JP2008180548A - Measurement method and measuring device for mass unbalance of rotator - Google Patents

Measurement method and measuring device for mass unbalance of rotator Download PDF

Info

Publication number
JP2008180548A
JP2008180548A JP2007012969A JP2007012969A JP2008180548A JP 2008180548 A JP2008180548 A JP 2008180548A JP 2007012969 A JP2007012969 A JP 2007012969A JP 2007012969 A JP2007012969 A JP 2007012969A JP 2008180548 A JP2008180548 A JP 2008180548A
Authority
JP
Japan
Prior art keywords
rotating body
elastic member
rotation
sensor
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007012969A
Other languages
Japanese (ja)
Inventor
Kazutaka Uehara
一剛 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tottori University NUC
Original Assignee
Tottori University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tottori University NUC filed Critical Tottori University NUC
Priority to JP2007012969A priority Critical patent/JP2008180548A/en
Publication of JP2008180548A publication Critical patent/JP2008180548A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Balance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure mass unbalance of a small-sized rotator, such as, a dental turbine of a dental hand piece, highly accurately, without having to use calibration weight or the like. <P>SOLUTION: A centrifugal force caused by mass imbalance is converted into deflection amount of a soft structure, and the magnitude and the phase thereof are calculated. Vibrations in an elastic beam 4, during rotation of a rotator 1, is detected in a noncontact state by a displacement sensor 5, the rotation position is also detected in the noncontact state by a rotation sensor, and each detection value is computed by specific means, to thereby calculate the magnitude and the phase of the imbalance. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、回転軸周りに質量分布を有する回転体の質量アンバランスの測定方法と、その測定法を利用した質量アンバランスの測定装置に関するものであり、従来の方法では測定が困難であった小型回転体の質量アンバランス測定に適した方法およびその装置に関するものである。   The present invention relates to a method for measuring a mass unbalance of a rotating body having a mass distribution around a rotation axis, and a mass imbalance measuring apparatus using the measurement method, and measurement is difficult by a conventional method. The present invention relates to a method and apparatus suitable for measuring mass unbalance of a small rotating body.

回転体を有する機器の低騒音化・低振動化を目的として機器に搭載される回転体の質量アンバランスを簡便に低減できる方法や装置の開発に対する要求が強くなっている。質量アンバランスの低減には、まずその大きさと位相(角度位置)を確実に検出できなければならないが、近年の機器類の小型化とともにその測定は以下のような理由で困難な状況になってきた。   There is an increasing demand for the development of a method and apparatus that can easily reduce the mass imbalance of a rotating body mounted on a device for the purpose of reducing noise and vibration of the device having the rotating body. In order to reduce mass unbalance, it must first be possible to reliably detect its size and phase (angular position), but with the recent miniaturization of equipment, its measurement has become difficult for the following reasons. It was.

一つは、小型回転体の質量アンバランスによる振動を高精度に測定できるセンサがないことである。通常、質量アンバランスに起因する回転体の振動測定には圧電型の加速度センサが用いられる場合が多い(例えば、特許文献1参照)。しかし、このセンサに内蔵されている振動検出用おもりの質量が測定対象の回転体に比べて大きいため、小型回転体の振動検出に必要な感度を十分確保できない。また、こういった振動センサは、回転体を支持する軸受の近傍に直接装着して振動を検出するため、その測定対象の振動系を変化させる懸念もある。   One is that there is no sensor that can measure vibration due to mass imbalance of a small rotating body with high accuracy. Usually, a piezoelectric acceleration sensor is often used to measure vibrations of a rotating body due to mass imbalance (see, for example, Patent Document 1). However, since the mass of the vibration detection weight incorporated in the sensor is larger than that of the rotating body to be measured, it is not possible to sufficiently secure the sensitivity necessary for vibration detection of the small rotating body. In addition, since such a vibration sensor is mounted directly in the vicinity of the bearing that supports the rotating body and detects vibration, there is a concern that the vibration system to be measured may be changed.

さらに、小型回転体の質量アンバランスの測定が困難になってきたもう一つの理由として、従来の測定アルゴリズムを小型回転体の質量アンバランス測定に適用することが困難になってきたことが挙げられる。例えば、特許文献2に示されているように、影響係数法は回転体に校正おもりを直接付加および除去したときの振動を測定するとともに、その結果を数値演算して質量アンバランスの大きさと位相(位置)を算出するアルゴリズムであるが、小型回転体に校正おもりを付加または除去のスペースを確保することが困難な場合が多い。
特開平10−134502号公報 特開2000−310576号公報
Furthermore, another reason why it has become difficult to measure the mass unbalance of small rotating bodies is that it has become difficult to apply conventional measurement algorithms to mass unbalance measurements of small rotating bodies. . For example, as shown in Patent Document 2, the influence coefficient method measures vibration when a calibration weight is directly added to and removed from a rotating body, and numerically calculates the result to calculate the magnitude and phase of mass imbalance. Although it is an algorithm for calculating (position), it is often difficult to secure a space for adding or removing a calibration weight from a small rotating body.
JP-A-10-134502 JP 2000-310576 A

背景技術で示したように、現場の回転機械の診断や保守で用いられるバランス測定器に採用されている従来の質量アンバランス測定法を、小型回転体の質量アンバランス測定に適用できないことが本発明の解決しようとする課題である。特に、校正おもりの設置が困難であるため、一般的な影響係数法が適用できないことが、最も大きな解決すべき課題になっている。   As shown in the background art, it is not possible to apply the conventional mass unbalance measurement method used in balance measuring instruments used for diagnosis and maintenance of rotating machinery on site to the mass unbalance measurement of small rotating bodies. It is a problem to be solved by the invention. In particular, since it is difficult to install a calibration weight, the most difficult problem to be solved is that the general influence coefficient method cannot be applied.

本発明は、このような課題を解決するため、質量アンバランスによる遠心力を柔構造のたわみ量に変換して測定する方法に想到し、影響係数法による測定アルゴリズムに従うことなく質量アンバランスの大きさと位相を算出できる方法およびその方法を利用した装置を完成したものである。   In order to solve such a problem, the present invention has conceived a method of measuring a centrifugal force due to mass unbalance by converting it into a deflection amount of a flexible structure, and the mass unbalance is large without following a measurement algorithm based on an influence coefficient method. And a device capable of calculating the phase and a device using the method are completed.

本発明請求項1の発明は、外部から流体を衝突させることにより駆動される回転体の回転軸を支持する軸受を弾性部材で支持し、上記回転体の回転中における上記弾性部材の振動を変位センサにより非接触で検出するとともに、上記回転体の回転位置を回転センサにより非接触で検出し、上記変位センサおよび上記回転センサの出力を保持して演算する回転体の質量アンバランス測定方法であって、上記回転体の回転数を検出する工程と、上記回転体の回転数が定常状態に達したことを判定する工程と、上記回転体の回転数が定常状態に達したときに上記変位センサの出力を演算装置に取り込む工程と、上記演算装置に取り込んだ上記回転センサおよび上記変位センサの出力から当該弾性部材の変位振幅を算出する工程と、上記弾性部材の変位振幅から上記回転体の遠心力を算出する工程と、上記回転体の遠心力の算出結果から上記回転体の質量アンバランス量を算出する工程とを含むことを特徴とする回転体の質量アンバランスの測定方法である。   According to the first aspect of the present invention, a bearing that supports a rotating shaft of a rotating body that is driven by a fluid colliding from outside is supported by an elastic member, and the vibration of the elastic member is displaced during the rotation of the rotating body. This is a method for measuring the mass unbalance of a rotating body, which detects the rotation position of the rotating body in a non-contact manner using a sensor, detects the rotational position of the rotating body in a non-contact manner, and holds and calculates the output of the displacement sensor and the rotation sensor. Detecting the rotational speed of the rotating body, determining the rotational speed of the rotating body has reached a steady state, and detecting the displacement sensor when the rotational speed of the rotating body has reached a steady state. The output of the elastic member into the arithmetic device, the step of calculating the displacement amplitude of the elastic member from the output of the rotation sensor and the displacement sensor taken into the arithmetic device, and the change of the elastic member. A step of calculating a centrifugal force of the rotating body from an amplitude; and a step of calculating a mass unbalance amount of the rotating body from a calculation result of the centrifugal force of the rotating body. This is a measurement method.

本発明請求項2の発明は、外部から回転体に流体を衝突させる手段と、上記流体の衝突により駆動される回転体の回転軸を支持する軸受を支持する弾性部材よりなる支持手段と、上記回転体の回転中における上記弾性部材の振動を非接触で検出する変位センサと、上記回転体の回転位置を非接触で検出する回転センサと、上記変位センサおよび上記回転センサの出力を保持して演算する演算装置とを備えた回転体の質量アンバランス測定装置であって、上記回転体の回転を検出する手段と、上記回転体の回転数が定常状態に達したことを判定する手段と、上記回転体が定常状態に達したときに上記回転センサおよび上記変位センサの出力を上記演算装置に取り込む手段と、上記演算装置に取り込んだ上記変位センサの出力から当該弾性部材の変位振幅を算出する手段と、上記弾性部材の変位振幅から上記回転体の遠心力を算出する手段と、上記回転体の遠心力の算出結果から上記回転体の質量アンバランス量を算出する手段とを備えたことを特徴とする回転体の質量アンバランスの測定装置である。   The invention according to claim 2 of the present invention comprises means for causing a fluid to collide with the rotating body from the outside, a supporting means comprising an elastic member for supporting a bearing for supporting the rotating shaft of the rotating body driven by the fluid collision, A displacement sensor that detects the vibration of the elastic member during rotation of the rotating body in a non-contact manner, a rotation sensor that detects the rotational position of the rotating body in a non-contact manner, and holds the outputs of the displacement sensor and the rotation sensor. A mass imbalance measuring device for a rotating body comprising a computing device for computing, a means for detecting the rotation of the rotating body, a means for determining that the rotational speed of the rotating body has reached a steady state, Means for taking the outputs of the rotation sensor and the displacement sensor into the arithmetic device when the rotating body reaches a steady state, and the output of the displacement sensor taken into the arithmetic device, Means for calculating the displacement amplitude, means for calculating the centrifugal force of the rotating body from the displacement amplitude of the elastic member, means for calculating the mass unbalance amount of the rotating body from the calculation result of the centrifugal force of the rotating body, It is the measuring apparatus of the mass imbalance of the rotary body characterized by including.

本発明請求項3の発明は、上記弾性部材の弾性係数が上記軸受および上記回転体の弾性係数のいずれよりも小さいことを特徴とする請求項1に記載の回転体の質量アンバランスの測定方法である。   The invention according to claim 3 of the present invention is characterized in that an elastic coefficient of the elastic member is smaller than any of the elastic coefficients of the bearing and the rotating body. It is.

本発明請求項4の発明は、上記弾性部材の弾性係数が上記軸受および上記回転体の弾性係数のいずれよりも小さいことを特徴とする請求項2に記載の回転体の質量アンバランスの測定装置である。   The invention according to claim 4 of the present invention is characterized in that the elastic member has an elastic coefficient smaller than any of the elastic coefficient of the bearing and the rotating body. It is.

本発明は、上述のような構成であるため、校正おもりを使う必要がなく、一度の測定でアンバランスの大きさと位相を測定できる。また、回転軸を支持する軸受を支持する弾性部材の断面形状を変化させることによって測定レンジ(測定感度)を任意に変更できるため、回転体の質量によって感度を調整することができる。更に、変位センサの測定範囲を考慮して測定感度を設定することができる。また、請求項3、4に係る発明は、上述の効果に加え、更に高出力が得られる効果を奏する。   Since the present invention is configured as described above, it is not necessary to use a calibration weight, and the magnitude and phase of the unbalance can be measured with a single measurement. Further, since the measurement range (measurement sensitivity) can be arbitrarily changed by changing the cross-sectional shape of the elastic member that supports the bearing that supports the rotating shaft, the sensitivity can be adjusted by the mass of the rotating body. Furthermore, the measurement sensitivity can be set in consideration of the measurement range of the displacement sensor. In addition to the above-described effects, the inventions according to claims 3 and 4 have an effect of obtaining a higher output.

本発明を適用できる回転体は多岐にわたり、種々の実施例において、本発明は実現されるが、以下その一実施例について、図面を用いて説明する。   There are a wide variety of rotating bodies to which the present invention can be applied, and the present invention is realized in various embodiments. Hereinafter, one embodiment will be described with reference to the drawings.

図1は、本発明の一実施例における回転体の質量アンバランスの測定方法及び測定装置を説明するための図である。図1において、1は回転体であり、例えば、歯科用ハンドピースの切削工具を装着するタービンとか工作機械において工具を装着する主軸回転体、いわゆるツールホルダが相当する。2は圧縮空気供給体であり、当該空気流により回転体1を回転させる。圧縮空気は水でもよく高速の水流により回転体1を回転させることもできる。4は回転体1を支持する軸受3を支持する弾性部材の一例としての弾性はりである。5は、上記回転体1の回転中における上記弾性はり4の振動を非接触で検出する変位センサ、6は上記回転体1の回転位置を非接触で検出する回転センサである。変位センサの一例は、静電容量式非接触変位センサ(小野測器製VE-521)で、測定レンジ0〜0.5mm、測定分解能0.1μm、周波数レンジDC〜2.7kHzのものを使用した。回転センサの一例は、波長が650nmの可視光半導体レーザを用いたキーエンス製光電センサLV-H32を使用した。弾性はりの寸法は長さ165 mm、 幅18mm、厚さ0.6
mmの一般構造用圧延鋼板を使用した。変位センサ5の出力はアンプ(信号増幅器)7、フィルタ8を経てFFTアナライザ(高速フーリエ変換器)9に入力するとともに、回転センサ6の出力はアンプ10を経てFFTアナライザ9に入力する。11は定盤であり定盤面より適宜間隔を保って弾性はりを装着している。
FIG. 1 is a diagram for explaining a method and an apparatus for measuring mass unbalance of a rotating body in one embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a rotating body, which corresponds to, for example, a turbine for mounting a cutting tool for a dental handpiece or a spindle rotating body for mounting a tool in a machine tool, a so-called tool holder. Reference numeral 2 denotes a compressed air supply body that rotates the rotating body 1 by the air flow. The compressed air may be water or the rotating body 1 can be rotated by a high-speed water flow. Reference numeral 4 denotes an elastic beam as an example of an elastic member that supports the bearing 3 that supports the rotating body 1. Reference numeral 5 denotes a displacement sensor for detecting the vibration of the elastic beam 4 during the rotation of the rotating body 1 without contact, and reference numeral 6 denotes a rotation sensor for detecting the rotational position of the rotating body 1 without contact. An example of a displacement sensor is a capacitance-type non-contact displacement sensor (VE-521 manufactured by Ono Sokki Co., Ltd.) with a measurement range of 0 to 0.5 mm, a measurement resolution of 0.1 μm, and a frequency range of DC to 2.7 kHz. did. As an example of the rotation sensor, Keyence photoelectric sensor LV-H32 using a visible light semiconductor laser having a wavelength of 650 nm was used. The elastic beam has a length of 165 mm, a width of 18 mm, and a thickness of 0.6.
A rolled steel sheet for general structure of mm was used. The output of the displacement sensor 5 is input to an FFT analyzer (fast Fourier transformer) 9 via an amplifier (signal amplifier) 7 and a filter 8, and the output of the rotation sensor 6 is input to the FFT analyzer 9 via an amplifier 10. Reference numeral 11 denotes a surface plate, which is mounted with an elastic beam at an appropriate interval from the surface of the surface plate.

次に、上述の装置により質量アンバランス量が算出できることを説明する。回転体1を回転させると、回転体の質量アンバランスに応じて弾性はり4が変位する。図2と図3は、それぞれ算出方法を説明するための質量アンバランスを示す図、質量アンバランスによる弾性はりのたわみ状態を示す図である。   Next, it will be described that the mass unbalance amount can be calculated by the above-described apparatus. When the rotating body 1 is rotated, the elastic beam 4 is displaced according to the mass imbalance of the rotating body. FIG. 2 and FIG. 3 are diagrams showing mass unbalance for explaining the calculation method, and a diagram showing a deflection state of an elastic beam due to mass unbalance, respectively.

回転体の質量アンバランスは大きさと位相をもつベクトルで表現され、その大きさmrは、回転体の偏心質量mとその偏心質量の回転軸からの距離rの積で表される。   The mass imbalance of the rotating body is expressed by a vector having a magnitude and a phase, and the magnitude mr is expressed by the product of the eccentric mass m of the rotating body and the distance r of the eccentric mass from the rotation axis.

今、質量アンバランスの大きさをmr、回転体の回転数をω、回転体の位相をθとすると、質量アンバランスによる遠心力に起因して弾性はり4に作用する力の鉛直方向成分Fは、
で表される。このFが弾性はりに作用したときのたわみ量δは両端支持の場合のたわみ式から式(2)で表される。
ここで、Eは弾性はりの縦弾性係数、Iは弾性はりの断面2次モーメント、lは弾性はり4の支持部12と回転体の回転軸との距離である。上記(2)式を変形すると、質量アンバランス量mrはたわみ量δの計測値から一意的に以下の式で計算できることがわかる。

ここで、bとhはそれぞれ弾性はりの幅と高さであり、長方形断面の断面2次モーメントIは、
を用いた。(3)式より明らかなように、たわみ量δの測定結果より質量アンバランス量mrが導出される。この場合、回転体の回転数ωによってアンバランス量mrが変化するので、圧縮空気等の流量を一定に保ち、回転数を一定に保持する必要がある。
Now, assuming that the mass unbalance is mr, the rotational speed of the rotating body is ω, and the phase of the rotating body is θ, the vertical component F of the force acting on the elastic beam 4 due to the centrifugal force due to the mass unbalance. Is
It is represented by The amount of deflection δ when F acts on the elastic beam is expressed by equation (2) from the deflection equation in the case of both-end support.
Here, E is the longitudinal elastic modulus of the elastic beam, I is the moment of inertia of the cross section of the elastic beam, and l is the distance between the support portion 12 of the elastic beam 4 and the rotating shaft of the rotating body. By transforming the above equation (2), it can be seen that the mass unbalance amount mr can be uniquely calculated from the measured value of the deflection amount δ by the following equation.

Here, b and h are the width and height of the elastic beam, respectively, and the section moment of inertia I of the rectangular section is
Was used. As apparent from the equation (3), the mass imbalance amount mr is derived from the measurement result of the deflection amount δ. In this case, since the unbalance amount mr varies depending on the rotational speed ω of the rotating body, it is necessary to keep the flow rate of compressed air or the like constant and keep the rotational speed constant.

図4は、本発明に係る方法および装置で回転体の質量アンバランスの大きさを検出できることを説明するための図である。図1に示した測定装置を用いて、質量アンバランスを有する歯科用デンタルタービンの回転中の弾性はり4のたわみδを変位センサ5で測定した結果を示した図である。図4中の丸印で示したように、デンタルタービン1の回転数の増加に伴って、同図(a)〜(d)に示すように、回転体1の質量アンバランスに起因する振動周波数が上昇していることがわかる。このことから、弾性はり4のたわみを測定すれば、回転体1の回転周波数における質量アンバランスの大きさを抽出できるといえる。   FIG. 4 is a diagram for explaining that the mass imbalance of the rotating body can be detected by the method and apparatus according to the present invention. It is the figure which showed the result of having measured the deflection | deviation (delta) of the elastic beam 4 in rotation of the dental dental turbine which has mass imbalance using the displacement sensor 5 using the measuring apparatus shown in FIG. As indicated by the circles in FIG. 4, as the rotational speed of the dental turbine 1 increases, the vibration frequency caused by the mass imbalance of the rotating body 1 as shown in FIGS. It can be seen that is rising. From this, it can be said that if the deflection of the elastic beam 4 is measured, the magnitude of mass imbalance at the rotational frequency of the rotating body 1 can be extracted.

図5は、本発明において位相検出が可能であることを説明するための図である。図1の測定装置を用いて、質量アンバランスを有する歯科用デンタルタービン1の回転中における弾性はり4のたわみを回転センサ6の参照信号を基点として測定した。図5は、デンタルタービン1の回転軸周りに位相が180°異なる参照信号をマーキングした場合の変位センサ5のそれぞれの出力を測定した。参照信号のマーキングには白色の油性塗料をデンタルタービンの回転軸13に塗布して行った。図5は、それぞれの場合について、変位センサの出力波形をFFTアナライザ9で測定した結果を示す。参照信号のマーキングを反転させることによって変位センサの信号波形のピーク位置が反転した。この測定結果から、本測定装置の位相検出の方法が妥当であることがわかる。   FIG. 5 is a diagram for explaining that phase detection is possible in the present invention. The deflection of the elastic beam 4 during rotation of the dental dental turbine 1 having mass imbalance was measured using the reference signal of the rotation sensor 6 as a base point, using the measurement apparatus of FIG. In FIG. 5, the respective outputs of the displacement sensor 5 when the reference signals having a phase difference of 180 ° around the rotation axis of the dental turbine 1 are marked are measured. The marking of the reference signal was performed by applying a white oil paint to the rotating shaft 13 of the dental turbine. FIG. 5 shows the result of measuring the output waveform of the displacement sensor with the FFT analyzer 9 in each case. By reversing the marking of the reference signal, the peak position of the signal waveform of the displacement sensor was reversed. From this measurement result, it can be seen that the phase detection method of this measurement apparatus is appropriate.

本発明の一実施例における質量アンバランスの測定方法および測定装置を説明するための図である。It is a figure for demonstrating the measuring method and measuring apparatus of mass imbalance in one Example of this invention. 回転体のアンバランス量を説明するための図であり、質量アンバランスをベクトル表記したものである。It is a figure for demonstrating the amount of unbalance of a rotary body, and mass unbalance is represented by vector. 本発明の一実施例における質量アンバランス測定装置における回転体の質量アンバランスによる弾性はりのたわみ状態を示す図である。It is a figure which shows the bending state of the elastic beam by the mass unbalance of the rotary body in the mass unbalance measuring apparatus in one Example of this invention. 本発明の一実施例における質量アンバランス測定装置において回転体の質量アンバランスによる弾性はりのたわみ量の測定結果を示す図である。It is a figure which shows the measurement result of the deflection amount of the elastic beam by the mass unbalance of a rotary body in the mass unbalance measuring apparatus in one Example of this invention. 本発明の一実施例における質量アンバランス測定装置において回転体の質量アンバランスによる弾性はりのたわみの位相を測定した結果を示す図である。It is a figure which shows the result of having measured the deflection | deviation phase of the elastic beam by the mass unbalance of a rotary body in the mass unbalance measuring apparatus in one Example of this invention.

符号の説明Explanation of symbols

1 回転体(歯科用デンタルタービン)
2 圧縮空気供給体
3 軸受
4 弾性はり
5 変位センサ
6 回転センサ
7 アンプ(信号増幅器)
8 フィルタ
9 FFTアナライザ(高速フーリエ変換器)
10 アンプ(信号増幅器)
11 定盤
12 弾性はりの支持部
13 回転軸






1 Rotating body (dental dental turbine)
2 Compressed air supply body 3 Bearing 4 Elastic beam 5 Displacement sensor 6 Rotation sensor 7 Amplifier (signal amplifier)
8 Filter 9 FFT analyzer (Fast Fourier Transformer)
10 Amplifier (signal amplifier)
11 Surface plate 12 Support section of elastic beam 13 Rotating shaft






Claims (4)

外部から流体を衝突させることにより駆動される回転体の回転軸を支持する軸受を弾性部材で支持し、上記回転体の回転中における上記弾性部材の振動を変位センサにより非接触で検出するとともに、上記回転体の回転位置を回転センサにより非接触で検出し、上記変位センサおよび上記回転センサの出力を保持して演算する回転体の質量アンバランス測定方法であって、上記回転体の回転数を検出する工程と、上記回転体の回転数が定常状態に達したことを判定する工程と、上記回転体の回転数が定常状態に達したときに上記変位センサの出力を演算装置に取り込む工程と、上記演算装置に取り込んだ上記回転センサおよび上記変位センサの出力から当該弾性部材の変位振幅を算出する工程と、上記弾性部材の変位振幅から上記回転体の遠心力を算出する工程と、上記回転体の遠心力の算出結果から上記回転体の質量アンバランス量を算出する工程とを含むことを特徴とする回転体の質量アンバランスの測定方法。   A bearing that supports a rotating shaft of a rotating body that is driven by collision of fluid from outside is supported by an elastic member, and vibration of the elastic member during rotation of the rotating body is detected in a non-contact manner by a displacement sensor. A rotating body mass imbalance measurement method for detecting the rotational position of the rotating body in a non-contact manner by a rotation sensor and holding and calculating the displacement sensor and the output of the rotation sensor, wherein the rotational speed of the rotating body is determined. A step of detecting, a step of determining that the rotational speed of the rotating body has reached a steady state, and a step of taking the output of the displacement sensor into an arithmetic device when the rotational speed of the rotating body has reached a steady state; Calculating the displacement amplitude of the elastic member from the output of the rotation sensor and the displacement sensor taken into the arithmetic device, and the distance of the rotating body from the displacement amplitude of the elastic member. Process and method of measuring the mass imbalance of the rotating body, characterized in that it comprises a step of calculating a mass unbalance of the rotating body from the calculation result of the centrifugal force of the rotating body for calculating the force. 外部から回転体に流体を衝突させる手段と、上記流体の衝突により駆動される回転体の回転軸を支持する軸受を支持する弾性部材よりなる支持手段と、上記回転体の回転中における上記弾性部材の振動を非接触で検出する変位センサと、上記回転体の回転位置を非接触で検出する回転センサと、上記変位センサおよび上記回転センサの出力を保持して演算する演算装置とを備えた回転体の質量アンバランス測定装置であって、上記回転体の回転を検出する手段と、上記回転体の回転数が定常状態に達したことを判定する手段と、上記回転体が定常状態に達したときに上記回転センサおよび上記変位センサの出力を上記演算装置に取り込む手段と、上記演算装置に取り込んだ上記変位センサの出力から当該弾性部材の変位振幅を算出する手段と、上記弾性部材の変位振幅から上記回転体の遠心力を算出する手段と、上記回転体の遠心力の算出結果から上記回転体の質量アンバランス量を算出する手段とを備えたことを特徴とする回転体の質量アンバランスの測定装置。   Means for causing fluid to collide with the rotating body from the outside; support means comprising an elastic member for supporting a bearing for supporting the rotating shaft of the rotating body driven by the fluid collision; and the elastic member during rotation of the rotating body A rotation sensor comprising: a displacement sensor that detects the vibration of the rotation body in a non-contact manner; a rotation sensor that detects the rotation position of the rotating body in a non-contact manner; and an arithmetic device that holds and calculates the output of the displacement sensor and the rotation sensor. A body mass imbalance measuring device, comprising: means for detecting rotation of the rotating body; means for determining that the rotational speed of the rotating body has reached a steady state; and the rotating body has reached a steady state. Means for fetching the output of the rotation sensor and the displacement sensor into the arithmetic device, and means for calculating the displacement amplitude of the elastic member from the output of the displacement sensor taken into the arithmetic device; And a means for calculating a centrifugal force of the rotating body from a displacement amplitude of the elastic member, and a means for calculating a mass unbalance amount of the rotating body from a calculation result of the centrifugal force of the rotating body. Measuring device for mass imbalance of rotating bodies. 上記弾性部材の弾性係数が上記軸受および上記回転体の弾性係数のいずれよりも小さいことを特徴とする請求項1に記載の回転体の質量アンバランスの測定方法。   The method for measuring a mass imbalance of a rotating body according to claim 1, wherein an elastic coefficient of the elastic member is smaller than any of the elastic coefficients of the bearing and the rotating body. 上記弾性部材の弾性係数が上記軸受および上記回転体の弾性係数のいずれよりも小さいことを特徴とする請求項2に記載の回転体の質量アンバランスの測定装置。




The apparatus for measuring mass unbalance of a rotating body according to claim 2, wherein an elastic coefficient of the elastic member is smaller than any of the elastic coefficients of the bearing and the rotating body.




JP2007012969A 2007-01-23 2007-01-23 Measurement method and measuring device for mass unbalance of rotator Pending JP2008180548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007012969A JP2008180548A (en) 2007-01-23 2007-01-23 Measurement method and measuring device for mass unbalance of rotator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007012969A JP2008180548A (en) 2007-01-23 2007-01-23 Measurement method and measuring device for mass unbalance of rotator

Publications (1)

Publication Number Publication Date
JP2008180548A true JP2008180548A (en) 2008-08-07

Family

ID=39724563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007012969A Pending JP2008180548A (en) 2007-01-23 2007-01-23 Measurement method and measuring device for mass unbalance of rotator

Country Status (1)

Country Link
JP (1) JP2008180548A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102213632A (en) * 2011-04-11 2011-10-12 安徽维嘉星火动平衡制造有限公司 Signal source smoothing circuit applied to hard support balancing machine measuring system
CN109115408A (en) * 2018-09-20 2019-01-01 大唐水电科学技术研究院有限公司 A kind of Large Hydropower Station dynamic balance running method based on centrifugal force equation
CN116106036A (en) * 2023-04-06 2023-05-12 中国汽车技术研究中心有限公司 Method and device for adjusting head mass center of automobile collision dummy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102213632A (en) * 2011-04-11 2011-10-12 安徽维嘉星火动平衡制造有限公司 Signal source smoothing circuit applied to hard support balancing machine measuring system
CN102213632B (en) * 2011-04-11 2012-10-10 安徽维嘉星火动平衡制造有限公司 Signal source smoothing circuit applied to hard support balancing machine measuring system
CN109115408A (en) * 2018-09-20 2019-01-01 大唐水电科学技术研究院有限公司 A kind of Large Hydropower Station dynamic balance running method based on centrifugal force equation
CN116106036A (en) * 2023-04-06 2023-05-12 中国汽车技术研究中心有限公司 Method and device for adjusting head mass center of automobile collision dummy
CN116106036B (en) * 2023-04-06 2023-06-23 中国汽车技术研究中心有限公司 Method and device for adjusting head mass center of automobile collision dummy

Similar Documents

Publication Publication Date Title
JP5056796B2 (en) Dynamic stiffness measuring device and dynamic stiffness measuring method of spindle in machine tool
CN103822703B (en) Unsmooth dynamic compensation method for ultralow-frequency horizontal vibration table guide rail
ATE540320T1 (en) SYSTEM FOR CALIBRATION OF A DYNAMIC MOTION SENSOR AND METHOD FOR CALIBRATION OF A DYNAMIC MOTION SENSOR
US6631640B2 (en) Method and apparatus for measuring dynamic balance
JP2011099802A (en) Axial runout measuring method and angle detector with self-calibration function having axial runout measuring function
Viitala et al. Subcritical vibrations of a large flexible rotor efficiently reduced by modifying the bearing inner ring roundness profile
JP5237042B2 (en) Vibration speed sensor calibration method and apparatus
JP5418805B2 (en) Method and apparatus for calculating unbalance amount of rotating body
JP2008180548A (en) Measurement method and measuring device for mass unbalance of rotator
US8171789B2 (en) Dynamic balancing apparatus and method using simple harmonic angular motion
CN110345838B (en) Method for measuring working radius of four-axis centrifugal machine
JP3842055B2 (en) Bearing support structure for bearing load measurement
KR100941467B1 (en) Dynamic Balancing Apparatus and Methods using a Linear Time-varying Angular Velocity Model
JP2013061224A (en) Blade vibration measuring apparatus
JP2013024771A (en) Vibration meter and vibration measurement device
JP2004184383A (en) Method of calculating dynamic imbalance and test apparatus for dynamic balance
JP5170837B2 (en) Rotation angle detection method and apparatus
Meroño et al. Measurement techniques of torsional vibration in rotating shafts
JP5300831B2 (en) Mechanical angle measuring device
JP5645066B2 (en) Influence coefficient acquisition method and device
JP2000206143A (en) Device for canceling eccentricity error of acceleration sensor in rotating-type acceleration generating device and its method
JPH0743207A (en) Vibration meter
JP2005308644A (en) Mass centering method and apparatus
Šiaudinytė et al. Polynomial error approximation of a precision angle measuring system
JP2023156642A (en) Method for measuring acceleration sensor characteristics and device for measuring acceleration sensor characteristics

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090209

A521 Written amendment

Effective date: 20090409

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20090601

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20090824

Free format text: JAPANESE INTERMEDIATE CODE: A02