JP2008178786A - Countermeasure at the time of absorbent slurry concentration rising in flue gas desulfurizer - Google Patents

Countermeasure at the time of absorbent slurry concentration rising in flue gas desulfurizer Download PDF

Info

Publication number
JP2008178786A
JP2008178786A JP2007013401A JP2007013401A JP2008178786A JP 2008178786 A JP2008178786 A JP 2008178786A JP 2007013401 A JP2007013401 A JP 2007013401A JP 2007013401 A JP2007013401 A JP 2007013401A JP 2008178786 A JP2008178786 A JP 2008178786A
Authority
JP
Japan
Prior art keywords
absorbent slurry
flue gas
flow rate
concentration
absorption tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007013401A
Other languages
Japanese (ja)
Other versions
JP5019361B2 (en
Inventor
Tokuo Miyatake
督往 宮武
Yasushi Kurotani
靖 黒谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Chuden Kankyo Technos Co Ltd
Original Assignee
Chugoku Electric Power Co Inc
Chuden Kankyo Technos Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc, Chuden Kankyo Technos Co Ltd filed Critical Chugoku Electric Power Co Inc
Priority to JP2007013401A priority Critical patent/JP5019361B2/en
Publication of JP2008178786A publication Critical patent/JP2008178786A/en
Application granted granted Critical
Publication of JP5019361B2 publication Critical patent/JP5019361B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a countermeasure at the time of adsorbent slurry concentration rising in a flue gas desulfurizer for absorbing and removing a sulfur oxide in a flue gas by bringing an absorbent slurry into contact with a flue gas, which restores the adsorbent slurry concentration to the range of proper values promptly and efficiently when the adsorbent slurry concentration rises. <P>SOLUTION: The countermeasure when the operation standard value in the adsorption tower (70, 80) exceeds a predetermined range comprises the step of automatically adjusting the amount of ash dust from the flue gas (A) to be incorporated into the flue gas desulfurizer (gas-liquid contact apparatus 10), the step of increasing the circulation amount of the absorbent slurry (increase of the moving blade divergence of a circulation pump 74), the step of increasing the oxidized air flow rate supplied into the absorption tower (increase of the oxidized air flow rate by means of an air supply means 61), the step of decreasing the absorbent slurry flow rate to be supplied into the absorption tower (decrease of the flow rate of the slurry pump 50) and the step of increasing the absorbent slurry flow rate to be supplied into a dehydrator 30 (belt filter) (increase of the flow rate of an extraction pump 20). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、排煙脱硫装置における吸収剤スラリ濃度上昇時の対応方法に関し、特に吸収剤スラリと排煙とを接触させて排煙中の硫黄酸化物を吸収除去する排煙脱硫装置において、吸収塔における吸収剤スラリ濃度が上昇して排煙脱硫装置を正常運転できない可能性が発生した場合に、迅速かつ効率よく吸収塔における吸収剤スラリ濃度を正常の範囲内に戻すことが可能な排煙脱硫装置における吸収剤スラリ濃度上昇時の対応方法に関する。   The present invention relates to a method for dealing with an increase in the concentration of an absorbent slurry in a flue gas desulfurization apparatus, and particularly in an exhaust gas desulfurization apparatus that absorbs and removes sulfur oxides in flue gas by bringing the absorbent slurry into contact with flue gas. Flue gas that can return the absorbent slurry concentration in the absorption tower to the normal range quickly and efficiently when the concentration of the absorbent slurry in the tower rises and there is a possibility that the flue gas desulfurization unit cannot operate normally. The present invention relates to a method for dealing with an increase in absorbent slurry concentration in a desulfurization apparatus.

近年、各種のプラントや自動車等の排気ガスの影響による大気汚染が深刻化している。このため、大気汚染に関して、国民の健康を保護するとともに、生活環境を保全することを目的として大気汚染防止法が制定されている。また、各地方自治体においても、大気汚染防止のための条例や要綱等を定め、大気汚染物質の排出量を規制している。   In recent years, air pollution due to the influence of exhaust gases from various plants and automobiles has become serious. For this reason, the Air Pollution Control Law has been enacted for the purpose of protecting the health of the people and preserving the living environment with regard to air pollution. Each local government also establishes regulations and outlines for air pollution prevention and regulates the amount of air pollutants emitted.

これに応じて、各企業等では、大気汚染物質の排出を極力抑制して環境保護に努めている。例えば、ボイラユニットを有する発電プラントでは、大気汚染防止法や公害防止協定等に規定された環境基準を遵守するため、ボイラユニットからの排煙中に含まれる煤塵、NOx、SOx等の大気汚染物質を十分に除去してクリーンな排気を行っている。   In response to this, each company is striving to protect the environment by minimizing the emission of air pollutants. For example, in a power plant with a boiler unit, air pollutants such as soot, NOx, SOx, etc. contained in the flue gas from the boiler unit in order to comply with environmental standards stipulated in the Air Pollution Control Act and pollution control agreements, etc. The exhaust is sufficiently removed and clean exhaust is performed.

特に、SOxは環境に重大な影響を及ぼすため、排煙脱硫装置を安定して稼働することが重要な責務となっている。このような状況の中、従来より、排煙脱硫装置を安定して稼働することにより、効率的にSOxの除去を行うための技術が種々開示されている。   In particular, since SOx has a significant impact on the environment, it is an important duty to operate the flue gas desulfurization apparatus stably. Under such circumstances, conventionally, various techniques for efficiently removing SOx by operating a flue gas desulfurization apparatus stably have been disclosed.

例えば、特開平6−238126号公報「湿式排煙脱硫装置の異常診断装置」(特許文献1)に、石膏純度を常に監視し、石膏の品質に影響する要因を診断することにより石膏の品質を保つための最適な各種成分の操作量を支援する技術が開示されている。   For example, in JP-A-6-238126, “Abnormality diagnosis apparatus for wet flue gas desulfurization apparatus” (Patent Document 1), gypsum quality is constantly monitored by diagnosing factors that affect gypsum quality. A technique for supporting the optimum operation amount of various components to maintain is disclosed.

この特許文献1に記載された「湿式排煙脱硫装置の異常診断装置」は、ボイラなどの燃焼装置から排出される排ガス中の硫黄酸化物を吸収塔循環用吸収剤スラリにより気液接触させて吸収除去する湿式排煙脱硫装置に関するものである。この「湿式排煙脱硫装置の異常診断装置」は、以下の手順により、石膏の品質を保つための最適な各種成分の操作量を支援する。   This "abnormality diagnosis device for wet flue gas desulfurization device" described in Patent Document 1 makes sulfur-oxide in exhaust gas discharged from a combustion device such as a boiler gas-liquid contact with an absorbent slurry for absorption tower circulation. The present invention relates to a wet flue gas desulfurization apparatus for absorbing and removing. This “wet flue gas desulfurization apparatus abnormality diagnosis apparatus” supports the operation amounts of various optimum components for maintaining the quality of gypsum by the following procedure.

すなわち、給炭量信号と石炭性状信号と排ガス流量信号を排ガス性状演算器に入力してHCL濃度とHF濃度を算出する。続いて、信号と入口SO2濃度信号と出口SO2濃度信号と入口煤塵濃度信号と吸収剤スラリ流量信号と吸収塔抜出流量信号と酸化用空気流量信号と吸収塔レベル信号と演算器での算出HCL濃度とHF濃度を液性状演算器に入力して吸収液中のCaCO3濃度とCaSO3・1/2H2O濃度とCaSO3・2H2O濃度と不純物濃度とCaF2濃度を算出する。続いて、演算器の算出液性状から石膏純度演算器で石膏純度を算出し、異常診断装置で石膏純度の評価診断を行う。続いて、石膏純度が異常と判定した場合には、純度異常をガイダンスし、正常な状態に戻すための操作量(吸収剤スラリ流量、酸化用空気流量、硫酸流量)を制御装置に出力する。 That is, the HCL concentration and the HF concentration are calculated by inputting the coal supply amount signal, the coal property signal, and the exhaust gas flow rate signal to the exhaust gas property calculator. Subsequently, the signal, the inlet SO 2 concentration signal, the outlet SO 2 concentration signal, the inlet dust concentration signal, the absorbent slurry flow signal, the absorption tower extraction flow signal, the oxidizing air flow signal, the absorption tower level signal, and the calculator The calculated HCL concentration and HF concentration are input to the liquid property calculator to calculate the CaCO 3 concentration, CaSO 3 .1 / 2H 2 O concentration, CaSO 3 .2H 2 O concentration, impurity concentration, and CaF 2 concentration in the absorbing solution. . Subsequently, the gypsum purity calculator calculates the gypsum purity from the calculated liquid properties of the calculator, and the abnormality diagnosis device performs evaluation diagnosis of the gypsum purity. Subsequently, when it is determined that the gypsum purity is abnormal, the operation amount (absorbent slurry flow rate, oxidizing air flow rate, sulfuric acid flow rate) for returning to the normal state is output to the control device.

また、特開平11−244646号公報「排煙脱硫装置の吸収剤スラリ流量制御方法及び装置」(特許文献2)に、吸収塔における吸収液の循環量が最大である状態において、万一、吸収塔へ導入される排ガスの流量が過渡的に計画値を超えて上昇したような場合であっても、脱硫率を保持して吸収塔出口SO2濃度を規制値以下に抑え得る技術が開示されている。 Further, in Japanese Patent Laid-Open No. 11-244646 “Absorbent slurry flow rate control method and apparatus for flue gas desulfurization apparatus” (Patent Document 2), in the unlikely event that the absorption liquid circulation amount in the absorption tower is maximum, absorption Even when the flow rate of the exhaust gas introduced into the tower transiently rises above the planned value, a technique is disclosed that can maintain the desulfurization rate and suppress the absorption tower outlet SO 2 concentration below the regulation value. ing.

この特許文献2に記載された「排煙脱硫装置の吸収剤スラリ流量制御方法及び装置」は、吸収塔における複数台の循環ポンプが全台運転されており、かつ吸収剤の活性低下が発生していない状態で、吸収塔出口SO2濃度が高設定濃度以上、あるいは脱硫率が低設定脱硫率以下となった異常発生時には、設定pH値を一時的に上昇させ、設定吸収剤スラリ流量を増加させ、吸収剤スラリ流量が設定吸収剤スラリ流量と等しくなるように制御器から流量調整弁へ開度指令を出力するようにしたものである。この「排煙脱硫装置の吸収剤スラリ流量制御方法及び装置」によれば、吸収塔における吸収液の循環量が最大である状態において、万一、吸収塔へ導入される排ガスの流量が過渡的に計画値を超えて上昇したような場合であっても、脱硫率を保持して吸収塔出口SO2濃度を規制値以下に抑え得ることができるとしている。 In the “method and apparatus for controlling the amount of absorbent slurry in the flue gas desulfurization apparatus” described in Patent Document 2, all of the circulation pumps in the absorption tower are operated, and the activity of the absorbent is reduced. in not state, the absorption tower outlet sO 2 concentration is high set concentration or more, or at the time of the desulfurization rate abnormality became less low setting desulfurization rate, temporarily increases the set pH value, the setting absorbent slurry flow rate increases The opening command is output from the controller to the flow rate adjustment valve so that the absorbent slurry flow rate becomes equal to the set absorbent slurry flow rate. According to this "method and apparatus for controlling the flow rate of the absorbent slurry in the flue gas desulfurization apparatus", the flow rate of the exhaust gas introduced into the absorption tower should be transient in the state where the circulation amount of the absorption liquid in the absorption tower is maximum. Even if it exceeds the planned value, the desulfurization rate can be maintained and the absorption tower outlet SO 2 concentration can be kept below the regulation value.

特開平6−238126号公報JP-A-6-238126 特開平11−244646号公報JP 11-244646 A

しかしながら、上記特許文献1に記載された「湿式排煙脱硫装置の異常診断装置」は、グリッド塔と称される排煙脱硫装置に関する技術であり、この技術をそのまま液注塔と称される排煙脱硫装置に適用することはできない。   However, the “wet flue gas desulfurization device abnormality diagnosis device” described in Patent Document 1 is a technology related to a flue gas desulfurization device called a grid tower, and this technology is directly referred to as a liquid injection tower. It cannot be applied to smoke desulfurization equipment.

また、特許文献2に記載された「排煙脱硫装置の吸収剤スラリ流量制御方法及び装置」は、吸収塔における複数台の循環ポンプが全台運転されており、かつ吸収剤の活性低下が発生していない状態を想定したものであり、吸収塔において吸収剤スラリ濃度が上昇して排煙脱硫装置を正常運転できない可能性が発生した場合に適用できる技術ではない。   In addition, the “method and apparatus for controlling the flow rate of absorbent slurry in the flue gas desulfurization apparatus” described in Patent Document 2 has a plurality of circulating pumps in the absorption tower operated, and the activity of the absorbent is reduced. This is not a technique that can be applied when there is a possibility that the concentration of the absorbent slurry increases in the absorption tower and the flue gas desulfurization apparatus cannot be operated normally.

本発明は、上述した事情に鑑み提案されたもので、吸収剤スラリと排煙とを接触させて排煙中の硫黄酸化物を吸収除去する排煙脱硫装置において、吸収塔において吸収剤スラリ濃度が上昇して排煙脱硫装置を正常運転できない可能性が発生した場合に、迅速かつ効率よく吸収塔における吸収剤スラリ濃度を正常の範囲内に戻すことが可能な排煙脱硫装置における吸収剤スラリ濃度上昇時の対応方法を提供することを目的とする。   The present invention has been proposed in view of the above-described circumstances, and in the flue gas desulfurization apparatus that absorbs and removes sulfur oxides in the flue gas by contacting the absorbent slurry and the flue gas, the concentration of the absorbent slurry in the absorption tower. If there is a possibility that the flue gas desulfurization unit cannot be operated normally due to an increase in the concentration, the absorbent slurry in the flue gas desulfurization unit can return the absorbent slurry concentration in the absorption tower to the normal range quickly and efficiently. An object is to provide a method for dealing with an increase in concentration.

本発明に係る排煙脱硫装置における吸収剤スラリ濃度上昇時の対応方法は、上述した目的を達成するため、以下の特徴点を有している。
すなわち、本発明に係る排煙脱硫装置における吸収剤スラリ濃度上昇時の対応方法は、吸収剤スラリと排煙とを接触させて排煙中の硫黄酸化物を吸収除去する排煙脱硫装置において吸収塔で吸収剤スラリ濃度が上昇した際の対応方法であって、吸収塔における運転基準値が所定の範囲を超えた場合に、排煙脱硫装置に取り入れる排煙からの煤塵除去量を自動調節する工程と、吸収剤スラリ循環量を自動調節する工程と、吸収塔へ供給する酸化空気流量を自動調節する工程と、吸収塔へ供給する吸収剤スラリ流量を減少させる工程と、脱水機へ供給する吸収剤スラリ流量を増加させる工程と、からなる吸収剤スラリ濃度適正化工程のうちの少なくとも一工程を行うことにより吸収塔における吸収剤スラリ濃度上昇状態を解消することを特徴とするものである。
The method for dealing with an increase in the concentration of the absorbent slurry in the flue gas desulfurization apparatus according to the present invention has the following characteristics in order to achieve the above-described object.
That is, the method for dealing with an increase in the concentration of the absorbent slurry in the flue gas desulfurization apparatus according to the present invention is to absorb in the flue gas desulfurization apparatus that absorbs and removes sulfur oxide in the flue gas by bringing the absorbent slurry and the flue gas into contact with each other. This is a response method when the absorbent slurry concentration rises in the tower, and automatically adjusts the amount of dust removal from the flue gas to be taken into the flue gas desulfurization device when the operation reference value in the absorption tower exceeds the specified range. A step of automatically adjusting the amount of absorbent slurry circulating, a step of automatically adjusting the flow rate of oxidizing air supplied to the absorption tower, a step of reducing the flow rate of absorbent slurry supplied to the absorption tower, and a supply to the dehydrator It is characterized in that the state of increasing the absorbent slurry concentration in the absorption tower is eliminated by performing at least one of the process of optimizing the absorbent slurry concentration comprising the step of increasing the flow rate of the absorbent slurry. It is intended.

この排煙脱硫装置における吸収剤スラリ濃度上昇時の対応方法は、前記吸収剤スラリとして、石灰石を溶質とするとともに水を溶媒とした炭酸カルシウムスラリを用いることを特徴とするものである。   A method for dealing with an increase in the concentration of the absorbent slurry in the flue gas desulfurization apparatus is characterized in that a calcium carbonate slurry using limestone as a solute and water as a solvent is used as the absorbent slurry.

この場合、前記脱水機へ供給する吸収剤スラリ流量を増加させる工程は、吸収塔内の吸収剤スラリ濃度に応じて、脱水機へ吸収剤スラリを供給する抜出ポンプの流量制御を行うことにより吸収剤スラリ流量を調節する工程と、運転する脱水機の数を増加することにより吸収剤スラリ流量を調節する工程との少なくとも一方を行うことを、特徴とするものである。   In this case, the step of increasing the flow rate of the absorbent slurry supplied to the dehydrator is performed by controlling the flow rate of the extraction pump that supplies the absorbent slurry to the dehydrator according to the concentration of the absorbent slurry in the absorption tower. It is characterized by performing at least one of a step of adjusting the absorbent slurry flow rate and a step of adjusting the absorbent slurry flow rate by increasing the number of dehydrators to be operated.

本発明に係る排煙脱硫装置における吸収剤スラリ濃度上昇時の対応方法によれば、排煙からの煤塵除去量、吸収剤スラリの循環量、酸化空気流量、吸収剤スラリ流量、脱水機へ供給する吸収剤スラリ流量を調節することにより、吸収塔において吸収剤スラリ濃度が上昇して排煙脱硫装置を正常運転できない可能性が発生した場合に、迅速かつ効率よく吸収塔における吸収剤スラリ濃度を適正値の範囲内とすることができる。これにより、排煙脱硫装置における脱硫能力を既定値以上に保って、環境基準等に適合したクリーンな排気ガスを排出して環境保護に貢献することが可能となる。   According to the method for dealing with an increase in the concentration of the absorbent slurry in the flue gas desulfurization apparatus according to the present invention, the amount of dust removal from the flue gas, the circulation amount of the absorbent slurry, the flow rate of the oxidized air, the flow rate of the absorbent slurry, and the supply to the dehydrator If the absorbent slurry concentration increases in the absorption tower and there is a possibility that the flue gas desulfurization unit cannot operate normally, the absorbent slurry concentration in the absorption tower is quickly and efficiently adjusted. It can be within the range of appropriate values. This makes it possible to contribute to environmental protection by keeping the desulfurization capacity in the flue gas desulfurization apparatus above a predetermined value and discharging clean exhaust gas that meets environmental standards and the like.

以下、図面を参照して、本発明に係る排煙脱硫装置における吸収剤スラリ濃度上昇時の対応方法の実施形態を説明する。
排煙脱硫装置では、以下の反応(1)〜(3)を起こさせることにより排ガス中から脱硫を行っている。
すなわち、吸収塔(図1参照)において、
SO2+H2O→H+HSO3 ・・・ (1)
という反応が生じ、さらに、タンク(図1参照)において
+HSO3 +1/2O2→2H+SO4 2− ・・・ (2)
2H+SO4 2−+CaCO3+H2O →CaSO4・2H2O+CO2 ・・・ (3)
という反応が生じることにより、最終生成物である硫酸カルシウム(CaSO4:石膏)が生成される。
Hereinafter, with reference to the drawings, an embodiment of a method for dealing with an increase in absorbent slurry concentration in the flue gas desulfurization apparatus according to the present invention will be described.
In the flue gas desulfurization apparatus, desulfurization is performed from exhaust gas by causing the following reactions (1) to (3).
That is, in the absorption tower (see FIG. 1),
SO 2 + H 2 O → H + + HSO 3 (1)
Furthermore, in the tank (see FIG. 1), H + + HSO 3 + 1 / 2O 2 → 2H + + SO 4 2− (2)
2H + + SO 4 2− + CaCO 3 + H 2 O → CaSO 4 .2H 2 O + CO 2 (3)
As a result of this reaction, the final product calcium sulfate (CaSO 4 : gypsum) is produced.

ところで、排煙脱硫装置で排ガス中のSO2を除去するためには、SO2の濃度に応じて必要量の吸収剤スラリ(石灰石スラリ)を投入しなければならない。通常の場合、吸収剤スラリの投入量は、炭酸カルシウム濃度計(pH計)における計測結果に基づいて定められる。しかし、炭酸カルシウム濃度計が不調となる等、不測の事態が発生して、長時間にわたって必要以上の吸収剤スラリが投入されると、吸収塔内の吸収剤スラリ濃度が上昇する。そして、吸収塔内の吸収剤スラリ濃度が上昇すると、吸収塔計器配管が閉塞したり、石膏純度が低下したり、脱水機の濾布が目詰まりする等、排煙脱硫装置を正常運転することができなくなるおそれがある。 By the way, in order to remove SO 2 in the exhaust gas with the flue gas desulfurization apparatus, a necessary amount of absorbent slurry (limestone slurry) must be introduced in accordance with the concentration of SO 2 . In a normal case, the amount of the absorbent slurry to be charged is determined based on the measurement result in the calcium carbonate concentration meter (pH meter). However, if an unexpected situation occurs, such as the calcium carbonate concentration meter malfunctioning, and an excessive amount of absorbent slurry is introduced over a long period of time, the concentration of the absorbent slurry in the absorption tower increases. And if the concentration of the absorbent slurry in the absorption tower rises, normal operation of the flue gas desulfurization device will occur, such as clogging the absorption tower instrument pipe, decreasing the gypsum purity, and clogging the filter cloth of the dehydrator There is a risk that it will not be possible.

本発明に係る排煙脱硫装置における吸収剤スラリ濃度上昇時の対応方法は、吸収塔において吸収剤スラリ濃度が上昇して排煙脱硫装置を正常運転できない可能性が発生した場合に、迅速かつ効率よく吸収塔における吸収剤スラリ濃度を正常の範囲内に戻すための技術である。   The method for dealing with an increase in the concentration of the absorbent slurry in the flue gas desulfurization apparatus according to the present invention is quick and efficient when there is a possibility that the concentration of the absorbent slurry in the absorption tower increases and the flue gas desulfurization apparatus cannot be operated normally. This is often a technique for returning the concentration of the absorbent slurry in the absorption tower to the normal range.

<排煙脱硫装置>
図1は、本発明の実施形態に係る亜硫酸カルシウム濃度上昇時の対応方法を適用する排煙脱硫装置の模式図である。
本発明の実施形態に係る亜硫酸カルシウム濃度上昇時の対応方法を適用する排煙脱硫装置は、図1に示すように、吸収剤スラリを排煙と気液接触させる装置であり、さらに酸化空気を接触させるための空気供給手段61を備えている。
<Smoke flue gas desulfurization equipment>
FIG. 1 is a schematic diagram of a flue gas desulfurization apparatus to which a method for dealing with an increase in calcium sulfite concentration according to an embodiment of the present invention is applied.
The flue gas desulfurization apparatus to which the method for dealing with an increase in the concentration of calcium sulfite according to the embodiment of the present invention is an apparatus for bringing the absorbent slurry into gas-liquid contact with the flue gas as shown in FIG. Air supply means 61 for contacting is provided.

気液接触装置10は、吸収剤スラリ(例えば、石灰石を溶質とするとともに水を溶媒とした炭酸カルシウムスラリ)が供給されるタンク60と、導入側吸収塔(接触処理塔)70と、導出側吸収塔80とを備えている。   The gas-liquid contact device 10 includes a tank 60 to which an absorbent slurry (for example, calcium carbonate slurry using limestone as a solute and water as a solvent) is supplied, an introduction side absorption tower (contact treatment tower) 70, and a discharge side An absorption tower 80.

導入側吸収塔70は、タンク60の一側部から上方に向かって延設されるとともに、未処理排煙Aを導入するための排煙導入部71がその上端部に形成されており、排煙が下方に向って流れるようになっている。   The introduction side absorption tower 70 extends upward from one side of the tank 60 and has a flue gas introduction part 71 for introducing untreated flue gas A formed at its upper end. Smoke flows downward.

導出側吸収塔80は、タンク60の他側部(図では右側)から上方に向かって延設されるとともに、処理済排煙Bを導出するための排煙導出部81がその上端部に形成されており、導入側吸収塔70を通過しタンク60内上部を経由した排煙が上方に向って流れるようになっている。   The outlet side absorption tower 80 is extended upward from the other side part (right side in the drawing) of the tank 60, and a smoke exhausting part 81 for leading the processed exhaust gas B is formed at the upper end thereof. Thus, the flue gas passing through the introduction side absorption tower 70 and passing through the upper part of the tank 60 flows upward.

また、導入側吸収塔70には、スプレーパイプ72が設けられており、スプレーパイプ72には、吸収剤スラリを上方に向って液柱状に噴射するための複数のスプレーノズル73が形成されている。また、タンク60には、タンク60内の吸収剤スラリを吹上げる循環ポンプ74が連通接続されており、供給ヘッダ75を介して吸収剤スラリがスプレーパイプ72に送り込まれ、各スプレーノズル73から噴射されるようになっている。   The introduction side absorption tower 70 is provided with a spray pipe 72. The spray pipe 72 is formed with a plurality of spray nozzles 73 for injecting the absorbent slurry upward in a liquid column shape. . In addition, a circulation pump 74 that blows up the absorbent slurry in the tank 60 is connected to the tank 60, and the absorbent slurry is sent to the spray pipe 72 through the supply header 75 and sprayed from each spray nozzle 73. It has come to be.

さらに、導出側吸収塔80の後方部には、同伴ミストを捕集除去するためのミストエリミネータ82が設けられている。なお、このミストエリミネータ82で捕集されたミストは、例えば導出側吸収塔80内を滴下することにより直接タンク60内に戻るようになっている。   Further, a mist eliminator 82 for collecting and removing the accompanying mist is provided at the rear portion of the outlet side absorption tower 80. The mist collected by the mist eliminator 82 is returned directly into the tank 60 by, for example, dropping in the outlet side absorption tower 80.

スプレーパイプ72は、詳細には図示しないが、導入側吸収塔70の内部の横方向全域にわたって、平行に複数並べて配設されており、スプレーパイプ72の他端側が供給ヘッダ75の長手方向の複数箇所にそれぞれ接続されている。   Although not shown in detail, a plurality of spray pipes 72 are arranged in parallel across the entire lateral direction inside the introduction side absorption tower 70, and the other end side of the spray pipe 72 is a plurality in the longitudinal direction of the supply header 75. Connected to each location.

この供給ヘッダ75は、スプレーパイプ72が接続された範囲において、閉塞された一端側に向って縮径した先細り形状となっている。この供給ヘッダ75の流路断面積の低下率は、内部の平均流速が長手方向に略一定となるように設定される。   The supply header 75 has a tapered shape with a diameter reduced toward the closed one end side in a range where the spray pipe 72 is connected. The rate of decrease in the flow path cross-sectional area of the supply header 75 is set so that the internal average flow velocity is substantially constant in the longitudinal direction.

また、タンク60内には、空気供給手段61が設けられており、スプレーノズル73から吹上げられた吸収剤スラリは、亜硫酸ガスを吸収しながら流下して、空気供給手段61を用いて吹込んだ空気により酸化し、石膏を生成するようになっている。   An air supply means 61 is provided in the tank 60, and the absorbent slurry blown up from the spray nozzle 73 flows down while absorbing sulfurous acid gas and blows in using the air supply means 61. It is oxidized by air and produces gypsum.

なお、本実施形態における空気供給手段61は、アーム回転式となっており、タンク60内に中空回転軸62を用いて支持されたモータ(図示せず)により水平回転するアーム63と、中空回転軸62から延長されるとともに開口端がアーム63の下側に延長された空気供給管64と、中空回転軸62の基端側を空気源に供給するためのロータリージョイント65とを備えている。この空気供給手段61では、ロータリージョイント65から空気Cを圧入しつつ中空回転軸62を回転させて、空気供給管64よりアーム63の回転方向背面側に生じる気相域に空気Cを供給する。さらに、アーム63の回転により生じる渦力により、気相域終縁部の千切れ現象を起こして略均一な微細気泡を多数発生させ、タンク60内で亜硫酸ガスを吸収した吸収剤スラリ溶液と空気とを効率良く接触させるようになっている。   The air supply means 61 in the present embodiment is an arm rotation type, and includes an arm 63 that rotates horizontally by a motor (not shown) supported in the tank 60 using a hollow rotation shaft 62, and a hollow rotation. An air supply pipe 64 extending from the shaft 62 and having an open end extending below the arm 63 and a rotary joint 65 for supplying the proximal end side of the hollow rotary shaft 62 to the air source are provided. In this air supply means 61, the hollow rotary shaft 62 is rotated while the air C is being press-fitted from the rotary joint 65, and the air C is supplied from the air supply pipe 64 to the gas phase region generated on the rear side in the rotation direction of the arm 63. Further, the vortex force generated by the rotation of the arm 63 causes a tearing phenomenon at the end of the gas phase region to generate a large number of substantially uniform fine bubbles and absorbs the sulfurous acid gas in the tank 60 and the air. And come to contact efficiently.

そして、タンク60内のスラリ(石膏と吸収剤である少量の石灰石が懸濁または溶存したもの)は、抜出ポンプ20により吸出されて脱水機30に送出され、この脱水機30により濾過されて、水分含有量の少ない石膏(例えば、水分含有率10%程度)として取り出される。一方、脱水機30からの濾液は、スラリ槽40に送出されて、補給水とともに石灰石が加えられ、再び吸収剤スラリとしてスラリポンプ50によりタンク60内に供給される。   Then, the slurry in the tank 60 (in which a small amount of limestone that is gypsum and an absorbent is suspended or dissolved) is sucked out by the extraction pump 20, sent to the dehydrator 30, and filtered by the dehydrator 30. , Gypsum with a low water content (for example, about 10% water content). On the other hand, the filtrate from the dehydrator 30 is sent to the slurry tank 40, limestone is added together with makeup water, and is supplied again into the tank 60 by the slurry pump 50 as an absorbent slurry.

<吸収剤スラリ濃度上昇時の対応方法>
以下、図2を参照して、本発明の実施形態に係る吸収剤スラリ濃度上昇時の対応方法の手順を説明する。図2は、本発明の実施形態に係る吸収剤スラリ濃度上昇時の対応方法の手順を示すフローチャートである。
<Measures to be taken when absorbent slurry concentration increases>
Hereinafter, with reference to FIG. 2, the procedure of the response method at the time of the absorbent slurry density | concentration raise which concerns on embodiment of this invention is demonstrated. FIG. 2 is a flowchart showing a procedure of a method for dealing with an increase in the concentration of the absorbent slurry according to the embodiment of the present invention.

本発明の実施形態に係る吸収剤スラリ濃度上昇時の対応方法では、図2に示すように、吸収塔における吸収剤スラリ濃度を計器指示値に基づいて監視し、吸収剤スラリ濃度の指示値が上昇したか否かを判断する(S1)。本実施形態では、通常の場合、吸収剤スラリ濃度の計器指示値が20%となるような運転を行っているが、この通常運転値を超えると計器配管が閉塞する懸念が生じる。そこで、計器指示値が例えば23%である状態が継続した場合に、吸収剤スラリ濃度適正化工程を行うようになっている。   In the method for dealing with an increase in the concentration of the absorbent slurry according to the embodiment of the present invention, as shown in FIG. 2, the absorbent slurry concentration in the absorption tower is monitored based on the meter indication value, and the indication value of the absorbent slurry concentration is It is determined whether or not it has risen (S1). In the present embodiment, in an ordinary case, the operation is performed such that the meter indication value of the absorbent slurry concentration is 20%. However, when the normal operation value is exceeded, there is a concern that the meter piping is blocked. Therefore, when the state in which the meter instruction value is 23%, for example, continues, the absorbent slurry concentration optimization step is performed.

ここで、吸収剤スラリ濃度の指示値が上昇した場合には、煤塵濃度を自動調節し(S2)、吸収剤スラリ循環量を自動調節し(S3)、吸収塔へ供給する吸収剤スラリ流量を減少させる(S4)。
煤塵濃度の自動調節工程では、吸収塔の上流側に設けられた電気式集塵機を自動運転し、吸収塔へ送出される排ガス中に含まれる煤塵を除去して、吸収塔入口における煤塵濃度を下げる操作を行う。また、吸収剤スラリ循環量の自動調節工程では、例えば、循環ポンプの動翼開度を自動調節することにより、吸収剤スラリ循環量を変化させる。また、吸収剤スラリ流量の調節工程では、例えば、吸収剤スラリ流量を、脱硫に最低限必要な5.0t/h〜8.0t/h程度とする。このように、本工程では、吸収塔へ吸収剤スラリを供給するためのスラリポンプの流量を制御し、吸収塔へ供給する吸収剤スラリ流量を減少させる調節を行うことにより、吸収剤スラリ濃度が適正値となるように試みる。
Here, when the indicated value of the absorbent slurry concentration rises, the dust concentration is automatically adjusted (S2), the absorbent slurry circulation amount is automatically adjusted (S3), and the absorbent slurry flow rate to be supplied to the absorption tower is set. Decrease (S4).
In the automatic dust concentration adjustment process, the electric dust collector installed upstream of the absorption tower is automatically operated to remove the dust contained in the exhaust gas sent to the absorption tower and lower the dust concentration at the absorption tower entrance. Perform the operation. Moreover, in the automatic adjustment step of the absorbent slurry circulation amount, for example, the absorbent slurry circulation amount is changed by automatically adjusting the moving blade opening of the circulation pump. In the step of adjusting the absorbent slurry flow rate, for example, the absorbent slurry flow rate is set to about 5.0 t / h to 8.0 t / h, which is the minimum necessary for desulfurization. As described above, in this step, the concentration of the absorbent slurry is controlled by controlling the flow rate of the slurry pump for supplying the absorbent slurry to the absorption tower and adjusting the flow rate of the absorbent slurry to be supplied to the absorption tower. Try to be an appropriate value.

続いて、酸化空気流量の調節を行う(S5)。なお、本実施形態では、排ガス中のSO2を除去するために石灰石を用いているが、反応の過程においてまず亜硫酸カルシウム(CaSO3)が生成され、この亜硫酸カルシウムが酸化されて最終生成物である石膏(CaSO4)が生成される。そこで、亜硫酸カルシウムを効率良く酸化させて最終生成物である石膏を得るために、空気供給手段を用いて酸化空気を供給している。酸化空気流量の調節は、通常の状態では、ORP(Oxidation Reduction Potential)制御を行って、吸収塔における吸収剤スラリの電位を測定し、所定値となるように酸化空気の供給量を増減することにより行っている。 Subsequently, the oxidizing air flow rate is adjusted (S5). In this embodiment, limestone is used to remove SO 2 in the exhaust gas. However, calcium sulfite (CaSO 3 ) is first generated in the course of the reaction, and this calcium sulfite is oxidized to form a final product. A certain gypsum (CaSO 4 ) is produced. Therefore, in order to efficiently oxidize calcium sulfite to obtain gypsum which is the final product, oxidized air is supplied using an air supply means. In the normal state, the flow rate of the oxidized air is controlled by ORP (Oxidation Reduction Potential), and the potential of the absorbent slurry in the absorption tower is measured, and the supply amount of oxidized air is increased or decreased to a predetermined value. It is done by.

続いて、脱水機(ベルトフィルタ)へ供給する吸収剤スラリ流量を増加させる(S6)。本工程では、脱水機へ吸収剤スラリを供給するための抜出ポンプの流量を制御し、吸収塔内に存在する吸収剤スラリの入れ替えによって、吸収塔における液質改善を図ることにより、吸収剤スラリ濃度の適正化を試みる。   Subsequently, the absorbent slurry flow rate supplied to the dehydrator (belt filter) is increased (S6). In this step, the absorbent is controlled by controlling the flow rate of the extraction pump for supplying the absorbent slurry to the dehydrator and improving the liquid quality in the absorption tower by replacing the absorbent slurry present in the absorption tower. Try to optimize the slurry concentration.

ここで、吸収剤スラリ濃度の指示値が下降したか否かを判断し(S7)、吸収剤スラリ濃度が下降した場合には、吸収剤スラリ濃度が適正値に戻ったとして処理を終了する。
一方、吸収剤スラリ濃度が下降しない場合には、運転する脱水機の台数を増加させることにより(S8)、吸収塔内に存在する吸収剤スラリをさらに入れ替えて、吸収塔における液質改善を図ることにより、吸収剤スラリ濃度の適正化を試みる。なお、通常の運転状態では1台の脱水機を運転しているが、本工程ではさらに1台の脱水機を加えて、合計2台の脱水機を運転することにより、吸収塔内に存在する吸収剤スラリ濃度の適正化を図る。
Here, it is determined whether or not the indicated value of the absorbent slurry concentration has decreased (S7). If the absorbent slurry concentration has decreased, the processing is terminated assuming that the absorbent slurry concentration has returned to an appropriate value.
On the other hand, when the concentration of the absorbent slurry does not decrease, the number of the dehydrators to be operated is increased (S8), thereby further replacing the absorbent slurry present in the absorption tower to improve the liquid quality in the absorption tower. By trying to optimize the absorbent slurry concentration. In addition, although one dehydrator is operated in a normal operation state, in this process, another dehydrator is added and a total of two dehydrators are operated to exist in the absorption tower. Optimize absorbent slurry concentration.

また、脱水機(ベルトフィルタ)へ供給する吸収剤スラリ流量を増加させても吸収剤スラリ濃度が適正化されない場合、または適正化となるまで時間を要する場合には、抜出ポンプによる脱水機への吸収剤スラリ供給を停止する(S9)ことが好ましい。この工程では、抜出ポンプから予備タンクに吸収剤スラリを短時間で大量かつ一時的に受け入れ、そのタンク受入相当分(減少分)を、液室内に工水を大量に注入して希釈操作を行うことにより、液質改善を図って吸収剤スラリ濃度の降下を試みる。なお、脱水機への吸収剤スラリ供給を停止することは、石膏の製造中止を意味する。   Also, if the absorbent slurry concentration is not optimized even if the flow rate of the absorbent slurry supplied to the dehydrator (belt filter) is increased, or if it takes time until it is optimized, the dehydrator with the extraction pump is used. It is preferable to stop the supply of the absorbent slurry (S9). In this process, a large amount of absorbent slurry is temporarily received from the extraction pump into the reserve tank in a short time, and a portion corresponding to the tank reception (decrease) is injected into the liquid chamber in a large amount for dilution. By trying to improve the liquid quality, try to lower the concentration of the absorbent slurry. Note that stopping the supply of the absorbent slurry to the dehydrator means that the production of gypsum is stopped.

なお、上述した実施形態で示した具体的数値は一例であり、本実施形態を適用する排煙脱硫装置の形状および規模や、プラントの規模および稼働状態等に応じて、各数値を適宜変更して実施できることは勿論である。   In addition, the specific numerical value shown by embodiment mentioned above is an example, Each numerical value is changed suitably according to the shape and scale of a flue gas desulfurization apparatus to which this embodiment is applied, the scale of a plant, an operating state, etc. Of course, it can be implemented.

本発明に係る排煙脱硫装置における吸収剤スラリ濃度上昇時の対応方法は、主として、発電プラント等で使用されている吸収剤スラリと排煙とを接触させて排煙中の硫黄酸化物を吸収除去する排煙脱硫装置において、吸収塔で吸収剤スラリ濃度が上昇して排煙脱硫装置を正常運転できない可能性が発生した場合に、迅速かつ効率よく吸収塔における吸収剤スラリ濃度を正常の範囲内に戻す際に利用することができる。   The countermeasure method when the concentration of the absorbent slurry in the flue gas desulfurization apparatus according to the present invention is increased is mainly to absorb the sulfur oxide in the flue gas by bringing the absorbent slurry used in a power plant or the like into contact with the flue gas. In the case of the flue gas desulfurization device to be removed, if there is a possibility that the concentration of the absorbent slurry in the absorption tower will rise and the normal operation of the flue gas desulfurization device will not occur, the absorbent slurry concentration in the absorption tower will be within the normal range quickly and efficiently. It can be used when returning to the inside.

本発明の実施形態に係る吸収剤スラリ濃度上昇時の対応方法を適用する排煙脱硫装置の模式図である。It is a schematic diagram of the flue gas desulfurization apparatus to which the response method at the time of the absorbent slurry concentration rise which concerns on embodiment of this invention is applied. 本発明の実施形態に係る吸収剤スラリ濃度上昇時の対応方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the response method at the time of the absorber slurry density | concentration raise which concerns on embodiment of this invention.

符号の説明Explanation of symbols

10 気液接触装置
20 抜出ポンプ
30 脱水機(ベルトフィルタ)
40 スラリ槽
50 スラリポンプ
60 タンク
61 空気供給手段
62 中空回転軸
63 アーム
64 空気供給管
65 ロータリージョイント
70 導入側吸収塔(接触処理塔)
71 排煙導入部
72 スプレーパイプ
73 スプレーノズル
74 循環ポンプ
75 供給ヘッダ
80 導出側吸収塔
81 排煙導出部
82 ミストエリミネータ
10 Gas-liquid contact device 20 Extraction pump 30 Dehydrator (belt filter)
40 Slurry tank 50 Slurry pump 60 Tank 61 Air supply means 62 Hollow rotating shaft 63 Arm 64 Air supply pipe 65 Rotary joint 70 Introduction side absorption tower (contact treatment tower)
71 Smoke exhaust introduction part 72 Spray pipe 73 Spray nozzle 74 Circulation pump 75 Supply header 80 Outlet absorption tower 81 Smoke exhaust part 82 Mist eliminator

Claims (3)

吸収剤スラリと排煙とを接触させて排煙中の硫黄酸化物を吸収除去する排煙脱硫装置において吸収塔で吸収剤スラリ濃度が上昇した際の対応方法であって、
吸収塔における運転基準値が所定の範囲を超えた場合に、
排煙脱硫装置に取り入れる排煙からの煤塵除去量を自動調節する工程と、
吸収剤スラリ循環量を自動調節する工程と、
吸収塔へ供給する酸化空気流量を自動調節する工程と、
吸収塔へ供給する吸収剤スラリ流量を減少させる工程と、
脱水機へ供給する吸収剤スラリ流量を増加させる工程と、からなる吸収剤スラリ濃度適正化工程のうちの少なくとも一工程を行うことにより吸収塔における吸収剤スラリ濃度上昇状態を解消することを特徴とする排煙脱硫装置における吸収剤スラリ濃度上昇時の対応方法。
In a flue gas desulfurization apparatus that absorbs and removes sulfur oxides in flue gas by bringing the absorbent slurry and flue gas into contact with each other, a method for dealing with an increase in the concentration of the absorbent slurry in the absorption tower,
When the operation reference value in the absorption tower exceeds the specified range,
A process for automatically adjusting the amount of dust removal from the flue gas to be taken into the flue gas desulfurization unit;
A process of automatically adjusting the amount of absorbent slurry circulation;
A process of automatically adjusting the flow rate of oxidizing air supplied to the absorption tower;
Reducing the flow rate of the absorbent slurry supplied to the absorption tower;
It is characterized by eliminating the rising state of the absorbent slurry concentration in the absorption tower by performing at least one of the steps of optimizing the absorbent slurry concentration comprising the step of increasing the flow rate of the absorbent slurry supplied to the dehydrator. To cope with an increase in the concentration of absorbent slurry in a flue gas desulfurization system.
前記吸収剤スラリとして、石灰石を溶質とするとともに水を溶媒とした炭酸カルシウムスラリを用いることを特徴とする請求項1に記載の排煙脱硫装置における吸収剤スラリ濃度上昇時の対応方法。   The method for dealing with an increase in the concentration of the absorbent slurry in the flue gas desulfurization apparatus according to claim 1, wherein a calcium carbonate slurry using limestone as a solute and water as a solvent is used as the absorbent slurry. 前記脱水機へ供給する吸収剤スラリ流量を増加させる工程は、
吸収塔内の吸収剤スラリ濃度に応じて、脱水機へ吸収剤スラリを供給する抜出ポンプの流量制御を行うことにより吸収剤スラリ流量を調節する工程と、
運転する脱水機の数を増加することにより吸収剤スラリ流量を調節する工程との少なくとも一方を行うことを特徴とする請求項1または2に記載の排煙脱硫装置における吸収剤スラリ濃度上昇時の対応方法。
The step of increasing the flow rate of the absorbent slurry supplied to the dehydrator is as follows:
Adjusting the absorbent slurry flow rate by controlling the flow rate of the extraction pump that supplies the absorbent slurry to the dehydrator according to the absorbent slurry concentration in the absorption tower;
The at least one of the step of adjusting the flow rate of the absorbent slurry by increasing the number of dehydrators to be operated is performed when the concentration of the absorbent slurry in the flue gas desulfurization apparatus is increased. How to respond.
JP2007013401A 2007-01-24 2007-01-24 How to cope with increase of absorbent slurry concentration in flue gas desulfurization equipment Expired - Fee Related JP5019361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007013401A JP5019361B2 (en) 2007-01-24 2007-01-24 How to cope with increase of absorbent slurry concentration in flue gas desulfurization equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007013401A JP5019361B2 (en) 2007-01-24 2007-01-24 How to cope with increase of absorbent slurry concentration in flue gas desulfurization equipment

Publications (2)

Publication Number Publication Date
JP2008178786A true JP2008178786A (en) 2008-08-07
JP5019361B2 JP5019361B2 (en) 2012-09-05

Family

ID=39723095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007013401A Expired - Fee Related JP5019361B2 (en) 2007-01-24 2007-01-24 How to cope with increase of absorbent slurry concentration in flue gas desulfurization equipment

Country Status (1)

Country Link
JP (1) JP5019361B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102688684A (en) * 2012-05-26 2012-09-26 无锡市华星电力环保修造有限公司 Fixed spray flue gas purifying device
CN103007729A (en) * 2012-11-28 2013-04-03 广东依科电力技术有限公司 Annular pipe rotational flow layer of desulfurizing tower and working method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52117297A (en) * 1976-03-29 1977-10-01 Mitsui Mining & Smelting Co Process for evacuation of smoke and desulfurization
JPH057727A (en) * 1991-07-03 1993-01-19 Babcock Hitachi Kk Control device of desulfurization equipment
JPH0910547A (en) * 1995-06-26 1997-01-14 Mitsubishi Heavy Ind Ltd Wet type flue gas desulfurization device and flue gas treatment facilities
JPH11128612A (en) * 1997-08-25 1999-05-18 Mitsubishi Heavy Ind Ltd Draining device and slurry concentration control by wet type flue gas desulfurizer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52117297A (en) * 1976-03-29 1977-10-01 Mitsui Mining & Smelting Co Process for evacuation of smoke and desulfurization
JPH057727A (en) * 1991-07-03 1993-01-19 Babcock Hitachi Kk Control device of desulfurization equipment
JPH0910547A (en) * 1995-06-26 1997-01-14 Mitsubishi Heavy Ind Ltd Wet type flue gas desulfurization device and flue gas treatment facilities
JPH11128612A (en) * 1997-08-25 1999-05-18 Mitsubishi Heavy Ind Ltd Draining device and slurry concentration control by wet type flue gas desulfurizer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102688684A (en) * 2012-05-26 2012-09-26 无锡市华星电力环保修造有限公司 Fixed spray flue gas purifying device
CN103007729A (en) * 2012-11-28 2013-04-03 广东依科电力技术有限公司 Annular pipe rotational flow layer of desulfurizing tower and working method thereof

Also Published As

Publication number Publication date
JP5019361B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
JP6223654B2 (en) Flue gas desulfurization equipment
JP5717382B2 (en) Smoke exhaust treatment device and smoke exhaust treatment method
JP6230818B2 (en) Exhaust gas treatment apparatus and exhaust gas treatment method
JP5953342B2 (en) Sulphite control to reduce mercury re-emissions
JP2009240908A (en) Wet two step flue gas desulfurization apparatus and operation method of wet two step flue gas desulfurization apparatus
KR20150140622A (en) Exhaust gas treatment device, vessel, and exhaust gas treatment method
JP2014217809A (en) Flue gas desulfurization apparatus
JP2014188406A (en) Sea water flue gas desulfurization equipment and operation method thereof
WO2014156984A1 (en) Seawater flue gas desulfurization apparatus and operating method therefor
JP2013086054A (en) Wet type limestone-gypsum method desulfurization apparatus using seawater
JP2011177674A (en) Finishing flue gas desulfurization apparatus and exhaust gas treatment system using the same
JP5106479B2 (en) Method and apparatus for suppressing mercury re-release in desulfurization equipment
TWI531538B (en) Oxidation tank, seawater desulfurization system and power generation system
JP2016120438A (en) Wet-type desulfurization apparatus and wet-type desulfurization method
JP5019360B2 (en) How to deal with peroxidation conditions in flue gas desulfurization equipment
JP5019359B2 (en) How to cope with increase of calcium sulfite concentration in flue gas desulfurization equipment
JP3332678B2 (en) Wet flue gas desulfurization equipment
JP2009219999A (en) Flue gas treatment apparatus
JP2009172541A (en) Air supply amount control method for oxidization of wet-type flue gas desulfurization apparatus
JP5019361B2 (en) How to cope with increase of absorbent slurry concentration in flue gas desulfurization equipment
JP5859244B2 (en) Smoke exhaust treatment equipment and smoke exhaust treatment method
JP3337382B2 (en) Exhaust gas treatment method
JP5019358B2 (en) How to deal with absorption tower deactivation in flue gas desulfurization equipment
JPH10118451A (en) Exhaust gas treatment apparatus and method
JP3572188B2 (en) Exhaust gas treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120229

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120606

R150 Certificate of patent or registration of utility model

Ref document number: 5019361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees