法500である。符号化プロセス510において、第1のバイオメトリックパラメータP502が第1のユーザから取得される。このパラメータが使用されて、入力データD501が暗号化され(540)、暗号文C541が生成される。しかし、従来技術とは対照的に、第1のバイオメトリックパラメータPは、決してメモリに記憶されない。メモリに記憶されることに代えて、シンドローム符号化器530が第1のバイオメトリックパラメータPを符号化して、シンドロームベクトルS531を生成する。対(S,C)は、互いに関連付けられ、メモリ550に記憶される。本発明の1つの実施の形態では、入力データは、登録プロセス中にユーザから取得される未処理のバイオメトリックデータである。
図5は、データ501の符号化510および復号化520の方法500である。符号化プロセス510において、第1のバイオメトリックパラメータP502が第1のユーザから取得される。このパラメータが使用されて、入力データD501が暗号化され(540)、暗号文C541が生成される。しかし、従来技術とは対照的に、第1のバイオメトリックパラメータPは、決してメモリに記憶されない。メモリに記憶されることに代えて、シンドローム符号化器530が第1のバイオメトリックパラメータPを符号化して、シンドロームベクトルS531を生成する。対(S,C)は、互いに関連付けられ、メモリ550に記憶される。本発明の1つの実施の形態では、入力データは、登録プロセス中にユーザから取得される未処理のバイオメトリックデータである。
暗号文541を復号化したい(520)場合、第2のバイオメトリックパラメータP’560が第2のユーザから取得される。記憶されているシンドロームベクトルS531は、第2のバイオメトリックパラメータを使用してシンドローム復号化され、第3のバイオメトリックパラメータP’’571が生成される。次に、第3のバイオメトリックパラメータP’’が使用されて暗号文541が復号化され(580)、出力データD’509が生成される。明らかなことに、第2のバイオメトリックパラメータおよび第3のバイオメトリックパラメータが第1のバイオメトリックパラメータと一致しない場合、出力データD’509は、入力データD501と一致しない。出力データは、第1のユーザと第2のユーザが同一人物である場合にのみ入力データと厳密に一致する。
本発明の一実施形態では、バイオメトリックパラメータのハッシュHも、上述したように記憶することができる。ハッシュが合致することを調べることで、復号化が成功したことが確認される。ハッシュなしの場合、セキュリティは保たれるが、復号器は、復号化の成功を確認することができない。多くの種類のソースデータに対して、不正確な復号化によって生じるファイルは、何ら有用なものに相当しないため、ハッシュは必要ない。
この方法は、以下の利点を有する。攻撃者がシンドロームベクトルおよび暗号文(S,C)にアクセスできても、データを復号化することはできない。これは、暗号鍵、すなわち、第1のバイオメトリックパラメータPは、シンドロームベクトルから復元できないためである。さらに、シンドローム符号の誤り修正性により、第2のバイオメトリックパラメータP’が第1のバイオメトリックパラメータPとわずかに異なる場合であっても、適宜設計されたシンドローム復号器は、暗号鍵P502として使用された第1のバイオメトリックパラメータと全く同じである第3のバイオメトリックパラメータP’’を生成することに成功することができる。
シンドローム符号化は、バイオメトリックパラメータを安全に記憶する効率的な方法を提供し、バイオメトリック情報を安全に記憶する他の方法に適用することができる。特徴ベクトルは、バイオメトリックデータから抽出できることに留意願いたい。したがって、上述したバイオメトリックパラメータは、いずれも、対応する特徴ベクトルで置き換えることができる。
バイオメトリックパラメータを暗号化された形で記憶することのさらなる利点は、これにより、安全なバイオメトリック記憶アプリケーションが、バイオメトリック認証アプリケーションに使用される特徴ベクトルと異なる特徴ベクトルで動作することが可能になることである。例えば、指紋認証システムは、多くの場合、指紋の画像から抽出される、いわゆる「特徴点(minutiae)」に基づく特徴ベクトルを使用する。同様に、虹彩認識システムは、時に、虹彩画像をガボールフィルタバンクに通すことから抽出される特徴を使用する。
多くの場合、バイオメトリック認証、例えば、顔認証または指紋識別に理想的な特徴ベクトルは、シンドローム符号化/復号化に理想的な特徴ベクトルと異なり得る。多くの場合、これは、認識システムまたは識別システムの分類器、例えば、ガウス混合モデル(GMM)、ニューラルネットワーク、または隠れマルコフモデルに基づく分類器をトレーニングするプロセスが、本明細書において説明するように、シンドローム符号化器および復号器の確率伝搬復号器と併せて使用されるヒストグラムのトレーニングに使用されるプロセスと異なる特徴ベクトルを生成することによる。
図6は、入力バイオメトリックデータ601を暗号化したものを記憶する方法600を示す。上述したように、バイオメトリックデータは、ユーザのバイオメトリック特徴を測定または感知するために使用される未処理の信号から導き出される。
アクセス制御システムの登録フェーズ610において、例えば、第1のバイオメトリックデータB601がユーザから取得される。次に、第1のバイオメトリックパラメータP602の特徴ベクトルが、第1のバイオメトリックデータB601から取得される。第1のバイオメトリックデータBは、第1のバイオメトリックパラメータPを暗号鍵として使用して暗号化され(640)、暗号文C641が生成される。さらに、第1のバイオメトリックパラメータは、シンドローム符号化され(630)、シンドロームベクトルS631が生成される。次に、関連付けられた対(S,C)632がバイオメトリックデータベース650に記憶される。
認証フェーズ620において、第2のバイオメトリックデータB’660がユーザから取得される。この第2のデータを使用して、第2のバイオメトリックパラメータP’661の特徴ベクトルが生成される。次に、シンドローム復号器670が第1のバイオメトリックパラメータを復号化して、第3のバイオメトリックパラメータP’’671を生成する。次に、この第3のバイオメトリックパラメータが鍵として使用されて、暗号文Cが復号化され(680)、第3のバイオメトリックデータB’’681が生成される。この時点で、認証バイオメトリックデータB’および復号化されたバイオメトリックデータB’’がバイオメトリック認識方法690によって比較され、特定の機能へのアクセスが許可される(691)か、それとも拒絶される(692)かが判断される。前のように、アクセスは、第1のバイオメトリックデータと第3のバイオメトリックデータが全く同一である、すなわち、第1のユーザと第2のユーザが、同じ人物である場合のみ許可される。
別の変形では、比較ステップは、バイオメトリックデータから抽出された特徴ベクトルを使用することができる。特徴ベクトルは、バイオメトリックパラメータと同じである必要はない。さらに、比較されている2つの特徴ベクトルは、認証ステップがまったく異なるプロセスを使用し得るため、実質的に同じである必要があるだけである。したがって、特徴ベクトルは、特定のユーザを経時にわたって特徴付ける、より広い範囲のバイオメトリックデータ変化を許すことができる。
図6に示すプロセスに伴ういくつかの利点をリストアップする。認証システムは、従来の認証システムをステップ690において使用することができる。さらに、シンドローム符号化器/復号器により使用されるバイオメトリックパラメータPおよびP’は、バイオメトリック検証ステップ690により使用されるパラメータまたは特徴ベクトルから独立して選択することができる。さらに、シンドローム符号化は、バイオメトリックパラメータを安全に記憶する効率的な方法である。しかし、図6の方法は、バイオメトリックパラメータを安全に記憶する他の方法に適用することも可能である。
安全なバイオメトリックパラメータの最適なシンドローム符号の設計
一般に、シンドローム符号を使用してバイオメトリックパラメータおよびバイオメトリック特徴を保護するに当たり、セキュリティと精度との間にトレードオフがある。具体的には、任意のシンドローム符号の鍵となるパラメータは、シンドロームベクトル中のビット数である。多数のビットを有するシンドロームベクトルは、バイオメトリックデータについて、より多くの情報を伝達し、バイオメトリックデータのノイズおよびばらつきを許容しやすくする。これとは対照的に、小さなシンドロームベクトルほど攻撃者に与える情報は少ないが、誤りやすい。
一般に、シンドローム符号を使用してバイオメトリックパラメータおよびバイオメトリック特徴を保護するに当たり、セキュリティと精度との間にトレードオフがある。具体的には、任意のシンドローム符号の鍵となるパラメータは、シンドロームベクトル中のビット数である。多数のビットを有するシンドロームベクトルは、バイオメトリックデータについて、より多くの情報を伝達し、バイオメトリックデータのノイズおよびばらつきを許容しやすくする。これとは対照的に、小さなシンドロームベクトルほど攻撃者に与える情報は少ないが、誤りやすい。
極端な一例として、シンドロームベクトルの長さが基礎を成すバイオメトリックデータの長さとほぼ同じである場合、元のバイオメトリックデータをシンドロームベクトルのみからそのまま復元できるため、いかなる量のノイズも許容され得る。もちろん、この場合、シンドロームベクトルを取得する攻撃者は、おそらく、バイオメトリックデータも復元することができ、システムのセキュリティを危険にさらす。
これとは反対の極端な一例として、非常にビット数の少ないシンドロームベクトルは、攻撃者がバイオメトリックデータをシンドロームベクトルから復元できないという点で、極めて良好なセキュリティを提供する。しかし、この場合、登録バイオメトリックデータと認証バイオメトリックデータとの間で許容される変化が限られる。
明らかなことに、シンドロームに基づく符号化器および復号器は、セキュリティとバイオメトリック変化の許容とのバランスをとるシンドロームベクトルの長さを選択すべきである。しかし、入念に設計されたシンドローム符号は、誤差耐性を向上させることができる。
シンドローム符号の設計および動作について、図12に示す以下の用語を使用して説明する。バイオメトリックデータ1201は、例えば、顔または指紋の画像であることができる。完全特徴ベクトル1202が、トレーニングバイオメトリックデータから抽出される。完全特徴ベクトル1202は、シンドローム特徴ベクトル1203に低減される。シンドローム特徴ベクトルは、設計者がシンドロームの符号化および復号化に適切であると判断した完全特徴ベクトルの部分を取り込む。シンドローム符号を使用して、シンドローム特徴ベクトルからシンドロームベクトル1204を符号化する。シンドローム特徴ベクトル1203は、図3のバイオメトリックパラメータE310の役割を果たし、シンドロームベクトルは、S331である。
バイオメトリック統計モデル
図13は、本発明の一実施形態によるシンドロームベクトル1204および対応する復号器1205(すなわち、符号器および復号器)を構築するプロセス1300を示す。トレーニングバイオメトリックデータ1301が取得される。選択された特徴モデル1304のパラメータ1302が、トレーニングデータから求められる(1310)。コーデックの点では、特徴モデルは、本質的に「ソース」モデルである。同様に、選択された測定モデル1305のパラメータ1303が求められる(1320)。測定モデルは、事実上、「チャネル」モデルである。次に、パラメータ1302および1303ならびにモデル1304および1305を使用して、シンドローム符号および対応する復号器が構築される。チャネルモデルが測定プロセスにおいて構造化ノイズに対処するように設計されることに留意されたい。ノイズは、例えば、異なる測定の瞬間に観測されるバイオメトリックデータの特徴の変化ならびに瞬間と瞬間との間での特徴の挿入および削除に起因し得る。
図13は、本発明の一実施形態によるシンドロームベクトル1204および対応する復号器1205(すなわち、符号器および復号器)を構築するプロセス1300を示す。トレーニングバイオメトリックデータ1301が取得される。選択された特徴モデル1304のパラメータ1302が、トレーニングデータから求められる(1310)。コーデックの点では、特徴モデルは、本質的に「ソース」モデルである。同様に、選択された測定モデル1305のパラメータ1303が求められる(1320)。測定モデルは、事実上、「チャネル」モデルである。次に、パラメータ1302および1303ならびにモデル1304および1305を使用して、シンドローム符号および対応する復号器が構築される。チャネルモデルが測定プロセスにおいて構造化ノイズに対処するように設計されることに留意されたい。ノイズは、例えば、異なる測定の瞬間に観測されるバイオメトリックデータの特徴の変化ならびに瞬間と瞬間との間での特徴の挿入および削除に起因し得る。
多くの機械学習ツールが上記設計プロセスを支援することができるが、この問題は、結果得られるモデルがシンドローム符号化に適した「硬(hard)」特徴ベクトルを有するため、機械学習での多くのモデリング問題とかなり異なる。「硬」特徴ベクトルと「軟(soft)」特徴ベクトルとの違いについて、さらに詳細に後述する。
図12に示すように、シンドローム特徴ベクトル1203は、通常、シンドローム復号化を処理しやすくするようにサイズを低減したものである。シンドローム符号を構築するために、密度進化を次数分布に適用することができる。シンドローム符号は、シンドローム特徴ベクトル1203の有限ブロック長またはシンドロームベクトル1204が複数のユーザにわたるバイオメトリック特徴のばらつきに合うように、変数レート符号を使用する必要性等の特徴を考慮するように、さらに改良することができる。
シンドローム符号が構築選択された後、後述するように反復確率伝搬復号器を構築する
量子化
図7中に示されたプロセス1300の具体例700を詳細に説明する前に、登録および認証におけるバイオメトリックデータの使用の違いを明確にする以下の用語の定義をまず行う。本明細書では、「硬」特徴ベクトルという用語を用いて特徴ベクトルを量子化したものを指し、「軟」特徴ベクトルという用語を用いて量子化された特徴ベクトル、またはより細かく量子化した特徴ベクトルのバージョンを指す。
図7中に示されたプロセス1300の具体例700を詳細に説明する前に、登録および認証におけるバイオメトリックデータの使用の違いを明確にする以下の用語の定義をまず行う。本明細書では、「硬」特徴ベクトルという用語を用いて特徴ベクトルを量子化したものを指し、「軟」特徴ベクトルという用語を用いて量子化された特徴ベクトル、またはより細かく量子化した特徴ベクトルのバージョンを指す。
バイオメトリックパラメータによっては比較的大きな数値範囲にわたる整数および実数を含み得るため、量子化が使用される。暗号化プロセス、鍵生成プロセス、および他の認証プロセスは、小範囲にわたる整数の場合に最も上手く働く。
「硬」特徴ベクトルと「軟」特徴ベクトルとを区別する理由は、シンドロームベクトルが「硬」特徴ベクトルから得られることによる。したがって、「硬」特徴ベクトルは、通常、量子化される。これとは対照的に、認証フェーズでは、シンドローム復号器は、「軟」特徴ベクトルをシンドロームベクトルと組み合わせて「硬」特徴ベクトルを復号化する。したがって、「軟」特徴ベクトルは、量子化する必要がないか、またはシステムの誤差を減少させるために別々に量子化され得る。例えば、この「軟」特徴ベクトルを用いることで、シンドローム符号器は、入力としての各特徴を、可能性というよりも、もっともな選択の厳しい決断として取り扱うことが可能となる。
一般に、完全な特徴ベクトルをバイオメトリックデータから抽出する複数の方法があり、また同様に「硬」特徴ベクトルおよび「軟」特徴ベクトルを完全な特徴ベクトルから抽出する複数の方法があり得る。従って、図13のプロセスを各可能性に適用し、トレーニング中に最も良い全体結果をもたらす特徴ベクトル1304を選択する。
図7は、最適なシンドローム符号を構築するプロセス1300の具体例を詳述したものである。ここで、バイオメトリック特徴1304の統計的モデルは、バイオメトリック特徴の間のマルコフ関係を示している。トレーニングバイオメトリックデータが取得される(800)。バイオメトリックデータを使用して誤差ヒストグラム890が生成される(800)。誤差ヒストグラムを使用してシンドローム特徴ベクトルが選択される(900)。この文脈の中では、「完全な特徴ベクトル」1202(図12参照)という用語を用いてすべてのバイオメトリックパラメータを表し、「シンドローム特徴ベクトル」1203という用語を用いて完全な特徴ベクトルの部分集合を指す。シンドローム特徴ベクトルは、任意の特徴空間に変形することができる。
シンドローム特徴ベクトル1203が選択された後、シンドローム特徴ベクトルの異なる係数間の相関を測定する(1000)。シンドローム特徴ベクトルの誤差統計および係数間相関を用いることにより、密度発展法740を適用して、所与の長さの最適なシンドロームベクトル1204をもたらす次数分布を探す。シンドローム特徴ベクトルおよびシンドローム符号が選択された後、係数間相関を利用した確率伝搬復号器を構築する(1100)。
誤差ヒストグラムの構築
図8は、誤差ヒストグラム890を生成するプロセス800を示す。まず、異なるときに取得された特定のユーザのトレーニングバイオメトリックデータを取得する(810)。次に、1対のバイオメトリックパラメータBおよびB’を選択し(820)、完全な「軟」特徴ベクトルVS(B)(830)および完全な「硬」特徴ベクトルVH(B’)(840)を求める。次に、完全な特徴ベクトル中の各特徴または各次元iごとに、VS(B)の特徴iから、VH(B’)の対応する特徴iにある値を推定し(845)、この推定が正しいか否かを判断する(850)。この推定が正しくない場合、誤差ヒストグラム890のVH(B’)およびVS(B)の特徴iにある対応する値のビンを増分する(870)。このプロセスを各特徴iに対して完了した後、バイオメトリックBおよびB’のすべての対が処理されたか否かを調べる(860)。まだの場合、ステップ820に戻り、別のバイオメトリックパラメータ対を選択する。すべての対がすでに処理されている場合、誤差ヒストグラムが完了し、プロセスは、終了する(880)。
図8は、誤差ヒストグラム890を生成するプロセス800を示す。まず、異なるときに取得された特定のユーザのトレーニングバイオメトリックデータを取得する(810)。次に、1対のバイオメトリックパラメータBおよびB’を選択し(820)、完全な「軟」特徴ベクトルVS(B)(830)および完全な「硬」特徴ベクトルVH(B’)(840)を求める。次に、完全な特徴ベクトル中の各特徴または各次元iごとに、VS(B)の特徴iから、VH(B’)の対応する特徴iにある値を推定し(845)、この推定が正しいか否かを判断する(850)。この推定が正しくない場合、誤差ヒストグラム890のVH(B’)およびVS(B)の特徴iにある対応する値のビンを増分する(870)。このプロセスを各特徴iに対して完了した後、バイオメトリックBおよびB’のすべての対が処理されたか否かを調べる(860)。まだの場合、ステップ820に戻り、別のバイオメトリックパラメータ対を選択する。すべての対がすでに処理されている場合、誤差ヒストグラムが完了し、プロセスは、終了する(880)。
シンドローム特徴ベクトルの選択
図9は、図8の誤差ヒストグラムを用いて特徴ベクトルを選択するプロセス900を示す。まず、誤差ヒストグラムが最も信頼性の高い特徴から最も信頼性の低い特徴920までソートされる(910)。具体的には、E(i)がVS(B)の特徴iからVH(B’)の特徴iを予測する際の平均誤差である場合、特徴iは、E(i)<E(j)のときに特徴jよりも信頼性が高いものとみなされる。誤差ヒストグラムがソートされた後、誤差ヒストグラムからの次に信頼性の高い特徴をシンドローム特徴ベクトルに含め(930)、その時点のシンドローム特徴ベクトルに最良のシンドローム符号を構築し(940)、最新特徴を含めることで、セキュリティまたは誤差耐性が増大するか否かをテストする(950)。セキュリティまたは誤差耐性が増大する場合、さらなる特徴をシンドローム特徴ベクトルに加え続ける。増大しない場合、最も新しく追加された特徴を特徴ベクトルから除去し(960)、プロセスを終了する(970)。
図9は、図8の誤差ヒストグラムを用いて特徴ベクトルを選択するプロセス900を示す。まず、誤差ヒストグラムが最も信頼性の高い特徴から最も信頼性の低い特徴920までソートされる(910)。具体的には、E(i)がVS(B)の特徴iからVH(B’)の特徴iを予測する際の平均誤差である場合、特徴iは、E(i)<E(j)のときに特徴jよりも信頼性が高いものとみなされる。誤差ヒストグラムがソートされた後、誤差ヒストグラムからの次に信頼性の高い特徴をシンドローム特徴ベクトルに含め(930)、その時点のシンドローム特徴ベクトルに最良のシンドローム符号を構築し(940)、最新特徴を含めることで、セキュリティまたは誤差耐性が増大するか否かをテストする(950)。セキュリティまたは誤差耐性が増大する場合、さらなる特徴をシンドローム特徴ベクトルに加え続ける。増大しない場合、最も新しく追加された特徴を特徴ベクトルから除去し(960)、プロセスを終了する(970)。
セキュリティレベルを指定し、誤差耐性を最適化することが望まれる場合、以下のステップをステップ940および950に使用することができる。まず、ステップ940において、その時点で特徴ベクトル中にある特徴の数に対応する長さNを有する新しいシンドローム符号が、固定次数分布からk個のシンドロームを有する低密度パリティチェック(LDPC)符号を生成することによって構築される。この場合、セキュリティレベルは、量N−kを固定し、それをプロセス全体を通して一定に保つことによって一定に保たれる。次に、バイオメトリックデータのランダムなバイオメトリックサンプルがデータベースから選択され、LDPC符号のパリティチェック行列を適用することによってシンドロームベクトルにマッピングされ、その結果生成されるシンドロームベクトルは、同じユーザからの別のランダムなバイオメトリックサンプルに適用される確率伝搬を使用して復号化される。これを多数回繰り返すことで、所与の特徴ベクトルのシンドローム符号の誤差耐性の推定が得られる。別法として、より高い計算複雑性が設計プロセスにおいて許容される場合、密度発展法プロセスを使用して、符号の次数分布を最適化するとともに、誤差確率をより正確に推定することができる。T. J. Richardson、M. A. Shokrollahi、oおよびR. L. Urbankediscussed著「Design of capacity-approaching irregular low-density parity-check codes」(IEEE Transactions on Information Theory, vol. 47, issue 2, pp. 619-637, February 2001)(参照により本明細書に援用される)を参照願いたい。
誤差耐性レベルを指定し、最良のセキュリティを獲得することが望まれる場合、以下のステップをステップ940および950に使用することができる。まず、ステップ940において、その時点で特徴ベクトル中にある特徴の数に対応する長さNを有する新しいシンドローム符号が、密度発展法を用いて設計される。具体的には、レートの異なる一連の符号が、密度発展法によって評価される指定の誤差耐性レベルを満たす最高レートの符号が見つかるまで密度発展法を用いて構築される。
本発明では、このプロセスにより選択される特徴ベクトルを「シンドローム特徴ベクトル」と呼ぶ。この理由は、特徴ベクトルがシンドローム符号用に特に設計された特徴ベクトルであることによる。この特徴ベクトルは、顔認識または物体認識等のバイオメトリック認識用に構築される他のタイプの特徴ベクトルと異なる性質を有し得ることに留意されたい。
係数間相関の測定
データに相関があると思われる場合、シンドローム特徴ベクトルを選択した後、次のステップは、係数間相関を測定することである。この情報は、図7により生成される誤差ヒストグラムから抽出することができない。この理由は、誤差ヒストグラムが完全な特徴ベクトル1202に対して生成されたのに対して、ステップ900は、完全な特徴ベクトル中の特徴の部分集合のみを選択してシンドローム特徴ベクトル1203を生成することによる。
データに相関があると思われる場合、シンドローム特徴ベクトルを選択した後、次のステップは、係数間相関を測定することである。この情報は、図7により生成される誤差ヒストグラムから抽出することができない。この理由は、誤差ヒストグラムが完全な特徴ベクトル1202に対して生成されたのに対して、ステップ900は、完全な特徴ベクトル中の特徴の部分集合のみを選択してシンドローム特徴ベクトル1203を生成することによる。
図10は、バイナリシンドローム特徴ベクトルでの一次相関を測定するプロセス1000を示す。このプロセスは、非バイナリ特徴ベクトルまたは、より高次の相関に適用することもできる。まず、バイオメトリックトレーニングデータセットからの要素が選択され、シンドローム特徴ベクトルがその要素から抽出される。次に、カウンタ変数iがゼロに初期化される(1010)。次に、特徴iが0であるか、それとも1であるかをテストし(1020)、前者の場合にはステップ1030に進み、後者の場合にはステップ1040に進む。次に、特徴i−1、すなわち、前の特徴が0であったかそれとも1であったかをテストし(1030)、ヒストグラムの適当なビンを増分する(1035)。直観的に、ビンp00は、0の後に0が続くことをカウントし、ビンp01は、0の後に1が続くことをカウントし、以下同様である。次に、カウンタiを増分し(1050)、シンドローム特徴ベクトルにまだ特徴が残っているか否かをテストし(1060)、次の特徴に対してプロセスを繰り返す。そうではなく、各特徴をすでに処理し終えている場合には、プロセスを終了する(1070)。
図10のプロセスがバイオメトリックトレーニングセットの各要素に対して行われた後、ビンp00、p01、p10、およびp11の値をバイオメトリックトレーニングセットのサイズで割り、シンドローム特徴ベクトルの一次相関を測定する。
密度発展法を使用しての最適なシンドローム符号の構築
シンドローム特徴ベクトル1203が選択され、係数間相関が測定された後、密度発展法を用いてシンドロームベクトル1204を設計する。具体的には、LDPCシンドローム符号の場合、このシンドローム符号の次数分布を設計する。
シンドローム特徴ベクトル1203が選択され、係数間相関が測定された後、密度発展法を用いてシンドロームベクトル1204を設計する。具体的には、LDPCシンドローム符号の場合、このシンドローム符号の次数分布を設計する。
最適な次数分布を正確に構築するために、密度発展技法を適用していくつかの候補次数分布を生成する。
しかし、当該技術分野において既知の従来の密度発展法プロセスは、係数間相関を考慮に入れていない。このため、密度発展法によって生成される候補次数分布が、係数間相関がない場合に適当な場合であっても、それら候補次数分布のパフォーマンスは、一般に、係数間相関が存在する場合には異なるであろう。
シンドローム符号に最も良い次数分布を取得するために、バイオメトリックトレーニングデータセットに対して、密度発展法によって取得される候補次数分布を比較し、パフォーマンスが最も良い次数分布を選択する。代替の実施の形態では、従来の密度発展法アルゴリズムを、係数間相関を考慮に入れるように変更する。
シンドローム符号のための確率伝搬復号器の構築
シンドローム符号を設計するに際しての最終ステップは、関連する確率伝搬シンドローム復号器1205を構築することである。
シンドローム符号を設計するに際しての最終ステップは、関連する確率伝搬シンドローム復号器1205を構築することである。
図11Aは、登録フェーズの高レベルの構造を示し、符号器330が、シンドローム符号1102を使用して、シンドローム特徴ベクトル1203からシンドロームベクトル1204を生成する。
図11Bは、認証フェーズ中に使用される相補的な復号器1107の構造を示す。ここでも、認証を試みているユーザのバイオメトリックデータ1104のノイズの多い観測値が取得される。バイオメトリックデータ1104は、測定モデル1305(および測定モデルパラメータ1303)とともに、反復確率伝搬ネットワーク(因子グラフ)内のシンドロームベクトル1204および特徴モデル1304(およびその特徴モデルのパラメータ1302)とともに使用されて、元のシンドローム特徴ベクトル1203が復号化され(1107)、推定値1108が生成される。復号化が成功する場合、推定シンドローム特徴ベクトル1108と元のシンドローム特徴ベクトル1203とが合致する。
図11Cに示すように、本発明による確率伝搬因子グラフの構築1100は、シンドローム符号1102を特定する検査ノード(+)1110および変数ノード(=)1120に加えて、特徴モデル1304(そしてモデルパラメータ1302)を特定する相関ノード(C)1130を含む。具体的には、相関ノードは、連続した変数ノードの各対間に追加される。メッセージを変数ノードから隣接する検査ノードに渡す方法は、その他のメッセージで乗算される、隣接する各相関因子ノードからの追加メッセージを含むように変更される。
具体的には、Kschischang他の表記を用いて、μy→f(x)が検査fから変数ノードyへの状態xの入力メッセージであり、L(x)が左側の相関ノードからの入力メッセージである場合、変数ノードから右側の相関ノードへの出力メッセージは、
L(x)・Πμy→f(x)
であり、左側の相関ノードへの出力メッセージは、
R(x)・Πμy→f(x)
であり、式中、R(x)は、右側の相関ノードからの入力メッセージである。
L(x)・Πμy→f(x)
であり、左側の相関ノードへの出力メッセージは、
R(x)・Πμy→f(x)
であり、式中、R(x)は、右側の相関ノードからの入力メッセージである。
本明細書では、本発明の実施の形態により相関ノードに、また相関ノードからメッセージを渡す方法も説明する。具体的には、メッセージL(x)およびR(x)を求める手順を説明する。μ(0)が左側の相関ノードへの入力メッセージである場合、相関ノードの右側への出力メッセージは、相関ノードの右側にある変数ノードへの入力メッセージであり、
L(0)=p00・μ(0)+p10・μ(1)
および
L(1)=p10・μ(0)+p11・μ(1)
であり、式中、p00、p01、p10、およびp11の各項は、図10に示すように、測定される一次相関値である。
L(0)=p00・μ(0)+p10・μ(1)
および
L(1)=p10・μ(0)+p11・μ(1)
であり、式中、p00、p01、p10、およびp11の各項は、図10に示すように、測定される一次相関値である。
同様に、相関ノードの左側への出力メッセージは、相関ノードの左側の変数ノードへの入力メッセージであり、
R(0)=p00・μ(0)+p01・μ(1)
および
R(1)=p01・μ(0)+p11・μ(1)
である。
R(0)=p00・μ(0)+p01・μ(1)
および
R(1)=p01・μ(0)+p11・μ(1)
である。
虹彩バイオメトリックパラメータのシンドローム符号設計
次に、上記手順700を、虹彩バイオメトリックパラメータという具体的なケースに適用する場合について説明する。完全な「硬」特徴ベクトルを、J. Daugman著「How iris recognition works」(IEEE Transactions on Circuits and Systems for Video Technology, vol. 14, issue 1, pp. 21-30, January 2004)(参照により本明細書に援用される)に説明されているように、1組のガボールフィルタから抽出されるビットシーケンスであるように選択する。
次に、上記手順700を、虹彩バイオメトリックパラメータという具体的なケースに適用する場合について説明する。完全な「硬」特徴ベクトルを、J. Daugman著「How iris recognition works」(IEEE Transactions on Circuits and Systems for Video Technology, vol. 14, issue 1, pp. 21-30, January 2004)(参照により本明細書に援用される)に説明されているように、1組のガボールフィルタから抽出されるビットシーケンスであるように選択する。
完全な「硬」特徴ベクトルがバイナリであるのに対して、完全な「軟」特徴ベクトルを4成分のものとして選択する。具体的には、完全な「軟」特徴ベクトルの特徴iの値に、「硬」特徴ベクトルのその特徴の値の最良推定を選択し、信頼性レベルを示すビットをさらに添付する。具体的には、その特徴の決定に対して確信があったか否かを示すビットを添付する。
例えば、「硬」特徴ベクトルのいくつか特徴は、例えば、まぶたまたはまつげで覆われているために予測することが困難である場合があり、こういった特徴は「不確実」信頼性値を受け取るべきである。
次に、バイオメトリックトレーニングデータを使用して、図8に関連して上述したように誤差ヒストグラムを生成し、次に、図9の特徴ベクトル設計方法を適用する。完全な特徴ベクトルは、長さ約10,000を有するが、本発明は、多くの特徴1202の信頼性が低いことを発見した。例えば、目の上に対応する特徴ベクトルの成分は、多くの場合、まぶたまたはまつげで覆われている。信頼性が最も低い特徴が図9の手順によって破棄された後には、シンドローム特徴ベクトル内におよそ2000の最も信頼性の高い特徴が残る。
図7のステップ900で停止する場合、結果生成されるシンドロームベクトルは、一人のユーザの虹彩バイオメトリックパラメータの自然な変化を許容するだけの誤差耐性を持たない。具体的には、ある日に取得されたユーザの虹彩の測定から符号化され、別の日に取得された同じ虹彩の測定と組み合わせられたシンドロームベクトルは、約12%で復号化に失敗する。これは、図7の残りのステップが必要であることの正当性を示す。
図10の手順を用いて一次相関を測定した後、「硬」シンドローム特徴ベクトル中のビットが、隣接ビットと同じ値をとる可能性が、隣接ビットの逆の値をとる可能性よりも約2倍高かったことを検出する。次に、図7のステップ740に続き、密度発展法を用いて高相関を利用して最適化されたシンドローム符号を構築する。最後に、ステップ1100に続き、高い一次相関を考慮に入れた確率伝搬復号器を構築する。
これらのステップ後に、初期符号よりも信頼性が1桁高いシンドローム符号がもたらされ、かくして、図7の全体手順に従うことの利点を実証する。
指紋特徴のシンドローム符号
手順1300を指紋に適用する。指紋ベースのシステムは、一般に、パターンベースであるか、または特徴点ベースのいずれかである。ここでは、後者を使用する。特徴ベクトルを指紋特徴点から抽出する。一般的な手順1300を大半のバイオメトリックデータに適用することができるが、指紋の特徴点の場合の手順の詳細について説明する。特徴として、指紋特徴点は、経時変化し得、測定プロセスは、構造化ノイズを受ける。
手順1300を指紋に適用する。指紋ベースのシステムは、一般に、パターンベースであるか、または特徴点ベースのいずれかである。ここでは、後者を使用する。特徴ベクトルを指紋特徴点から抽出する。一般的な手順1300を大半のバイオメトリックデータに適用することができるが、指紋の特徴点の場合の手順の詳細について説明する。特徴として、指紋特徴点は、経時変化し得、測定プロセスは、構造化ノイズを受ける。
図14は、一例の指紋1401および抽出された特徴ベクトル1402を示す。抽出された特徴ベクトル1402は、シンドローム特徴ベクトル1203の一例である。特徴は、測定フィールド(観測窓)1403でのみ測定される。便宜上、特徴点は、グリッドにおいて正方形で示される。各特徴点は、特徴点の空間位置座標(a,b)および角度(c)を表すトリプレット、例えば(a,b,c)にマッピングされる。後述するように、1つの特徴点を位置合わせのための「コア」と指定することができる。
指紋1401が測定される平面は、ピクセルアレイを有するデジタルセンサによって量子化されるため、特徴を行列として記憶する。各センサピクセルは、行列1402内の特定のエントリに対応する。行列1402において、特徴点の存在は「1」で示され、感知される特徴点がないことは「0」で表される。より一般的な表現では、特徴点の存在を表すために、「1」に代わる行列内のエントリは、特徴点の角度cである。
特徴点の数、位置、および角度は、指紋の測定毎に変化する。例えば、ある測定で(74,52,36°)の特徴点が存在する場合、別の測定では(80,45,63°)として現れたり、またはまったく現れなかったりすることがある。
種々の理由により、測定毎のこの特徴点のばらつきは、指紋を処理する多くの従来の方法に対して問題を生じさせる。
明示的なバイオメトリックデータのばらつき
図15A〜図15Cに示すように、本発明のモデルは、バイオメトリックデータのばらつきに対処することができる。これらの図では、破線1500が局所近傍を示す。図15Aは、特徴点の移動(pi,j)1501を示す。図15Bは、削除pe1502を示し、図15Cは、挿入psを示す。
図15A〜図15Cに示すように、本発明のモデルは、バイオメトリックデータのばらつきに対処することができる。これらの図では、破線1500が局所近傍を示す。図15Aは、特徴点の移動(pi,j)1501を示す。図15Bは、削除pe1502を示し、図15Cは、挿入psを示す。
図16Aおよび図16Bは、本発明の一実施形態による、確率伝搬復号化1107の実施に使用される因子グラフ1600の高レベルの詳細および低レベルの詳細をそれぞれ示す。
高レベルでは、バイオメトリックデータ1201が使用されてシンドローム特徴ベクトル1203が生成され、シンドローム特徴ベクトル1203が使用されてシンドロームベクトル1204が生成される。復号器は、シンドローム特徴ベクトル1203を知らないが、シンドロームベクトル1204を知っている。シンドロームベクトル1204およびシンドローム特徴ベクトル1203は、符号構造により関連する。復号器は、バイオメトリックデータ1104のノイズの多い測定値も取得する。ノイズ構造は、統計モデル1305により記述される。シンドロームベクトル1203、符号構造、観測値1104、および測定モデル1305がともに使用されて、元のシンドローム特徴ベクトル1203が復号化され(1107)、その推定1108が生成される。
図16Bは、シンドローム特徴ベクトル、シンドロームベクトル、およびノイズの多い観測値の統計モデルを説明する因子グラフ1600の低レベルの構造を示す。
特徴ベクトルグリッド1402内の各位置tは、因子グラフ1600内に対応するバイナリランダム変数x[t]ノード1609を有する。このランダム変数は、1つの特徴点が登録中に位置tに存在し、そうでなければゼロである。
特徴ベクトルのグリッド位置とラベルtとの関連は、任意であってよく、例えば、ラスタ走査順であってよい。特徴セットの二次元の性質を本発明のモデルにおいて考慮することができる。
各グリッド位置に、特徴点が登録中に存在する事前確率がある。この事前確率Pr[x[t]=1]は、因子ノード1608により示される。
登録グリッドの変数ノード1609の各位置に、対応する認証グリッドに対応する位置ノード1601がある。認証中のグリッド位置tでの特徴点の存在は、バイナリランダム変数y[t]で表される。この変数は、特徴点がプローブ内に存在する場合には1に等しく、そうでなければ0に等しい。因子グラフの目標は、登録中の指紋の第1の測定と認証中の第2の測定の同時分布を表すことである。
本発明のモデルでは、各登録位置(x[t]=1)は、位置tにある特徴点がプローブ内の位置tの近傍の位置に移動する確率、または削除の場合には測定されない確率を有する。
変数1604は、登録特徴点の相対位置変化を表し、因子ノード1603は、移動の事前確率分布および特徴点挿入確率を表す。特に、図16Bに示す一次元移動モデルの場合、z[t]=iは、登録中の位置x(_)[t+i]の特徴点が認証中に位置z[t]に移動したことを示す(ここで、x(_)は、xの下に_が記載されたものを示す)。より一般には、かつ本実施態様では、二次元移動モデルが使用される。
このようなシフト{i}のドメインまたは近傍は、破線1500で示される設計パラメータである。変数z[t]=sの場合、偽の特徴点が認証中に位置tに挿入され、z[t]=*は、認証中に位置tに特徴点がないことを示す。z[t]=*のような変数z[t]と、y[t]=0のような変数y[t]との間には、完全な対応がある。
位置tの登録特徴点、すなわち、x[t]=1がtの近傍内で説明できる観測特徴点を多くとも1つにする制約を表すために、因子ノード1607を含む。これらのノードに接続されるランダム変数h[t]1606は、x[t]の削除を表すバイナリ変数である。削除は、登録中に特徴点が感知または抽出されない、または偽の特徴点が感知された結果、または大きな移動の結果として生じ得る。ノード1605は、各h[t]の事前分布を表す。
各ノードy[t]を対応するノードz[t]に接続する因子ノード1602は、対応するノードz[t]が*でない場合、各認証特徴点y[t]は、非ゼロのみであるべきであるという概念を表す。
このモデルに、シンドローム符号1102から生じる制約を追加する。各シンドロームノードs[j]1611は、局所符号制約1610を満たし、この局所符号制約1610は、シンドロームの値が特徴ベクトルx[1]、x[2]、・・・に適合する場合に1に等しく、そうでなければゼロに等しい特性関数である。
特徴点の向きを因子グラフに追加することができる。向き情報を追加するために、登録ノード1609は、特徴点の位置tおよび向きの両方を示す。この情報は、事前確率ノード1608にも反映される。登録中の向きを量子化して、向きをシンドローム符号化に必要な硬特徴ベクトルに適合させる。
シンドロームビット1611のベクトルは、前と同様に符号化されるが、ここでは、特徴点の有無および特徴点の向き(もしあれば)を示す登録変数1609のベクトルから符号化される。削除1605の事前確率は、変更のないままであり、移動に対する制約1607も、変更のないままである。移動の事前確率および挿入1604は、変更のないままである。認証ノード1602の制約ノードは、登録ノード1609と認証ノード1601との間の向きの変化は小さい可能性が高いという概念を反映するように、変更される。
メッセージパス規則および最適化
因子グラフ1600で表されるような測定・移動モデルの場合、従来の技法を使用してメッセージパス規則を導き出すことができる。以下に、複雑性の低減を実現するメッセージパスのいくつかの簡易化について説明する。
因子グラフ1600で表されるような測定・移動モデルの場合、従来の技法を使用してメッセージパス規則を導き出すことができる。以下に、複雑性の低減を実現するメッセージパスのいくつかの簡易化について説明する。
第1の簡易化は、制約ノード1602からのメッセージに関する。因子グラフを「剪定(prune)」して、観測されない特徴点を除去する。特に、制約1602の形態によれば、y[t]=0の場合、ノード1602からz[t]変数ノード1604への非ゼロメッセージのみが状態z[t]=*に対してのメッセージである。
したがって、近傍ノード1607に送られる非ゼロメッセージz[t]のみが*状態に対してのメッセージである。この一定のメッセージが1に正規化されるものと想定することができる。例えば、y[t]=y[t+2]=y[t+4]=y[t+5]=*の場合、図16Bの完全な因子グラフを使用せずに、図17に示す剪定されたグラフ1700を使用して、必要なメッセージパス動作を導き出す。これは、ノード1607のメッセージ計算の複雑性の大きな低減に繋がる。
因子ノード1607に入るメッセージまたは因子ノード1607から出るメッセージを計算することにより、第2の簡易化が得られる。z[t]変数ノードからの完全なメッセージを使用する必要はない。そうせずに、これらのメッセージを、x[t’]にある特徴点が位置z[t]に対応する位置に移動するか否かを示すバイナリメッセージに低減することができる。ノードz[t]のバイナリ情報を使用することで、大きな計算の節減が得られる。
まず、中間数量セットを計算し、これらの中間数量を後で再び使用することにより、種々の規則の第3の簡易化が得られる。例えば、変数ノードz[t]からの出力メッセージは、他のすべてのノードからの入力メッセージの積である。変数ノードz[t]への接続がK個ある場合、この規則を単純に実施するには、各接続エッジ毎にその他のK−1個の接続からのメッセージを組み合わせなければならないため、K2に比例する計算が必要である。これをより効率的に行うために、ノードz[t]の周辺確率(marginal belief)を計算するプロセスで、ノードz[t]に入力されるすべてのメッセージを一度組み合わせる。次に、特定の接続への出力メッセージを得るために、対数尤度ドメインで総メッセージをその接続からの入力メッセージで除算または減算する。
中間数量の同様の再使用を、三角ノードからの出力メッセージの計算に適用することもできる。特に、z’[t]が、変数ノードz[t]から位置t’のノード1607へのバイナリメッセージを表すとする。数量z’[t]は、特徴点が認証中に位置t’から位置tに移動するか否かを示す。これらのバイナリメッセージでのノード1607の単純な和−積規則では、位置t’にあるノード1607に接続される変数ノード1604の可能なすべての組み合わせを合算する必要がある。例えば、位置t’にあるノード1607がノードz[1]、z[2]、z[3]、およびz[4]に接続されている場合、z’[1]へのメッセージの計算では、z’[2]、z’[3]、およびz’[4]のすべての可能な組み合わせを合算する必要がある。この方法は、各三角ノードに接続される変数ノードの数のベキ乗の計算複雑性を有する。
制約ノード1607がz’[t]ノードのうち非ゼロにできるz’[t]を多くとも1つにすることを実現することにより、このベキ乗の複雑性をなくすことができる。したがって、ノードz’[t]の各出力メッセージは、ゼロである他のすべてのノードz’[t]に対応する項、およびゼロである1つのノードを除く他のすべてのノードz’[t]に対応する項を含む。これらの項を事前に計算することにより、因子ノード1607のメッセージパス規則を、接続数のベキ乗の複雑性から接続数の線形の複雑性に低減することができる。
統計の収集
図18は、因子グラフ1600、すなわち、本発明によるモデルのパラメータ1303を設定するプロセス1800を示す。バイオメトリックトレーニングデータ1301が取得される。未処理の指紋Fが選択される(1802)。指紋Fの未処理の測定値対BおよびB’が選択される(1803)。それぞれの特徴点M(B)およびM(B’)を求める(1804)。特徴点1806を比較し(1805)、移動、回転、挿入、および削除の統計を求める(1806)。この統計を使用して、因子グラフ内の統計を改訂する(1807)。指紋Fのまだ処理されていない測定値対がある場合(1808)、ステップ1803に戻る。そうではなく、まだ処理されていない指紋がある場合(1809)、ステップ1802に戻る。すべての指紋およびその特徴点対が処理された後、統計収集がステップ1810において完了する。
図18は、因子グラフ1600、すなわち、本発明によるモデルのパラメータ1303を設定するプロセス1800を示す。バイオメトリックトレーニングデータ1301が取得される。未処理の指紋Fが選択される(1802)。指紋Fの未処理の測定値対BおよびB’が選択される(1803)。それぞれの特徴点M(B)およびM(B’)を求める(1804)。特徴点1806を比較し(1805)、移動、回転、挿入、および削除の統計を求める(1806)。この統計を使用して、因子グラフ内の統計を改訂する(1807)。指紋Fのまだ処理されていない測定値対がある場合(1808)、ステップ1803に戻る。そうではなく、まだ処理されていない指紋がある場合(1809)、ステップ1802に戻る。すべての指紋およびその特徴点対が処理された後、統計収集がステップ1810において完了する。
データの位置合わせ
バイオメトリックシステムでは、登録バイオメトリックデータは、認証データと位置合わせされないことが多い。同じバイオメトリックデータの異なる測定は、並進移動、回転、および拡大縮小等の大域的な変形により変化することが多い。このようなばらつきは、パターンベースのバイオメトリック認証またはシンドローム符号化を使用しない認証方式においては、あまり問題にならない。
バイオメトリックシステムでは、登録バイオメトリックデータは、認証データと位置合わせされないことが多い。同じバイオメトリックデータの異なる測定は、並進移動、回転、および拡大縮小等の大域的な変形により変化することが多い。このようなばらつきは、パターンベースのバイオメトリック認証またはシンドローム符号化を使用しない認証方式においては、あまり問題にならない。
それとは対照的に、本発明のシステムでは、比較に利用できるのは、登録バイオメトリックパラメータのシンドロームベクトル331のみである。したがって、異なる位置合わせに対する探索では、可能な各位置合わせに復号化が必要となる。特徴点移動モデルは、微細な位置合わせずれに対応することができるが、復号化の計算費用を最小化するために、探索空間を最小化したい。
図19は、本発明の一実施形態による登録または認証中の指紋の位置合わせプロセスのステップを示す。指紋が取得され(1901)、特徴点パラメータならびにコアポイントロケーションおよび向きが抽出される(1902)。コアポイントおよびその向きは、指紋の慣性座標系を画定し、慣性座標系では、コアポイントの位置が原点であり、向きがy軸の役割を果たす。コアポイントに関連する慣性座標系に対する特徴点の位置および向きを再計算する(1903)。その結果1904は、指紋の座標系で測定された特徴点セットである。
利点として、この手順は、並進移動および回転の影響の大半またはすべてを除去することができる。通常、このような事前処理は、より計算集約的な局所探索と組み合わせられ、復号化は、並進移動および回転のより小さなセットで行われる。この事前処理手順は、特徴点抽出ルーチンの一環として使用することができる。
パラメータ設定の位置合わせ後の改訂
登録および認証バイオメトリック特徴が符号化前に互いに対してシフトするのがいつであれ、常に、因子グラフのパラメータは、このシフトを反映するように変更される。この一例は、位置合わせ手順1900または局所探索に対応するいくつかの小シフトのいずれかにより登録特徴および認証特徴が互いに対してシフトするときである。
登録および認証バイオメトリック特徴が符号化前に互いに対してシフトするのがいつであれ、常に、因子グラフのパラメータは、このシフトを反映するように変更される。この一例は、位置合わせ手順1900または局所探索に対応するいくつかの小シフトのいずれかにより登録特徴および認証特徴が互いに対してシフトするときである。
シフトならびに登録および認証観測窓1403(図14参照)の相対サイズに応じて、いくつかの登録特徴ロケーションが認証中にまったく観測されないことがある。このため、特徴点消失の確率を、観測されないこれらの位置の1つに設定することにより、これを反映するように因子グラフを変更する。これは、図16Bでは、因子ノード1605の消失確率を1に等しく設定することにより反映される。観測される可能性および観測されない可能性がいくらかずつある窓1403のエッジ付近の特徴点には、事前確率1605がそれに従って変更される。
発明の効果
本発明は、バイオメトリックパラメータに基づく安全なユーザ認証を達成する。本発明は、元のバイオメトリックデータあるいは任意の特徴ベクトルの代わりに、シンドローム符号が記憶されるので安全である。これによって、データベースにアクセスする攻撃者が、基礎を成すバイオメトリックデータを知ることが防止される。
本発明は、バイオメトリックパラメータに基づく安全なユーザ認証を達成する。本発明は、元のバイオメトリックデータあるいは任意の特徴ベクトルの代わりに、シンドローム符号が記憶されるので安全である。これによって、データベースにアクセスする攻撃者が、基礎を成すバイオメトリックデータを知ることが防止される。
攻撃者がシンドロームベクトルSのみを使用して行うことができる、元のバイオメトリックパラメータEの最も良い可能な推定を、複数の記述の既知の問題からの従来のツールを使用して制限することが可能である。これについては、例えば、V. K. Goyal著「Multiple description coding: compression meets the network」(IEEE Signal Processing Magazine, Vol. 18, pp. 74-93, September 2001)を参照願いたい。さらに、推定の質が絶対誤差測定を介して測定されようと、2乗誤差を介して測定されようと、加重誤差測定を介して測定されようと、または任意の誤差関数を介して測定されようと、これらの限界を作成することが可能である。これとは対照的に、すべての従来技術の方法は、バイナリ値に基づいている。そこで、セキュリティは、ハミング距離に依存する。
基本的に、シンドロームベクトルSのセキュリティは、シンドロームベクトルSが元のバイオメトリックパラメータEの圧縮されたものであるということに起因する。さらに、この圧縮表現は、Eの「最下位ビット」に対応する。データ圧縮理論からの既知のツールを使用すると、高圧縮を有するシンドローム符号が使用される場合、これらの最下位ビットが生成できる、元のパラメータEの推定は、いくら良くても不十分なものであることを証明することが可能である。これについては、例えば、Effros著「Distortion-rate bounds for fixed- and variable-rate multiresolution source codes」(IEEE Transactions on Information Theory, vol. 45, pp. 1887-1910, September 1999)ならびに、SteinbergおよびMerhav著「On successive refinement for the Wyner-Ziv problem」(IEEE Transactions on Information Theory, vol. 50, pp. 1636-1654, August 2004)を参照願いたい。
第2に、本発明は、偽造が、少なくとも、基礎を成すハッシュ関数340における衝突を見つけるのと同程度に困難であるので、安全である。特に、復号されたバイオメトリックE’’のハッシュH’が元のハッシュHと一致する場合に、システムは、認証フェーズ390においてシンドローム対(S,H)のみを受け付ける。MD5等の暗号ハッシュ関数について、Eとは異なるが、Eのハッシュと一致するハッシュを有する要素E’’を見つけることは、一般に不可能であると考えられる。したがって、シンドローム復号が、適切なハッシュでE’’の復号に成功した場合に、システムは、E’’が実際にEと同じであり、すべての認証判定は、元のバイオメトリックパラメータで行われることを確信することができる。
第3に、本発明は、シンドロームベクトルSを生成する際に、元のバイオメトリックパラメータEを圧縮する。多くのユーザ用のバイオメトリックデータベースは、特に、バイオメトリックデータの問いが、大量のデータ、例えば、顔画像または音声信号を必要とする場合に、大量のストレージを必要とする可能性がある。したがって、必要とされるストレージを減少させることによって、コストおよび誤差耐性の双方で大幅な改善を生み出すことができる。これとは対照的に、バイオメトリックデータの安全な記憶のためのほとんどの従来技術の方法では、実際には、暗号化または誤り訂正のオーバーヘッドによって、記憶されるデータのサイズが増加し、したがって、安全でないシステムよりも多くのストレージが必要とされる。
第4に、本発明は、シンドローム符号の理論を基に築かれているので、高度な符号構築アルゴリズムおよび復号アルゴリズムを適用することができる。特に、本発明によるシンドローム符号化によって、バイナリ符号の構築およびマルチレベル符号の構築の双方について、既知のビタビアルゴリズム、確率伝播、およびターボ復号を使用する軟復号の使用が容易になる。これとは対照的に、ほとんどの従来技術の方法は、バイナリ符号、リードソロモン符号、および代数的復号に基づいているので、バイオメトリックデータがバイナリ値ではなく実数値を取る場合に、軟復号を有効に適用することができない。例えば、いくつかの方法は、具体的には、登録フェーズにおいて、バイオメトリックデータとランダムな符号語とのXORを計算して、基準値を生成することを必要とし、認証フェーズにおいて、その基準値とバイオメトリックデータとのXORを計算することを必要とする。
第5に、安全なバイオメトリックに関するほとんどの従来技術は、誤り訂正符号化を使用するのに対して、本発明は、シンドローム符号化を使用する。誤り訂正符号化の計算複雑度は、通例、入力サイズにおいて超線形である。これとは対照的に、さまざまなタイプの低密度パリティチェックに基づくシンドローム符号を使用することによって、シンドローム符号化の計算複雑度が、入力サイズにおいて線形にしかならないシンドローム符号化器を構築することが容易である。
第6に、シンドローム符号化のフレームワークを使用することによって、Yedidia他による「Compressing Signals Using Serially-Concatenated Accumulate Codes」という発明の名称の米国特許出願番号第10/928448号(参照により本明細書に援用される)に記載されているSCA符号のような新しい強力な組み込みシンドローム符号を使用することが可能である。これらの符号によって、登録期間中において、シンドローム符号化器は、バイオメトリックデータの本来の可変性を推定することが可能になり、シンドローム復号の成功を可能にするのに過不足のないシンドロームビットを符号化することが可能になる。
第7に、上述したシンドローム符号は、データの暗号化に使用することができる。さらに、所与のパフォーマンスレベルおよび誤差耐性を有する最適なシンドローム符号の設計を可能にする方法が説明された。
第8に、シンドローム特徴ベクトルは、測定チャネルが構造化ノイズを受ける場合であっても正確に復号化することができる。
Claims (16)
- バイオメトリックパラメータを安全にデータベースに記憶する方法であって、
登録シンドロームベクトルを生成するために、シンドローム符号器を使用してユーザの登録バイオメトリックパラメータを符号化することと、
登録ハッシュを生成するために、ハッシュ関数を前記登録バイオメトリックパラメータに適用することと、
前記登録シンドロームベクトルおよび前記登録ハッシュをデータベースに記憶することと
を含むバイオメトリックパラメータを安全にデータベースに記憶する方法。 - ユーザから登録バイトメトリックデータを取得することと、
前記登録バイオメトリックパラメータを前記登録バイオメトリックデータから抽出することと
をさらに含む請求項1に記載の方法。 - 前記登録バイオメトリックデータに固有の座標系に基づいて前記登録バイオメトリックデータを位置合わせすることをさらに含む請求項2に記載の方法。
- 顔の前記登録バイオメトリックデータが取得される請求項2に記載の方法。
- 音声の前記登録バイオメトリックデータが取得される請求項2に記載の方法。
- 指紋の前記登録バイオメトリックデータが取得される請求項2に記載の方法。
- 前記登録バイオメトリックデータは、指紋の特徴点を含む請求項2に記載の方法。
- 前記登録バイオメトリックパラメータは、前記特徴点の位置を示す請求項7に記載の方法。
- 前記登録バイオメトリックデータパラメータは、前記特徴点の向きを示す請求項8に記載の方法。
- 前記位置合わせすることは、指紋コアポイントに関連する座標系に従う請求項3に記載の方法。
- 復号化バイオメトリックパラメータを生成するために、シンドローム復号器および認証バイオメトリックパラメータを使用して前記登録バイオメトリックシンドロームのベクトルを復号化することと、
認証ハッシュを生成するために、前記ハッシュ関数を前記復号化バイオメトリックパラメータに適用することと、
前記登録バイオメトリックパラメータと前記認証バイオメトリックパラメータとの類似度を求めるために、前記認証ハッシュと前記登録ハッシュとを比較することと
をさらに含む請求項1に記載の方法。 - ユーザから認証バイオメトリックデータを取得することと、
前記認証バイオメトリックパラメータを前記認証バイオメトリックデータから抽出することと
をさらに含む請求項11に記載の方法。 - 前記シンドローム復号器は、確率伝搬を使用する請求項11に記載の方法。
- 前記シンドローム復号器は、前記バイオメトリックデータを取得するプロセスでの構造化ノイズを考慮する測定モデルに基づく請求項11に記載の方法。
- 前記シンドローム符号器の設計は、
ソースモデルおよびチャネルモデルのパラメータをトレーニングデータから求めることと、
前記パラメータ、前記ソースモデル、および前記チャネルモデルに従って前記シンドローム符号器を構築することと
をさらに含む請求項1に記載の方法。 - 前記チャネルモデルは、構造化ノイズを含む請求項15に記載の方法。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/564,638 US7779268B2 (en) | 2004-12-07 | 2006-11-29 | Biometric based user authentication and data encryption |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008181085A true JP2008181085A (ja) | 2008-08-07 |
Family
ID=39148804
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007304706A Pending JP2008181085A (ja) | 2006-11-29 | 2007-11-26 | バイオメトリックパラメータを安全にデータベースに記憶する方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US7779268B2 (ja) |
EP (1) | EP1927934B1 (ja) |
JP (1) | JP2008181085A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009111971A (ja) * | 2007-10-30 | 2009-05-21 | Mitsubishi Electric Research Laboratories Inc | コード化および復号化前のバイオメトリックパラメータの前処理方法 |
JP2011521567A (ja) * | 2008-05-15 | 2011-07-21 | クゥアルコム・インコーポレイテッド | セキュリティが確保された生体認証モデルを用いるアイデンティティに基づく対称暗号システム |
JP2014116927A (ja) * | 2012-12-08 | 2014-06-26 | Lsi Corp | 誤訂正ハンドリング処理を伴う低密度パリティ検査復号化器 |
Families Citing this family (115)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1834441A1 (en) * | 2004-12-28 | 2007-09-19 | Koninklijke Philips Electronics N.V. | Key generation using biometric data and secret extraction codes |
WO2006129240A2 (en) * | 2005-06-01 | 2006-12-07 | Koninklijke Philips Electronics N.V. | Compensating for acquisition noise in helper data systems |
US8260008B2 (en) | 2005-11-11 | 2012-09-04 | Eyelock, Inc. | Methods for performing biometric recognition of a human eye and corroboration of same |
US8051468B2 (en) | 2006-06-14 | 2011-11-01 | Identity Metrics Llc | User authentication system |
WO2007149341A2 (en) | 2006-06-14 | 2007-12-27 | Agent Science Technologies, Inc. | System to associate a demographic to a user of an electronic system |
US8161530B2 (en) * | 2006-07-11 | 2012-04-17 | Identity Metrics, Inc. | Behaviormetrics application system for electronic transaction authorization |
US8428119B2 (en) * | 2007-01-16 | 2013-04-23 | International Business Machines Corporation | Method and apparatus for multi-hypothesis decoder side-information coding |
US20080209226A1 (en) * | 2007-02-28 | 2008-08-28 | Microsoft Corporation | User Authentication Via Biometric Hashing |
US20080209227A1 (en) * | 2007-02-28 | 2008-08-28 | Microsoft Corporation | User Authentication Via Biometric Hashing |
KR100876786B1 (ko) * | 2007-05-09 | 2009-01-09 | 삼성전자주식회사 | 조명 마스크를 이용하는 사용자 얼굴 검증 시스템 및 방법 |
US20090210722A1 (en) * | 2007-11-28 | 2009-08-20 | Russo Anthony P | System for and method of locking and unlocking a secret using a fingerprint |
US9391779B2 (en) * | 2008-07-28 | 2016-07-12 | International Business Machines Corporation | Reactive biometric single sign-on utility |
US8384515B2 (en) * | 2008-09-15 | 2013-02-26 | Accenture Global Services Limited | Biometric processing using random projection transforms |
US10257191B2 (en) * | 2008-11-28 | 2019-04-09 | Nottingham Trent University | Biometric identity verification |
US8364131B2 (en) * | 2009-05-17 | 2013-01-29 | Qualcomm Incorporated | Method and apparatus for providing caller recognition based on biometric data and biometric mobile device address book |
US9047450B2 (en) * | 2009-06-19 | 2015-06-02 | Deviceauthority, Inc. | Identification of embedded system devices |
US9047458B2 (en) | 2009-06-19 | 2015-06-02 | Deviceauthority, Inc. | Network access protection |
US20100333213A1 (en) * | 2009-06-24 | 2010-12-30 | Craig Stephen Etchegoyen | Systems and Methods for Determining Authorization to Operate Licensed Software Based on a Client Device Fingerprint |
US8213907B2 (en) * | 2009-07-08 | 2012-07-03 | Uniloc Luxembourg S. A. | System and method for secured mobile communication |
US8407550B2 (en) * | 2009-08-14 | 2013-03-26 | Mitsubishi Electric Research Laboratories, Inc. | Method and system for decoding graph-based codes using message-passing with difference-map dynamics |
US8726407B2 (en) * | 2009-10-16 | 2014-05-13 | Deviceauthority, Inc. | Authentication of computing and communications hardware |
DE102009055947A1 (de) * | 2009-11-30 | 2011-06-01 | Christoph Busch | Authentisierte Übertragung von Daten |
AU2009243439A1 (en) * | 2009-11-30 | 2011-06-16 | Canon Kabushiki Kaisha | Robust image alignment for distributed multi-view imaging systems |
FR2954549B1 (fr) * | 2009-12-23 | 2018-02-16 | Morpho | Codage biometrique |
US8041956B1 (en) * | 2010-08-16 | 2011-10-18 | Daon Holdings Limited | Method and system for biometric authentication |
US8745405B2 (en) * | 2010-02-17 | 2014-06-03 | Ceelox Patents, LLC | Dynamic seed and key generation from biometric indicia |
AU2011100168B4 (en) | 2011-02-09 | 2011-06-30 | Device Authority Ltd | Device-bound certificate authentication |
US8380711B2 (en) * | 2011-03-10 | 2013-02-19 | International Business Machines Corporation | Hierarchical ranking of facial attributes |
US8957328B2 (en) | 2011-03-25 | 2015-02-17 | East Carolina University | Weight monitoring systems and methods using biometric identification input devices |
US8613075B2 (en) | 2011-03-30 | 2013-12-17 | Elwha Llc | Selective item access provision in response to active item ascertainment upon device transfer |
US9317111B2 (en) | 2011-03-30 | 2016-04-19 | Elwha, Llc | Providing greater access to one or more items in response to verifying device transfer |
US9153194B2 (en) | 2011-03-30 | 2015-10-06 | Elwha Llc | Presentation format selection based at least on device transfer determination |
US8745725B2 (en) | 2011-03-30 | 2014-06-03 | Elwha Llc | Highlighting in response to determining device transfer |
US8726366B2 (en) | 2011-03-30 | 2014-05-13 | Elwha Llc | Ascertaining presentation format based on device primary control determination |
US8713670B2 (en) | 2011-03-30 | 2014-04-29 | Elwha Llc | Ascertaining presentation format based on device primary control determination |
US8726367B2 (en) | 2011-03-30 | 2014-05-13 | Elwha Llc | Highlighting in response to determining device transfer |
US8839411B2 (en) | 2011-03-30 | 2014-09-16 | Elwha Llc | Providing particular level of access to one or more items in response to determining primary control of a computing device |
US8739275B2 (en) | 2011-03-30 | 2014-05-27 | Elwha Llc | Marking one or more items in response to determining device transfer |
US8918861B2 (en) | 2011-03-30 | 2014-12-23 | Elwha Llc | Marking one or more items in response to determining device transfer |
US8402535B2 (en) * | 2011-03-30 | 2013-03-19 | Elwha Llc | Providing greater access to one or more items in response to determining device transfer |
US8863275B2 (en) | 2011-03-30 | 2014-10-14 | Elwha Llc | Access restriction in response to determining device transfer |
CN103080952B (zh) * | 2011-05-12 | 2015-12-09 | 中国科学院自动化研究所 | 基于局部特征的免配准安全指纹认证方法和系统 |
KR101497386B1 (ko) * | 2011-05-24 | 2015-03-02 | 엠파이어 테크놀로지 디벨롭먼트 엘엘씨 | 실제 물체를 사용하는 암호화 |
AU2011101295B4 (en) | 2011-06-13 | 2012-08-02 | Device Authority Ltd | Hardware identity in multi-factor authentication layer |
AU2011101297B4 (en) | 2011-08-15 | 2012-06-14 | Uniloc Usa, Inc. | Remote recognition of an association between remote devices |
RU2473125C1 (ru) * | 2011-12-08 | 2013-01-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пензенский государственный университет" (ФГБОУ ВПО "ПГУ") | Способ классификации рисунков отпечатка пальца при аутентификации личности |
US8447273B1 (en) * | 2012-01-09 | 2013-05-21 | International Business Machines Corporation | Hand-held user-aware security device |
US8996886B2 (en) | 2012-02-17 | 2015-03-31 | International Business Machines Corporation | Encrypted biometric data management and retrieval |
JP6096301B2 (ja) | 2012-10-25 | 2017-03-15 | インテル コーポレイション | ファームウェアにおける盗難防止 |
US9357922B2 (en) | 2013-03-04 | 2016-06-07 | Hello Inc. | User or patient monitoring systems with one or more analysis tools |
US9398854B2 (en) | 2013-03-04 | 2016-07-26 | Hello Inc. | System with a monitoring device that monitors individual activities, behaviors or habit information and communicates with a database with corresponding individual base information for comparison |
US9320434B2 (en) | 2013-03-04 | 2016-04-26 | Hello Inc. | Patient monitoring systems and messages that send alerts to patients only when the patient is awake |
US9330561B2 (en) | 2013-03-04 | 2016-05-03 | Hello Inc. | Remote communication systems and methods for communicating with a building gateway control to control building systems and elements |
US9298882B2 (en) | 2013-03-04 | 2016-03-29 | Hello Inc. | Methods using patient monitoring devices with unique patient IDs and a telemetry system |
US9848776B2 (en) | 2013-03-04 | 2017-12-26 | Hello Inc. | Methods using activity manager for monitoring user activity |
US9392939B2 (en) | 2013-03-04 | 2016-07-19 | Hello Inc. | Methods using a monitoring device to monitor individual activities, behaviors or habit information and communicate with a database with corresponding individual base information for comparison |
US9345403B2 (en) | 2013-03-04 | 2016-05-24 | Hello Inc. | Wireless monitoring system with activity manager for monitoring user activity |
US9526422B2 (en) | 2013-03-04 | 2016-12-27 | Hello Inc. | System for monitoring individuals with a monitoring device, telemetry system, activity manager and a feedback system |
US9737214B2 (en) | 2013-03-04 | 2017-08-22 | Hello Inc. | Wireless monitoring of patient exercise and lifestyle |
US9582748B2 (en) | 2013-03-04 | 2017-02-28 | Hello Inc. | Base charging station for monitoring device |
US9407097B2 (en) | 2013-03-04 | 2016-08-02 | Hello Inc. | Methods using wearable device with unique user ID and telemetry system |
US9406220B2 (en) | 2013-03-04 | 2016-08-02 | Hello Inc. | Telemetry system with tracking receiver devices |
US9553486B2 (en) | 2013-03-04 | 2017-01-24 | Hello Inc. | Monitoring system and device with sensors that is remotely powered |
US9634921B2 (en) | 2013-03-04 | 2017-04-25 | Hello Inc. | Wearable device coupled by magnets positioned in a frame in an interior of the wearable device with at least one electronic circuit |
US9436903B2 (en) | 2013-03-04 | 2016-09-06 | Hello Inc. | Wearable device with magnets with a defined distance between adjacent magnets |
US9345404B2 (en) | 2013-03-04 | 2016-05-24 | Hello Inc. | Mobile device that monitors an individuals activities, behaviors, habits or health parameters |
US9445651B2 (en) | 2013-03-04 | 2016-09-20 | Hello Inc. | Wearable device with overlapping ends coupled by magnets |
US9430938B2 (en) | 2013-03-04 | 2016-08-30 | Hello Inc. | Monitoring device with selectable wireless communication |
US9055791B2 (en) | 2013-03-04 | 2015-06-16 | Hello Inc. | Wearable device with overlapping ends coupled by magnets operating with a selectable strength |
US9149189B2 (en) | 2013-03-04 | 2015-10-06 | Hello, Inc. | User or patient monitoring methods using one or more analysis tools |
US9704209B2 (en) | 2013-03-04 | 2017-07-11 | Hello Inc. | Monitoring system and device with sensors and user profiles based on biometric user information |
US9427160B2 (en) | 2013-03-04 | 2016-08-30 | Hello Inc. | Wearable device with overlapping ends coupled by magnets positioned in the wearable device by an undercut |
US9339188B2 (en) | 2013-03-04 | 2016-05-17 | James Proud | Methods from monitoring health, wellness and fitness with feedback |
US9427189B2 (en) | 2013-03-04 | 2016-08-30 | Hello Inc. | Monitoring system and device with sensors that are responsive to skin pigmentation |
US9662015B2 (en) | 2013-03-04 | 2017-05-30 | Hello Inc. | System or device with wearable devices having one or more sensors with assignment of a wearable device user identifier to a wearable device user |
US9432091B2 (en) | 2013-03-04 | 2016-08-30 | Hello Inc. | Telemetry system with wireless power receiver and monitoring devices |
US9204798B2 (en) | 2013-03-04 | 2015-12-08 | Hello, Inc. | System for monitoring health, wellness and fitness with feedback |
US9530089B2 (en) | 2013-03-04 | 2016-12-27 | Hello Inc. | Wearable device with overlapping ends coupled by magnets of a selected width, length and depth |
US9424508B2 (en) | 2013-03-04 | 2016-08-23 | Hello Inc. | Wearable device with magnets having first and second polarities |
US9532716B2 (en) | 2013-03-04 | 2017-01-03 | Hello Inc. | Systems using lifestyle database analysis to provide feedback |
US9159223B2 (en) | 2013-03-04 | 2015-10-13 | Hello, Inc. | User monitoring device configured to be in communication with an emergency response system or team |
US9420857B2 (en) | 2013-03-04 | 2016-08-23 | Hello Inc. | Wearable device with interior frame |
US9361572B2 (en) | 2013-03-04 | 2016-06-07 | Hello Inc. | Wearable device with magnets positioned at opposing ends and overlapped from one side to another |
US9420856B2 (en) | 2013-03-04 | 2016-08-23 | Hello Inc. | Wearable device with adjacent magnets magnetized in different directions |
US9367793B2 (en) | 2013-03-04 | 2016-06-14 | Hello Inc. | Wearable device with magnets distanced from exterior surfaces of the wearable device |
US9143496B2 (en) | 2013-03-13 | 2015-09-22 | Uniloc Luxembourg S.A. | Device authentication using device environment information |
US9286466B2 (en) | 2013-03-15 | 2016-03-15 | Uniloc Luxembourg S.A. | Registration and authentication of computing devices using a digital skeleton key |
US9993166B1 (en) | 2013-06-21 | 2018-06-12 | Fitbit, Inc. | Monitoring device using radar and measuring motion with a non-contact device |
US10058290B1 (en) | 2013-06-21 | 2018-08-28 | Fitbit, Inc. | Monitoring device with voice interaction |
US10004451B1 (en) | 2013-06-21 | 2018-06-26 | Fitbit, Inc. | User monitoring system |
US9743397B2 (en) * | 2013-11-14 | 2017-08-22 | Telefonaktiebolaget L M Ericsson (Publ) | Reduced-size message pass in factor graphs for wireless communications networks |
WO2015120084A1 (en) * | 2014-02-04 | 2015-08-13 | Secure Gravity Inc. | Methods and systems configured to detect and guarantee identity |
US20160225278A1 (en) * | 2015-01-31 | 2016-08-04 | Usa Life Nutrition Llc | Method and apparatus for incentivization of learning |
US9577992B2 (en) * | 2015-02-04 | 2017-02-21 | Aerendir Mobile Inc. | Data encryption/decryption using neuro and neuro-mechanical fingerprints |
US9590986B2 (en) | 2015-02-04 | 2017-03-07 | Aerendir Mobile Inc. | Local user authentication with neuro and neuro-mechanical fingerprints |
US9836896B2 (en) | 2015-02-04 | 2017-12-05 | Proprius Technologies S.A.R.L | Keyless access control with neuro and neuro-mechanical fingerprints |
US10733415B1 (en) * | 2015-06-08 | 2020-08-04 | Cross Match Technologies, Inc. | Transformed representation for fingerprint data with high recognition accuracy |
US10339178B2 (en) * | 2015-06-30 | 2019-07-02 | Samsung Electronics Co., Ltd. | Fingerprint recognition method and apparatus |
TWI579774B (zh) * | 2015-09-17 | 2017-04-21 | Fingerprint Sensing Integral Circuit and Its Disturbing Encryption Method | |
US10650621B1 (en) | 2016-09-13 | 2020-05-12 | Iocurrents, Inc. | Interfacing with a vehicular controller area network |
US10255416B2 (en) * | 2017-01-25 | 2019-04-09 | Ca, Inc. | Secure biometric authentication with client-side feature extraction |
US10831878B2 (en) | 2018-01-26 | 2020-11-10 | Bank Of America Corporation | Preventing unauthorized access to secure information systems using dynamic, multi-device authentication |
EP3564846A1 (en) | 2018-04-30 | 2019-11-06 | Merck Patent GmbH | Methods and systems for automatic object recognition and authentication |
EP3565179B1 (en) | 2018-04-30 | 2022-10-19 | Merck Patent GmbH | Composite security marking and methods and apparatuses for providing and reading same |
US11093771B1 (en) * | 2018-05-04 | 2021-08-17 | T Stamp Inc. | Systems and methods for liveness-verified, biometric-based encryption |
US11496315B1 (en) | 2018-05-08 | 2022-11-08 | T Stamp Inc. | Systems and methods for enhanced hash transforms |
US11574051B2 (en) * | 2018-08-02 | 2023-02-07 | Fortinet, Inc. | Malware identification using multiple artificial neural networks |
US11301586B1 (en) | 2019-04-05 | 2022-04-12 | T Stamp Inc. | Systems and processes for lossy biometric representations |
US20200366690A1 (en) * | 2019-05-16 | 2020-11-19 | Nec Laboratories America, Inc. | Adaptive neural networks for node classification in dynamic networks |
EP4127984B1 (en) * | 2020-04-01 | 2024-02-21 | Telefonaktiebolaget LM Ericsson (publ) | Neural network watermarking |
CN111539769A (zh) * | 2020-04-27 | 2020-08-14 | 支付宝(杭州)信息技术有限公司 | 基于差分隐私的异常检测模型的训练方法及装置 |
WO2021226471A1 (en) * | 2020-05-08 | 2021-11-11 | Marc Duthoit | Computer-implemented user identity verification method |
US11967173B1 (en) | 2020-05-19 | 2024-04-23 | T Stamp Inc. | Face cover-compatible biometrics and processes for generating and using same |
US12079371B1 (en) | 2021-04-13 | 2024-09-03 | T Stamp Inc. | Personal identifiable information encoder |
US20240045996A1 (en) * | 2022-08-03 | 2024-02-08 | Dapple Security, Inc. | Systems and Methods for Biometrics-based Secure Data Encryption and Data Signature |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06232768A (ja) * | 1993-02-02 | 1994-08-19 | Toshiba Corp | 畳込み符号化データ復号装置 |
JPH11340971A (ja) * | 1998-05-27 | 1999-12-10 | Toppan Printing Co Ltd | 暗号復号処理装置 |
JP2000358025A (ja) * | 1999-06-15 | 2000-12-26 | Nec Corp | 情報処理方法、情報処理装置及び情報処理プログラムを記憶した記録媒体 |
WO2005122467A1 (en) * | 2004-06-09 | 2005-12-22 | Koninklijke Philips Electronics N.V. | Biometric template protection and feature handling |
JP2006166433A (ja) * | 2004-12-07 | 2006-06-22 | Mitsubishi Electric Research Laboratories Inc | バイオメトリックパラメータをデータベースに安全に記憶するための方法及びシステム、並びに、バイオメトリックパラメータをデータベースに安全に記憶してユーザを認証するための方法 |
JP2008502070A (ja) * | 2004-06-09 | 2008-01-24 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 特徴位置に基づくバイオメトリック・テンプレート類似性 |
JP2008526080A (ja) * | 2004-12-28 | 2008-07-17 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | バイオメトリックデータ及び秘密情報抽出コードを用いた鍵生成方法。 |
JP2009507267A (ja) * | 2005-09-01 | 2009-02-19 | 三菱電機株式会社 | コンピュータ可読媒体にデータを記憶するためにコンピュータで実施される方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3611290A (en) * | 1968-06-03 | 1971-10-05 | North American Rockwell | Fingerprint minutiae reading device |
JPH07105370A (ja) * | 1993-10-01 | 1995-04-21 | Nippon Denki Security Syst Kk | 指紋紋様分類方法 |
US5815418A (en) * | 1996-01-31 | 1998-09-29 | Analogic Corporation | Continuous self-calibrating data acquistion system |
US6038315A (en) | 1997-03-17 | 2000-03-14 | The Regents Of The University Of California | Method and system for normalizing biometric variations to authenticate users from a public database and that ensures individual biometric data privacy |
US6363485B1 (en) | 1998-09-09 | 2002-03-26 | Entrust Technologies Limited | Multi-factor biometric authenticating device and method |
US7269277B2 (en) * | 1999-12-14 | 2007-09-11 | Davida George I | Perfectly secure authorization and passive identification with an error tolerant biometric system |
US7602904B2 (en) | 2000-11-27 | 2009-10-13 | Rsa Security, Inc. | Order invariant fuzzy commitment system |
KR100552815B1 (ko) * | 2003-12-31 | 2006-02-22 | 동부아남반도체 주식회사 | 반도체 소자의 듀얼 다마신 배선 형성 방법 |
JP2006065961A (ja) | 2004-08-27 | 2006-03-09 | Oki Electric Ind Co Ltd | 不揮発性メモリの試験方法 |
-
2006
- 2006-11-29 US US11/564,638 patent/US7779268B2/en not_active Expired - Fee Related
-
2007
- 2007-11-26 JP JP2007304706A patent/JP2008181085A/ja active Pending
- 2007-11-29 EP EP07023143A patent/EP1927934B1/en not_active Ceased
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06232768A (ja) * | 1993-02-02 | 1994-08-19 | Toshiba Corp | 畳込み符号化データ復号装置 |
JPH11340971A (ja) * | 1998-05-27 | 1999-12-10 | Toppan Printing Co Ltd | 暗号復号処理装置 |
JP2000358025A (ja) * | 1999-06-15 | 2000-12-26 | Nec Corp | 情報処理方法、情報処理装置及び情報処理プログラムを記憶した記録媒体 |
WO2005122467A1 (en) * | 2004-06-09 | 2005-12-22 | Koninklijke Philips Electronics N.V. | Biometric template protection and feature handling |
JP2008502070A (ja) * | 2004-06-09 | 2008-01-24 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 特徴位置に基づくバイオメトリック・テンプレート類似性 |
JP2008502071A (ja) * | 2004-06-09 | 2008-01-24 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | バイオメトリック・テンプレートの保護および特徴処理 |
JP2006166433A (ja) * | 2004-12-07 | 2006-06-22 | Mitsubishi Electric Research Laboratories Inc | バイオメトリックパラメータをデータベースに安全に記憶するための方法及びシステム、並びに、バイオメトリックパラメータをデータベースに安全に記憶してユーザを認証するための方法 |
JP2008526080A (ja) * | 2004-12-28 | 2008-07-17 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | バイオメトリックデータ及び秘密情報抽出コードを用いた鍵生成方法。 |
JP2009507267A (ja) * | 2005-09-01 | 2009-02-19 | 三菱電機株式会社 | コンピュータ可読媒体にデータを記憶するためにコンピュータで実施される方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009111971A (ja) * | 2007-10-30 | 2009-05-21 | Mitsubishi Electric Research Laboratories Inc | コード化および復号化前のバイオメトリックパラメータの前処理方法 |
JP2011521567A (ja) * | 2008-05-15 | 2011-07-21 | クゥアルコム・インコーポレイテッド | セキュリティが確保された生体認証モデルを用いるアイデンティティに基づく対称暗号システム |
US8625785B2 (en) | 2008-05-15 | 2014-01-07 | Qualcomm Incorporated | Identity based symmetric cryptosystem using secure biometric model |
JP2014116927A (ja) * | 2012-12-08 | 2014-06-26 | Lsi Corp | 誤訂正ハンドリング処理を伴う低密度パリティ検査復号化器 |
Also Published As
Publication number | Publication date |
---|---|
EP1927934A2 (en) | 2008-06-04 |
EP1927934B1 (en) | 2011-07-27 |
EP1927934A3 (en) | 2010-06-02 |
US7779268B2 (en) | 2010-08-17 |
US20070174633A1 (en) | 2007-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1927934B1 (en) | Method for securely storing biometric parameters in database | |
JP4864877B2 (ja) | コンピュータ可読媒体にデータを記憶するためにコンピュータで実施される方法 | |
US8375218B2 (en) | Pre-processing biometric parameters before encoding and decoding | |
JP5288935B2 (ja) | コード化および復号化前のバイオメトリックパラメータの前処理方法 | |
Arakala et al. | Fuzzy extractors for minutiae-based fingerprint authentication | |
Sutcu et al. | Protecting biometric templates with sketch: Theory and practice | |
JP2006166433A (ja) | バイオメトリックパラメータをデータベースに安全に記憶するための方法及びシステム、並びに、バイオメトリックパラメータをデータベースに安全に記憶してユーザを認証するための方法 | |
US8433983B2 (en) | Secure protection of biometric templates | |
Cimato et al. | Privacy-aware biometrics: Design and implementation of a multimodal verification system | |
JP5662157B2 (ja) | テンプレート保護システムにおける分類閾値の規定 | |
Tong et al. | Biometric fuzzy extractors made practical: a proposal based on fingercodes | |
Billeb et al. | Biometric template protection for speaker recognition based on universal background models | |
Ziauddin et al. | Robust iris verification for key management | |
US8122260B2 (en) | Shaping classification boundaries in template protection systems | |
Draper et al. | Secure storage of fingerprint biometrics using Slepian-Wolf codes | |
KR101275590B1 (ko) | 생체 정보 템플릿 보호를 위한 실수형 오류정정부호 기반 퍼지 볼트 방법 | |
Sandhya et al. | Cancelable fingerprint cryptosystem based on convolution coding | |
Soltane et al. | A review regarding the biometrics cryptography challenging design and strategies | |
Sutcu et al. | Secure sketches for protecting biometric templates | |
Zhou et al. | Measuring privacy and security of iris fuzzy commitment | |
Arakala et al. | Protection of minutiae‐based templates using biocryptographic constructs in the set difference metric | |
Teoh et al. | Error correction codes for biometric cryptosystem: an overview | |
Grangetto et al. | Security applications of distributed arithmetic coding | |
Venkatachalam et al. | Cryptography key generation using biometrics | |
Örencik et al. | Securing fuzzy vault schemes through biometric hashing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101109 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121106 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130402 |