JP2008180303A - Hydraulic control device for vehicular automatic transmission - Google Patents

Hydraulic control device for vehicular automatic transmission Download PDF

Info

Publication number
JP2008180303A
JP2008180303A JP2007014607A JP2007014607A JP2008180303A JP 2008180303 A JP2008180303 A JP 2008180303A JP 2007014607 A JP2007014607 A JP 2007014607A JP 2007014607 A JP2007014607 A JP 2007014607A JP 2008180303 A JP2008180303 A JP 2008180303A
Authority
JP
Japan
Prior art keywords
pressure
friction engagement
valve
hydraulic pump
pressure oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007014607A
Other languages
Japanese (ja)
Inventor
Mitsuo Akashi
Junichi Nishimoto
Yukihiro Shoji
幸広 庄司
光生 明石
純一 西本
Original Assignee
Nachi Fujikoshi Corp
株式会社不二越
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp, 株式会社不二越 filed Critical Nachi Fujikoshi Corp
Priority to JP2007014607A priority Critical patent/JP2008180303A/en
Publication of JP2008180303A publication Critical patent/JP2008180303A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydraulic control device 10 for an automatic transmission having a continuously variable transmission 3 and a multi-stage transmission 4, having a simple and easy-to-control auxiliary pump for reducing driving loss and leakage to save energy. <P>SOLUTION: A selector valve 41 is provided in a suction/delivery outlets 72 or 74 of one friction engaging device 81 or 82 for interrupting/passing pressure oil from a first hydraulic pump 11, and an electromagnetic pump 30 is provided for reciprocating a piston 33 to be moved in and out of a cylinder chamber 36 between second check valves 16, 32 with electromagnetic force to suck/deliver oil. At a timing when supplying pressure oil to one selected friction engaging device, a first hydraulic pump supplies the pressure oil which the friction engaging device requires to be held at predetermined pressure. Then, one friction engaging device is held by pressure oil from the electromagnetic pump. The pressure of the first hydraulic pump is controlled to be different from the pressure of one friction engaging device. One friction engaging device is used for a drive position, and when there is no need for holding pressure, the electromagnetic pump is stopped. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、トルクコンバータ、プーリー式(CVT)等の無断変速機と、歯車等の多段変速機を有する自動車等を含む車両用自動変速機の油圧制御装置の省エネに関する。   The present invention relates to energy saving of a hydraulic control device for an automatic transmission for a vehicle including a continuously variable transmission such as a torque converter, a pulley type (CVT), and an automobile having a multi-stage transmission such as a gear.
従来の自動車用自動変速機には、エンジンからの出力を油圧を介して伝達するトルクコンバータや潤滑装置、冷却装置等と、歯車比や噛み合いを変更することにより中立、1速、2速、ドライブ、逆転等のシフト動作を行う多段変速機から構成されている。また、トルクコンバータ、潤滑装置、冷却装置等への油圧の供給、多段変速機の油圧制御、油圧の供給等を行うための油圧制御装置が設けられている。多段変速機は、マニュアルシフトバルブによって、さらには、マニュアルシフトバルブの下流側に設けられたシフトバルブやソレノイドバルブを介して、複数の摩擦係合装置に選択的に油圧を供給又は排出させて種々の組み合わせにより所望のシフト状態、変速段を選択できるようにされている。例えば、マニュアルシフトバルブでは、中立、1速、2速、ドライブ、逆転を選択する。さらに、選択されたシフト状態に加え、後段のシフトバルブ、ソレノイドバルブを油圧制御あるいは電気制御しながら、アクセルや車速にあわせて、さらに、摩擦係合装置を選択し、1段、2段、3段、4段、さらに細かい段数を選択して、スムースな自動変速を可能にしている。     Conventional automatic transmissions for automobiles include neutral, 1st, 2nd, drive by changing the gear ratio and meshing with torque converters, lubrication devices, cooling devices, etc. that transmit the output from the engine via hydraulic pressure The multi-stage transmission performs a shift operation such as reverse rotation. A hydraulic control device is provided for supplying hydraulic pressure to the torque converter, the lubrication device, the cooling device, etc., controlling the hydraulic pressure of the multi-stage transmission, and supplying hydraulic pressure. The multi-stage transmission is provided with various hydraulic engagement devices by selectively supplying or discharging hydraulic pressure with a manual shift valve, and further via a shift valve or a solenoid valve provided downstream of the manual shift valve. The desired shift state and gear position can be selected by combining these. For example, in a manual shift valve, neutral, first speed, second speed, drive, and reverse rotation are selected. Furthermore, in addition to the selected shift state, the frictional shift device is further selected according to the accelerator and the vehicle speed while hydraulically or electrically controlling the shift valve and solenoid valve in the subsequent stage, and the first, second, third, A smooth automatic transmission is possible by selecting the number of steps, four steps, or a finer number of steps.
油圧制御装置には、トルクコンバータ、潤滑部、摩擦係合装置等に油圧を供給するための油圧ポンプが設けられている。油圧ポンプの圧油は圧力調整弁(プライマリーバルブ等と呼ばれる)により調整され、マニュアルシフトバルブ、シフトバルブ、ソレノイドバルブ等を介して、摩擦係合装置に供給され、あるいは排出される。一方、調圧弁(セカンダリーバルブ等と呼ばれる)を介して、油圧ポンプの圧力より低い圧力の圧油がトルクコンバータ、オイルクーラー等の他の油圧装置に供給される。なお、ソレノイドバルブは、電磁コイルをON−OFFさせてスプールやポペットを移動させる電磁切替弁、電磁コイルを微少時間単位でON−OFFさせて制御するデュティー弁、流量や圧力を電気指令信号に応じて制御できる電磁比例弁等の種々のものが知られている。   The hydraulic control device is provided with a hydraulic pump for supplying hydraulic pressure to a torque converter, a lubrication unit, a friction engagement device, and the like. The hydraulic oil of the hydraulic pump is adjusted by a pressure adjusting valve (referred to as a primary valve or the like), and is supplied to or discharged from the friction engagement device via a manual shift valve, a shift valve, a solenoid valve, or the like. On the other hand, pressure oil having a pressure lower than that of the hydraulic pump is supplied to other hydraulic devices such as a torque converter and an oil cooler via a pressure regulating valve (referred to as a secondary valve or the like). The solenoid valve is an electromagnetic switching valve that moves the spool and poppet by turning the electromagnetic coil on and off, a duty valve that controls the electromagnetic coil by turning it on and off in minute time units, and the flow rate and pressure according to the electrical command signal Various things such as an electromagnetic proportional valve that can be controlled by using the above are known.
しかし、油圧ポンプ1台で油圧を供給する場合においては、潤滑・冷却装置・トルクコンバータ側の圧力は低圧でよく、また、速度が増すと流量を増す必要があるのに対し、摩擦係合装置側は高圧が必要であり、さらに速度の増加により摩擦係合装置の保持力を増す必要があり、圧力を高くする必要があるため、油圧ポンプには高圧・大容量の負荷がかかり、エンジンの駆動ロスが大きいという問題があった。   However, when the hydraulic pressure is supplied by one hydraulic pump, the pressure on the lubrication / cooling device / torque converter side may be low, and the flow rate needs to be increased as the speed increases. High pressure is required on the side, and the holding force of the friction engagement device must be increased by increasing the speed, and the pressure needs to be increased. Therefore, the hydraulic pump is loaded with high pressure and large capacity, and the engine There was a problem that driving loss was large.
そこで、特許文献1においては、トルクコンバータ側専用に、エンジン駆動の低圧の油圧ポンプ、摩擦係合装置側専用に高圧の電動油圧ポンプをそれぞれ設け、使用目的に応じて系統分けし、エンジンの駆動ロスを低減し、燃費を向上させている。また、電動油圧ポンプは、きめ細かい制御が可能にでき、摩擦係合装置の側に必要な油圧や流量を容易に確保できる。特許文献1に開示はないが、例えば、シフト時は高圧大流量とし、保持時は高圧低流量とすることができる。また、特許文献1のものでは、さらに、低圧側油圧ポンプの供給路を、電動油圧ポンプの供給路に逆止弁を介してバイパス供給させるようにして、電動油圧ポンプの故障時にエンジン駆動の油圧ポンプから摩擦係合装置へ油圧を供給するようにしている。   Therefore, in Patent Document 1, an engine-driven low-pressure hydraulic pump is provided exclusively for the torque converter side, and a high-pressure electric hydraulic pump is provided exclusively for the friction engagement device side, systematized according to the purpose of use, and engine driving Loss is reduced and fuel efficiency is improved. In addition, the electric hydraulic pump can perform fine control, and can easily secure the necessary hydraulic pressure and flow rate on the friction engagement device side. Although not disclosed in Patent Document 1, for example, a high pressure and high flow rate can be set during shifting, and a high pressure and low flow rate can be set during holding. Further, in Patent Document 1, the supply path of the low-pressure hydraulic pump is further bypass-supplied to the supply path of the electric hydraulic pump via a check valve, so that the hydraulic pressure of the engine drive when the electric hydraulic pump fails. Hydraulic pressure is supplied from the pump to the friction engagement device.
一方、逆止弁を介して、2つの油圧ポンプからの圧油を摩擦係合装置へ供給するようにしたものに、特許文献2のものがある。このものは、エンジンで駆動される第一の油圧ポンプの圧油が圧力制御弁にて制御され、圧力制御弁と一体にされた調圧弁により低圧制御されたクラッチ圧回路がマニュアルシフトバルブの供給ポートを接続されている。さらに、供給ポートからの逆流を防止するようにクラッチ回路に第一の逆止弁を設けられている。さらに、第一の逆止弁と供給ポートとの接続路に、電動油圧ポンプとアキュムレータ及びアキュムレータ制御回路からなる第二の油圧(ポンプ)源から第二の逆止弁を介して圧油が供給可能に接続されている。これにより、停車時にはアイドリングストップによりエンジンを停止させ省エネを図る一方、第二の油圧源からクラッチ等摩擦係合装置へ圧油を供給して、走行中の締結状態を確保し、エンジン再始動時のショックを防止している。
特開2001−74130号公報 特開平11−159366号公報
On the other hand, Patent Document 2 discloses a configuration in which pressure oil from two hydraulic pumps is supplied to a friction engagement device via a check valve. In this system, the pressure oil of the first hydraulic pump driven by the engine is controlled by the pressure control valve, and the clutch pressure circuit controlled by the pressure control valve integrated with the pressure control valve is supplied by the manual shift valve. The port is connected. Further, a first check valve is provided in the clutch circuit so as to prevent backflow from the supply port. Further, pressure oil is supplied to the connection path between the first check valve and the supply port from the second hydraulic pressure (pump) source including the electric hydraulic pump, the accumulator, and the accumulator control circuit via the second check valve. Connected as possible. As a result, when the vehicle is stopped, the engine is stopped by idling stop to save energy, while pressure oil is supplied from the second hydraulic power source to the frictional engagement device such as a clutch to ensure the engaged state during traveling, and when the engine is restarted To prevent shock.
JP 2001-74130 A JP 11-159366 A
しかし、特許文献1のものは、摩擦係合装置への供給及び保持を電動(第二の)油圧ポンプでのみ行うので、大容量から小容量の制御が必要であり、低回転から高速回転間の効率のよいポンプが必要である。また、回転数が一定の場合は可変ポンプを使用するが構造が複雑である。また、回転数を変化させる場合は、モータの制御回路が複雑になる。また、開放又は圧力保持状態から他の状態に圧油を加えて移動させるときには大流量を必要とするが、可変ポンプや電動モータでは応答性が悪い等の問題があった。   However, since the thing of patent document 1 performs supply and a holding | maintenance to a friction engagement apparatus only by an electric (2nd) hydraulic pump, control of a large capacity | capacitance needs a small capacity | capacitance. An efficient pump is needed. Further, when the rotational speed is constant, a variable pump is used, but the structure is complicated. Further, when changing the rotation speed, the motor control circuit becomes complicated. In addition, a large flow rate is required when moving from an open or pressure-holding state to another state by adding pressure oil, but there are problems such as poor response in variable pumps and electric motors.
また、電動(第二の)油圧ポンプの故障時に第一の油圧ポンプから摩擦係合装置へ圧油を供給するようにされている。しかし、この場合、トルクコンバータ供給圧力は摩擦係合装置の圧力より低いので、保持圧力が低く、高速運転等ができなくなり、通常運転が不可能になるという問題があった。これに備え、故障時に第一の油圧ポンプの圧力を上げるようにするには、ポンプ性能、バルブ性能を本来使用される通常の仕様より高度なものとし、故障時に圧力を高圧設定にする機能を追加しなければならない等の問題があった。   Further, pressure oil is supplied from the first hydraulic pump to the friction engagement device when the electric (second) hydraulic pump fails. However, in this case, since the torque converter supply pressure is lower than the pressure of the friction engagement device, there is a problem that the holding pressure is low, high speed operation cannot be performed, and normal operation becomes impossible. In preparation for this, in order to increase the pressure of the first hydraulic pump in the event of a failure, the pump performance and valve performance should be higher than the normal specifications originally used, and the function to set the pressure to a high pressure at the time of failure. There was a problem such as having to add.
一方、特許文献2のものは、車両停車中、あるいはエネルギー回収中はエンジンを停止させ、第一の油圧ポンプをも停止させ、摩擦係合装置の圧油の保持を電動油圧ポンプ等で行い省エネを図っている。しかし、通常走行中は、常に第一の油圧ポンプが運転されており、プーリー変速機に圧油を供給しつづけており、アイドリング時でも第二の油圧源の圧力より高い値に設定され、その余剰油を摩擦係合装置へ分配しているにすぎず、駆動エネルギーは従来のものとかわらないという問題があった。また、トルクコンバータや潤滑油への低圧側への圧油の供給に関しては開示されていない。さらに、第二の油圧ポンプはアキュムレータ及びアキュムレータ制御回路を要し、構造が複雑で大きくなるという問題があった。   On the other hand, in Patent Document 2, when the vehicle is stopped or during energy recovery, the engine is stopped, the first hydraulic pump is also stopped, and pressure oil of the friction engagement device is held by an electric hydraulic pump or the like to save energy. I am trying. However, during normal driving, the first hydraulic pump is always in operation and pressure oil continues to be supplied to the pulley transmission, and is set to a value higher than the pressure of the second hydraulic source even during idling. The surplus oil is only distributed to the friction engagement device, and there is a problem that the driving energy is not different from the conventional one. Further, there is no disclosure regarding the supply of pressure oil to the low pressure side to the torque converter or lubricating oil. Furthermore, the second hydraulic pump requires an accumulator and an accumulator control circuit, and there is a problem that the structure is complicated and large.
さらに、制御が高度となり、マニュアルシフトバルブと摩擦係合装置間にも多くの圧力・流量・方向等のバルブ数が大きくなると、両者ともマニュアルシフトバルブの供給ポートから各摩擦係合装置へ圧油を供給しているので、マニュアルシフトバルブと摩擦係合装置間の圧油の漏れが多くなり、発熱を伴う等エネルギーの消耗が大きいという問題があった。   In addition, when the control is advanced and the number of valves such as many pressures, flow rates, directions, etc. between the manual shift valve and the friction engagement device increases, the pressure oil is supplied from the supply port of the manual shift valve to each friction engagement device. Therefore, there is a problem that pressure oil leaks between the manual shift valve and the friction engagement device, and energy consumption is large, such as heat generation.
本発明の課題は、前述した問題点に鑑みて、無断変速機と多段変速機からなる車両用自動変速機の油圧制御装置において、CVTを使用しない多段変速機とトルクコンバータを用いた車両用多段変速装置において、通常走行中のエネルギーロスを減じることである。また、CVTにあっては、アイドリングストップ時のエネルギーロスを減じ小型、簡単で制御が容易な補助ポンプ(第二の油圧ポンプ)を提供することである。また、マニュアルシフトバルブ以降の圧油の漏れを減じ省エネを図ることである。さらに、補助ポンプの故障時に、特別な操作を最小にして、フェールセーフを確保しながら、通常運転ができるようにすることである。   In view of the above-described problems, an object of the present invention is to provide a vehicular automatic transmission hydraulic control device including a continuously variable transmission and a multi-stage transmission. In the transmission, energy loss during normal travel is reduced. Moreover, in CVT, it is providing the auxiliary pump (2nd hydraulic pump) which reduces the energy loss at the time of idling stop, is small, is easy, and is easy to control. It is also intended to save energy by reducing leakage of pressure oil after the manual shift valve. Furthermore, when the auxiliary pump breaks down, the special operation is minimized so that normal operation can be performed while ensuring fail-safety.
本発明においては、無断変速機と、複数の摩擦係合装置を選択的に結合・開放することにより変速が行われる多段変速機と、前記摩擦係合装置への圧油の供給・排出の選択切換をする一以上のバルブと、前記無断変速機及び前記摩擦係合装置に圧油を供給するようにされた第一の油圧ポンプと、を備えた車両用自動変速機の油圧制御装置において、少なくとも前記摩擦係合装置の一の摩擦係合装置の圧油の吸排出口に設けられ、前記一の摩擦係合装置から前記バルブ側に排出かつ供給又は排出のみ可能にする第一のポジションと、前記バルブからの圧油を前記一の摩擦係合装置へ供給かつ逆流防止又は遮断可能にする第二のポジションと、を有する選択バルブと、前記一の摩擦係合装置の圧油の吸排出口と前記選択バルブとの間に圧油を供給可能に設けられた第一の油圧ポンプより小容量の第二の油圧ポンプと、が設けられている車両用自動変速機の油圧制御装置を提供することにより前述した課題を解決した。   In the present invention, a continuously variable transmission, a multi-stage transmission that performs shifting by selectively coupling and releasing a plurality of friction engagement devices, and selection of supply / discharge of pressure oil to the friction engagement devices In a hydraulic control device for an automatic transmission for a vehicle, comprising: one or more valves for switching; and a first hydraulic pump configured to supply pressure oil to the continuously variable transmission and the friction engagement device; A first position that is provided at least in a pressure oil suction / discharge port of the friction engagement device of the friction engagement device, and allows discharge and supply or discharge from the one friction engagement device to the valve side; A selection valve having a second position for supplying the pressure oil from the valve to the one friction engagement device and preventing or blocking backflow; and a pressure oil suction / discharge port of the one friction engagement device; Supply pressure oil to the selection valve A second hydraulic pump having a small capacity than the first hydraulic pump provided on the ability to solve the aforementioned problems by providing a hydraulic control device for an automatic transmission for a vehicle is provided with.
即ち、従来と同様の第一の油圧ポンプに加え、選択された一の摩擦係合装置に個別に第二の油圧ポンプを設けた。一方、並列して、第一の油圧ポンプ、マニュアルシフトバルブ又は各バルブを通って、バルブ側から供給される圧油を供給又はバルブ側へ排出を選択できる2位置切換できる選択バルブを設けた。この構成により、高圧大容量を必要とする摩擦係合装置の作動時は第一の油圧ポンプから圧油供給し、保持時は小容量の第二の油圧ポンプから圧油を供給できるものとなった。また、従来と同様の制御をそのまま踏襲できる。   That is, in addition to the conventional first hydraulic pump, a second hydraulic pump is individually provided in the selected one frictional engagement device. On the other hand, in parallel, there was provided a selection valve capable of switching between two positions through which pressure oil supplied from the valve side can be selected to supply or discharge to the valve side through the first hydraulic pump, manual shift valve or each valve. With this configuration, pressure oil can be supplied from the first hydraulic pump when the friction engagement device requiring high pressure and large capacity is operated, and pressure oil can be supplied from the second hydraulic pump having a small capacity when held. It was. Moreover, the same control as before can be followed as it is.
より詳細には、請求項2に記載の発明において、かかる構成の油圧制御装置により、前記一の摩擦係合装置を選択し、前記一の摩擦係合装置への圧油の供給時期においては、前記選択バルブは前記一の摩擦係合装置へ圧油を供給するようにされ、少なくとも前記一の摩擦係合装置への圧力が所定圧力に達し保持した後は、前記選択バルブは第二のポジションにされ、かつ、前記第二の油圧ポンプからの圧油により前記一の摩擦係合装置を保持するようにされ、前記一の摩擦係合装置を開放する時期においては、前記選択バルブは第一のポジション前記一の摩擦係合装置を選択し、前記一の摩擦係合装置への圧油の供給時期においては、前記選択バルブは前記一の摩擦係合装置へ圧油を供給するようにされ、少なくとも前記一の摩擦係合装置への圧力が所定圧力に達し保持した後は、前記選択バルブは第二のポジションにされ、かつ、前記第二の油圧ポンプからの圧油により前記一の摩擦係合装置を保持するようにされ、前記一の摩擦係合装置の圧油を開放する時期においては、前記選択バルブは第一のポジションにされるようにした。   More specifically, in the invention according to claim 2, the hydraulic control device configured as described above selects the one friction engagement device, and at the supply timing of the pressure oil to the one friction engagement device, The selection valve is configured to supply pressure oil to the one friction engagement device, and at least after the pressure to the one friction engagement device reaches and maintains a predetermined pressure, the selection valve is in a second position. And the one friction engagement device is held by the pressure oil from the second hydraulic pump, and when the one friction engagement device is released, the selection valve is The position of the one friction engagement device is selected, and at the timing of supplying the pressure oil to the one friction engagement device, the selection valve supplies pressure oil to the one friction engagement device. To at least one of the friction engagement devices After the pressure reaches and holds the predetermined pressure, the selection valve is set to the second position, and the one friction engagement device is held by the pressure oil from the second hydraulic pump, At the time when the pressure oil of one friction engagement device is released, the selection valve is set to the first position.
これにより、高圧大容量を必要とする摩擦係合装置への圧油の供給時期においては、選択バルブの排出かつ供給可能な第一ポジション、または、第二ポジションが選択される。さらに、摩擦係合装置への圧力が所定圧力に達し保持した後は、第二のポジションのまま、または第二ポジションにされ、かつ第二の油圧ポンプから圧油が供給され、摩擦係合装置の圧油を保持する。これにより、第一の油圧ポンプの圧力が低下しても、摩擦係合装置がゆるむことがない。また、保持時の圧油の漏れも非常に少ない。シフトバルブにより摩擦係合装置を開放するときは、選択バルブは第一のポジションとされ、従来の装置と同様となる。   Thereby, at the supply timing of the pressure oil to the friction engagement device that requires a high pressure and a large capacity, the first position or the second position at which the selection valve can be discharged and supplied is selected. Further, after the pressure to the friction engagement device reaches and maintains a predetermined pressure, the friction engagement device is maintained in the second position or is set to the second position and pressure oil is supplied from the second hydraulic pump. Hold the pressure oil. Thereby, even if the pressure of a 1st hydraulic pump falls, a friction engagement apparatus does not loosen. In addition, there is very little leakage of pressure oil during holding. When the friction engagement device is opened by the shift valve, the selection valve is in the first position, which is the same as the conventional device.
より好ましくは、一の摩擦係合装置の選択時に選択バルブを第二ポジションとし、同時又はタイマー等により第二の油圧ポンプを運転し、一の摩擦係合装置の圧油の開放時に第一ポジションとし、第二の油圧ポンプを停止するようにすれば制御も容易であり、第一の油圧ポンプの運転状況に関係なく、無駄な電力も消費しない。   More preferably, the selection valve is set to the second position when one friction engagement device is selected, and the second hydraulic pump is operated simultaneously or with a timer or the like, and the first position is released when the pressure oil of the one friction engagement device is released. If the second hydraulic pump is stopped, control is easy, and wasteful power is not consumed regardless of the operating state of the first hydraulic pump.
また、請求項3に記載の発明においては、前記第一の油圧ポンプを制御する圧力制御弁は、少なくとも前記一の摩擦係合装置への圧力が所定圧力に達し保持した後は、他の装置の必要圧力に制御されるようにした。これにより、例えば、特許文献1に記載のようなCVTを有せずトルクコンバータと多段変速機の組み合わせにおいては、従来では、通常走行ではトルクコンバータへ低圧供給し、摩擦係合装置は高圧を供給している。しかし、本発明においては、摩擦係合装置は第二の油圧ポンプで保持しているので、第一の油圧ポンプを低圧にすることができる。また、CVT等の場合は第一の油圧ポンプは摩擦係合装置の圧力より高い場合が多いのでかかるメリットはないが、特許文献2に記載のようなアイドリングストップ時には有効である。   According to a third aspect of the present invention, the pressure control valve that controls the first hydraulic pump is configured so that at least the pressure applied to the one friction engagement device reaches a predetermined pressure and is held after the other device. The required pressure was controlled. Thus, for example, in a combination of a torque converter and a multi-stage transmission without a CVT as described in Patent Document 1, conventionally, a low pressure is supplied to the torque converter during normal travel, and a high pressure is supplied to the friction engagement device. is doing. However, in the present invention, since the friction engagement device is held by the second hydraulic pump, the first hydraulic pump can be at a low pressure. In the case of CVT or the like, the first hydraulic pump is often higher than the pressure of the friction engagement device, so there is no such merit, but it is effective at the time of idling stop as described in Patent Document 2.
摩擦係合装置の圧力保持中は、第一の油圧ポンプを低圧にしておくことができるが、この場合、摩擦係合装置の圧力が所定の圧力であることを確認するための信号を取り出す必要がある。しかし、摩擦係合装置の給排出の圧力検出器を設けた場合は、第二の油圧ポンプが作動せず、第一の油圧ポンプのみの場合は振動の虞がある。また、第二の油圧ポンプの故障時の検出ができない。そこで請求項4に記載の発明においては、前記第二の油圧ポンプの圧力値により、前記圧力制御弁の圧力を制御するようにされ、前記圧力値が所定圧より低い場合には、前記圧力制御圧は、少なくとも一の摩擦係合装置が必要とする圧力又は他の装置の必要圧力のいずれか高い圧力となるように設定され、前記選択バルブは第一のポジション、又は、供給かつ逆流防止可能にされている第二のポジションとされるようにした。   While maintaining the pressure of the friction engagement device, the first hydraulic pump can be kept at a low pressure. In this case, it is necessary to take out a signal for confirming that the pressure of the friction engagement device is a predetermined pressure. There is. However, when the pressure detector for supplying and discharging the friction engagement device is provided, the second hydraulic pump does not operate, and there is a risk of vibration when only the first hydraulic pump is used. In addition, the second hydraulic pump cannot be detected when it fails. Therefore, in the invention according to claim 4, the pressure of the pressure control valve is controlled by the pressure value of the second hydraulic pump. When the pressure value is lower than a predetermined pressure, the pressure control The pressure is set to be the pressure required by at least one friction engagement device or the pressure required by another device, whichever is higher, and the selection valve can be in the first position, or supply and backflow prevention can be performed. The second position has been made.
即ち、第二の油圧ポンプが正常に働いており、かつ、摩擦係合装置に圧油が供給されている時に、第二の油圧ポンプに所定圧力が発生する。従って、この圧力を検出して指令信号として第一の油圧ポンプの圧力を制御すれば、振動の発生もない。また、第二の油圧ポンプが故障等により作動してない場合や圧力が低下した場合は、第一の油圧ポンプは高圧にて運転されるので、給排出口に高圧が供給され、摩擦係合装置を確実に動作、保持させることができる。   That is, when the second hydraulic pump is operating normally and pressure oil is supplied to the friction engagement device, a predetermined pressure is generated in the second hydraulic pump. Therefore, if this pressure is detected and the pressure of the first hydraulic pump is controlled as a command signal, no vibration is generated. In addition, when the second hydraulic pump is not operated due to a failure or the pressure is reduced, the first hydraulic pump is operated at a high pressure, so that the high pressure is supplied to the supply / discharge port and the friction engagement is performed. The device can be reliably operated and held.
また、マニュアルシフトバルブがニュートラルポジション時には摩擦係合装置への圧油の供給は不要なので、従来と同様第一の油圧ポンプは低圧に制御され、第二の油圧ポンプは停止させればよい。また、バックポジションでは、運転時間も短い。また、ローギヤ等の低速ギヤでは時間も短いか、大出力が必要であったり、エンジンブレーキ状態であるので、駆動ロスの影響は少ない。そこで、請求項5に記載の発明においては、前記選択された摩擦係合装置は、ドライブポジション用とした。   Further, when the manual shift valve is in the neutral position, it is not necessary to supply pressure oil to the friction engagement device. Therefore, the first hydraulic pump is controlled to a low pressure and the second hydraulic pump is stopped as in the conventional case. In the back position, the operation time is short. In addition, a low speed gear such as a low gear has a short time, requires a large output, or is in an engine brake state, so that the influence of drive loss is small. Therefore, in the invention described in claim 5, the selected friction engagement device is for a drive position.
また、電磁ポンプは小容量であり常時運転も可能であるが、摩擦係合装置の圧力保持が不要な場合は停止するのが好ましい。   In addition, the electromagnetic pump has a small capacity and can always be operated, but it is preferable to stop when the pressure of the friction engagement device is not required.
さらに、電磁ポンプの圧力は、摩擦係合装置の圧油を保持すればよいが、運転速度等により保持圧力が変化する。そこで、請求項6に記載の発明においては、前記電磁ポンプの圧油は前記摩擦係合装置の保持に必要な圧力の最大圧力又は必要な圧力に制御するようにした。   Furthermore, the pressure of the electromagnetic pump may hold the pressure oil of the friction engagement device, but the holding pressure changes depending on the operation speed or the like. Therefore, in the invention described in claim 6, the pressure oil of the electromagnetic pump is controlled to the maximum pressure necessary for holding the friction engagement device or the necessary pressure.
本発明では第二の油圧ポンプは、バルブや摩擦係合装置等の漏れを補償する程度の小容量でよく、流量精度もそれほど高くなく圧力制御すればよい。そこで、請求項7に記載の発明請求項に記載の発明においては、前記第二の油圧ポンプは吸入及び排出側にそれぞれ配置された2個の逆止弁間のシリンダ室を出入りするピストンを電磁力により往復作動させて油を吸入排出する電磁ポンプとした。   In the present invention, the second hydraulic pump may have a small capacity that compensates for leakage of a valve, a friction engagement device, and the like, and the flow rate accuracy is not so high, and pressure control may be performed. Therefore, in the invention described in claim 7, the second hydraulic pump is configured to electromagnetically move a piston that enters and exits a cylinder chamber between two check valves respectively arranged on the suction and discharge sides. The electromagnetic pump is reciprocated by force to suck and discharge oil.
即ち、第二の油圧ポンプを第一及び第二の逆止弁と、第一、第二の逆止弁間に連通するシリンダ室と、シリンダ室を拡縮するピストンと、ピストンを往復動する電磁コイルと、からなる電磁ポンプとした。かかる電磁ポンプは電磁コイルにON−OFF電流を印可してピストンを往復させることにより、圧力を発生させ、摩擦係合装置の圧力保持を可能にする。また、電磁ポンプは一体としても、各部品をシフトバルブ類が取り付けられるバルブアセンブリーに組み込むようにしてもよい。   That is, the second hydraulic pump is connected to the first and second check valves, the cylinder chamber communicating between the first and second check valves, the piston that expands and contracts the cylinder chamber, and the electromagnetic that reciprocates the piston. An electromagnetic pump comprising a coil. Such an electromagnetic pump applies an ON-OFF current to the electromagnetic coil to reciprocate the piston, thereby generating pressure and allowing the friction engagement device to maintain pressure. Further, the electromagnetic pump may be integrated, or each component may be incorporated into a valve assembly to which shift valves are attached.
以上述べたように、本発明においては、、選択された一の摩擦係合装置に個別に第二の油圧ポンプと選択バルブを設け、高圧大容量を必要とする摩擦係合装置の作動時は第一の油圧ポンプから選択バルブを通して圧油供給し、保持時は選択バルブにより逆流を防止して、小容量の第二の油圧ポンプから圧油を供給し、第一の油圧ポンプの圧力が低下しても、摩擦係合装置保持し、また、保持時の漏れも少なくできるものとなったので、第一の油圧ポンプの圧力にかかわらず、選択された一の摩擦係合装置を保持できるものとなり、アイドリングストップや、通常走行時の摩擦係合装置を除くバルブの漏れが少なくなり、エネルギーロスを減し、省エネを図るものとなった(請求項1,2)。   As described above, in the present invention, the second hydraulic pump and the selection valve are individually provided in the selected one friction engagement device, and the friction engagement device that requires high pressure and large capacity is operated. Pressure oil is supplied from the first hydraulic pump through the selection valve. When held, the selection valve prevents backflow, and pressure oil is supplied from the second hydraulic pump with a small capacity, reducing the pressure of the first hydraulic pump. Even so, the friction engagement device can be held and leakage during holding can be reduced, so that one selected friction engagement device can be held regardless of the pressure of the first hydraulic pump. As a result, leakage of valves other than idling stops and friction engagement devices during normal running is reduced, energy loss is reduced, and energy is saved (claims 1 and 2).
また、請求項3に記載の発明においては、第二の油圧ポンプで保持中は第一の油圧ポンプの圧力を、摩擦係合装置の圧力とは関係なく適切な圧力で制御でき、例えば、特許文献1に記載のようなCVTを有せずトルクコンバータと多段変速機の組み合わせにおいては、第一の油圧ポンプを低圧にすることができ、また、CVT等の場合は特許文献2に記載のようなアイドリングストップができるので。エネルギーロスを減じ省エネとすることができるものとなった。また、第一の油圧ポンプは圧力を制御するだけなので、急な変速があっても、応答性に問題なく、従来と同様の性能である。   In the invention described in claim 3, the pressure of the first hydraulic pump can be controlled at an appropriate pressure regardless of the pressure of the friction engagement device while being held by the second hydraulic pump. In a combination of a torque converter and a multi-stage transmission that does not have a CVT as described in Document 1, the first hydraulic pump can be set to a low pressure, and in the case of CVT or the like, as described in Patent Document 2 Because I can stop idling. Energy loss can be reduced and energy can be saved. Further, since the first hydraulic pump only controls the pressure, even if there is a sudden shift, there is no problem in responsiveness, and the performance is the same as in the prior art.
さらに、請求項4に記載の発明においては、第二の油圧ポンプの圧力値が所定圧より低い場合には、第一の油圧ポンプを高圧にして、選択バルブから摩擦係合装置へ圧油を供給できるようにし、摩擦係合装置を確実に動作、保持させることができるので、第二の油圧ポンプが故障等により作動してない場合や圧力が低下した場合でも、従来と同様の通常運転ができ、エネルギーロスも従来と同様であり、従来と何らかわらない運転が可能であり、簡単な信号処理でフェールセーフの確保が容易である。   Furthermore, in the invention described in claim 4, when the pressure value of the second hydraulic pump is lower than the predetermined pressure, the first hydraulic pump is set to a high pressure and pressure oil is supplied from the selection valve to the friction engagement device. Since the friction engagement device can be reliably operated and held, even if the second hydraulic pump is not operated due to a failure or the pressure is reduced, the normal operation similar to the conventional one can be performed. The energy loss is the same as in the past, and an operation that is not different from the conventional one is possible, and it is easy to ensure fail-safe by simple signal processing.
また、請求項5に記載の発明においては、各ポジション中、最も効果的なドライブポジションの場合に限定したので、簡単な制御で省エネを図れる。さらに、第二の油圧ポンプの圧力を制御するようにすれば速度や負荷に応じた適切な保持力を得られる(請求項6)。   Further, in the invention described in claim 5, since it is limited to the most effective drive position in each position, energy saving can be achieved by simple control. Furthermore, if the pressure of the second hydraulic pump is controlled, an appropriate holding force corresponding to the speed and load can be obtained.
さらに、請求項7に記載の発明においては、第二の油圧ポンプを2個の逆止弁とピストン等からなる構造も簡単で、制御もやりやすい電磁ポンプ構造としたので、従来の油圧制御装置の変更も非常に少なく、また、技術的ハードルも小さく設計的にも変更が容易なものとなった。なお、電磁ポンプの容量は、省エネに対しては、小さいほど効果的であるが、摩擦係合装置圧力に保持できる容量であればよく、また、バルブ等からの漏れが少ないので、小さな容量のものでよい。   Further, in the invention described in claim 7, since the second hydraulic pump has an electromagnetic pump structure in which the structure including two check valves and a piston is simple and easy to control, the conventional hydraulic control device In addition, the number of changes was very small, the technical hurdles were small, and the design was easy to change. The capacity of the electromagnetic pump is more effective for energy saving. However, the capacity of the electromagnetic pump only needs to be a capacity that can be maintained at the friction engagement device pressure. Things can be used.
本発明の実施の形態について、図面を参照して説明する。図1は本発明の自動車用自動変速機の説明図、図2は自動車用自動変速機の油圧制御装置の系統図である。本実施の形態においは、従来のトルクコンバータと多段歯車減速機からなる自動車用自動変速機の油圧制御装置の摩擦係合装置の圧油給排出口に、第二の油圧ポンプとしての電磁ポンプと、選択バルブを設けたものである。また、マニュアルシフトバルブの後段により細かい自動変速制御を可能にするためのシフトバルブやソレノイドバルブを有する。図1に示すように、本実施の形態の自動車用自動変速機1はエンジン2の駆動軸にトルクコンバータ3が接続され、トルクコンバータの出力軸に多段変速機4が接続され、さらに、終端減速機等5を経由して車軸、車輪6を駆動させる。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram of an automobile automatic transmission according to the present invention, and FIG. 2 is a system diagram of a hydraulic control device of the automobile automatic transmission. In this embodiment, an electromagnetic pump as a second hydraulic pump is connected to a pressure oil supply / discharge port of a friction engagement device of a hydraulic control device of an automatic transmission for an automobile including a conventional torque converter and a multi-stage gear reducer. A selection valve is provided. In addition, it has a shift valve and a solenoid valve for enabling fine automatic shift control at a later stage of the manual shift valve. As shown in FIG. 1, an automatic transmission 1 for an automobile according to the present embodiment has a torque converter 3 connected to a drive shaft of an engine 2, a multi-stage transmission 4 connected to an output shaft of the torque converter, and a terminal deceleration. The axle and wheels 6 are driven via the machine 5 and the like.
多段変速機は、遊星式等があり、多数の歯車を油圧により作動するブレーキ81やクラッチ82、即ち摩擦係合装置81,82,83,84・・を複数を組み合わせ制御して、歯車を固定したり、歯車同士を結合させる等して、前進、後進の選択、1速、2速、3速、4速、直結、オーバードライブ等の種々の変速域を得られるようにされている。かかる多段変速機は種々のものが多数公知であり、説明を省略する。   The multi-stage transmission has a planetary type, etc., and the gears are fixed by controlling a plurality of brakes 81 and clutches 82, that is, friction engagement devices 81, 82, 83, 84,. In other words, various gear ranges such as forward, reverse selection, 1st speed, 2nd speed, 3rd speed, 4th speed, direct connection, overdrive, and the like can be obtained by combining the gears. Many such multi-stage transmissions are known and will not be described.
トルクコンバータ3、多段変速機の潤滑冷却用7、摩擦係合装置であるクラッチ82やブレーキ81の作動用として油圧が用いられる。かかる油圧制御装置10は図2に示すように、エンジン2で減速機を介して駆動される第一の油圧ポンプ11、第一の油圧ポンプの圧力を制御する圧力制御弁12が設けられ、接続路(メイン回路)13の圧力を制御する。メイン回路には分岐してリリーフ弁14が安全弁として設けられている。圧力制御弁12はコントローラ15からの電気指令22により、圧力制御される電磁比例圧力制御弁である。圧力制御弁はプライマリーバルブ等と呼ばれる。また、接続路(メイン回路)13はマニュアルシフトバルブ17の供給ポート18に接続される。マニュアルシフトバルブ17は所定のポジションを選択し、さらに、後段のシフトバルブ・ソレノイドバルブ等19を経由して、ブレーキやクラッチの摩擦係合装置81乃至84等へ選択的に圧油を送るようにされている。摩擦係合装置81乃至84へ供給される圧油の圧力は、車速が低いときは低圧であり、車速が早くなるほど高圧となるように制御される。また、例えばマニュアルシフトバルブでドライブを選択し、さらに車速等に応じて、油圧的、電気的に後段のシフトバルブやソレノイドバルブを動作させ、ドライブポジション状態での、より細かい自動変速制御ができるようにされている。   Hydraulic pressure is used for the torque converter 3, the lubrication cooling 7 of the multi-stage transmission, and the operation of the clutch 82 and the brake 81 which are friction engagement devices. As shown in FIG. 2, the hydraulic control apparatus 10 is provided with a first hydraulic pump 11 driven by the engine 2 via a speed reducer, and a pressure control valve 12 for controlling the pressure of the first hydraulic pump. The pressure in the passage (main circuit) 13 is controlled. The main circuit is branched and a relief valve 14 is provided as a safety valve. The pressure control valve 12 is an electromagnetic proportional pressure control valve whose pressure is controlled by an electrical command 22 from the controller 15. The pressure control valve is called a primary valve or the like. The connection path (main circuit) 13 is connected to the supply port 18 of the manual shift valve 17. The manual shift valve 17 selects a predetermined position, and further selectively sends pressure oil to the friction engagement devices 81 to 84 of the brake and clutch via the shift valve / solenoid valve 19 etc. in the subsequent stage. Has been. The pressure of the pressure oil supplied to the friction engagement devices 81 to 84 is controlled to be low when the vehicle speed is low, and higher as the vehicle speed increases. In addition, for example, selecting a drive with a manual shift valve, and operating a subsequent shift valve or solenoid valve hydraulically or electrically according to the vehicle speed, etc., enables finer automatic shift control in the drive position state. Has been.
一方、メイン回路13にさらに分岐して調圧弁20を介して低圧ラインが設けられている。調圧弁20の出力側は摩擦係合装置への必要圧力より低圧でほぼ一定圧、あるいは速度に合わせて上昇するようにされ、低圧ライン21に接続されたトルクコンバータ3やその他の潤滑冷却系統7に低圧油が供給される。また、低圧油は速度上昇に伴い流量が増大するようにされている。調圧弁はセカンダリーバルブ等と呼ばれる。   On the other hand, the main circuit 13 is further branched and a low pressure line is provided via the pressure regulating valve 20. The output side of the pressure regulating valve 20 is lower than the required pressure to the friction engagement device, and is increased in accordance with a substantially constant pressure or speed. The torque converter 3 connected to the low pressure line 21 and other lubrication cooling systems 7 are connected. Is supplied with low pressure oil. Further, the flow rate of the low-pressure oil is increased as the speed increases. The pressure regulating valve is called a secondary valve or the like.
特に、本実施の形態においては、摩擦係合装置の内、例えばドライブポジションの2個の摩擦係合装置81,82の圧油の吸排出口72,74に選択バルブ41を介して、マニュアルシフトバルブ17,シフトバルブ・ソレノイドバルブ19を介して選択的に第一の油圧ポンプからの圧油が導入される導入路71,73が接続されている。さらに、選択バルブの出口と給排出口とに圧油が供給されるように電磁ポンプ30がそれぞれ接続されている。説明の簡単のため、他の摩擦係合装置には設けられていないものとして、摩擦係合装置82についてのみ述べる。   In particular, in the present embodiment, the manual shift valve is connected to the pressure oil intake and discharge ports 72 and 74 of the two friction engagement devices 81 and 82 in the drive position, for example, via the selection valve 41. 17, introduction passages 71 and 73 through which pressure oil from a first hydraulic pump is selectively introduced are connected via a shift valve / solenoid valve 19. Furthermore, the electromagnetic pumps 30 are respectively connected so that the pressure oil is supplied to the outlet and the supply / discharge port of the selection valve. For the sake of simplicity, only the friction engagement device 82 will be described as being not provided in other friction engagement devices.
選択バルブは41は、2ポジション(位置)の電磁弁であって、スプリング45により位置決めされる第一のポジション42は、給排出口74及び導入路側73間を連通できるようにされている。また、選択バルブ41は、コントローラ15からの電気指令23によりソレノイド44が励磁されると、スプリング45に抗して、選択バルブが切り替わり逆止弁内蔵の第二のポジション43に位置決めされる。第二のポジションはシフトバルブ等17,19からの圧油を摩擦係合装置82へ供給かつ逆流を防止できるようにされている。   The selection valve 41 is a two-position (position) electromagnetic valve, and the first position 42 positioned by the spring 45 is configured to allow communication between the supply / discharge port 74 and the introduction path side 73. Further, when the solenoid 44 is excited by the electrical command 23 from the controller 15, the selection valve 41 is switched to the second position 43 with a built-in check valve against the spring 45. The second position is configured so that pressure oil from the shift valves 17 and 19 can be supplied to the friction engagement device 82 and backflow can be prevented.
電磁ポンプ30は、給排出口74に圧油を供給する方向に直列に第一の逆止弁31、第二の逆止弁32が設けられ、第二の逆止弁はタンク又はドレーンに吸い込みライン25で接続されている。さらに、第一及び第二の逆止弁31,32間に連通するシリンダ室36と、シリンダ室を拡縮するピストン33と、ピストンを往復動する電磁コイル34が設けられ、電磁ポンプ30を構成している。コントローラ15からのON−OFF電流35を電磁コイル34に流しピストン33を往復動させることにより、吸い込みライン25、吸入側逆止弁31から油を吸い込み、排出側逆止弁32から圧油を給排出口74に圧油を供給する。   The electromagnetic pump 30 is provided with a first check valve 31 and a second check valve 32 in series in the direction of supplying pressure oil to the supply / discharge port 74, and the second check valve is sucked into a tank or a drain. Connected by line 25. Furthermore, a cylinder chamber 36 communicating between the first and second check valves 31, 32, a piston 33 that expands and contracts the cylinder chamber, and an electromagnetic coil 34 that reciprocates the piston are provided. ing. By supplying ON-OFF current 35 from the controller 15 to the electromagnetic coil 34 and reciprocating the piston 33, oil is sucked from the suction line 25 and the suction side check valve 31, and pressure oil is supplied from the discharge side check valve 32. Pressure oil is supplied to the discharge port 74.
電磁ポンプ30の吐出量はON−OFFのサイクルで制御され、吐出圧力は印可電圧又は電流で制御される。簡単には、吐出圧力が摩擦係合装置82の必要圧力の最大値に制御され、より好ましくは、車速に応じて圧力制御可能にされる。さらに、シリンダ室36の圧力を検知し信号として出力する圧力検出器40が設けられ、コントローラ15に入力24される。   The discharge amount of the electromagnetic pump 30 is controlled by an ON-OFF cycle, and the discharge pressure is controlled by an applied voltage or current. In brief, the discharge pressure is controlled to the maximum value of the required pressure of the friction engagement device 82, and more preferably, the pressure can be controlled according to the vehicle speed. Further, a pressure detector 40 that detects the pressure in the cylinder chamber 36 and outputs it as a signal is provided and input 24 to the controller 15.
コントローラ15には、マニュアルシフトバルブ17、後段のシフトバルブやソレノイドバルブ19のポジション及びアクセルや車速に応じたメイン回路13の圧力が設定され、各バルブのポジションにより、電気指令を圧力制御弁12に与えメイン回路圧力を所定の圧力にする。また、ポジションに応じて電磁ポンプ30を作動させるようにされている。さらに、電磁ポンプの圧力検出器40の信号がフィードバックされ、電磁ポンプの圧力があらかじめ設定された圧力より大きくなったときに、メイン回路圧力13を摩擦係合装置82に必要な圧力より低く、調圧弁20の出口側低圧ライン21の圧力を維持できる圧力以上の圧力にするように電気指令22を圧力制御弁12に与えるようにされている。   The controller 15 is set with the position of the manual shift valve 17, the subsequent shift valve and the solenoid valve 19, and the pressure of the main circuit 13 in accordance with the accelerator and the vehicle speed. The given main circuit pressure is set to a predetermined pressure. The electromagnetic pump 30 is operated according to the position. Furthermore, when the signal of the pressure detector 40 of the electromagnetic pump is fed back and the pressure of the electromagnetic pump becomes larger than a preset pressure, the main circuit pressure 13 is adjusted to be lower than the pressure required for the friction engagement device 82. An electric command 22 is given to the pressure control valve 12 so that the pressure in the outlet-side low pressure line 21 of the pressure valve 20 is higher than the pressure at which the pressure can be maintained.
また、電磁ポンプ30を作動させる電気指令がありながら、電磁ポンプ圧力が所定圧力より低い場合は、メイン回路圧力13を電磁ポンプ30に指令する圧力と同じ圧力にするように電気指令を圧力制御弁12に与えるようにされている。ここでは、説明の簡単のため、ドライブポジションの場合のみ電磁ポンプ30を作動させるように設定されている。なお、かかるコントローラ15の実現にはコンピュータや種々の従来公知の電気回路から容易に得られるものであり説明を省略する。   In addition, when there is an electrical command for operating the electromagnetic pump 30, but the electromagnetic pump pressure is lower than a predetermined pressure, the electrical command is set to a pressure control valve so that the main circuit pressure 13 is the same as the pressure commanded to the electromagnetic pump 30. 12 is given. Here, for simplicity of explanation, the electromagnetic pump 30 is set to operate only in the drive position. The implementation of the controller 15 can be easily obtained from a computer or various conventionally known electric circuits, and will not be described.
かかる自動車用自動変速機の油圧制御装置10においては、エンジン2運転中にマニュアルシフトバルブ17が中立の場合はメイン回路圧力13は低圧にされる。また、ロー、セカンド、バックギヤが選択されると、メイン回路圧力が上昇し、ポジションに応じた圧力とし、摩擦係合装置83等を作動させ、所望の歯車の組み合わせを行う。この場合は、選択バルブ41、電磁ポンプ30は作動していないので、従来の自動車用自動変速機の油圧制御装置と変わるところはない。   In such a hydraulic control device 10 for an automatic transmission for an automobile, the main circuit pressure 13 is set to a low pressure when the manual shift valve 17 is neutral during the operation of the engine 2. When the low, second, or back gear is selected, the main circuit pressure rises to a pressure corresponding to the position, and the friction engagement device 83 or the like is operated to perform a desired gear combination. In this case, since the selection valve 41 and the electromagnetic pump 30 are not operated, there is no difference from the conventional hydraulic control device for an automatic transmission for automobiles.
次に、マニュアルシフトバルブがドライブにされ、ドライブポジション用摩擦係合装置81,82が選択されると、選択バルブ41が作動し第二のポジションとなり、電磁ポンプ30も作動する。圧油が供給されるまで、摩擦係合装置(例えばクラッチとブレーキ)81,82は作動していないので、圧力検出器40の信号も低い。従って、メイン回路13が上昇し、摩擦係合装置を作動させ、所望の歯車の組み合わせを行う。係合が完了し、圧力が所定圧まで上がることにより、圧力検出器40から信号がだされ、メイン回路圧力13は低圧にされる。摩擦係合装置81,82は電磁ポンプ30により圧油が供給され、選択バルブ41の内蔵逆止弁43により、圧力保持される。これにより、メイン回路13圧力を低圧にできるので、エンジン2の駆動ロスが減ずる。また、マニュアルシフトバルブ17、シフトバルブ・ソレノイドバルブ19等の圧力も下がるので漏れも少なくなり、さらにエネルギーロスを減じることができる。   Next, when the manual shift valve is driven and the friction engaging devices 81 and 82 for drive position are selected, the selection valve 41 is activated to be in the second position, and the electromagnetic pump 30 is also activated. Until the pressure oil is supplied, the frictional engagement devices (for example, clutch and brake) 81 and 82 are not operated, so the signal of the pressure detector 40 is also low. Accordingly, the main circuit 13 is raised, the friction engagement device is operated, and a desired gear combination is performed. When the engagement is completed and the pressure rises to a predetermined pressure, a signal is output from the pressure detector 40, and the main circuit pressure 13 is lowered. The friction engagement devices 81 and 82 are supplied with pressure oil by the electromagnetic pump 30, and the pressure is held by the built-in check valve 43 of the selection valve 41. As a result, the pressure of the main circuit 13 can be reduced, and the driving loss of the engine 2 is reduced. Further, since the pressures of the manual shift valve 17, the shift valve / solenoid valve 19 and the like are lowered, the leakage is reduced, and the energy loss can be further reduced.
ドライブポジション用摩擦係合装置が解除された場合は、電磁ポンプ30が停止し、同時に選択バルブ41はスプリング戻りし、第一ポジションとなり、摩擦係合装置の圧油はシフトバルブ側へ連通され排出され、摩擦係合装置81,82が開放される。また、メイン回路13の圧力は従来の自動車用自動変速機の油圧制御装置と同様になる。なお、図では、摩擦係合装置81,82に同時に圧油を供給、排出しているが、一方に圧油を供給し、他方は排出する場合もあり、排出する側の選択バルブ、電磁ポンプは作動していないことは言うまでもない。また、前述したように、ドライブ位置では、後段のシフトバルブによる1速、2速・・オーバードライブ等を含む複数の摩擦係合装置を組み合わせて適宜選択バルブ、電磁ポンプを設けた場合も同様である。   When the drive position friction engagement device is released, the electromagnetic pump 30 stops, and at the same time, the selection valve 41 returns to the first position, and the pressure oil of the friction engagement device is communicated to the shift valve side and discharged. Then, the friction engagement devices 81 and 82 are released. The pressure of the main circuit 13 is the same as that of a conventional hydraulic control device for an automatic transmission for automobiles. In the figure, pressure oil is simultaneously supplied to and discharged from the friction engagement devices 81 and 82, but pressure oil may be supplied to one side and the other may be discharged. Needless to say that is not working. In addition, as described above, in the drive position, the same applies to a case where a selection valve and an electromagnetic pump are appropriately provided in combination with a plurality of friction engagement devices including first-speed, second-speed, and / or overdrive by a shift valve at the subsequent stage. is there.
さらに、電磁ポンプ30のいずれか一つが故障した場合は、圧力検出器40からの信号も低くなるので、自動的にメイン回路圧力13が上昇し、摩擦係合装置81,82は第一の油圧ポンプ11の圧力で保持される。このように従来と同様となり、故障にたいしても確実な作動ができ、フェールセーフを実現できる。また、アイドリングストップの場合にも有効に働くこともでき、省エネに貢献できる。   Further, when any one of the electromagnetic pumps 30 fails, the signal from the pressure detector 40 also becomes low, so that the main circuit pressure 13 automatically increases, and the friction engagement devices 81 and 82 have the first hydraulic pressure. It is held at the pressure of the pump 11. Thus, it becomes the same as the conventional one, and it can operate reliably even in the event of a failure, and can realize fail-safe. In addition, it can work effectively even when idling stops, contributing to energy saving.
次に、本発明の他の実施例について説明する。図3は本発明の他の実施例を示す摩擦係合装置の給排出口付近の油圧回路図である。このものは、逆止弁内蔵型でなく、単なる遮断弁を用いた例である。この場合は、圧力上昇時は選択バルブ41′は第一のポジション42としておき、昇圧後第二のポジション43′とする。その他については前述したと同符号を付し説明を省略する。さらに図4は、選択バルブ41′に対し、さらにバイパス逆止弁37を設けた例を示す。このようにすれば、第一の油圧ポンプ11からの圧油は選択バルブ41′の状態に拘わらず、摩擦係合装置へ供給可能なので、バルブ切換のタイミングや電磁ポンプの故障に対して簡単な制御にすることができる。   Next, another embodiment of the present invention will be described. FIG. 3 is a hydraulic circuit diagram in the vicinity of a supply / discharge port of a friction engagement device showing another embodiment of the present invention. This is an example in which a simple shut-off valve is used instead of a check valve built-in type. In this case, when the pressure rises, the selection valve 41 'is set at the first position 42 and is set at the second position 43' after the pressure increase. The other parts are denoted by the same reference numerals as described above, and the description thereof is omitted. FIG. 4 shows an example in which a bypass check valve 37 is further provided for the selection valve 41 ′. In this way, the pressure oil from the first hydraulic pump 11 can be supplied to the friction engagement device regardless of the state of the selection valve 41 ', so that it is easy to prevent valve switching timing and electromagnetic pump failure. Can be in control.
なお、実施の形態においては、電気的制御について説明したが、油圧による制御も可能である。また、電磁ポンプは一の摩擦係合装置の選択時に作動するようにしたが、タイマーで遅延作動させる等してもよい。このように、本発明の要旨を逸脱しない範囲で種々の自動車用自動変速機の油圧制御装置に適用できることはいうまでもない。また、CVT変速機の場合にも適用できることはいうまでもない。この場合は、アイドリングストップ時等に効果的である。さらに、実施の形態においては、自動車用について説明したが、ディーゼルカー等の鉄道車両を含む車両用についても適用できる。   In the embodiment, electrical control has been described. However, hydraulic control is also possible. The electromagnetic pump is activated when one frictional engagement device is selected, but it may be delayed with a timer. Thus, it goes without saying that the invention can be applied to various hydraulic control devices for automatic transmissions for automobiles without departing from the gist of the present invention. Needless to say, the present invention can also be applied to a CVT transmission. In this case, it is effective when idling is stopped. Furthermore, in the embodiment, the description has been given for automobiles, but the present invention can also be applied to vehicles including railway vehicles such as diesel cars.
従来及び本発明の実施の形態を示す自動車用自動変速機の説明図である。It is explanatory drawing of the automatic transmission for motor vehicles which shows the conventional and embodiment of this invention. 本発明の実施の形態を示す自動車用自動変速機の油圧制御装置の系統図である。1 is a system diagram of a hydraulic control device for an automatic transmission for an automobile showing an embodiment of the present invention. 本発明の他の実施の形態を示す自動車用自動変速機の油圧制御装置の摩擦係合装置の給排出口付近の油圧回路図である。FIG. 5 is a hydraulic circuit diagram in the vicinity of a supply / discharge port of a friction engagement device of a hydraulic control device for an automobile automatic transmission according to another embodiment of the present invention. 本発明の他の実施の形態をさらに改良した例を示す自動車用自動変速機の油圧制御装置の摩擦係合装置の給排出口付近の油圧回路図である。FIG. 6 is a hydraulic circuit diagram in the vicinity of a supply / discharge port of a friction engagement device of a hydraulic control device for an automatic transmission for an automobile showing an example in which another embodiment of the present invention is further improved.
符号の説明Explanation of symbols
3 無断変速機(トルクコンバータ)
4 多段変速機
81、82、83、84 摩擦係合装置
10 車両用自動変速機の油圧制御装置
11 第一の油圧ポンプ
12 圧力制御弁
17 マニュアルシフトバルブ
19 バルブ(マニュアルシフトバルブ、シフトバルブ、ソレノイドバルブ)
30 電磁ポンプ(第二の油圧ポンプ)
31 第一の逆止弁
32 第二の逆止弁
33 ピストン
34 電磁コイル
36 シリンダ室
40 圧力検出器(第二の油圧ポンプの圧力値)
41 選択バルブ
42 第一のポジション
43 第二のポジション
72、74 給排出口
3 Continuous transmission (torque converter)
4 Multi-speed transmission 81, 82, 83, 84 Friction engagement device 10 Hydraulic control device of automatic transmission for vehicle 11 First hydraulic pump 12 Pressure control valve 17 Manual shift valve 19 Valve (manual shift valve, shift valve, solenoid valve)
30 Electromagnetic pump (second hydraulic pump)
31 First check valve 32 Second check valve 33 Piston 34 Electromagnetic coil 36 Cylinder chamber 40 Pressure detector (pressure value of the second hydraulic pump)
41 Selection valve 42 First position 43 Second position 72, 74 Supply / discharge port

Claims (7)

  1. 無断変速機と、
    複数の摩擦係合装置を選択的に結合・開放することにより変速が行われる多段変速機と、
    前記摩擦係合装置への圧油の供給・排出の選択切換をする一以上のバルブと、
    前記無断変速機及び前記摩擦係合装置に圧油を供給するようにされた第一の油圧ポンプと、
    を備えた車両用自動変速機の油圧制御装置において、
    少なくとも前記摩擦係合装置の一の摩擦係合装置の圧油の吸排出口に設けられ、前記一の摩擦係合装置から前記バルブ側に排出かつ供給又は排出のみ可能にする第一のポジションと、前記バルブからの圧油を前記一の摩擦係合装置へ供給かつ逆流防止又は遮断可能にする第二のポジションと、を有する選択バルブと、
    前記一の摩擦係合装置の圧油の吸排出口と前記選択バルブとの間に圧油を供給可能に設けられた第一の油圧ポンプより小容量の第二の油圧ポンプと、
    が設けられていることを特徴とする車両用自動変速機の油圧制御装置。
    Without permission transmission,
    A multi-stage transmission in which shifting is performed by selectively coupling and releasing a plurality of friction engagement devices;
    One or more valves for selectively switching supply / discharge of pressure oil to the friction engagement device;
    A first hydraulic pump adapted to supply pressure oil to the continuously variable transmission and the friction engagement device;
    In a hydraulic control device for an automatic transmission for a vehicle provided with
    A first position that is provided at least in a pressure oil suction / discharge port of the friction engagement device of the friction engagement device, and allows discharge and supply or discharge from the one friction engagement device to the valve side; A selection valve having a second position for supplying pressure oil from the valve to the one frictional engagement device and preventing or preventing backflow;
    A second hydraulic pump having a capacity smaller than that of the first hydraulic pump provided so as to be able to supply pressure oil between the pressure oil suction / discharge port of the one friction engagement device and the selection valve;
    A hydraulic control device for an automatic transmission for a vehicle.
  2. 前記一の摩擦係合装置を選択し、
    前記一の摩擦係合装置への圧油の供給時期においては、前記選択バルブは前記一の摩擦係合装置へ圧油を供給するようにされ、
    少なくとも前記一の摩擦係合装置への圧力が所定圧力に達し保持した後は、前記選択バルブは第二のポジションにされ、かつ、前記第二の油圧ポンプからの圧油により前記一の摩擦係合装置を保持するようにされ、
    前記一の摩擦係合装置の圧油を開放する時期においては、前記選択バルブは第一のポジションにされることを特徴とする請求項1記載の車両用自動変速機の油圧制御装置。
    Selecting the one frictional engagement device;
    In the supply timing of the pressure oil to the one friction engagement device, the selection valve supplies pressure oil to the one friction engagement device,
    After the pressure to at least one of the friction engagement devices reaches and maintains a predetermined pressure, the selection valve is set to the second position, and the first friction engagement device is driven by the pressure oil from the second hydraulic pump. Is to hold the joint device,
    2. The hydraulic control apparatus for an automatic transmission for a vehicle according to claim 1, wherein the selection valve is set to a first position when the pressure oil of the one friction engagement device is released.
  3. 前記第一の油圧ポンプを制御する圧力制御弁は、少なくとも前記一の摩擦係合装置への圧力が所定圧力に達し保持した後は、他の装置の必要圧力に制御されていることを特徴とする請求項2に記載の車両用自動変速機の油圧制御装置。 The pressure control valve for controlling the first hydraulic pump is controlled to a necessary pressure of another device after at least the pressure to the one friction engagement device reaches and maintains a predetermined pressure. The hydraulic control device for an automatic transmission for a vehicle according to claim 2.
  4. 前記第二の油圧ポンプの圧力値により、前記圧力制御弁の圧力を制御するようにされ、前記圧力値が所定圧より低い場合には、前記圧力制御圧は、少なくとも一の摩擦係合装置が必要とする圧力又は他の装置の必要圧力のいずれか高い圧力となるように設定され、前記選択バルブは第一のポジション、又は、供給かつ逆流防止可能にされている第二のポジションとされることを特徴とする請求項3に記載の車両用自動変速機の油圧制御装置。 The pressure of the pressure control valve is controlled by the pressure value of the second hydraulic pump. When the pressure value is lower than a predetermined pressure, the pressure control pressure is determined by at least one friction engagement device. The selection valve is set to a first position or a second position that is capable of supplying and preventing backflow, which is set to be either the required pressure or the required pressure of another device, whichever is higher. The hydraulic control device for an automatic transmission for a vehicle according to claim 3.
  5. 前記選択された一の摩擦係合装置は、ドライブポジション用であることを特徴とする請求項3又は4記載の車両用自動変速機の油圧制御装置。 5. The hydraulic control device for an automatic transmission for a vehicle according to claim 3, wherein the selected one frictional engagement device is for a drive position.
  6. 前記第二の油圧ポンプの圧油は前記一の摩擦係合装置の保持に必要な圧力の最大圧力又は必要な圧力に制御されていることを特徴とする請求項1乃至5のいずれか一に記載の車両用自動変速機の油圧制御装置。   6. The pressure oil of the second hydraulic pump is controlled to a maximum pressure necessary for holding the first friction engagement device or a necessary pressure. The hydraulic control apparatus of the automatic transmission for vehicles as described.
  7. 前記第二の油圧ポンプは吸入及び排出側にそれぞれ配置された2個の逆止弁間のシリンダ室を出入りするピストンを電磁力により往復作動させて油を吸入排出する電磁ポンプであることを特徴とする請求項1乃至6のいずれか一に記載の車両用自動変速機の油圧制御装置。 The second hydraulic pump is an electromagnetic pump that sucks and discharges oil by reciprocating a piston that enters and exits a cylinder chamber between two check valves respectively arranged on the suction and discharge sides by electromagnetic force. The hydraulic control device for an automatic transmission for a vehicle according to any one of claims 1 to 6.
JP2007014607A 2007-01-25 2007-01-25 Hydraulic control device for vehicular automatic transmission Withdrawn JP2008180303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007014607A JP2008180303A (en) 2007-01-25 2007-01-25 Hydraulic control device for vehicular automatic transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007014607A JP2008180303A (en) 2007-01-25 2007-01-25 Hydraulic control device for vehicular automatic transmission

Publications (1)

Publication Number Publication Date
JP2008180303A true JP2008180303A (en) 2008-08-07

Family

ID=39724351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007014607A Withdrawn JP2008180303A (en) 2007-01-25 2007-01-25 Hydraulic control device for vehicular automatic transmission

Country Status (1)

Country Link
JP (1) JP2008180303A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090301588A1 (en) * 2008-05-29 2009-12-10 Aisin Aw Co., Ltd. Solenoid valve
JP2010121771A (en) * 2008-11-21 2010-06-03 Aisin Aw Co Ltd Power transmission device and vehicle mounted with the same
JP2010121768A (en) * 2008-11-21 2010-06-03 Toyota Motor Corp Fluid control valve and fluid control circuit
JP2010121741A (en) * 2008-11-20 2010-06-03 Aisin Aw Co Ltd Power transmission device and vehicle mounted with the same
WO2010074100A1 (en) * 2008-12-25 2010-07-01 Aisin Aw Co., Ltd. Power transmission device and vehicle having the same
WO2010082423A1 (en) * 2009-01-19 2010-07-22 アイシン・エィ・ダブリュ株式会社 Power transmitting device and vehicle having power transmitting device mounted thereon
JP2010164177A (en) * 2009-01-19 2010-07-29 Aisin Aw Co Ltd Power transmitting device and vehicle having power transmitting device mounted thereon
JP2010175039A (en) * 2009-01-30 2010-08-12 Aisin Aw Co Ltd Power transmitting device and vehicle having the same mounted thereon
JP2010175038A (en) * 2009-01-30 2010-08-12 Aisin Aw Co Ltd Power transmitting device and vehicle having the same mounted thereon
JP2010203606A (en) * 2009-02-09 2010-09-16 Aisin Aw Co Ltd Power transmission system
JP2010216568A (en) * 2009-03-17 2010-09-30 Aisin Aw Co Ltd Power transmission device
WO2010143496A1 (en) * 2009-06-11 2010-12-16 アイシン・エィ・ダブリュ株式会社 Solenoid operated valve device
JP2011002027A (en) * 2009-06-18 2011-01-06 Aisin Aw Co Ltd Fluid pressure control device for power transmission devices
JP2011069250A (en) * 2009-09-24 2011-04-07 Aisin Aw Co Ltd Pump device
CN102089555A (en) * 2008-11-20 2011-06-08 爱信艾达株式会社 Power transmitting device and vehicle having same mounted thereon
JP2011214619A (en) * 2010-03-31 2011-10-27 Aisin Aw Co Ltd Power transmission device
DE112010003555T5 (en) 2009-12-15 2012-06-28 Aisin Aw Co., Ltd. PUMP DEVICE, POWER TRANSMISSION DEVICE AND VEHICLE
US8312895B2 (en) 2009-03-24 2012-11-20 Aisin Aw Co., Ltd. Solenoid valve device
DE112010003246T5 (en) 2009-11-24 2013-01-03 Aisin Aw Co., Ltd. Transmitter power
US8886427B2 (en) 2009-03-19 2014-11-11 Aisin Aw Co., Ltd. Hydraulic control apparatus for automatic transmission

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090301588A1 (en) * 2008-05-29 2009-12-10 Aisin Aw Co., Ltd. Solenoid valve
US9157544B2 (en) 2008-05-29 2015-10-13 Aisin Aw Co., Ltd. Solenoid valve
US8454477B2 (en) 2008-11-20 2013-06-04 Aisin Aw Co., Ltd. Power transmitting device and vehicle having same mounted thereon
CN102089555A (en) * 2008-11-20 2011-06-08 爱信艾达株式会社 Power transmitting device and vehicle having same mounted thereon
JP2010121741A (en) * 2008-11-20 2010-06-03 Aisin Aw Co Ltd Power transmission device and vehicle mounted with the same
CN102089555B (en) * 2008-11-20 2013-11-13 爱信艾达株式会社 Power transmitting device and vehicle having same mounted thereon
JP2010121768A (en) * 2008-11-21 2010-06-03 Toyota Motor Corp Fluid control valve and fluid control circuit
JP2010121771A (en) * 2008-11-21 2010-06-03 Aisin Aw Co Ltd Power transmission device and vehicle mounted with the same
WO2010074100A1 (en) * 2008-12-25 2010-07-01 Aisin Aw Co., Ltd. Power transmission device and vehicle having the same
CN102171496A (en) * 2008-12-25 2011-08-31 爱信艾达株式会社 Power transmission device and vehicle having the same
JP2010169249A (en) * 2008-12-25 2010-08-05 Aisin Aw Co Ltd Power transmission device and vehicle having the same
CN102171496B (en) * 2008-12-25 2014-01-29 爱信艾达株式会社 Power transmission device and vehicle having the same
KR101287698B1 (en) 2008-12-25 2013-07-24 아이신에이더블류 가부시키가이샤 Power transmission device and vehicle having the same
US8539850B2 (en) 2008-12-25 2013-09-24 Aisin Aw Co., Ltd. Power transmission device and vehicle having the same
CN102165222B (en) * 2009-01-19 2013-12-18 爱信艾达株式会社 Power transmitting device and vehicle having power transmitting device mounted thereon
DE112009002371T5 (en) 2009-01-19 2011-11-24 Aisin Aw Co., Ltd. Power transmission device and vehicle with the same
WO2010082423A1 (en) * 2009-01-19 2010-07-22 アイシン・エィ・ダブリュ株式会社 Power transmitting device and vehicle having power transmitting device mounted thereon
US8303468B2 (en) 2009-01-19 2012-11-06 Aisin Aw Co., Ltd. Power transmission device and vehicle having the same
JP2010164178A (en) * 2009-01-19 2010-07-29 Aisin Aw Co Ltd Power transmitting device and vehicle having power transmitting device mounted thereon
JP2010164177A (en) * 2009-01-19 2010-07-29 Aisin Aw Co Ltd Power transmitting device and vehicle having power transmitting device mounted thereon
DE112009002280T5 (en) 2009-01-30 2011-07-28 Aisin AW Co., Ltd., Aichi-ken Power transmission device and vehicle with this
US8413783B2 (en) 2009-01-30 2013-04-09 Aisin Aw Co., Ltd. Power transmission device and vehicle having the same
JP2010175038A (en) * 2009-01-30 2010-08-12 Aisin Aw Co Ltd Power transmitting device and vehicle having the same mounted thereon
US8360220B2 (en) 2009-01-30 2013-01-29 Aisin Aw Co., Ltd. Power transmission device and vehicle having the same
JP2010175039A (en) * 2009-01-30 2010-08-12 Aisin Aw Co Ltd Power transmitting device and vehicle having the same mounted thereon
DE112009002302T5 (en) 2009-01-30 2011-07-28 Aisin AW Co., Ltd., Aichi-ken Power transmission device and equipped with this vehicle
CN102159855B (en) * 2009-01-30 2013-12-18 爱信艾达株式会社 Power transmitting device and vehicle having same mounted thereon
JP2010203606A (en) * 2009-02-09 2010-09-16 Aisin Aw Co Ltd Power transmission system
JP2010216568A (en) * 2009-03-17 2010-09-30 Aisin Aw Co Ltd Power transmission device
US8886427B2 (en) 2009-03-19 2014-11-11 Aisin Aw Co., Ltd. Hydraulic control apparatus for automatic transmission
US8312895B2 (en) 2009-03-24 2012-11-20 Aisin Aw Co., Ltd. Solenoid valve device
US8347918B2 (en) 2009-06-11 2013-01-08 Aisin Aw Co., Ltd. Solenoid valve apparatus
WO2010143496A1 (en) * 2009-06-11 2010-12-16 アイシン・エィ・ダブリュ株式会社 Solenoid operated valve device
DE112010000449T5 (en) 2009-06-11 2012-08-30 Aisin Aw Co., Ltd. Solendoidventilvorrichtung
JP2011002027A (en) * 2009-06-18 2011-01-06 Aisin Aw Co Ltd Fluid pressure control device for power transmission devices
JP2011069250A (en) * 2009-09-24 2011-04-07 Aisin Aw Co Ltd Pump device
DE112010003246B4 (en) * 2009-11-24 2017-05-18 Aisin Aw Co., Ltd. Transmitter power
DE112010003246T5 (en) 2009-11-24 2013-01-03 Aisin Aw Co., Ltd. Transmitter power
US8652008B2 (en) 2009-11-24 2014-02-18 Aisin Aw Co., Ltd. Power transmission apparatus
DE112010003555T5 (en) 2009-12-15 2012-06-28 Aisin Aw Co., Ltd. PUMP DEVICE, POWER TRANSMISSION DEVICE AND VEHICLE
CN102597515A (en) * 2009-12-15 2012-07-18 爱信艾达株式会社 Pump device and power transmission device, and vehicle
CN102597515B (en) * 2009-12-15 2015-05-13 爱信艾达株式会社 Pump device and power transmission device, and vehicle
DE112010003555B4 (en) * 2009-12-15 2015-07-30 Aisin Aw Co., Ltd. PUMP DEVICE, POWER TRANSMISSION DEVICE AND VEHICLE
US8636483B2 (en) 2009-12-15 2014-01-28 Aisin Aw Co., Ltd. Pump apparatus, power transmission apparatus, and vehicle
JP2011214619A (en) * 2010-03-31 2011-10-27 Aisin Aw Co Ltd Power transmission device

Similar Documents

Publication Publication Date Title
US10508730B2 (en) Method for an open-loop and/or closed-loop control of a hydraulic system of a motor vehicle
EP2797766B1 (en) Driving system and electric vehicle comprising the same
US8997958B2 (en) Hydraulic circuit, method for operating the same
CN1550698B (en) Hydraulic pressure control apparatus for vehicular hydraulic power transmission device with lock-up clutch
US7905807B2 (en) Hydraulic control apparatus for automatic transmission, and hybrid drive system provided with the same
JP4296887B2 (en) Driving force transmission system
CN102165222B (en) Power transmitting device and vehicle having power transmitting device mounted thereon
KR100853133B1 (en) Hydraulic control unit
US8651990B2 (en) Transmission hydraulic control system having an accumulator
US6991581B2 (en) Control system for hybrid vehicles
US9383003B2 (en) Hydraulic control system for a continuously variable transmission
CN101392831B (en) Electro-hydraulic control system for transmission with dual-area piston for torque-transmitting mechanism
US8955316B2 (en) Drive train device
US9772033B2 (en) Electronic transmission range selection subsystem in a hydraulic control system for an automatic transmission
US7311187B2 (en) Dual clutch transmission clutch cooling circuit
KR101339230B1 (en) Hydraulic control system for transmission
US8771141B2 (en) Coast stop vehicle and coast stop method
KR101439305B1 (en) Hydraulic pressure supply device for industrial vehicle
KR101338455B1 (en) Oil pressure supply system of automatic transmission
CN102203466B (en) Power transmission system
JP5664853B2 (en) Automatic transmission hydraulic control device
JP5716845B2 (en) Hydraulic control device and vehicle control device
JP4506655B2 (en) Hydraulic control device for automatic transmission for vehicle
JP2015200369A (en) hydraulic control device
CN105190108B (en) The hydraulic pressure control device of vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100107

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20110517

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110607