JP2008179502A - Cementitious composition reduced in content of water-soluble hexavalent chromium and method for producing the same - Google Patents

Cementitious composition reduced in content of water-soluble hexavalent chromium and method for producing the same Download PDF

Info

Publication number
JP2008179502A
JP2008179502A JP2007013533A JP2007013533A JP2008179502A JP 2008179502 A JP2008179502 A JP 2008179502A JP 2007013533 A JP2007013533 A JP 2007013533A JP 2007013533 A JP2007013533 A JP 2007013533A JP 2008179502 A JP2008179502 A JP 2008179502A
Authority
JP
Japan
Prior art keywords
amount
water
raw material
mass
soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007013533A
Other languages
Japanese (ja)
Other versions
JP5329762B2 (en
Inventor
Takayasu Ito
貴康 伊藤
Sachio Yuge
祐夫 弓削
Hiroshi Mikami
浩 三上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2007013533A priority Critical patent/JP5329762B2/en
Publication of JP2008179502A publication Critical patent/JP2008179502A/en
Application granted granted Critical
Publication of JP5329762B2 publication Critical patent/JP5329762B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/02Portland cement
    • C04B7/04Portland cement using raw materials containing gypsum, i.e. processes of the Mueller-Kuehne type

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cementitious composition having a reduced content of water-soluble Cr(VI) and good quality, and to provide a method for producing the same. <P>SOLUTION: The cementitious composition reduced in the content of water-soluble hexavalent chromium comprises cement clinker and gypsum, wherein the K<SB>2</SB>O content (mass%) and the total Cr content (mass%) in the cement clinker satisfies the relation: total Cr content×10<SP>4</SP>≤-222×K<SB>2</SB>O content+225. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、セメントの水和過程で溶出する恐れのある水溶性六価クロム(以下、「水溶性Cr(VI)」と表記する場合がある)の量を20mg/kg(20x10−4質量%)以下に低減した水溶性六価クロム低減セメント組成物及びその製造方法に関する。 In the present invention, the amount of water-soluble hexavalent chromium (hereinafter sometimes referred to as “water-soluble Cr (VI)”) that may be eluted during the hydration process of cement is 20 mg / kg (20 × 10 −4 mass%). ) The following relates to a reduced water-soluble hexavalent chromium-reducing cement composition and a method for producing the same.

セメントクリンカーは、石灰石、粘土、珪石、鉄原料等の各種原料をロータリーキルン中で高温焼成して製造される。しかしながら、このような高温条件下で製造されたセメントクリンカー中には、原料に含まれる微量成分としてのクロムが、有害な水溶性Cr(VI)の形態で、有意な量存在する場合がある。   Cement clinker is manufactured by firing various materials such as limestone, clay, silica, and iron materials at a high temperature in a rotary kiln. However, in cement clinker produced under such high temperature conditions, chromium as a minor component contained in the raw material may be present in a significant amount in the form of harmful water-soluble Cr (VI).

近年、環境への配慮の高まりから、セメントを、有害金属を固定する土質改良剤用途として使用する場合において、固化した改良土からの水溶性Cr(VI)溶出量が土壌環境基準値(0.05mg/L以下)を満足することを目的に、セメント業界では、1998年9月にセメント中の水溶性Cr(VI)含有量を20mg/kg(20x10−4質量%)以下とするガイドラインを設定し、以降これに基づいて管理している。 In recent years, due to increasing environmental considerations, when cement is used as a soil conditioner for fixing harmful metals, the amount of water-soluble Cr (VI) eluted from the solidified improved soil is the soil environment standard value (0. In September 1998, the guidelines for setting the water-soluble Cr (VI) content in cement to 20 mg / kg (20 × 10 −4 mass%) or less were established in the cement industry with the aim of satisfying the requirement of 0.5 mg / L or less) From then on, management is based on this.

また、セメントクリンカー中の水溶性Cr(VI)は、非特許文献1に記されるように、溶解度の高いクロム酸塩、例えばクロム酸ナトリウム、クロム酸カリウム等のアルカリ金属塩の形態で存在すると言われている。しかしながら、非特許文献1には、水溶性Cr(VI)を制御・低減する方法は開示されていない。   Further, as described in Non-Patent Document 1, the water-soluble Cr (VI) in the cement clinker is present in the form of a highly soluble chromate salt, for example, an alkali metal salt such as sodium chromate or potassium chromate. It is said. However, Non-Patent Document 1 does not disclose a method for controlling / reducing water-soluble Cr (VI).

これまで、水溶性Cr(VI)溶出防止方法に関してはいくつかの方法が開示されている。例えば、特許文献1では、セメントを用いた固化物からの水溶性Cr(VI)溶出防止について、セメント中のCSとCA量の総量を規定したセメントに所定量のスラグを添加することにより、火山灰質粘性土などを処理対象土とした場合でも、高い固化強度が得られる溶出防止方法が開示されている。しかしながら、この方法では、セメントにスラグを新たに添加する必要があり、製造工程が煩雑であるとともに、反応性の低いスラグを混合することにより強度発現性に劣る場合があった。 Heretofore, several methods have been disclosed regarding water-soluble Cr (VI) elution prevention methods. For example, in Patent Document 1, for the prevention of water-soluble Cr (VI) elution from a solidified product using cement, a predetermined amount of slag is added to cement that defines the total amount of C 3 S and C 3 A in the cement. Thus, even when volcanic ash cohesive soil or the like is used as the soil to be treated, an elution prevention method is disclosed that can provide high solidification strength. However, in this method, it is necessary to newly add slag to the cement, and the manufacturing process is complicated. In addition, there is a case where strength development is inferior by mixing slag having low reactivity.

一方、特許文献2では、セメントクリンカー焼成時にプラスチック等の可燃性樹脂をキルンに投入することにより、キルン内を還元雰囲気としてセメントクリンカー中の水溶性Cr(VI)の生成を防ぎ、それによりセメントクリンカー中の水溶性Cr(VI)を低減する方法が開示されている。しかしながら、可燃性樹脂をキルンに投入する方法では、キルン内の雰囲気を均一化することが難しく、焼成状態の変動が生じるため、生成したセメントクリンカー中の水溶性Cr(VI)量やf.CaO量等の品質変動が大きいといった問題があった。さらに、特許文献3では、速効性の6価クロムの還元物質と遅効性の6価クロムの還元物質とを併せて含む水硬性物質用6価クロム溶出低減剤が開示されている。しかしながら、この6価クロム溶出低減剤は、高価であり実用的ではない上に、添加量が増大すると強度発現性の低下がみられる場合もあるという問題があった。
高橋茂,セメント・コンクリート,No.640,pp.20−29(Jun. 2000) 特開2000−308863号公報 特開2003−246654号公報 特開2000−86322号公報
On the other hand, in Patent Document 2, a combustible resin such as plastic is put into a kiln when cement clinker is fired to prevent the formation of water-soluble Cr (VI) in the cement clinker by using the inside of the kiln as a reducing atmosphere. A method for reducing water-soluble Cr (VI) therein is disclosed. However, in the method of introducing the combustible resin into the kiln, it is difficult to make the atmosphere in the kiln uniform, and the firing state varies, so the amount of water-soluble Cr (VI) in the produced cement clinker and f.CaO There was a problem that quality fluctuations such as quantity were large. Further, Patent Document 3 discloses a hexavalent chromium elution reducing agent for hydraulic substances, which contains both a fast-acting hexavalent chromium reducing substance and a slow-acting hexavalent chromium reducing substance. However, this hexavalent chromium elution reducing agent is expensive and impractical, and there is a problem that strength development may be reduced when the addition amount is increased.
Takahashi Shigeru, cement and concrete, No. 640, pp. 20-29 (Jun. 2000) JP 2000-308863 A JP 2003-246654 A JP 2000-86322 A

本発明は、水溶性Cr(VI)量を低減し、品質が良好なセメント組成物及びその製造方法を提供することを目的とする。   An object of the present invention is to provide a cement composition having a good quality by reducing the amount of water-soluble Cr (VI) and a method for producing the same.

本発明者らは上記の課題を解決すべく鋭意検討した結果、セメント中の水溶性Cr(VI)の生成には、数多くのアルカリ金属酸化物の中で、KOのみが選択的にCrと結合することによって水溶性Cr(VI)を生成すること、及びKO量を減少することにより水溶性Cr(VI)を低減することができることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that, in the formation of water-soluble Cr (VI) in cement, only K 2 O is selectively Cr among many alkali metal oxides. The present inventors have found that water-soluble Cr (VI) can be produced by binding to and that water-soluble Cr (VI) can be reduced by reducing the amount of K 2 O, and the present invention has been completed.

すなわち、本発明は、セメントクリンカーと石膏とを含み、セメントクリンカー中のKO量(質量%)と全Cr量(質量%)とが、全Cr量x10≦−222×KO量+225の関係を満たす水溶性Cr(VI)低減セメント組成物である。すなわち、本発明においては、上記式を満たす限り、KO量が少ない場合には全Cr量が多くても、水溶性Cr(VI)を所定量以下(例えば20x10−4質量%)にすることができる。 That is, the present invention includes cement clinker and gypsum, and the amount of K 2 O (% by mass) and the total amount of Cr (% by mass) in the cement clinker are the total amount of Cr × 10 4 ≦ −222 × K 2 O. It is a water-soluble Cr (VI) -reducing cement composition that satisfies the relationship +225. That is, in the present invention, as long as the above formula is satisfied, when the amount of K 2 O is small, even if the total Cr amount is large, the water-soluble Cr (VI) is made a predetermined amount or less (for example, 20 × 10 −4 mass%). be able to.

本発明のセメント組成物及びその製造方法によれば、セメント組成物中に存在する水溶性Cr(VI)量を、業界のガイドライン値(20mg/kg)以下に低減することができるセメント組成物を提供することができる。   According to the cement composition and the method for producing the same of the present invention, a cement composition capable of reducing the amount of water-soluble Cr (VI) present in the cement composition to an industry guideline value (20 mg / kg) or less. Can be provided.

本発明のセメント組成物は、セメントクリンカーと石膏からなる。セメントクリンカーは、普通ポルトランドセメント用クリンカー、早強セメント用クリンカー、中庸熱セメント用クリンカー、低熱セメント用クリンカー等が用いられる。   The cement composition of the present invention comprises a cement clinker and gypsum. As the cement clinker, ordinary Portland cement clinker, early strong cement clinker, intermediate heat cement clinker, low heat cement clinker and the like are used.

石膏としては、天然石膏、排脱石膏、フッ酸石膏、燐酸石膏等が挙げられ、それらの形態は、二水石膏、半水石膏、無水石膏等の何れの形態であっても良い。   Examples of the gypsum include natural gypsum, drainage gypsum, fluoric acid gypsum, and phosphoric acid gypsum, and the form thereof may be any form such as dihydrate gypsum, hemihydrate gypsum, and anhydrous gypsum.

セメントクリンカーに石膏を添加しボールミルなどで粉砕して得られたセメント組成物の化学組成は、CSが20〜80質量%、好ましくは30〜75質量%、更に好ましくは50〜70質量%である。CSは、5〜70質量%、好ましくは7〜50質量%、更に好ましくは7〜20質量%である。CAは、0〜20質量%、好ましくは0〜15質量%、更に好ましくは0〜12質量%である。CAFは、0〜20質量%、好ましくは5〜15質量%、更に好ましくは7〜12質量%である。 The chemical composition of the cement composition obtained by adding gypsum to the cement clinker and pulverizing with a ball mill or the like is 20 to 80% by mass of C 3 S, preferably 30 to 75% by mass, more preferably 50 to 70% by mass. It is. C 2 S is 5 to 70 wt%, preferably from 7 to 50 wt%, more preferably 7 to 20 mass%. C 3 A is 0 to 20 wt%, preferably 0-15 wt%, more preferably 0-12 wt%. C 4 AF is 0 to 20% by weight, preferably 5 to 15% by weight, more preferably 7 to 12 mass%.

ここで、セメント中のCaO、SiO、Al、Fe、NaO、KO含有量(質量%)は、JIS R 5202:1999「ポルトランドセメントの化学分析方法」に準じて測定される。また、CS量、CS量、CA量及びCAF量は、下記の式(1)、(2)、(3)及び(4)によって算出する値である。 Here, the CaO, SiO 2 , Al 2 O 3 , Fe 2 O 3 , Na 2 O, and K 2 O content (mass%) in the cement was determined according to JIS R 5202: 1999 “Chemical analysis method for Portland cement”. Measured accordingly. Further, the amount of C 3 S, the amount of C 2 S, the amount of C 3 A, and the amount of C 4 AF are values calculated by the following formulas (1), (2), (3), and (4).

S量(質量%)=4.07×CaO(質量%)−7.60×SiO(質量%)−6.72×Al(質量%)−1.43×Fe(質量%)−2.85×SO(質量%) (1)
S量(質量%)=2.87×SiO(質量%)−0.754×CS(質量%) (2)
A量(質量%)=2.65×Al(質量%)−1.69×Fe(質量%) (3)
AF量(質量%)=3.04×Fe(質量%) (4)
C 3 S amount (mass%) = 4.07 × CaO (mass%) − 7.60 × SiO 2 (mass%) − 6.72 × Al 2 O 3 (mass%) − 1.43 × Fe 2 O 3 (mass%)-2.85 × SO 3 (mass%) (1)
C 2 S amount (mass%) = 2.87 × SiO 2 (mass%) − 0.754 × C 3 S (mass%) (2)
C 3 A amount (mass%) = 2.65 × Al 2 O 3 (mass%) − 1.69 × Fe 2 O 3 (mass%) (3)
C 4 AF amount (mass%) = 3.04 × Fe 2 O 3 (mass%) (4)

粉末度は、JIS R 5201:1997「セメントの物理試験方法」で規定されるブレーン比表面積で2500〜5000cm/g、好ましくは2800〜4200cm/g、更に好ましくは3000〜3900cm/gである。 Fineness, JIS R 5201: 2500~5000cm with Blaine specific surface area defined by the 1997 "Physical testing methods for cement" 2 / g, preferably 2800~4200cm 2 / g, more preferably 3000~3900cm 2 / g is there.

セメント組成物を製造するにあたっては、セメントクリンカー中のKO量(質量%)と全Cr量(質量%)とが、全Cr量x10≦−222×KO量+228の関係を満たすように、KO量と全Cr量を調整する。これにより、全Cr量が多い場合にはKO量を低減する、あるいはKO量が多い場合には全Cr量を少なくすることにより、セメント組成物中に存在する水溶性Cr(VI)量を20mg/kg以下に低減することができる。更に安全な管理値として水溶性Cr(VI)量を15mg/kg以下とする場合は、全Cr量x10≦−222×KO量+200、水溶性Cr(VI)量を10mg/kg以下とする場合は、全Cr量x10≦−222×KO量+172を満たすようにKO量と全Cr量を調整する。 In producing the cement composition, the amount of K 2 O (mass%) and the total amount of Cr (mass%) in the cement clinker satisfy the relationship of the total Cr amount × 10 4 ≦ −222 × K 2 O amount + 228. Thus, the amount of K 2 O and the total amount of Cr are adjusted. Thus, when the total Cr amount is large, the amount of K 2 O is reduced, or when the total amount of K 2 O is large, the total Cr amount is decreased, whereby the water-soluble Cr (VI ) Amount can be reduced to 20 mg / kg or less. When the water-soluble Cr (VI) amount is 15 mg / kg or less as a safer control value, the total Cr amount x 10 4 ≦ −222 × K 2 O amount + 200, and the water-soluble Cr (VI) amount is 10 mg / kg or less. In this case, the K 2 O amount and the total Cr amount are adjusted so as to satisfy the total Cr amount × 10 4 ≦ −222 × K 2 O amount + 172.

なお、全Cr量及び水溶性Cr(VI)量は、JCAS I−51:1981「セメント及びセメント原料中の微量成分の定量方法」に準じて測定される。また、NaO量及びKO量はJIS R 5202:1999「ポルトランドセメントの化学分析方法」に準じて測定され、全アルカリ量は、全アルカリ量=NaO+0.658KOとして算出される。 The total Cr amount and the water-soluble Cr (VI) amount are measured according to JCAS I-51: 1981 “Method for quantifying trace components in cement and cement raw material”. The amount of Na 2 O and the amount of K 2 O are measured according to JIS R 5202: 1999 “Chemical analysis method of Portland cement”, and the total alkali amount is calculated as total alkali amount = Na 2 O + 0.658 K 2 O. The

セメント組成物中のKO量を制御することにより水溶性Cr(VI)量を低減できることの理由は明確ではないが、以下のことが推察される。 The reason why the amount of water-soluble Cr (VI) can be reduced by controlling the amount of K 2 O in the cement composition is not clear, but the following is presumed.

CrはNaOやKOと結合し、溶解度の高いクロム酸ナトリウムあるいはクロム酸カリウムを生成し水溶性Cr(VI)となると言われ(非特許文献1)、本来は全アルカリ量の増加が水溶性Cr(VI)の増加に繋がると考えられていた。しかしながら、本発明者らは、セメントクリンカー中ではNaOがエーライトあるいはビーライトといったクリンカー鉱物に固溶して存在する割合が高いために、NaOとCrとが結合してクロム酸ナトリウムを生成する可能性は低いと考えている。その一方、KOはクリンカー中でエーライト及びビーライトへの固溶割合が小さいために、Crと結合してクロム酸カリウムを生成し易く、KO量がある一定以上の含有量となると溶解度の高いクロム酸カリウムを生成して水溶性Cr(VI)量が増加するのではないかと考えている。 It is said that Cr combines with Na 2 O and K 2 O to produce highly soluble sodium chromate or potassium chromate to become water-soluble Cr (VI) (Non-patent Document 1), which originally increases the total alkali amount. Was thought to lead to an increase in water-soluble Cr (VI). However, the present inventors have found that because of the high proportion of Na 2 O is present in solid solution in the clinker minerals such alite or belite in cement clinker, sodium chromate by bonding and Na 2 O and Cr We think that the possibility to generate is low. On the other hand, since K 2 O has a small solid solution ratio in alite and belite in the clinker, it easily binds to Cr to form potassium chromate, and the K 2 O content is more than a certain content. Then, it is thought that potassium chromate with high solubility is produced and the amount of water-soluble Cr (VI) increases.

セメントクリンカー中のKO量は、上記式を満足する範囲であれば何れの値であってもよいが、好ましくは0.20〜0.65質量%、更に好ましくは0.25〜0.50質量%である。KO量が0.20質量%以上であると、硫酸カリウム量が極端に減少してCAの水和を抑制するのに十分な硫酸イオンを供給できず流動性が低下するという問題を回避できる。一方、KO量が0.65質量%以下であると、KOが固溶したアルミネートは反応性が極端に高い斜方晶の多形をとり、初期の流動性低下を引き起こすという問題を回避できる。 The amount of K 2 O in the cement clinker may be any value as long as it satisfies the above formula, but is preferably 0.20 to 0.65% by mass, and more preferably 0.25 to 0. 50% by mass. When the amount of K 2 O is 0.20% by mass or more, the amount of potassium sulfate is extremely reduced and sufficient sulfate ions cannot be supplied to suppress hydration of C 3 A, resulting in a decrease in fluidity. Can be avoided. On the other hand, when the amount of K 2 O is 0.65% by mass or less, the aluminate in which K 2 O is dissolved takes an orthorhombic polymorph having extremely high reactivity, and causes an initial decrease in fluidity. The problem can be avoided.

また、全Cr量も上記式を満足する範囲であれば何れの値であってもよいが、好ましくは200mg/kg(200x10−4質量%)以下、更に好ましくは160mg/kg(160x10−4質量%)以下、特に好ましくは150mg/kg(150x10−4質量%)以下であると、上記の全Cr量とKO量との関係式が適用できる。しかし、全Cr量が例えば200mg/kgを超えて増加すると、クロムはクロム酸カリウム以外の形態をとる水溶性Cr(VI)となるため、KO量の低減のみでは対応できない可能性がある。 Further, the total Cr amount may be any value as long as it satisfies the above formula, but is preferably 200 mg / kg (200 × 10 −4 mass%) or less, more preferably 160 mg / kg (160 × 10 −4 mass). %) Or less, and particularly preferably 150 mg / kg (150 × 10 −4 mass%) or less, the relational expression between the total Cr amount and the K 2 O amount can be applied. However, if the total Cr amount increases, for example, exceeding 200 mg / kg, chromium becomes water-soluble Cr (VI) that takes a form other than potassium chromate, so there is a possibility that it cannot be dealt with only by reducing the K 2 O amount. .

また、全Cr量が100mg/kg以下であり、かつ、KO量が0.43質量%以下であるようにすることがより好ましい。 More preferably, the total Cr amount is 100 mg / kg or less, and the K 2 O amount is 0.43 mass% or less.

セメント組成物のKO量(質量%)と全Cr量が上記式を満足するようにするには、セメントクリンカー製造用原料中のKO量と全Cr量を調整する。 In order for the K 2 O amount (% by mass) and the total Cr amount of the cement composition to satisfy the above formula, the K 2 O amount and the total Cr amount in the raw material for producing cement clinker are adjusted.

O量は、粘土質原料の使用方法により調整する。具体的には、粘土質原料をKO量が1.6質量%以上の高K粘土質原料と、KO量が1.6質量%未満の低K粘土質原料とに分けて使用し、その使用比率を変えることで調整すると運用が容易である。具体的には、例えばKO含有量が多くなった場合には、低K粘土質原料の使用比率を高めてKO含有量を低減する。これには、低K粘土質原料のみを使用する場合も含まれる。 The amount of K 2 O is adjusted by the method of using the clay material. Specifically, the clay material is divided into a high K clay material having a K 2 O content of 1.6% by mass or more and a low K clay material having a K 2 O content of less than 1.6% by mass. However, it is easy to operate by adjusting the usage ratio. Specifically, for example, when the K 2 O content increases, the use ratio of the low K clayey raw material is increased to reduce the K 2 O content. This includes the case of using only low K clay raw materials.

粘土質原料としては、粘土及び建設発生土からなる群から選択される高K粘土質原料と、石炭灰及び高炉スラグからなる群から選択される低K粘土質原料がある。   The clay material includes a high K clay material selected from the group consisting of clay and construction generated soil, and a low K clay material selected from the group consisting of coal ash and blast furnace slag.

また、全Cr量は、鉄原料中の高Cr鉄原料と低Cr鉄原料との使用比率により調整する。具体的には全Cr量が多くなった場合には、低Cr鉄原料の使用比率を高め、高Cr鉄原料の使用比率を低くすることで全Cr量を低減する。Cr鉄原料としては、鉄精鉱、転炉滓、鉄含有汚泥等の高Cr鉄原料、銅からみ等の低Cr鉄原料がある。   Further, the total Cr amount is adjusted by the use ratio of the high Cr iron raw material and the low Cr iron raw material in the iron raw material. Specifically, when the total Cr amount increases, the total Cr amount is reduced by increasing the usage ratio of the low Cr iron raw material and decreasing the usage ratio of the high Cr iron raw material. Examples of the Cr iron raw material include high Cr iron raw materials such as iron concentrate, converter slag, and iron-containing sludge, and low Cr iron raw materials such as copper tangles.

セメントクリンカーを製造する際には、CaO源としての石灰石、SiO源としての珪石、Al・SiO源としての粘土質原料、Fe源としての鉄原料及びその他の原料をクリンカーの目的とする組成に応じて配合する。 When manufacturing cement clinker, limestone as CaO source, silica as SiO 2 source, clay material as Al 2 O 3 · SiO 2 source, a source of iron and other raw materials as Fe 2 O 3 source It mix | blends according to the target composition of a clinker.

各原料の原単位は、石灰石が900〜1500kg/t−クリンカー、好ましくは1000〜1400kg/t−クリンカー、珪石が0〜120kg/t−クリンカー、好ましくは5〜100kg/t−クリンカー、粘土質原料が100〜500kg/t−クリンカー、好ましくは100〜400kg/t−クリンカー、鉄原料が5〜80kg/t−クリンカー、好ましくは30〜70kg/t−クリンカー、その他原料が0〜300kg/t−クリンカー、好ましくは10〜200kg/t−クリンカーである。   The basic unit of each raw material is 900-1500 kg / t-clinker for limestone, preferably 1000-1400 kg / t-clinker, 0-120 kg / t-clinker for silica, preferably 5-100 kg / t-clinker, clayey raw material 100-500 kg / t-clinker, preferably 100-400 kg / t-clinker, iron raw material 5-80 kg / t-clinker, preferably 30-70 kg / t-clinker, other raw materials 0-300 kg / t-clinker 10 to 200 kg / t-clinker is preferable.

なお、その他原料としては、含水率が50質量%以上と高い下水汚泥等があげられる。   Other raw materials include sewage sludge having a high moisture content of 50% by mass or more.

上記粘土質原料に関しては、高K粘土質原料が0〜80kg/t−クリンカー、好ましくは5〜60kg/t−クリンカー、低K粘土質原料が20〜500kg/t−クリンカー、好ましくは120〜300kg/t−クリンカーであることが更に好ましい。   Regarding the above clay material, the high K clay material is 0-80 kg / t-clinker, preferably 5-60 kg / t-clinker, and the low K clay material is 20-500 kg / t-clinker, preferably 120-300 kg. More preferably, it is a / t-clinker.

また、上記鉄原料は、高Cr鉄原料が0〜40kg/t−クリンカー、好ましくは5〜25kg/t−クリンカー、低Cr鉄原料が0〜80kg/t−クリンカー、好ましくは30〜70kg/t−クリンカーであることが更に好ましい。   The iron raw material is a high Cr iron raw material of 0 to 40 kg / t-clinker, preferably 5 to 25 kg / t-clinker, and a low Cr iron raw material of 0 to 80 kg / t-clinker, preferably 30 to 70 kg / t. -More preferred is a clinker.

以下に、実施例を用いて本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES The present invention will be described in detail below using examples, but the present invention is not limited to these examples.

(1)セメント組成物の原料
(i)セメントクリンカー製造に使用した原燃料
使用した主要なクリンカー原燃料の種類及び化学組成を表1に示す。また、表1に示すもの以外にも、少量の原料を一部使用した。
(1) Raw material of cement composition (i) Raw fuel used for manufacturing cement clinker Table 1 shows the types and chemical compositions of main clinker raw fuels used. In addition to those shown in Table 1, a small amount of raw material was partially used.

Figure 2008179502
Figure 2008179502

(ii)石膏
セメント組成物に使用した石膏は排脱二水石膏を使用した。また、セメント組成物粉砕時には、二水石膏は脱水し、添加した排脱二水石膏のうち30〜95質量%が半水石膏として存在した。
(Ii) Gypsum Exhaust dihydrate gypsum was used as the gypsum used in the cement composition. Further, when the cement composition was pulverized, the dihydrate gypsum was dehydrated, and 30 to 95% by mass of the added drained dihydrate gypsum was present as hemihydrate gypsum.

(2)セメント組成物の製造
表1のセメントクリンカーの原料を特定の配合割合で混合し、セメントキルンで焼成した。配合割合の一例を表2に示す。
(2) Manufacture of a cement composition The raw material of the cement clinker of Table 1 was mixed by the specific mixture ratio, and it baked with the cement kiln. An example of the blending ratio is shown in Table 2.

また、得られたセメントクリンカーに石膏を添加し、ボールミルで粉砕してセメント組成物を製造した。   In addition, gypsum was added to the obtained cement clinker and pulverized with a ball mill to produce a cement composition.

Figure 2008179502
Figure 2008179502

(3)評価試験
次に、各種セメント組成物の水溶性Cr(VI)含有量とKO含有量を定量した。測定結果の一例を表3に示すが、本発明に関するデータはこれらに限らない。本発明は、図1〜5に示す全ての実験データに基づく知見である。なお、表3中のセメント組成物の番号(No.)は表2のセメントクリンカーの番号(No.)と対応している。具体的には、表2のNo.1の条件で製造したセメントクリンカーを用いて製造したセメント組成物の評価試験結果は表3のNo.1に相当する。
(3) Evaluation test Next, the water-soluble Cr (VI) content and the K 2 O content of various cement compositions were quantified. An example of the measurement results is shown in Table 3, but the data related to the present invention is not limited to these. The present invention is a finding based on all experimental data shown in FIGS. In addition, the number (No.) of the cement composition in Table 3 corresponds to the number (No.) of the cement clinker in Table 2. Specifically, the evaluation test result of the cement composition manufactured using the cement clinker manufactured under the condition of No. 1 in Table 2 corresponds to No. 1 in Table 3.

Figure 2008179502
Figure 2008179502

表3のデータを含む実験データ全てについて、全アルカリ量と水溶性Cr(VI)量との関係を図1に示す。セメント組成物中のCrがアルカリ金属と結合してクロム酸ナトリウム及びクロム酸カリウムとして存在するのであれば両者の間に有意な関係が認められるはずである。しかしながら、実際にテスト製造したセメントクリンカー及びセメント組成物においては、両者の相関係数はR=0.5235(R=0.7235)と余り高くなく、予測線(図1中の実線)と実測値の最大値を外挿した線(図1中の点線)とでは、最大で17mg/kgの差異がある。したがって、アルカリ金属類の全てが水溶性Cr(VI)生成に必ずしも影響するものではないことを示している。 FIG. 1 shows the relationship between the total alkali amount and the water-soluble Cr (VI) amount for all experimental data including the data in Table 3. If Cr in the cement composition is combined with an alkali metal and present as sodium chromate and potassium chromate, a significant relationship should be observed between them. However, in the cement clinker and the cement composition actually manufactured by test, the correlation coefficient between them is not so high as R 2 = 0.5235 (R = 0.7235), and the prediction line (solid line in FIG. 1) There is a maximum difference of 17 mg / kg from the line (dotted line in FIG. 1) obtained by extrapolating the maximum value of the actually measured values. Therefore, it is shown that not all alkali metals necessarily affect the production of water-soluble Cr (VI).

そこで、本発明者らは、水溶性Cr(VI)の生成に起因する要因を特定するため、アルカリ金属の種類ごとに水溶性Cr(VI)量に及ぼす影響を明確にすべく調査を行った。図2にNaOと水溶性Cr(VI)との関係、図3にKOと水溶性Cr(VI)との関係を示す。 Therefore, the present inventors have investigated to clarify the influence on the amount of water-soluble Cr (VI) for each type of alkali metal in order to identify the factors resulting from the formation of water-soluble Cr (VI). . FIG. 2 shows the relationship between Na 2 O and water-soluble Cr (VI), and FIG. 3 shows the relationship between K 2 O and water-soluble Cr (VI).

図2から、NaO量と水溶性Cr(VI)量との間には相関関係は認められず、NaOはクロム酸塩としては存在しないことが判明した。 From FIG. 2, it was found that there was no correlation between the amount of Na 2 O and the amount of water-soluble Cr (VI), and Na 2 O was not present as chromate.

一方、図3から、KO量と水溶性Cr(VI)量との間には有意な相関関係が認められ、アルカリ金属のうちKO量のみがクロム酸塩として存在することが知見できた。したがって、KO量によって水溶性Cr(VI)量を制御することが可能であり、すなわちKO量を0.43質量%以下にすれば、水溶性Cr(VI)量を20mg/kg(20x10−4質量%)以下に低減できることがわかる。 On the other hand, FIG. 3 shows that there is a significant correlation between the amount of K 2 O and the amount of water-soluble Cr (VI), and it is found that only the amount of K 2 O among alkali metals exists as chromate. did it. Therefore, it is possible to control the water-soluble Cr (VI) content by K 2 O content, namely when the K 2 O content below 0.43 wt%, water-soluble Cr (VI) content to 20 mg / kg It turns out that it can reduce to (20 * 10 < -4 > mass%) or less.

また、図4に示すように、全Cr量も水溶性Cr(VI)量に関係する。このため、さらに好ましい水溶性Cr(VI)の低減方法を検討するため、図5に示すように、水溶性Cr(VI)の予測式:水溶性Cr(VI)=39×KO+0.18×全Cr−20.5を作成し、その予測精度を確認した。 Further, as shown in FIG. 4, the total Cr amount is also related to the water-soluble Cr (VI) amount. Therefore, in order to examine a more preferable method for reducing water-soluble Cr (VI), as shown in FIG. 5, a prediction formula of water-soluble Cr (VI): water-soluble Cr (VI) = 39 × K 2 O + 0.18 * All Cr-20.5 was created and the prediction precision was confirmed.

その結果、図3に示すKO量のみで水溶性Cr(VI)量を制御する場合、水溶性Cr(VI)量の予測線(図3中の実線)と実測値との差は、KO量が0.3質量%程度で5mg/kg程度であるものの、KO量が0.5質量%程度では10mg/kg程度に大きくなり、予測精度が低下する。しかしながら、図5に示したCr(VI)の計算値、実測値の比較からわかるように、KO量と全Cr量とを用いた予測式は全てのデータの予測値と実測値との差異を5mg/kg以下に収めることができるので、予測精度が高い。これにより、より精度良く水溶性Cr(VI)量の低減を図ることが可能となった。 As a result, when the water-soluble Cr (VI) amount is controlled only by the K 2 O amount shown in FIG. 3, the difference between the water-soluble Cr (VI) amount prediction line (solid line in FIG. 3) and the actual measurement value is Although the amount of K 2 O is about 0.3% by mass and about 5 mg / kg, the amount of K 2 O becomes about 10 mg / kg when the amount of K 2 O is about 0.5% by mass and the prediction accuracy decreases. However, as can be seen from the comparison of the calculated value and the actual value of Cr (VI) shown in FIG. 5, the prediction formula using the K 2 O amount and the total Cr amount is the difference between the predicted value and the actual value of all the data. Since the difference can be within 5 mg / kg or less, the prediction accuracy is high. This makes it possible to reduce the amount of water-soluble Cr (VI) with higher accuracy.

図6は、KO量と全Cr量の関係を示したものである。図2の○印は水溶性Cr(VI)量が10mg/kg以下であった試料、△印は10mg/kgを超えて15mg/kg以下であった試料、□印は15mg/kgを超えて20mg/kg以下であった試料、×印は20mg/kgを超えた試料を示す。この図から、水溶性Cr(VI)量を20mg/kg(20x10−4質量%)以下とするためには、KO量(質量%)と全Cr量(質量%)とが、全Cr量x10≦−222×KO量+228の関係を満たすようにしてセメントを製造すればよいことがわかる。すなわち、この式を満たす限り、全Cr量が多い場合にはKO量を低減する、あるいはまたKO量が多い場合は全Cr量を低減することで、水溶性Cr(VI)量を20x10−4質量%以下の所定量に低減することができる。更に安全な管理値として水溶性Cr(VI)量を15mg/kg以下とする場合は、全Cr量x10≦−222×KO量+200を満たせばよく、水溶性Cr(VI)量を10mg/kg以下とする場合は、全Cr量x10≦−222×KO量+172を満たせばよいことがわかる。 FIG. 6 shows the relationship between the K 2 O amount and the total Cr amount. A circle in FIG. 2 is a sample in which the amount of water-soluble Cr (VI) was 10 mg / kg or less, a triangle is a sample in excess of 10 mg / kg and 15 mg / kg or less, and a square is in excess of 15 mg / kg. Samples that were 20 mg / kg or less, x marks indicate samples that exceeded 20 mg / kg. From this figure, in order to reduce the amount of water-soluble Cr (VI) to 20 mg / kg (20 × 10 −4 mass%) or less, the amount of K 2 O (mass%) and the total Cr content (mass%) It can be seen that the cement may be manufactured so as to satisfy the relationship of the amount x10 4 ≦ −222 × K 2 O amount + 228. That is, as long as this equation is satisfied, the amount of water-soluble Cr (VI) is reduced by reducing the amount of K 2 O when the amount of total Cr is large, or by reducing the amount of total Cr when the amount of K 2 O is large. Can be reduced to a predetermined amount of 20 × 10 −4 mass% or less. Further, when the amount of water-soluble Cr (VI) is set to 15 mg / kg or less as a safe control value, the total amount of Cr × 10 4 ≦ −222 × K 2 O amount + 200 may be satisfied, and the amount of water-soluble Cr (VI) is In the case of 10 mg / kg or less, it is understood that the total Cr amount × 10 4 ≦ −222 × K 2 O amount + 172 may be satisfied.

なお、このKO量と全Cr量の制御方法として、表2及び表3をみてわかるように、KO量は高K粘土質原料と低K粘土質原料の使用量を調整することで、全Cr量は高Cr鉄原料と低Cr鉄原料の使用量を調整することで、いずれも制御することができる。 Incidentally, as a control method of the K 2 O content and the total Cr content, as can be seen in Table 2 and Table 3, K 2 O amounts to adjust the amount of high K clayey material and low K clayey material Thus, the total Cr amount can be controlled by adjusting the amount of the high Cr iron raw material and the low Cr iron raw material.

具体的には、KO量を減じようとすれば、粘土や建設発生土といった高K粘土質原料を低減して、石炭灰や高炉スラグ等の低K粘土質原料を使用する。また、全Cr量を減じようとすれば、脱鉄スラグや鉄精鉱のような高Cr鉄原料を低減して、銅からみのような低Cr鉄原料を使用する。 Specifically, if the amount of K 2 O is to be reduced, high-K clayy materials such as clay and construction generated soil are reduced, and low-K clayy materials such as coal ash and blast furnace slag are used. Moreover, if it is going to reduce the total Cr amount, high Cr iron raw materials, such as deiron slag and iron concentrate, will be reduced, and low Cr iron raw materials such as copper entanglements will be used.

さらに、原料事情によって、高Cr鉄原料を使用せざるを得ない場合には、高K粘土源を減じて全Cr量x10≦−222×KO量+225を満たすようにすればよい。 Furthermore, when it is necessary to use a high Cr iron raw material due to the raw material circumstances, the high K clay source may be reduced so as to satisfy the total Cr amount × 10 4 ≦ −222 × K 2 O amount + 225.

全アルカリ量と水溶性Cr(VI)量との関係を示した図である。It is the figure which showed the relationship between the total alkali amount and water-soluble Cr (VI) amount. NaO量と水溶性Cr(VI)量との関係を示した図である。It is a diagram illustrating a relationship between the Na 2 O content and the water-soluble Cr (VI) content. O量と水溶性Cr(VI)量との関係を示した図である。It is a diagram showing the relationship between K 2 O content and the water-soluble Cr (VI) content. 全Cr量と水溶性Cr(VI)量との関係を示した図である。It is the figure which showed the relationship between the total Cr amount and water-soluble Cr (VI) amount. 予測式による水溶性Cr(VI)量計算値と実測値との比較を示した図である。It is the figure which showed the comparison with the water-soluble Cr (VI) amount calculation value by a prediction formula, and an actual value. O量と全Cr量の関係を示した図である。It is a diagram showing the relationship between K 2 O content and the total amount of Cr.

Claims (7)

セメントクリンカーと石膏とを含み、セメントクリンカー中のKO量(質量%)と全Cr量(質量%)とが、全Cr量x10≦−222×KO量+225の関係を満たす、ことを特徴とする水溶性六価クロム低減セメント組成物。 The cement clinker and gypsum are included, and the K 2 O amount (% by mass) and the total Cr amount (% by mass) in the cement clinker satisfy the relationship of the total Cr amount x 10 4 ≦ −222 × K 2 O amount + 225. A water-soluble hexavalent chromium-reducing cement composition. 全Cr量が100x10−4質量%以下、KO量が0.43質量%以下である、請求項1記載の水溶性六価クロム低減セメント組成物。 Total Cr content 100 × 10 -4 mass%, K 2 O content is not more than 0.43 wt%, claim 1 soluble hexavalent chromium reducing cement composition. 石灰石、珪石、粘土質原料及び鉄原料を含む原料を使用してセメントクリンカーを焼成した後、石膏を添加して粉砕する水溶性六価クロム低減セメント組成物の製造方法であって、
セメントクリンカー中のKO量(質量%)と全Cr量(質量%)とが、全Cr量x10≦−222×KO量+225の関係を満たすように、原料中の粘土質原料及び鉄原料の配合割合を調整する工程を含む、ことを特徴とする水溶性六価クロム低減セメント組成物の製造方法。
A method for producing a water-soluble hexavalent chromium-reducing cement composition in which a cement clinker is fired using raw materials including limestone, silica, clayey raw material, and iron raw material, and gypsum is added and pulverized.
Clay raw material in the raw material so that the K 2 O amount (% by mass) and the total Cr amount (% by mass) in the cement clinker satisfy the relationship of the total Cr amount × 10 4 ≦ −222 × K 2 O amount + 225. And a method for producing a water-soluble hexavalent chromium-reducing cement composition, comprising a step of adjusting a blending ratio of the iron raw material.
全Cr量が100x10−4質量%以下、KO量が0.43質量%以下となるように、粘土質原料及び鉄原料の配合割合を調整する工程をさらに含む、請求項3記載の水溶性六価クロム低減セメント組成物の製造方法。 The water-soluble solution according to claim 3, further comprising a step of adjusting the blending ratio of the clayey raw material and the iron raw material so that the total Cr amount is 100 × 10 −4 mass% or less and the K 2 O content is 0.43 mass% or less. Of producing a functional hexavalent chromium-reducing cement composition. 粘土質原料として、KO量が1.6質量%以上の高K粘土質原料及び/又はKO量が1.6質量%未満の低K粘土質原料を使用する、請求項3又は4記載の水溶性六価クロム低減セメント組成物の製造方法。 The high K clayy raw material having a K 2 O amount of 1.6% by mass or more and / or the low K clayy raw material having a K 2 O amount of less than 1.6% by mass is used as the clay raw material. 4. A method for producing a water-soluble hexavalent chromium-reducing cement composition according to 4. 高K粘土質原料が、粘土及び建設発生土からなる群から選ばれる1種以上であり、低K粘土質原料が、石炭灰及び高炉スラグからなる群から選ばれる1種以上である、請求項3〜5のいずれか1項記載の水溶性六価クロム低減セメント組成物の製造方法。   The high K clayey raw material is one or more selected from the group consisting of clay and construction generated soil, and the low K clayey raw material is one or more selected from the group consisting of coal ash and blast furnace slag. The manufacturing method of the water-soluble hexavalent chromium reduction cement composition of any one of 3-5. セメントクリンカーの原料原単位が、石灰石900〜1500kg/t−クリンカー、硅石0〜120kg/t−クリンカー、粘土質原料100〜500kg/t−クリンカー、鉄原料0〜80kg/t−クリンカーであり、KOを1.6質量%以上含む高K粘土質原料の原単位が80kg/t−クリンカー以下である、請求項3〜6のいずれか1項記載の水溶性六価クロム低減セメント組成物の製造方法。 The raw material unit of the cement clinker is limestone 900-1500 kg / t-clinker, meteorite 0-120 kg / t-clinker, clayey raw material 100-500 kg / t-clinker, iron raw material 0-80 kg / t-clinker, high K clay material of basic unit including 2 O 1.6 wt% or less 80 kg / t-clinker, a water-soluble hexavalent chromium reducing cement composition according to any one of claims 3-6 Production method.
JP2007013533A 2007-01-24 2007-01-24 Water-soluble hexavalent chromium-reducing cement composition and method for producing the same Active JP5329762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007013533A JP5329762B2 (en) 2007-01-24 2007-01-24 Water-soluble hexavalent chromium-reducing cement composition and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007013533A JP5329762B2 (en) 2007-01-24 2007-01-24 Water-soluble hexavalent chromium-reducing cement composition and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012265407A Division JP5747901B2 (en) 2012-12-04 2012-12-04 Method for producing water-soluble hexavalent chromium-reducing cement composition

Publications (2)

Publication Number Publication Date
JP2008179502A true JP2008179502A (en) 2008-08-07
JP5329762B2 JP5329762B2 (en) 2013-10-30

Family

ID=39723702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007013533A Active JP5329762B2 (en) 2007-01-24 2007-01-24 Water-soluble hexavalent chromium-reducing cement composition and method for producing the same

Country Status (1)

Country Link
JP (1) JP5329762B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011093738A (en) * 2009-10-29 2011-05-12 Mitsubishi Materials Corp Cement-based solidifying material
JP2011140424A (en) * 2010-01-08 2011-07-21 Ube Industries Ltd Cement composition with low hydration heat and method for producing the same
JP2011184231A (en) * 2010-03-08 2011-09-22 Ube Industries Ltd Cement composition and method for producing the same
KR101093105B1 (en) 2009-04-06 2011-12-13 현대시멘트 주식회사 Method for Minimization of hexavalent chromium in cement clinker and cement by the cement clinker
JP2013095654A (en) * 2011-11-04 2013-05-20 Taiheiyo Cement Corp Portland cement

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162548A (en) * 2003-12-03 2005-06-23 Mitsubishi Materials Corp Low self-shrinkable high interstitial phase type cement composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162548A (en) * 2003-12-03 2005-06-23 Mitsubishi Materials Corp Low self-shrinkable high interstitial phase type cement composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101093105B1 (en) 2009-04-06 2011-12-13 현대시멘트 주식회사 Method for Minimization of hexavalent chromium in cement clinker and cement by the cement clinker
JP2011093738A (en) * 2009-10-29 2011-05-12 Mitsubishi Materials Corp Cement-based solidifying material
JP2011140424A (en) * 2010-01-08 2011-07-21 Ube Industries Ltd Cement composition with low hydration heat and method for producing the same
JP2011184231A (en) * 2010-03-08 2011-09-22 Ube Industries Ltd Cement composition and method for producing the same
JP2013095654A (en) * 2011-11-04 2013-05-20 Taiheiyo Cement Corp Portland cement

Also Published As

Publication number Publication date
JP5329762B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
JP5080714B2 (en) Cement composition
US8133317B2 (en) Cement additive and cement composition
JP5818579B2 (en) Neutralization suppression type early strong cement composition
KR101862698B1 (en) High active cement clinker and high active cement
JP5750011B2 (en) Blast furnace cement composition
WO2014077251A1 (en) Cement composition and method for producing same
JP6429126B2 (en) Cement clinker and cement composition
JP4135743B2 (en) Cement composition
JP5329762B2 (en) Water-soluble hexavalent chromium-reducing cement composition and method for producing the same
JP6429125B2 (en) Cement clinker and cement composition
JP2010228926A (en) Cement composition and method for producing the same
JP5329763B2 (en) Water-soluble hexavalent chromium-reducing cement composition and method for producing the same
JP2005350337A (en) Cement composition
JP2010120787A (en) Method for manufacturing low-heat portland cement
JP5446752B2 (en) Mixed cement clinker and method for producing the same
JP5609958B2 (en) Method for producing water-soluble hexavalent chromium-reducing cement composition
JP6097266B2 (en) Method for producing water-soluble hexavalent chromium-reducing cement composition
JP2014162711A (en) Cement and production method therefor
JP5747901B2 (en) Method for producing water-soluble hexavalent chromium-reducing cement composition
CN115427370A (en) Cement admixture, expansion material and cement composition
JP2010228923A (en) Cement clinker, method for producing the same and cement composition
JP2008156231A (en) Cement composition
JP5907440B1 (en) Cement clinker and cement composition
JP7000714B2 (en) Cement composition and its manufacturing method, and mortar or concrete manufacturing method
JP7118342B2 (en) SOIL IMPROVEMENT MATERIAL AND METHOD FOR MANUFACTURING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20110726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130725

R150 Certificate of patent or registration of utility model

Ref document number: 5329762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250