JP2008179938A - Felt for filter - Google Patents

Felt for filter Download PDF

Info

Publication number
JP2008179938A
JP2008179938A JP2007336025A JP2007336025A JP2008179938A JP 2008179938 A JP2008179938 A JP 2008179938A JP 2007336025 A JP2007336025 A JP 2007336025A JP 2007336025 A JP2007336025 A JP 2007336025A JP 2008179938 A JP2008179938 A JP 2008179938A
Authority
JP
Japan
Prior art keywords
layer
felt
filter
pps
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007336025A
Other languages
Japanese (ja)
Other versions
JP5076883B2 (en
Inventor
Shinichiro Inatomi
伸一郎 稲富
Hiromasa Asai
博正 浅井
Kazufumi Matsuki
和史 末岐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2007336025A priority Critical patent/JP5076883B2/en
Publication of JP2008179938A publication Critical patent/JP2008179938A/en
Application granted granted Critical
Publication of JP5076883B2 publication Critical patent/JP5076883B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/76Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from other polycondensation products
    • D01F6/765Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from other polycondensation products from polyarylene sulfides
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4391Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres
    • D04H1/43918Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres nonlinear fibres, e.g. crimped or coiled fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4374Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece using different kinds of webs, e.g. by layering webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4391Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres
    • D04H1/43914Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres hollow fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4391Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres
    • D04H1/43912Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres fibres with noncircular cross-sections

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Filtering Materials (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a felt comprising polyphenylene sulfide fibers which is used as a bag filter, etc., by which the filter can stably filter dust discharge gas over long, improves the elasticity of the filter, and hence enables vibrational force to be efficiently propagated when the surface dust is removed by back washing and vibration. <P>SOLUTION: The filter felt is characterized by comprising at least one layer of a nonwoven fabric comprising 30% or more of hollow polyphenylene-sulfide short fibers having a percentage of hollowness of 5-50%, specific volume of 50 cm<SP>3</SP>/g or higher, and compressibility of 75% or less. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ポリフェニレンサルファイド繊維を含むバグフィルターなどに用いるフェルトに関するものであり、長期安定して排ガス中のダストろ過を行うことができ、フィルターの弾力性を向上することで、逆洗、振動により表面のダストを除去する際、振動の力を効率よく伝達することができるフィルター用フェルトに関するものである。   The present invention relates to a felt used for a bag filter containing polyphenylene sulfide fiber, etc., and can perform dust filtration in exhaust gas stably for a long period of time, and by improving the elasticity of the filter, by backwashing and vibration The present invention relates to a felt for a filter that can efficiently transmit vibration force when removing dust on the surface.

石炭焚きボイラー、都市ゴミ焼却炉、産業廃棄物焼却炉等から排出される排ガス中には煤塵のみならずダイオキシン等の有害物質も含まれており、大気汚染防止として各種排ガス集塵は非常に重要である。また、ダイオキシン生成抑制及び排出抑制の観点からも、バグフィルターによる排ガスろ過が大きく期待されている。また、大きなろ過速度で目詰まりなしの低圧損運転できれば、ろ過面積やバグフィルター設置面積も小さくでき、コストダウンにもつながる。また、ダイオキシン類や重金属などの有害物質対策として、ガス化溶融炉や灰溶融炉が使用されるようになり、ダストはより小さくなる傾向にある。   Exhaust gas discharged from coal-fired boilers, municipal waste incinerators, industrial waste incinerators, etc. contains not only soot dust but also harmful substances such as dioxins, and various exhaust gas dust collection is very important to prevent air pollution It is. In addition, exhaust gas filtration using a bag filter is highly expected from the viewpoint of dioxin production suppression and emission suppression. Moreover, if low pressure loss operation without clogging can be performed at a high filtration rate, the filtration area and bag filter installation area can be reduced, leading to cost reduction. Moreover, gasification melting furnaces and ash melting furnaces are used as countermeasures against harmful substances such as dioxins and heavy metals, and dust tends to become smaller.

ダスト吹き漏れ量が小さく長期安定して排ガスろ過を行う方法として、様々な方法が検討されている。
例えば、既に製品として存在するものとして、不織布あるいは織物のろ過面側にポリテトラフルオロエチレン(以下、「PTFE」という)からなり細孔径が約2〜3μm程度のメンブレンを接着させ払い落とし性を向上させたものがある。
また、不織布あるいは織物のろ過面側にフィルムの延伸方向にスリットを入れた一軸延伸フィルムを貼り合わせ、μm径オーダーの微少な粒子を捕捉可能としたろ過布(例えば、特許文献1)が提案されている。
ポリフェニレンサルファイド(以下、「PPS」という)繊維よりなるフェルトに限っては、ろ過面層に細繊度繊維を用い、更には太さ勾配をつけたもの(例えば、特許文献2)、異型断面繊維を使用することにより、繊維表面積を大きくしたしたもの(例えば、特許文献3)が知られている。
Various methods have been studied as methods for performing exhaust gas filtration with a small amount of dust leakage and stable for a long period of time.
For example, as existing products, a membrane made of polytetrafluoroethylene (hereinafter referred to as “PTFE”) with a pore size of about 2 to 3 μm is adhered to the filtration surface side of a nonwoven fabric or woven fabric to improve the removal property. There is something that let me.
In addition, a filter cloth (for example, Patent Document 1) is proposed in which a uniaxially stretched film with slits in the film stretching direction is bonded to the filtration surface side of a nonwoven fabric or woven fabric to capture minute particles of the order of μm. ing.
For felts made of polyphenylene sulfide (hereinafter referred to as “PPS”) fibers, a fineness fiber is used for the filtration surface layer and a thickness gradient is applied (for example, Patent Document 2), and a modified cross-section fiber. The thing (for example, patent document 3) which enlarged the fiber surface area by using is known.

上記のPTFEメンブレンをろ布のろ過面側に接着させたものは、パルスジェット方式や逆洗方式によるダスト払い落とし性は優れるが、初期より圧損が大きく、さらに、他素材との接着性に劣るPTFEは長期にわたるダスト払い落とし操作によりPTFEメンブレン自体がろ過面から剥がれたり、ダスト払落し屈曲疲労によってシワができ、破損に至るという問題がある。また、バグフィルター用フェルトは、ろ過と同時に塩化水素などの酸性ガスをろ過面のケーキ層で消石灰などにより反応除去するという機能も有している。しかし、メンブレンを使用するとケーキ層まで払落ししてしまうため、酸性ガスの除去率が低下するといった問題がある。さらに、メンブレン加工のコストが非常に高く、現在あるバグフィルター用ろ布としては最も高いものとなっている。   When the above PTFE membrane is bonded to the filtration surface of the filter cloth, the dust jet-off property by the pulse jet method or the back washing method is excellent, but the pressure loss is large from the initial stage, and the adhesiveness to other materials is inferior. PTFE has a problem that the PTFE membrane itself peels off from the filtration surface due to dust removal operation over a long period of time, or dust is removed and wrinkles are caused by bending fatigue, resulting in breakage. The felt for bag filters also has a function of reacting and removing acidic gas such as hydrogen chloride with slaked lime in the cake layer on the filtration surface simultaneously with filtration. However, if a membrane is used, the cake layer is wiped off, so that there is a problem that the acid gas removal rate decreases. Furthermore, the cost of membrane processing is very high, and it is the highest as a filter cloth for bag filters.

特許文献1のものは、ろ過層内部のフィルムによりろ布を通過しようとしたダストを捕捉することができるが、繊維からなるろ過層自体の空隙率が大きいため、目詰まりを起こし長期安定して排ガスろ過を行えないという問題がある。   Although the thing of patent document 1 can capture the dust which tried to pass through the filter cloth with the film inside the filtration layer, since the porosity of the filtration layer itself made of fibers is large, it causes clogging and is stable for a long time. There is a problem that exhaust gas filtration cannot be performed.

特許文献2のものは、繊度が2.0dtex以下であるPPS短繊維をろ過層表層に配している。これは、ろ過性能は向上するものであるが、フェルト作成時の生産性が低くなる問題がある。   The thing of the patent document 2 has distribute | arranged the PPS short fiber whose fineness is 2.0 dtex or less to the filtration layer surface layer. Although this improves filtration performance, there is a problem that productivity at the time of creating felt is lowered.

また、特許文献3では、繊度が5.6dtex以下で、Y型の異型断面PPS繊維を使用して性能向上するものである。しかし、これらの技術でろ過層のろ過性能を向上することはできても、断面の形状から強力の低下が大きくなる問題がある。   Moreover, in patent document 3, a fineness is 5.6 dtex or less, and a Y-type atypical cross-section PPS fiber is used and a performance improvement is carried out. However, even though these techniques can improve the filtration performance of the filtration layer, there is a problem in that the strength is greatly reduced due to the cross-sectional shape.

特開平2−253814号公報JP-A-2-253814 特開平10−165729号公報Japanese Patent Laid-Open No. 10-165729 特開2000−117027号公報Japanese Patent Laid-Open No. 2000-117027

本発明は、上記従来技術のバグフィルター用フェルトの持つ問題点に対し、PPS繊維を含むバグフィルターなどに用いるフェルトにおいて、長期安定して排ガス中のダストろ過を行うことができ、フィルターの弾力性を向上することで、パルス、逆洗、振動により表面のダストを除去する際、振動の力を効率よく伝達することができるフィルター用フェルトを提供することを目的とする。   The present invention is capable of performing dust filtration in exhaust gas stably for a long period of time in a felt used for a bag filter containing PPS fibers, etc., against the problems of the above-described bag filter felt of the prior art, and the elasticity of the filter. It is an object of the present invention to provide a filter felt that can efficiently transmit vibration force when removing dust on the surface by pulse, backwashing, and vibration.

即ち、本発明は、以下の通りである。
1.中空率が5〜50%、比容積が50cm/g以上、圧縮率が75%以下である中空断面ポリフェニレンサルファイド短繊維を30%以上使用した不織布を少なくとも1層以上使用することを特徴とするフィルター用フェルト。
2.前記中空断面ポリフェニレンサルファイド短繊維が、少なくとも2つの突起物が存在する断面形状である中空異型断面ポリフェニレンサルファイド短繊維であることを特徴とする請求項1に記載のファルター用フェルト。
3.前記ポリフェニレンサルファイド短繊維が比容積が70cm/g以上、圧縮率が65%以下であることを特徴とする請求項1に記載のフィルター用フェルト。
4.前記ポリフェニレンサルファイド短繊維が立体捲縮を有することを特徴とする請求項1〜3のいずれかに記載のフィルター用フェルト。
That is, the present invention is as follows.
1. At least one or more layers of non-woven fabric using hollow cross-sectional polyphenylene sulfide short fibers having a hollow ratio of 5 to 50%, a specific volume of 50 cm 3 / g or more, and a compression ratio of 75% or less are used. Filter felt.
2. The felt for felts according to claim 1, wherein the hollow cross-sectional polyphenylene sulfide short fiber is a hollow irregular cross-sectional polyphenylene sulfide short fiber having a cross-sectional shape in which at least two protrusions are present.
3. 2. The filter felt according to claim 1, wherein the polyphenylene sulfide short fibers have a specific volume of 70 cm 3 / g or more and a compressibility of 65% or less.
4). The filter felt according to any one of claims 1 to 3, wherein the polyphenylene sulfide short fibers have steric crimps.

本発明によると、PPS繊維を含む不織布層からなるバグフィルター用フェルトで、長期安定して排ガス中のダストろ過を行うことができ、フィルターの弾力性を向上することで、パルス、逆洗、振動により表面のダストを除去する際、振動の力を効率よく伝達することができるフィルター用フェルトを提供することを可能とした。   According to the present invention, a bag filter felt made of a nonwoven fabric layer containing PPS fibers can stably perform dust filtration in exhaust gas for a long period of time. By improving the elasticity of the filter, pulse, backwash, vibration Thus, it is possible to provide a filter felt that can efficiently transmit vibration force when removing dust on the surface.

以下、本発明を詳細に説明する。
本発明に用いるPPS短繊維の断面形状は、中空断面が好ましく、その中空率は好ましくは5〜50%、より好ましくは10〜40%である。中空率が5%未満では十分な比容積、圧縮率を得ることができず、50%より大きくなると後工程で破裂の問題が発生する。その結果十分な比容積、圧縮率を得ることができなくなる。
Hereinafter, the present invention will be described in detail.
The cross-sectional shape of the PPS short fiber used in the present invention is preferably a hollow cross section, and the hollow ratio is preferably 5 to 50%, more preferably 10 to 40%. If the hollow ratio is less than 5%, sufficient specific volume and compression rate cannot be obtained, and if it exceeds 50%, a rupture problem occurs in the subsequent process. As a result, a sufficient specific volume and compressibility cannot be obtained.

また繊維断面形状において、突起物が2つ以上5つ以下存在することが好ましく、突起物が3つ以上5つ以下存在することがより好ましい。6つ以上の突起物が存在しても目的を達成することはできるが、突起物を大きくしなければ効果が小さくなる。突起物が存在することにより圧縮率を低くすることができる。   In the fiber cross-sectional shape, it is preferable that 2 to 5 protrusions are present, and more preferably 3 to 5 protrusions are present. Although the object can be achieved even if there are six or more protrusions, the effect is reduced unless the protrusions are made large. The presence of protrusions can reduce the compression rate.

本発明に用いるPPS短繊維の比容積は50cm/g以上が好ましく、60cm/g以上がより好ましく、70cm/g以上がさらに好ましく、90cm/g以上が最も好ましい。圧縮率は75%以下が好ましく、65%以下がより好ましく、60%以下がさらに好ましい。比容積が50cm/g以下、あるいは圧縮率が75%以上であれば、PPS短繊維をウェッブとしニードルパンチなどにより交絡させたフェルトとした時に、一定の嵩を保持した場合、柔らかい、いわゆる腰のないフェルトとなり、振動の力を吸収してしまい、振動の力を効率よく伝達することができなくなる。 Specific volume of PPS staple fibers used in the present invention is preferably at least 50 cm 3 / g, more preferably at least 60cm 3 / g, 70cm 3 / g or more, and most preferably at least 90cm 3 / g. The compression rate is preferably 75% or less, more preferably 65% or less, and still more preferably 60% or less. If the specific volume is 50 cm 3 / g or less, or the compression ratio is 75% or more, a soft, so-called waist is obtained when the PPS short fiber is made into a felt entangled with a web using a needle punch or the like and maintains a certain volume. It becomes a felt with no vibration and absorbs the vibration force, and the vibration force cannot be transmitted efficiently.

さらに、捲縮形態が立体捲縮を有することが好ましい。これは機械捲縮より、望ましい比容積、圧縮率が得やすいためである。   Furthermore, it is preferable that the crimp form has a three-dimensional crimp. This is because a desirable specific volume and compressibility can be obtained more easily than mechanical crimping.

PPS短繊維の繊度は2.0〜20dtex、好ましくは2.5〜17dtexである。2.0dtexより小さくなると圧縮率が高くなり好ましくない。また20dtexより大きくなると製造時の繊維の冷却速度が遅くなり生産性が悪くなる問題がある。   The fineness of the PPS short fibers is 2.0 to 20 dtex, preferably 2.5 to 17 dtex. If it is less than 2.0 dtex, the compression rate is increased, which is not preferable. On the other hand, if it exceeds 20 dtex, there is a problem that the cooling rate of the fiber at the time of production becomes slow and the productivity deteriorates.

次にこのPPS短繊維を得るために用いる樹脂について説明する。用いる樹脂は線状PPSポリマーが好ましく、ASTM D−1238−82法で荷重49N、温度315.6℃の条件で測定したPPSのメルトフローレートが50〜160g/10minがより好ましい。バグフィルター用フェルトのように厳しい各種用途には単なる耐熱性や耐薬品性のみならず、例えばフィルター形体に必要な強度なども併せ持つ必要がある。そのため、例えば繊維としての高い強力を得るために、重合段階でトリクロロベンゼンなどを用いて未反応の塩素基を残しておき、紡糸前のポリマーの段階で酸素雰囲気あるいはチッソ雰囲気での高温処理によって未反応塩素基により架橋反応を起こさせ重合度を増し、繊維として必要な初期強度を得る方法がある。また、比較的メルトフローレート(低分子量)の低いポリマーでも、紡糸前に、酸素雰囲気で一時的に架橋させて分子量を大きくすることによっても繊維自体は強力など必要物性を満足させることができる。しかし、この様な方法では比較的低分子量ポリマーを一次的な架橋反応によって得られたポリマーよりなる繊維であり、ESCAなどでイオウ原子を中心とする結合を測定すると既に−SO−や−SO−の結合が含まれ、一次的に架橋や酸化により重合度を高くしたこの様な方法では長期に渡る耐熱性を得ることはできない。本発明のPPSは、ASTM D−1238−82法で荷重49N、温度315.6℃の条件で測定したPPSのメルトフローレートが50〜160g/10minからなる線状ポリマーを紡糸してなるものであり、例えば、ESCAでイオウ原子を中心とする結合状態を測定した場合、その95アトミック%以上がスルフィド結合であることが好ましく、98アトミック%以上がスルフィド結合であることより好ましく、100アトミック%がスルフィド結合であることがさらに好ましい。 Next, the resin used for obtaining the PPS short fibers will be described. The resin used is preferably a linear PPS polymer, and more preferably a melt flow rate of PPS measured by ASTM D-1238-82 under the conditions of a load of 49 N and a temperature of 315.6 ° C. is 50 to 160 g / 10 min. For various severe applications such as felts for bag filters, it is necessary to have not only mere heat resistance and chemical resistance, but also strength necessary for filter shapes, for example. Therefore, for example, in order to obtain high strength as a fiber, unreacted chlorine groups are left using trichlorobenzene or the like in the polymerization stage, and untreated by high-temperature treatment in an oxygen atmosphere or nitrogen atmosphere in the polymer stage before spinning. There is a method in which a crosslinking reaction is caused by a reactive chlorine group to increase the degree of polymerization and to obtain the initial strength necessary for the fiber. Further, even for a polymer having a relatively low melt flow rate (low molecular weight), the fiber itself can satisfy the required physical properties such as strength by temporarily crosslinking in an oxygen atmosphere and increasing the molecular weight before spinning. However, in such a method, a relatively low molecular weight polymer is a fiber made of a polymer obtained by a primary crosslinking reaction, and when a bond centered on a sulfur atom is measured by ESCA or the like, -SO- or -SO 2 is already present. In such a method in which a bond of-is included and the degree of polymerization is primarily increased by crosslinking or oxidation, heat resistance over a long period cannot be obtained. The PPS of the present invention is obtained by spinning a linear polymer having a PPS melt flow rate of 50 to 160 g / 10 min measured by ASTM D-1238-82 under a load of 49 N and a temperature of 315.6 ° C. Yes, for example, when a bonding state centered on a sulfur atom is measured by ESCA, 95 atomic% or more is preferably a sulfide bond, 98 atomic% or more is more preferably a sulfide bond, and 100 atomic% is More preferably, it is a sulfide bond.

本発明でいうPPSに代表されるポリアリーレンスルフィドは、−Ar−S−(Arはアリーレン基)で表されるアリーレンスルフィドを繰返し単位とする芳香族ポリマーである。アリーレン基としては、p−フェニレンの他に、例えばm−フェニレン、ナフチレン基などさまざまなものが知られているが、その耐熱性、加工性、経済的観点から言ってもp−フェニレンスルフィドの繰返し単位が最も優れる。   The polyarylene sulfide represented by PPS in the present invention is an aromatic polymer having an arylene sulfide represented by —Ar—S— (Ar is an arylene group) as a repeating unit. As the arylene group, various things such as m-phenylene and naphthylene groups are known in addition to p-phenylene, but repetitive p-phenylene sulfide is also mentioned from the viewpoint of heat resistance, workability, and economy. The unit is the best.

本発明でいうPPSのASTM D−1238−82法で荷重49N、温度315.6℃の条件で測定したメルトフローレートは50〜160g/10minである。十分な長期耐熱性や強度を得るためには線状ポリマーでなおかつ重合度がより高いほうが好ましい。しかし、メルトフローレートが50g/10min以下では高温でもあまりにも粘性が高く、紡糸時の圧損上昇などから生産性と言う面では好ましくない。また、またメルトフローレートが160g/10min以上になる、即ち分子量が小さくなると紡糸時の圧損上昇などは抑えることができるが、分子量分布が大きくなり、低圧損状態でより高分子量ポリマーが含まれると、高分子量ポリマーの溶融状態が悪く紡糸時の糸切れなどに影響を及ぼす可能性がある。また、長期耐熱性の観点からも低分子量化は望ましくない。この様な観点からPPSのメルトフローレートは50〜160g/10min、さらに好ましくは80〜140g/10minの範囲である。また、線状ポリマーのPPSは、架橋型や半架橋型のPPSに比べると、長期耐熱性に優れるばかりでなく溶融時の熱安定性も優れるため加工性にも優れる。   The melt flow rate measured by the PPS ASTM D-1238-82 method under the conditions of a load of 49 N and a temperature of 315.6 ° C. is 50 to 160 g / 10 min. In order to obtain sufficient long-term heat resistance and strength, a linear polymer and a higher degree of polymerization are preferred. However, if the melt flow rate is 50 g / 10 min or less, the viscosity is too high even at high temperatures, which is not preferable in terms of productivity because of an increase in pressure loss during spinning. In addition, when the melt flow rate is 160 g / 10 min or more, that is, when the molecular weight is small, an increase in pressure loss during spinning can be suppressed, but the molecular weight distribution becomes large and a higher molecular weight polymer is contained in a low pressure loss state. Further, the molten state of the high molecular weight polymer is poor, and there is a possibility of affecting the yarn breakage during spinning. Also, lowering the molecular weight is not desirable from the viewpoint of long-term heat resistance. From such a viewpoint, the melt flow rate of PPS is in the range of 50 to 160 g / 10 min, more preferably 80 to 140 g / 10 min. In addition, the linear polymer PPS is excellent not only in long-term heat resistance but also in heat stability at the time of melting, as compared with cross-linked or semi-cross-linked PPS.

本発明で使用するPPSは、極性有機溶媒中で、アルカリ金属硫化物とジハロ芳香族化合物を重合反応させる方法により得ることができる。アルカリ金属硫化物は、例えば、硫化ナトリウム、硫化リチウム、硫化カリウム等、あるいはこれらの混合物などが使用することができる。これらの中でも硫化ナトリウムが最も経済的に優れることから一般的に用いられる。   The PPS used in the present invention can be obtained by a polymerization reaction of an alkali metal sulfide and a dihaloaromatic compound in a polar organic solvent. As the alkali metal sulfide, for example, sodium sulfide, lithium sulfide, potassium sulfide, or a mixture thereof can be used. Among these, sodium sulfide is generally used because it is the most economical.

また、ジハロ化合物としては、例えば、p−ジクロロベンゼン、o−ジクロロベンゼン、m−ジクロロベンゼンなどのジハロベンゼン、1,4−ジクロロナフタレン等のジハロナフタレン、その他、ジハロ安息香酸、ジハロベンゾフェノン、ジハロフェニルエーテルなどを上げることができるが、物性および経済的観点よりp−ジクロロベンゼンが最も好ましく使用される。その他、一般的には、多少の分岐構造を得るために1分子当り2個ではなく3個以上のハロゲン置換基を有するポリハロ芳香族化合物を少量併用することも知られており、トリクロロベンゼンなどが上げられるが、本発明でいう線状ポリマーとはこの様な半架橋構造を実質的に有さないものである。   Examples of the dihalo compound include dihalobenzenes such as p-dichlorobenzene, o-dichlorobenzene and m-dichlorobenzene, dihalonaphthalenes such as 1,4-dichloronaphthalene, other dihalobenzoic acid, dihalobenzophenone, di Although halophenyl ether etc. can be raised, p-dichlorobenzene is most preferably used from a physical property and an economical viewpoint. In addition, in general, it is also known to use a small amount of a polyhaloaromatic compound having 3 or more halogen substituents instead of 2 molecules per molecule in order to obtain a somewhat branched structure. As mentioned above, the linear polymer in the present invention is substantially free of such a semi-crosslinked structure.

次に本発明の中空断面と中空異型断面PPS繊維を得る方法について説明する。前記した樹脂を用い、溶融紡糸法により得ることができる。ノズルより押し出し500〜2000m/minの速度で紡糸し、未延伸糸を得る。このときノズルは、図1〜6のノズル孔を持つノズルを用いることで中空断面あるいは中空異型断面の繊維を得ることができる。
しかし、立体的な捲縮を得るために糸断面方向で収縮率の差を与える必要がある。そのような未延伸糸を作る方法としては、クエンチの風速を1.2m/sec以上、好ましくは1.6m/sec以上とし、溶融されたポリマーの冷却速度を変更する方法、サイドバイサイドによりメルトフローレートが少なくとも10g/10min、好ましくは20g/10min以上異なる樹脂を用いる方法、サイドバイサイドにより一方のポリマーの滞留時間を0.5分以上長くすることで収縮差をつける方法、サイドバイサイドにより一方のポリマーに架橋型あるいは半架橋型の樹脂を用いる方法、サイドバイサイドにより一方に相溶性のある樹脂である例えばポリケトンサルファイド、PEEKなどを0.1〜50wt%、好ましくは1〜20wt%混合する方法、さらにはサイドバイサイドにより一方に相溶性のないポリオレフィン樹脂(例えばポリプロピレンなど)を0.1〜5wt%、好ましくは0.2〜2wt%混合する方法などがある。以上により得られた未延伸糸を常法により所望する繊度になるよう延伸倍率を設定し、延伸し、乾燥後カットし短繊維を得ることができる。このとき、収縮による立体的な捲縮を発現させるため、140℃以上、好ましくは160℃以上、さらに好ましくは180℃以上の温度条件下で延伸することが望ましい。
Next, a method for obtaining the hollow cross section and the hollow modified cross section PPS fiber of the present invention will be described. It can be obtained by the melt spinning method using the aforementioned resin. It is extruded from a nozzle and spun at a speed of 500 to 2000 m / min to obtain an undrawn yarn. At this time, by using the nozzle having the nozzle holes of FIGS.
However, in order to obtain a three-dimensional crimp, it is necessary to give a difference in shrinkage rate in the yarn cross-sectional direction. As a method for producing such an undrawn yarn, the quench wind speed is set to 1.2 m / sec or more, preferably 1.6 m / sec or more, the cooling rate of the molten polymer is changed, and the melt flow rate is changed side by side. Is a method using a resin that is at least 10 g / 10 min, preferably 20 g / 10 min or more, a method in which the residence time of one polymer is increased by 0.5 minutes or more by side-by-side, a cross-linking type to one polymer by side-by-side Alternatively, a method using a semi-crosslinked resin, a method in which 0.1 to 50 wt%, preferably 1 to 20 wt% of polyketone sulfide, PEEK or the like, which is compatible with one side by side by side, is mixed by side by side. Incompatible with Fin resin (e.g. polypropylene) and 0.1-5 wt%, and the like preferably a method of mixing 0.2~2wt%. The undrawn yarn obtained as described above can be drawn by setting the draw ratio so as to have a desired fineness by a conventional method, drawn, dried and cut to obtain short fibers. At this time, in order to develop a three-dimensional crimp due to shrinkage, it is desirable to stretch the film under a temperature condition of 140 ° C. or higher, preferably 160 ° C. or higher, more preferably 180 ° C. or higher.

以上により得られた中空断面、中空異型断面PPS繊維の少なくとも1種を30%以上、好ましくは50%以上、さらに好ましくは80%以上含有した不織布を少なくとも一層に使用することで振動の力をろ過面に効率よく伝えることができるフィルター用フェルトを得ることができる。例えば一般的なバグフィルター用のフェルトでは耐熱性、耐薬品性に優れた例えばPPS短繊維などが多く用いられているが、構造としては、ろ過層、支持層、クリーンガスサイド層で構成されている場合が多い。ろ過層(最外層)は繊維の表面積を上げるため、4dtex以下の丸断面の繊維、あるいはY断面や扁平断面などの異型断面の繊維が用いられることが多い。支持層は高温下での寸法安定性向上のために、PPS繊維よりなる織布が多く用いられていることが多い。クリーンガスサイド層は2.2dtex以上の丸断面繊維が用いられることが多い。   The vibration force is filtered by using at least one layer of a non-woven fabric containing at least one kind of hollow cross-section and hollow modified cross-section PPS fibers obtained as described above, preferably at least 50%, more preferably at least 80%. A filter felt that can be efficiently transmitted to the surface can be obtained. For example, in general felts for bag filters, for example, PPS short fibers excellent in heat resistance and chemical resistance are used, but the structure is composed of a filtration layer, a support layer, and a clean gas side layer. There are many cases. In order to increase the surface area of the fiber, the filtration layer (outermost layer) often uses a fiber having a round cross section of 4 dtex or less, or a fiber having an irregular cross section such as a Y cross section or a flat cross section. In many cases, a woven fabric made of PPS fibers is used for the support layer in order to improve the dimensional stability at high temperatures. The clean gas side layer often uses round cross-section fibers of 2.2 dtex or more.

本発明のフィルター用フェルトは、特にこのろ過層の反対側となるクリーンガスサイド層に用いることで効力を発揮することができる。したがって、本発明のフェルト層と、本発明のフェルトを構成する繊維より細く、密度も1.2倍以上高いろ過層であるフェルト層との二層構造以上が好ましいバグフィルター用フェルトの構成である。   The filter felt of the present invention can exert its effect particularly when used in the clean gas side layer opposite to the filtration layer. Therefore, the bag filter felt preferably has a two-layer structure or more of the felt layer of the present invention and a felt layer that is a filtration layer that is thinner than the fibers constituting the felt of the present invention and has a density 1.2 times higher. .

ろ過層、支持層、クリーンガスサイド層には、PPS繊維の他、要求により、m−アラミド繊維、ポリイミド繊維、PTFE繊維などを併用することができる。しかし、回収後の処理の観点からはPPS繊維100%で構成されることが好ましい。   In addition to PPS fibers, m-aramid fibers, polyimide fibers, PTFE fibers, and the like can be used in combination in the filtration layer, the support layer, and the clean gas side layer as required. However, from the viewpoint of processing after collection, it is preferable to be composed of 100% PPS fiber.

以上のフェルトを得る方法としてはカードウェッブを積層し、ニードルパンチにより交絡させることで得られる。このとき、ろ過層はろ過効率を上げるため一定以上の密度に仕上げる必要があるが、クリーンガスサイド層は製品規格によりある一定以上の嵩を必要とする。このとき比容積の低い繊維あるいは圧縮率の高い繊維の場合、前記したとおり、フェルトに腰がなく、非常に柔らかい製品となる。このときの問題点についてバグフィルターの例で説明する。バグフィルターのパルスジェットタイプは、例えば、筒径155φ、長さ6mのろ布は、小さい設備で数十本、火力発電所などの大型の設備では数万本の単位で使用される。筒状ろ布に対して、ろ過は外側から内側へ向かってガスが流れ、一定圧力や一定時間で上部パルスエアーによる物理的衝撃によってダスト払い落とし操作が繰り返される。しかしクリーンガスサイド層のフェルトに腰がないと衝撃が吸収され十分にダストを払い落とすことができず、長時間の衝撃が必要となり、繊維へのダメージも大きくなり、長期間使用に不利となる。したがって、クリーンガスサイド層に用いる繊維の比容積、圧縮率が重要になるのである。   The above felt can be obtained by laminating card webs and interlacing them with a needle punch. At this time, the filtration layer needs to be finished to a certain density or more in order to increase the filtration efficiency, but the clean gas side layer requires a certain volume or more according to product specifications. At this time, in the case of a fiber having a low specific volume or a fiber having a high compression rate, as described above, the felt does not have a waist and becomes a very soft product. The problem at this time will be described with an example of a bug filter. As for the pulse jet type of the bag filter, for example, a filter cloth having a cylinder diameter of 155φ and a length of 6 m is used in units of several tens of thousands for a small facility and tens of thousands for a large facility such as a thermal power plant. For the cylindrical filter cloth, gas flows from the outside to the inside of the filter, and the dust removal operation is repeated by a physical impact by the upper pulse air at a constant pressure and for a certain time. However, if the felt of the clean gas side layer is not elastic, the shock will be absorbed and the dust will not be able to be removed sufficiently, which will require a long impact, which will increase the damage to the fiber and will be disadvantageous for long-term use . Therefore, the specific volume and compressibility of the fibers used for the clean gas side layer are important.

ろ過層と支持層とクリーンガスサイド層の一体化処理が、ニードルパンチ、あるいはウォーターパンチいずれかの方法によって行うことが出来る。また、ろ過層と支持層とクリーンガスサイド層の積層一体化後、140〜270℃の加熱プレスを行ってもよい。さらに、ろ過層と支持層とクリーンガスサイド層を積層一体化し熱プレスした後に、180℃以上の熱処理後、ろ過面層の毛焼きを行う、あるいは、180℃の熱処理後に赤外線、電熱バーによるろ過面溶融処理を行うことが出来る。あるいは、ろ過層最表面をより平滑化させるために、毛焼き処理の後に、熱カレンダー処理を行うことも出来る。   The integration process of the filtration layer, the support layer, and the clean gas side layer can be performed by either a needle punch method or a water punch method. Moreover, you may perform a 140-270 degreeC heat press after lamination | stacking integration of a filtration layer, a support layer, and a clean gas side layer. Furthermore, after laminating and integrating the filtration layer, the support layer and the clean gas side layer and heat-pressing, after the heat treatment at 180 ° C. or higher, the filter surface layer is baked, or after the heat treatment at 180 ° C., filtration with an infrared ray or an electric heating bar is performed. Surface melting treatment can be performed. Alternatively, in order to further smooth the outermost surface of the filtration layer, a thermal calendar process can be performed after the hair baking process.

また、ろ過層と支持層とクリーンガスサイド層の積層一体化、熱プレス、熱処理、フェルト表面処理などを行った後にフッ素系などの樹脂加工をすることが出来る。   In addition, fluorine-based resin processing can be performed after performing lamination and integration of the filtration layer, the support layer, and the clean gas side layer, hot pressing, heat treatment, felt surface treatment, and the like.

以下、実施例を用いて本発明を詳細に説明する。
なお、測定方法は下記の通りである。
Hereinafter, the present invention will be described in detail using examples.
The measuring method is as follows.

比容積および圧縮率:JIS L 1097 合成繊維ふとんわた試験方法に準拠して評価した。カードウエッブを10cm×10cmで約5gになるよう重ねる。1時間以上放置したのちサンプルの質量を正確に測る(Wg)。60gの天板を載せ、更に500gのおもりを30秒載せ、おもりのみ取り除き30秒放置する。この操作を3回繰り返し、おもりを取り除き30秒後に四隅の高さを測定し平均値を求める(H0mm)。同サンプルに60gの天板を載せ、更に1000gのおもりを30秒載せ、この時の四隅の高さを測定し平均値(H1mm)を求める。
比容積(cm/g)=10×10×H0/10/W
圧縮率(%)=(H0−H1)/H0×100
Specific volume and compressibility: Evaluated in accordance with JIS L 1097 synthetic fiber futon test method. The card web is stacked so as to be about 5 g at 10 cm × 10 cm. After standing for 1 hour or more, the mass of the sample is accurately measured (Wg). A 60 g top plate is placed, a 500 g weight is placed for 30 seconds, only the weight is removed and left for 30 seconds. This operation is repeated three times, the weight is removed, and after 30 seconds, the heights of the four corners are measured to obtain an average value (H0 mm). A 60 g top plate is placed on the sample, and a 1000 g weight is placed for 30 seconds, and the heights of the four corners at this time are measured to obtain an average value (H1 mm).
Specific volume (cm 3 / g) = 10 × 10 × H0 / 10 / W
Compression rate (%) = (H0−H1) / H0 × 100

繊度:JIS L−1015−8.5(1999)の方法に準じて測定した。   Fineness: Measured according to the method of JIS L-1015-8.5 (1999).

中空率:断面を光学顕微鏡にて撮影し、面積比より求めた。
中空率(%)=中空部面積/外周円の面積×100
Hollow ratio: The cross-section was photographed with an optical microscope and determined from the area ratio.
Hollow ratio (%) = Hollow area / Outer circumference area × 100

パルスエアーによるダストの払い落とし性(ドイツ規格、VDI N3926):
ろ過速度:2.0mm/min、ダスト濃度:5g/m、ダスト種類:Pural NF、温度:130℃、ダスト払い落とし:1000Pa、エージング間隔:5s、タンク圧:0.5MPa、パルスエアー圧:1017mbar、パルス時間:60ms
手順
(1)サンプルを装着した段階で、ダストのない状態で、サンプルフェルトの持つ初期圧損Paを測定する。
(2)第1段階:圧損が1000Paに達したときにダスト払い落としを行う。この操作を30回繰り返す。
(3)第2段階:ダスト無で、5s間隔による10000回のエージングを行う。
(4)第3段階:安定化操作として、ダスト無でパルスエアーによる払い落とし操作のみを10回行う。
(5)第4段階:ダストを流し、圧損1000Paでのダスト払い落としを2時間実施する。その最終時の、ダスト払い落とし直後の残留圧損Paを測定する。
Dust removal by pulse air (German standard, VDI N3926):
Filtration rate: 2.0 mm / min, dust concentration: 5 g / m 3 , dust type: Pural NF, temperature: 130 ° C., dust removal: 1000 Pa, aging interval: 5 s, tank pressure: 0.5 MPa, pulsed air pressure: 1017 mbar, pulse time: 60 ms
Procedure (1) At the stage where the sample is mounted, the initial pressure loss Pa of the sample felt is measured without dust.
(2) First stage: Dust is removed when the pressure loss reaches 1000 Pa. This operation is repeated 30 times.
(3) Second stage: aging is performed 10,000 times at intervals of 5 s without dust.
(4) Third stage: As a stabilizing operation, only a dusting-off operation with pulsed air is performed 10 times without dust.
(5) Fourth stage: Dust is flown, and dust is removed at a pressure loss of 1000 Pa for 2 hours. The residual pressure loss Pa immediately after dust removal is measured at the final time.

<実施例1>
メルトフローレートが110g/10minであるPPSを図1のノズルよりポリマー温度を300℃とし、単孔吐出量=2.0g/minにて押し出し、1200m/minにて紡糸した。このときの冷却条件は1.6m/sec、25℃であった。その後トータル繊度が1,000,000dtexとし、延伸倍率2.5、延伸温度160℃にて延伸し、乾燥後64mmにカットし中空断面PPS短繊維を得た。繊度は6.7dtex、中空率=25%、立体捲縮を持ち、比容積=98cm/g、圧縮率=71%であった。この繊維を100%でクリーンガスサイド層用カードウェッブ(目付200g/m)とした。あらかじめ2.2dtex丸断面繊維のPPS(東洋紡績株式会社製プロコン(登録商標))100%からなるウエブをクロスレイヤーにより、支持層であるPPS織布(500dtex、120フィラメントPPS長繊維使用平織物、織密度タテ/ヨコ=26/20本/2.54cm、目付104g/m)に積層し、ニードルパンチによりろ過層フェルト(目付200g/m)と支持層の積層品を作成した。この積層品の支持層側(ろ過層と反対側)に上記クリーンガスサイド層用カードウェッブを積層し、さらに両面よりニードルパンチで一体化させた。得られたフェルトを210℃の熱カレンダーによってプレスおよび、熱セットを行い、ろ過層には、ガス毛焼きを施して、目付、521g/m、厚さ1.8mmのバグフィルター用フェルトを得た。
<Example 1>
PPS having a melt flow rate of 110 g / 10 min was extruded from the nozzle of FIG. 1 at a polymer temperature of 300 ° C. and discharged at a single hole discharge rate of 2.0 g / min and spun at 1200 m / min. The cooling conditions at this time were 1.6 m / sec and 25 ° C. Thereafter, the total fineness was 1,000,000 dtex, the drawing ratio was 2.5, the drawing temperature was 160 ° C., and after drying, cut to 64 mm to obtain hollow cross-section PPS short fibers. The fineness was 6.7 dtex, the hollow rate was 25%, the volume was solid, the specific volume was 98 cm 3 / g, and the compression rate was 71%. This fiber was used as a clean gas side layer card web (weight per unit area: 200 g / m 2 ) at 100%. A web composed of 100% PPS (Procon (registered trademark) manufactured by Toyobo Co., Ltd.) having a 2.2 dtex round cross-section fiber in advance is used as a support layer for a PPS woven fabric (500 dtex, plain fabric using 120 filament PPS long fibers, weaving density vertical / horizontal = 26/20 present per 2.54 cm, and laminated to the basis weight 104 g / m 2), was created filtration layer felt (basis weight 200 g / m 2) and the support layer of the laminate by needle punching. The card web for the clean gas side layer was laminated on the support layer side (opposite side of the filtration layer) of this laminate, and further integrated by needle punch from both sides. The obtained felt was pressed and heat-set by a heat calendar at 210 ° C., and the filter layer was burned with gas to obtain a bag filter felt having a basis weight of 521 g / m 2 and a thickness of 1.8 mm. It was.

<実施例2>
メルトフローレートが110g/10minであるPPSポリマーを図1のノズルよりポリマー温度を300℃とし、単孔吐出量=2.1g/minにて押し出し、1200m/minにて紡糸した。このときの冷却条件は3.0m/sec、25℃であった。その後トータル繊度が1,000,000dtexとし、延伸倍率1.8、延伸温度160℃にて延伸し、乾燥後64mmにカットし中空断面PPS短繊維を得た。繊度は14dtex、中空率=22%、立体捲縮を持ち、比容積=90cm/g、圧縮率=65%であった。この繊維を100%でクリーンガスサイド層用カードウェッブ(目付200g/m)とした。あらかじめ2.2dtex丸断面繊維のPPS(東洋紡績製プロコン(登録商標))100%からなるウエブをクロスレイヤーにより、実施例1と同様なPPS基布に積層し、ニードルパンチによりろ過層フェルト(目付200g/m)と支持層の積層品を作成した。この積層品の支持層側(ろ過層と反対側)に上記クリーンガスサイド層用カードウェッブを積層し、さらに両面よりニードルパンチで一体化させた。得られたフェルトを210℃の熱カレンダーによってプレスおよび、熱セットを行い、ろ過層には、ガス毛焼きを施して、目付530g/m、厚さ2.1mmのバグフィルター用フェルトを得た。
<Example 2>
A PPS polymer having a melt flow rate of 110 g / 10 min was extruded from the nozzle shown in FIG. 1 at a polymer temperature of 300 ° C. with a single hole discharge rate of 2.1 g / min and spun at 1200 m / min. The cooling conditions at this time were 3.0 m / sec and 25 ° C. Thereafter, the total fineness was set to 1,000,000 dtex, the film was drawn at a draw ratio of 1.8 and a drawing temperature of 160 ° C., dried and cut to 64 mm to obtain hollow cross-section PPS short fibers. The fineness was 14 dtex, hollow rate = 22%, solid crimp, specific volume = 90 cm 3 / g, compressibility = 65%. This fiber was used as a clean gas side layer card web (weight per unit area: 200 g / m 2 ) at 100%. A web composed of 100% PPS (Procon (registered trademark) manufactured by Toyobo Co., Ltd.) with 2.2 dtex round cross-section fiber is laminated on a PPS base fabric similar to that in Example 1 by a cross layer, and a filter layer felt (weight per unit area) is obtained by needle punching. 200 g / m 2 ) and a laminated product of a support layer were prepared. The card web for the clean gas side layer was laminated on the support layer side (opposite side of the filtration layer) of this laminate, and further integrated by needle punch from both sides. The obtained felt was pressed and heat-set by a heat calendar at 210 ° C., and the filter layer was subjected to gas hair burning to obtain a bag filter felt having a basis weight of 530 g / m 2 and a thickness of 2.1 mm. .

<比較例1>
メルトフローレートが110g/10minであるPPSポリマーを丸型ノズルよりポリマー温度を300℃とし、単孔吐出量=2.1g/minにて押し出し、1200m/minにて紡糸した。このときの冷却条件は1.0m/sec、25℃であった。その後トータル繊度が1,000,000dtexとし、延伸倍率2.5、延伸温度160℃にて延伸し、スタッフィングボックスにより捲縮を付与し、乾燥後64mmにカットし丸断面PPS短繊維を得た。繊度は7.0dtex、機械捲縮を持ち、比容積=65cm/g、圧縮率=65%であった。この繊維を100%でクリーンガスサイド層用カードウェッブ(目付200g/m)とした。あらかじめ2.2dtex丸断面繊維のPPS(東洋紡績製プロコン(登録商標))100%からなるウエブをクロスレイヤーにより、実施例1と同様なPPS基布に積層し、ニードルパンチによりろ過層フェルト(目付200g/m)と支持層の積層品を作成した。この積層品の支持層側(ろ過層と反対側)に上記クリーンガスサイド層用カードウェッブを積層し、さらに両面よりニードルパンチで一体化させた。得られたフェルトを210℃の熱カレンダーによってプレスおよび、熱セットを行い、ろ過層には、ガス毛焼きを施して、目付515/m、厚さ1.8mmのバグフィルター用フェルトを得た。
<Comparative Example 1>
A PPS polymer having a melt flow rate of 110 g / 10 min was extruded at a polymer temperature of 300 ° C. from a round nozzle at a single hole discharge rate of 2.1 g / min and spun at 1200 m / min. The cooling conditions at this time were 1.0 m / sec and 25 ° C. Thereafter, the total fineness was 1,000,000 dtex, the film was stretched at a stretching ratio of 2.5 and a stretching temperature of 160 ° C., crimped by a stuffing box, cut into 64 mm after drying, and round section PPS short fibers were obtained. The fineness was 7.0 dtex, mechanical crimping, specific volume = 65 cm 3 / g, compression rate = 65%. This fiber was used as a clean gas side layer card web (weight per unit area: 200 g / m 2 ) at 100%. A web composed of 100% PPS (Procon (registered trademark) manufactured by Toyobo Co., Ltd.) with 2.2 dtex round cross-section fiber is laminated on a PPS base fabric similar to that in Example 1 by a cross layer, and a filter layer felt (weight per unit area) is obtained by needle punching. 200 g / m 2 ) and a laminated product of a support layer were prepared. The card web for the clean gas side layer was laminated on the support layer side (opposite side of the filtration layer) of this laminate, and further integrated by needle punch from both sides. The obtained felt was pressed and heat-set by a heat calendar at 210 ° C., and the filter layer was subjected to gas hair burning to obtain a bag filter felt having a basis weight of 515 / m 2 and a thickness of 1.8 mm. .

<実施例3>
実施例1で得られた6.7dtexの中空断面PPS短繊維を60重量%、比較例1で得られた7.0dtexの丸断面PPS短繊維を40重量%混綿し、クリーンガスサイド層用カードウェッブ(目付200g/m)とした。あらかじめ2.2dtex丸断面繊維のPPS(東洋紡績製プロコン(登録商標))100%からなるウエブをクロスレイヤーにより、実施例1と同様なPPS基布に積層し、ニードルパンチによりろ過層フェルト(目付200g/m)と支持層の積層品を作成した。この積層品の支持層側(ろ過層と反対側)に上記クリーンガスサイド用カードウェッブを積層し、さらに両面よりニードルパンチで一体化させた。得られたフェルトを210℃の熱カレンダーによってプレスおよび、熱セットを行い、ろ過層には、ガス毛焼きを施して、目付530/m、厚さ1.8mmのバグフィルター用フェルトを得た。
<Example 3>
60% by weight of the 6.7 dtex hollow cross-section PPS short fiber obtained in Example 1 and 40% by weight of the 7.0 dtex round cross-section PPS short fiber obtained in Comparative Example 1 were mixed to obtain a clean gas side layer card. The web (weight per unit area: 200 g / m 2 ) was used. A web composed of 100% PPS (Procon (registered trademark) manufactured by Toyobo Co., Ltd.) with 2.2 dtex round cross-section fiber is laminated on a PPS base fabric similar to that in Example 1 by a cross layer, and a filter layer felt (weight per unit area) is obtained by needle punching. 200 g / m 2 ) and a laminated product of a support layer were prepared. The clean gas side card web was laminated on the support layer side (opposite side of the filtration layer) of this laminate, and further integrated by needle punching from both sides. The obtained felt was pressed and heat-set by a heat calendar at 210 ° C., and the filter layer was subjected to gas hair burning to obtain a bag filter felt having a basis weight of 530 / m 2 and a thickness of 1.8 mm. .

<比較例2>
実施例1で得られた6.7dtexの中空断面PPS短繊維を10重量%、比較例1で得られた7.0dtexの丸断面PPS短繊維を90重量%混綿し、クリーンガスサイド層用カードウェッブ(目付200g/m)とした。あらかじめ2.2dtex丸断面繊維のPPS(東洋紡績製プロコン(登録商標))100%からなるウエブをクロスレイヤーにより、実施例1と同様なPPS基布に積層し、ニードルパンチによりろ過層フェルト(目付200g/m)と支持層の積層品を作成した。この積層品の支持層側(ろ過層と反対側)に上記クリーンサイド用カードウェッブを積層し、さらに両面よりニードルパンチで一体化させた。得られたフェルトを210℃の熱カレンダーによってプレスおよび、熱セットを行い、ろ過層には、ガス毛焼きを施して、目付505/m、厚さ1.8mmのバグフィルター用フェルトを得た。
<Comparative example 2>
A card for a clean gas side layer comprising 10% by weight of the 6.7 dtex hollow cross-section PPS short fibers obtained in Example 1 and 90% by weight of the 7.0 dtex round cross-section PPS short fibers obtained in Comparative Example 1. The web (weight per unit area: 200 g / m 2 ) was used. A web composed of 100% PPS (Procon (registered trademark) manufactured by Toyobo Co., Ltd.) with 2.2 dtex round cross-section fiber is laminated on a PPS base fabric similar to that in Example 1 by a cross layer, and a filter layer felt (weight per unit area) is obtained by needle punching. 200 g / m 2 ) and a laminated product of a support layer were prepared. The clean side card web was laminated on the support layer side (opposite side of the filtration layer) of this laminate, and further integrated by needle punching from both sides. The obtained felt was pressed and heat-set by a heat calendar at 210 ° C., and the filter layer was subjected to gas hair burning to obtain a bag filter felt having a basis weight of 505 / m 2 and a thickness of 1.8 mm. .

<実施例4>
メルトフローレートが110g/10minであるPPSポリマーを図5のノズルよりポリマー温度を300℃とし、単孔吐出量=2.7g/minにて押し出し、1200m/minにて紡糸した。このときの冷却条件は3.0m/sec、25℃であった。その後トータル繊度が1,000,000dtexとし、延伸倍率2.0、延伸温度160℃にて延伸し、乾燥後64mmにカットし中空異型断面PPS短繊維を得た。繊度は11dtex、中空率=22%、立体捲縮を持ち、比容積=65cm/g、圧縮率=61%であった。この繊維を100%でクリーンガスサイド層用カードウェッブ(目付200g/m)とした。あらかじめ2.2dtex丸断面繊維のPPS短繊維(東洋紡績株式会社製プロコン(登録商標))100%からなるウエブをクロスレイヤーにより、実施例1と同様なPPS基布に積層し、ニードルパンチによりろ過層フェルト(目付200g/m)と支持層の積層品を作成した。この積層品の支持層側(ろ過層と反対側)に上記クリーンサイド用カードウェッブを積層し、さらに両面よりニードルパンチで一体化させた。得られたフェルトを210℃の熱カレンダーによってプレスおよび、熱セットを行い、ろ過層には、ガス毛焼きを施して、目付525g/m、厚さ2.0mmのバグフィルター用フェルトを得た。
<Example 4>
A PPS polymer having a melt flow rate of 110 g / 10 min was extruded from the nozzle shown in FIG. 5 at a polymer temperature of 300 ° C. with a single hole discharge rate of 2.7 g / min and spun at 1200 m / min. The cooling conditions at this time were 3.0 m / sec and 25 ° C. Thereafter, the total fineness was 1,000,000 dtex, the drawing ratio was 2.0, the drawing temperature was 160 ° C., and after drying, cut to 64 mm to obtain hollow irregular cross-section PPS short fibers. The fineness was 11 dtex, hollow rate = 22%, solid crimp, specific volume = 65 cm 3 / g, compression rate = 61%. This fiber was used as a clean gas side layer card web (weight per unit area: 200 g / m 2 ) at 100%. A web composed of 100% PPS short fibers (Procon (registered trademark) manufactured by Toyobo Co., Ltd.) with 2.2 dtex round cross-section fibers is laminated on a PPS base fabric similar to that in Example 1 by a cross layer, and filtered by a needle punch. A laminate of a layer felt (weight per unit area: 200 g / m 2 ) and a support layer was prepared. The clean side card web was laminated on the support layer side (opposite side of the filtration layer) of this laminate, and further integrated by needle punching from both sides. The obtained felt was pressed and heat-set by a heat calendar at 210 ° C., and the filter layer was subjected to gas hair burning to obtain a bag filter felt having a basis weight of 525 g / m 2 and a thickness of 2.0 mm. .

<比較例3>
メルトフローレートが110g/10minであるPPSポリマーを丸型ノズルよりポリマー温度を300℃とし、単孔吐出量=1.9g/minにて押し出し、1200m/minにて紡糸した。このときの冷却条件は1.0m/sec、25℃であった。その後トータル繊度が1,000,000dtexとし、延伸倍率2.2、延伸温度160℃にて延伸し、スタッフィングボックスにより捲縮を付与し、乾燥後64mmにカットし丸断面PPS短繊維を得た。繊度は7.0dtex、機械捲縮を持ち、比容積=65cm/g、圧縮率=70%であった。この繊維を100%でクリーンガスサイド層のカードウェッブ200g/mとした。あらかじめ2.2dtex丸断面繊維のPPS短繊維(東洋紡績株式会社製プロコン(登録商標))100%からなるウエブをクロスレイヤーにより、実施例1と同様なPPS基布に積層し、ニードルパンチによりろ過層フェルト(目付200g/m)と支持層の積層品を作成した。この積層品の支持層側(ろ過層と反対側)に上記クリーンサイド用カードウェッブを積層し、さらに両面よりニードルパンチで一体化させた。得られたフェルトを210℃の熱カレンダーによってプレスおよび、熱セットを行い、ろ過層には、ガス毛焼きを施して、目付509g/m、厚さ1.8mmのバグフィルター用フェルトを得た。
<Comparative Example 3>
A PPS polymer having a melt flow rate of 110 g / 10 min was extruded from a round nozzle at a polymer temperature of 300 ° C. and discharged at a single hole discharge rate of 1.9 g / min and spun at 1200 m / min. The cooling conditions at this time were 1.0 m / sec and 25 ° C. Thereafter, the total fineness was 1,000,000 dtex, the film was drawn at a draw ratio of 2.2 and a drawing temperature of 160 ° C., crimped by a stuffing box, dried, and cut to 64 mm to obtain a round cross-section PPS short fiber. The fineness was 7.0 dtex, mechanical crimping, specific volume = 65 cm 3 / g, compression rate = 70%. This fiber was 100% to make a clean gas side layer card web of 200 g / m 2 . A web composed of 100% PPS short fibers (Procon (registered trademark) manufactured by Toyobo Co., Ltd.) with 2.2 dtex round cross-section fibers is laminated on a PPS base fabric similar to that in Example 1 by a cross layer, and filtered by a needle punch. A laminate of a layer felt (weight per unit area: 200 g / m 2 ) and a support layer was prepared. The clean side card web was laminated on the support layer side (opposite side of the filtration layer) of this laminate, and further integrated by needle punching from both sides. The obtained felt was pressed and heat-set by a heat calendar at 210 ° C., and the filter layer was subjected to gas hair burning to obtain a bag filter felt having a basis weight of 509 g / m 2 and a thickness of 1.8 mm. .

<実施例5>
実施例4で得られた11dtexの中空異型断面PPS短繊維を60重量%、比較例3で得られた7.0dtexの丸断面PPS短繊維を40重量%混綿し、クリーンガスサイド層のカードウェッブ200g/mとした。あらかじめ2.2dtex丸断面繊維のPPS短繊維(東洋紡績株式会社製プロコン(登録商標))100%からなるウエブをクロスレイヤーにより、実施例1と同様なPPS基布に積層し、ニードルパンチによりろ過層フェルト(目付200g/m)と支持層の積層品を作成した。この積層品の支持層側(ろ過層と反対側)に上記クリーンサイド用カードウェッブを積層し、さらに両面よりニードルパンチで一体化させた。得られたフェルトを210℃の熱カレンダーによってプレスおよび、熱セットを行い、ろ過層には、ガス毛焼きを施して、目付518g/m、厚さ1.9mmのバグフィルター用フェルトを得た。
<Example 5>
A clean gas side layer card web was prepared by blending 60 wt% of the 11 dtex hollow modified cross section PPS short fibers obtained in Example 4 and 40 wt% of the 7.0 dtex round cross section PPS short fibers obtained in Comparative Example 3. 200 g / m 2 . A web composed of 100% PPS short fibers (Procon (registered trademark) manufactured by Toyobo Co., Ltd.) with 2.2 dtex round cross-section fibers is laminated on a PPS base fabric similar to that in Example 1 by a cross layer, and filtered by a needle punch. A laminate of a layer felt (weight per unit area: 200 g / m 2 ) and a support layer was prepared. The clean side card web was laminated on the support layer side (opposite side of the filtration layer) of this laminate, and further integrated by needle punching from both sides. The obtained felt was pressed and heat-set by a heat calendar at 210 ° C., and the filter layer was subjected to gas hair burning to obtain a bag filter felt having a basis weight of 518 g / m 2 and a thickness of 1.9 mm. .

<比較例4>
実施例4で得られた11dtexの中空異型断面PPS短繊維を10重量%、比較例3で得られた7.0dtexの丸断面PPS短繊維を90重量%混綿し、クリーンガスサイド層用カードウェッブとした。この繊維を100%でクリーンガスサイド層のカードウェッブ200g/mとした。あらかじめ2.2dtex丸断面繊維のPPS短繊維(東洋紡績製プロコン(登録商標))100%からなるウエブをクロスレイヤーにより、実施例1と同様なPPS基布に積層し、ニードルパンチによりろ過層フェルト(目付200g/m)と支持層の積層品を作成した。この積層品の支持層側(ろ過層と反対側)に上記クリーンサイド用カードウェッブを積層し、さらに両面よりニードルパンチで一体化させた。得られたフェルトを210℃の熱カレンダーによってプレスおよび、熱セットを行い、ろ過層には、ガス毛焼きを施して、目付501g/m、厚さ1.9mmのバグフィルター用フェルトを得た。
<Comparative Example 4>
A clean gas side layer card web was prepared by blending 10 wt% of the 11 dtex hollow modified cross-section PPS short fibers obtained in Example 4 and 90 wt% of the 7.0 dtex round cross-section PPS short fibers obtained in Comparative Example 3. It was. This fiber was 100% to make a clean gas side layer card web of 200 g / m 2 . A web consisting of 100% PPS short fibers (Procon (registered trademark) manufactured by Toyobo Co., Ltd.) with 2.2 dtex round cross-section fibers is laminated on a PPS base fabric similar to that in Example 1 by a cross layer, and a filter layer felt is formed by needle punching. A laminate of (a basis weight of 200 g / m 2 ) and a support layer was prepared. The clean side card web was laminated on the support layer side (opposite side of the filtration layer) of this laminate, and further integrated by needle punching from both sides. The obtained felt was pressed and heat-set by a heat calendar at 210 ° C., and the filter layer was subjected to gas hair burning to obtain a bag filter felt having a basis weight of 501 g / m 2 and a thickness of 1.9 mm. .

Figure 2008179938
Figure 2008179938

以上のように、本発明では、従来、一般的に使用されているフィルター用フェルトのダストの除去効果を改善するために、中空率が5〜50%、比容積が50cm/g以上、圧縮率が75%以下である中空断面ポリフェニレンサルファイド短繊維を30%以上使用した不織布を少なくとも1層以上使用することによって、効率良く残存率を下げることができた。このことからパルスエアーなどの稼動時間を長くすることができ、フィルター寿命を長期化できるフィルター用フェルトを提供することができるものである。 As described above, in the present invention, in order to improve the dust removing effect of filter felt that has been generally used in the past, the hollowness is 5 to 50%, the specific volume is 50 cm 3 / g or more, and compression is performed. By using at least one or more layers of non-woven fabric using 30% or more of hollow cross-section polyphenylene sulfide short fibers having a rate of 75% or less, the remaining rate could be efficiently reduced. Accordingly, it is possible to provide a felt for a filter that can increase the operation time of pulsed air or the like and can prolong the filter life.

本発明で使用可能な中空断面繊維用ノズルを示す一例である。It is an example which shows the nozzle for hollow cross-section fibers which can be used by this invention. 本発明で使用可能な中空断面繊維用ノズルを示す一例である。It is an example which shows the nozzle for hollow cross-section fibers which can be used by this invention. 本発明で使用可能な中空断面繊維用ノズルを示す一例である。It is an example which shows the nozzle for hollow cross-section fibers which can be used by this invention. 本発明で使用可能な中空で、2つの突起物が存在する断面形状繊維用ノズルを示す一例である。It is an example which shows the nozzle for cross-sectional shape fibers which can be used by this invention and has two protrusions. 本発明で使用可能な中空で、3つの突起物が存在する断面形状繊維用ノズルを示す一例である。It is an example which shows the nozzle for cross-sectional shape fibers which can be used by this invention and has three protrusions. 本発明で使用可能な中空で、4つの突起物が存在する断面形状繊維用ノズルを示す一例である。It is an example which shows the nozzle for cross-sectional shape fibers which can be used by this invention and has four protrusions.

Claims (4)

中空率が5〜50%、比容積が50cm/g以上、圧縮率が75%以下である中空断面ポリフェニレンサルファイド短繊維を30%以上使用した不織布を少なくとも1層以上使用することを特徴とするフィルター用フェルト。 At least one or more layers of non-woven fabric using hollow cross-sectional polyphenylene sulfide short fibers having a hollow ratio of 5 to 50%, a specific volume of 50 cm 3 / g or more, and a compression ratio of 75% or less are used. Filter felt. 前記中空断面ポリフェニレンサルファイド短繊維が、少なくとも2つの突起物が存在する断面形状である中空異型断面ポリフェニレンサルファイド短繊維であることを特徴とする請求項1に記載のファルター用フェルト。   The felt for felts according to claim 1, wherein the hollow cross-sectional polyphenylene sulfide short fiber is a hollow irregular cross-sectional polyphenylene sulfide short fiber having a cross-sectional shape in which at least two protrusions are present. 前記ポリフェニレンサルファイド短繊維が比容積が70cm/g以上、圧縮率が65%以下であることを特徴とする請求項1に記載のフィルター用フェルト。 2. The filter felt according to claim 1, wherein the polyphenylene sulfide short fibers have a specific volume of 70 cm 3 / g or more and a compressibility of 65% or less. 前記ポリフェニレンサルファイド短繊維が立体捲縮を有することを特徴とする請求項1〜3のいずれかに記載のフィルター用フェルト。
The filter felt according to any one of claims 1 to 3, wherein the polyphenylene sulfide short fibers have steric crimps.
JP2007336025A 2006-12-28 2007-12-27 Filter felt Expired - Fee Related JP5076883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007336025A JP5076883B2 (en) 2006-12-28 2007-12-27 Filter felt

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2006354164 2006-12-28
JP2006354164 2006-12-28
JP2006354160 2006-12-28
JP2006354160 2006-12-28
JP2007336025A JP5076883B2 (en) 2006-12-28 2007-12-27 Filter felt

Publications (2)

Publication Number Publication Date
JP2008179938A true JP2008179938A (en) 2008-08-07
JP5076883B2 JP5076883B2 (en) 2012-11-21

Family

ID=39588560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007336025A Expired - Fee Related JP5076883B2 (en) 2006-12-28 2007-12-27 Filter felt

Country Status (2)

Country Link
JP (1) JP5076883B2 (en)
WO (1) WO2008081880A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101744258B1 (en) * 2015-10-22 2017-06-09 주식회사 휴비스 Shaped Crosssection Hollow Fiber For High Heat-Resistance And Fibrous Assemblies Using Thereof
WO2019117029A1 (en) * 2017-12-15 2019-06-20 東洋紡株式会社 Filter material-use nonwoven fabric and method for manufacturing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114432792B (en) * 2022-01-26 2022-12-13 江苏奥凯环境技术有限公司 High-temperature-resistant corrosion-resistant multilayer filter material

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06142644A (en) * 1992-11-11 1994-05-24 Toray Ind Inc Water purifying filter
JPH1071313A (en) * 1996-08-30 1998-03-17 Mitsubishi Electric Corp Fibrous filter and manufacture of fibrous filter
JPH10165731A (en) * 1996-12-10 1998-06-23 Mitsubishi Electric Corp Filter member of air purifying apparatus
JPH11107147A (en) * 1997-10-03 1999-04-20 Chisso Corp Chemical-resistant conjugate fabric and formed product obtained by using the same
JP2000079308A (en) * 1998-06-23 2000-03-21 Toyobo Co Ltd Filter cloth for highly efficient dust removal bag filter and its manufacture
JP2000117027A (en) * 1998-08-10 2000-04-25 Toray Ind Inc Filter fabric for collecting dust and bag filter
JP2001327814A (en) * 2000-05-24 2001-11-27 Toyobo Co Ltd Filter medium
JP2001336050A (en) * 2000-05-24 2001-12-07 Toyobo Co Ltd Polyarylene sulfide nonwoven fabric, oil filter and nonwoven fabric for bag filter
JP2003117319A (en) * 2001-10-19 2003-04-22 Toray Ind Inc Filter cloth
JP2003117325A (en) * 2001-10-12 2003-04-22 Toyobo Co Ltd Bag filter
WO2004087293A1 (en) * 2003-03-31 2004-10-14 Toray Industries Inc. Filter medium
JP2004290929A (en) * 2003-03-28 2004-10-21 Japan Vilene Co Ltd Filter for coarse dust
JP2005232600A (en) * 2004-02-17 2005-09-02 Toray Ind Inc Method for producing ion exchange paper for chemical filter

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06142644A (en) * 1992-11-11 1994-05-24 Toray Ind Inc Water purifying filter
JPH1071313A (en) * 1996-08-30 1998-03-17 Mitsubishi Electric Corp Fibrous filter and manufacture of fibrous filter
JPH10165731A (en) * 1996-12-10 1998-06-23 Mitsubishi Electric Corp Filter member of air purifying apparatus
JPH11107147A (en) * 1997-10-03 1999-04-20 Chisso Corp Chemical-resistant conjugate fabric and formed product obtained by using the same
JP2000079308A (en) * 1998-06-23 2000-03-21 Toyobo Co Ltd Filter cloth for highly efficient dust removal bag filter and its manufacture
JP2000117027A (en) * 1998-08-10 2000-04-25 Toray Ind Inc Filter fabric for collecting dust and bag filter
JP2001327814A (en) * 2000-05-24 2001-11-27 Toyobo Co Ltd Filter medium
JP2001336050A (en) * 2000-05-24 2001-12-07 Toyobo Co Ltd Polyarylene sulfide nonwoven fabric, oil filter and nonwoven fabric for bag filter
JP2003117325A (en) * 2001-10-12 2003-04-22 Toyobo Co Ltd Bag filter
JP2003117319A (en) * 2001-10-19 2003-04-22 Toray Ind Inc Filter cloth
JP2004290929A (en) * 2003-03-28 2004-10-21 Japan Vilene Co Ltd Filter for coarse dust
WO2004087293A1 (en) * 2003-03-31 2004-10-14 Toray Industries Inc. Filter medium
JP2005232600A (en) * 2004-02-17 2005-09-02 Toray Ind Inc Method for producing ion exchange paper for chemical filter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101744258B1 (en) * 2015-10-22 2017-06-09 주식회사 휴비스 Shaped Crosssection Hollow Fiber For High Heat-Resistance And Fibrous Assemblies Using Thereof
WO2019117029A1 (en) * 2017-12-15 2019-06-20 東洋紡株式会社 Filter material-use nonwoven fabric and method for manufacturing same
JPWO2019117029A1 (en) * 2017-12-15 2020-12-17 東洋紡株式会社 Nonwoven fabric for filter media and its manufacturing method

Also Published As

Publication number Publication date
WO2008081880A1 (en) 2008-07-10
JP5076883B2 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
JP4693509B2 (en) Composite structure and manufacturing method thereof
AU678593B2 (en) High-efficiency, self-supporting filter elements made from fibers
EP2278051B1 (en) Improved fabrics
WO2004087293A1 (en) Filter medium
JP2012506764A (en) Filter bag, and thus pleatable filter media, and method for manufacturing the same
Xu et al. Preparation of a novel poly (ether ether ketone) nonwoven filter and its application in harsh conditions for dust removal
WO2007119508A1 (en) Process for production of polytetrafluoroethylene porous membrane, filter medium and filter unit
JP6879384B2 (en) Nonwoven fabric for filter media and its manufacturing method
CN101406811B (en) Blended fiberglass overlay film filter material
JP5076883B2 (en) Filter felt
KR20160139176A (en) Incineration Filter Structure and Method for Manufacturing Using the Same
CN112770827A (en) Air filter medium, filter pack, air filter unit, and methods for producing these
KR20180083999A (en) Filtering media comprising porous network of heat resistant polymer fiber for dust collection of middle-high temperature exhaust gas, and preparation method thereof
JP2008161803A (en) Filter
JP4687495B2 (en) Bag filter cloth and bag filter
KR20020069053A (en) Metal fiber filter having activated carbon fiber layers on metal fiber layers
JP2008012494A (en) Sheet for filter, filter member, and bag filter
JP2008161802A (en) Filter felt
JP2005205305A (en) Air filter medium
JP2008132463A (en) Felt for bag filter
JP2009248324A (en) Composite fiber structure, its manufacturing method, and filter medium for bag filter
JP2006136779A (en) Laminate type filter material and production method therefor
JP2001259321A (en) Filter for dust collector
JP2008163513A (en) Sheath core type conjugate fiber for bag filter
JP4442200B2 (en) Polyphenylene sulfide long fiber nonwoven fabric and filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120813

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5076883

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees