JP2008178367A - Culturing container for developing embryoid, method for producing the same and method for developing the embryoid - Google Patents

Culturing container for developing embryoid, method for producing the same and method for developing the embryoid Download PDF

Info

Publication number
JP2008178367A
JP2008178367A JP2007015793A JP2007015793A JP2008178367A JP 2008178367 A JP2008178367 A JP 2008178367A JP 2007015793 A JP2007015793 A JP 2007015793A JP 2007015793 A JP2007015793 A JP 2007015793A JP 2008178367 A JP2008178367 A JP 2008178367A
Authority
JP
Japan
Prior art keywords
water
embryoid body
coating layer
soluble
soluble resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007015793A
Other languages
Japanese (ja)
Inventor
Hayao Tanaka
速雄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2007015793A priority Critical patent/JP2008178367A/en
Publication of JP2008178367A publication Critical patent/JP2008178367A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/06Bioreactors or fermenters specially adapted for specific uses for in vitro fertilization
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/20Material Coatings

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Clinical Laboratory Science (AREA)
  • Molecular Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a culturing container for developing an embryoid (EB), developing the EB having a high quality from an embryonic stem cell (ES cell) easily in a good efficiency, and to provide a method for producing the same and a method for developing the EB. <P>SOLUTION: This method for producing the culturing container for developing the EB comprises the water-soluble resin-covering layer-forming process of forming a water-soluble covering layer by covering the inner surface of the culturing container with the water-soluble resin and after that process, the water-insoluble cured film-modifying process of curing the water-soluble covering layer to modify to the water-insoluble cured film layer, and the produced culturing container for developing the EB is also provided. Further, the method for developing the EB is provided by seeding and culturing non-differentiated embryonic stem cells in the container for developing the EB. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、胚様体形成用培養容器と、その製造方法、及び胚様体形成方法に関する。   The present invention relates to a culture vessel for forming an embryoid body, a method for producing the same, and a method for forming an embryoid body.

胚性幹細胞(embryonic stem cell:ES細胞)は、胚盤胞の内部細胞塊をフィーダー細胞の上に播種し、白血病阻害因子(leukemia inhibitory factor:LIF)を添加して培養することにより得られる。
未分化状態を維持したまま無限増殖するES細胞は、様々な組織細胞に分化する多分化能を有することから、分化により得られた組織を用いた移植治療、いわゆる再生医療の分野で様々な研究の対象となっている。
Embryonic stem cells (ES cells) are obtained by seeding the inner cell mass of blastocysts on feeder cells and adding leukemia inhibitory factor (LIF) to culture.
ES cells that proliferate indefinitely while maintaining an undifferentiated state have multipotency to differentiate into various tissue cells, so various researches in the field of transplantation treatment using tissues obtained by differentiation, so-called regenerative medicine It is the target of.

ES細胞を様々な組織に分化誘導するためには、胚様体(embryoid body:EB体)と呼ばれる擬似的な胚を形成させる方法が最も広く用いられており、EB体の形成はin vitroでのES細胞の分化誘導におけるファーストステップとなる。また、EB体の形成はES細胞を培養容器に接着させない浮遊状態で培養することが必要であり、通常の培養容器を使用した接着培養ではEB体は形成されず、接着・伸展し、非特異的な分化を開始する。   In order to induce differentiation of ES cells into various tissues, a method of forming a pseudo embryo called an embryoid body (EB body) is most widely used, and the formation of an EB body is performed in vitro. This is the first step in inducing differentiation of ES cells. In addition, formation of EB bodies requires that ES cells be cultured in a floating state in which the ES cells are not adhered to the culture vessel. In the adhesion culture using a normal culture vessel, the EB bodies are not formed, but adhere / extend, and are non-specific. Differentiation begins.

ES細胞を浮遊状態で培養するために最も広く用いられているのが懸垂培養(ハンギングドロップ培養)と呼ばれる方法である(例えば、非特許文献1参照)。ハンギングドロップ培養はその名のとおり、水滴状に垂れ下げた培養液の中で細胞を培養する方法である。すなわち、マルチウェルプレートの穴(ウェル)に、ミネラルオイルと緩衝液を添加し、マルチウェルプレートの蓋の各ウェル上に重なる位置にES細胞を含む培養懸濁液を液滴となるようにスポッティングし、マルチウェルプレートにかぶせて培養する。しかし、ハンギングドロップ法においては、EB体形成の成功率が低い、顕微鏡観察ができない、一度に形成できるEB体の量が少ない、操作が煩雑である、等の問題がある。   The most widely used method for culturing ES cells in a suspended state is a method called hanging culture (see, for example, Non-Patent Document 1). As its name suggests, hanging drop culture is a method of culturing cells in a culture solution suspended in the form of water droplets. In other words, mineral oil and buffer solution are added to the wells of a multi-well plate, and the culture suspension containing ES cells is spotted into droplets at positions that overlap each well of the multi-well plate lid. And incubate on a multiwell plate. However, the hanging drop method has problems such as a low success rate of EB body formation, microscopic observation, a small amount of EB bodies that can be formed at one time, and complicated operation.

その問題点を解消するために、例えば特許文献1では、容器をポリプロピレン製のチューブとしてES細胞の接着を防ぎ、かつ容器の形状を円錐状にして底部にES細胞が集まりやすくすることで、EB体を簡便かつ効率的に形成させることが開示されている。しかしながら、ポリプロピレンは透明性が無く顕微鏡観察によるEB体形成性の確認ができない点と、容器一つで一つのEB体しか形成されないので、一度に形成できるEB体の量はハンギングドロップ法と同等である。
更に、ES細胞が物理的に滑り落ちる為の傾斜が必要であるため容器の形状は前述の円錐状に限定される為、一般的に使用されるディッシュや底が平らなマルチウェルプレート形状の容器としては使用できない。
In order to solve the problem, for example, in Patent Document 1, a container is made of polypropylene to prevent adhesion of ES cells, and the shape of the container is conical to make it easier for ES cells to collect at the bottom. It is disclosed to form a body simply and efficiently. However, since polypropylene is not transparent and EB body formation cannot be confirmed by microscopic observation, and only one EB body can be formed in a single container, the amount of EB body that can be formed at one time is equivalent to the hanging drop method. is there.
Furthermore, since the inclination of the ES cell to physically slide down is necessary, the shape of the container is limited to the above-mentioned conical shape, so that it is generally used as a multi-well plate-shaped container with a flat dish or bottom. Cannot be used.

また、例えば、特許文献2では、特定のホスホリルコリン類似基を有する化合物を用いて形成した被覆層を備える胚様体形成用容器が開示されている。当該特許文献には、ホスホリルコリン基が有する生体適合性を利用してES細胞を浮遊状態で培養することで、EB体が良好に形成されると記載されている。しかしながら、当該特許文献を実施する上で必須となるホスホリルコリン類似基を有する化合物が非常に特殊な化合物であり、例えば特許文献3に開示されている方法を用いないと合成することは困難という点が実施にあたっての限定となる。   For example, Patent Document 2 discloses an embryoid body-forming container including a coating layer formed using a compound having a specific phosphorylcholine-like group. The patent document describes that EB bodies are favorably formed by culturing ES cells in a floating state using the biocompatibility of the phosphorylcholine group. However, a compound having a phosphorylcholine-like group which is essential for carrying out the patent document is a very special compound, and it is difficult to synthesize without using the method disclosed in Patent Document 3, for example. It will be limited in implementation.

また、培養容器表面を親水性化合物で被覆することにより細胞接着が抑制され、浮遊状態で培養できることは公知であり、その様な培養容器をEB体形成容器として使用する試みは他にも実施されている例はある。しかしながら、それらの方法によってEB体が形成されるものはあるが、得られたEB体の質及び形成率は様々で、必ずしも分化誘導のステップにおいて満足な結果が得られるものではなかった。親水性化合物で被覆した従来の培養容器においてEB体の質及び形成率が悪くなる原因は種々考えられるが、例えばグラフト重合を利用して親水性化合物を被覆した場合、親水性化合物の密度が不充分である為に、ES細胞の接着を充分に防止することができていない可能性が考えられる。また、コーティングを利用して親水性化合物を被覆した場合、培地中に親水性化合物由来の溶出物が遊離し、EB体形成を阻害している可能性が考えられる。   In addition, it is known that cell adhesion is suppressed by coating the surface of the culture vessel with a hydrophilic compound, and that the culture can be performed in a floating state, and other attempts to use such a culture vessel as an EB body-forming vessel have been carried out. There are examples. However, although some EB bodies are formed by these methods, the quality and formation rate of the obtained EB bodies are various, and satisfactory results are not always obtained in the differentiation induction step. There are various possible causes for the deterioration in the quality and formation rate of EB bodies in a conventional culture vessel coated with a hydrophilic compound. For example, when a hydrophilic compound is coated using graft polymerization, the density of the hydrophilic compound is low. Since it is sufficient, there is a possibility that the adhesion of ES cells cannot be sufficiently prevented. Moreover, when a hydrophilic compound is coated using a coating, there is a possibility that an eluate derived from the hydrophilic compound is liberated in the medium and inhibits EB body formation.

Keller,J.Physiol.(Lond)168:131−139,1998Keller, J .; Physiol. (Lond) 168: 131-139, 1998 特開2004−254622号広報JP 2004-254622 A WO2005/001019号広報WO2005 / 001019 PR 特開昭54−36025号広報JP 54-36025 A

本発明は、上記こと情に鑑みてなされたものであり、ES細胞から、効率よく、容易に質の高い胚様体を形成することのできる胚様体形成用培養容器と、その製造方法、及び胚様体の形成方法を提供することにある。   The present invention has been made in view of the above circumstances, an embryoid body-forming culture container capable of efficiently and easily forming a high-quality embryoid body from ES cells, and a method for producing the same. And it is providing the formation method of an embryoid body.

このような目的は、下記(1)から(9)に記載の本発明により達成される。
(1)胚様体形成用培養容器の製造方法であって、
水溶性樹脂を前記培養容器内面に被覆させて水溶性被覆層を形成する水溶性樹脂被覆層形成工程と、
前記工程後に、前記水溶性被覆層を硬化させて非水溶性硬化皮膜層に変性する非水溶性硬化皮膜変性工程と、
を含むことを特徴とする胚様体形成用培養容器の製造方法。
(2)前記水溶性樹脂は、側鎖に放射線反応性、感光性、熱反応性の中から選ばれる官能基を有するものである(1)に記載の胚様体形成用培養容器の製造方法。
(3)前記官能基は、アジド基を有するものを含む(1)又は(2)に記載の胚様体形成用培養容器の製造方法。
(4)前記水溶性被覆層を硬化させる方法は、光照射による硬化方法を含む(1)に記載の胚様体形成用培養容器の製造方法。
(5)胚様体形成用培養容器であって、
水溶性樹脂を前記培養容器内面に被覆させて水溶性被覆層を形成する水溶性樹脂被覆層形成工程と、
前記工程後に、前記水溶性被覆層を硬化させて非水溶性硬化皮膜層に変性する非水溶性硬化皮膜変性工程と、
によって内面に非水溶性硬化皮膜を有することを特徴とする胚様体形成用培養容器。
(6)前記水溶性樹脂は、側鎖に感光性の官能基を有するものを含む(5)に記載の胚葉体形成用培養容器。
(7)前記官能基は、アジド基を有するものを含む(5)又は(6)に記載の胚様体形成用培養容器。
(8)光照射によって前記水溶性被覆層を硬化させる(5)に記載の胚様体形成用培養容器。
(9)(5)ないし(8)のいずれかに記載の胚様体形成用培養容器に、未分化胚性幹細胞を播種し、更に前記未分化胚性幹細胞を培養することにより胚様体を形成させることを特徴とする胚様体形成方法。
Such an object is achieved by the present invention described in the following (1) to (9).
(1) A method for producing a culture container for embryoid body formation,
A water-soluble resin coating layer forming step of coating the inner surface of the culture vessel with a water-soluble resin to form a water-soluble coating layer;
After the step, a water-insoluble cured film modifying step for curing the water-soluble coating layer and modifying it into a water-insoluble cured film layer;
A method for producing a culture vessel for embryoid body formation, comprising:
(2) The method for producing a culture container for embryoid body formation according to (1), wherein the water-soluble resin has a functional group selected from radiation reactivity, photosensitivity, and heat reactivity in a side chain. .
(3) The said functional group is a manufacturing method of the culture container for embryoid body formation as described in (1) or (2) containing what has an azide group.
(4) The method for curing the water-soluble coating layer includes the method for curing an embryoid body formation according to (1), including a curing method by light irradiation.
(5) A culture vessel for embryoid body formation,
A water-soluble resin coating layer forming step of coating the inner surface of the culture vessel with a water-soluble resin to form a water-soluble coating layer;
After the step, a water-insoluble cured film modifying step for curing the water-soluble coating layer and modifying it into a water-insoluble cured film layer;
A culture vessel for forming an embryoid body characterized by having a water-insoluble cured film on the inner surface.
(6) The embryoid body-forming culture container according to (5), wherein the water-soluble resin includes one having a photosensitive functional group in a side chain.
(7) The culture container for forming an embryoid body according to (5) or (6), wherein the functional group includes one having an azide group.
(8) The culture vessel for embryoid body formation according to (5), wherein the water-soluble coating layer is cured by light irradiation.
(9) An embryoid body is cultured by seeding an undifferentiated embryonic stem cell in the culture container for embryoid body formation according to any one of (5) to (8), and further culturing the undifferentiated embryonic stem cell. A method of forming an embryoid body, comprising forming the embryoid body.

本発明によれば、ES細胞から、効率よく、容易に質の高い胚様体を形成することのできる胚様体形成用培養容器、その製造方法、及び胚様体形成方法を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the culture container for embryoid body formation which can form a high quality embryoid body efficiently and easily from an ES cell, its manufacturing method, and an embryoid body formation method can be obtained. .

本発明は、水溶性樹脂を培養容器内面に被覆させて水溶性被覆層を形成する水溶性樹脂被覆層形成工程と、前記工程後に、前記水溶性被覆層を硬化させて非水溶性硬化皮膜層に変性する非水溶性硬化皮膜変性工程と、を含むことを特徴とする胚様体形成用培養容器の製造方法であり、上記製造方法によって製造された胚様体形成用培養容器であり、また、この培養容器に未分化胚性幹細胞を播種し、更にこの未分化胚性幹細胞を培養することにより胚様体を形成させることを特徴とする胚様体形成方法である。   The present invention includes a water-soluble resin coating layer forming step in which a water-soluble resin is coated on the inner surface of a culture vessel to form a water-soluble coating layer, and after the step, the water-soluble coating layer is cured to form a water-insoluble cured coating layer. A method for producing an embryoid body-forming culture container characterized by comprising a water-insoluble cured film denaturing step that is denatured into an embryoid body-forming culture container, An embryoid body formation method characterized in that an embryoid body is formed by seeding undifferentiated embryonic stem cells in this culture container and further culturing the undifferentiated embryonic stem cells.

まず、本発明の本発明による胚様体形成用培養容器の製造方法(以下、単に「製造方法」ということがある)について説明する。
本発明の製造方法においては、水溶性樹脂を培養容器内面に被覆させて水溶性被覆層を形成する水溶性樹脂被覆層形成工程を有することを特徴とする。
First, a method for producing an embryoid body-forming culture container according to the present invention (hereinafter sometimes simply referred to as “manufacturing method”) will be described.
The production method of the present invention is characterized by having a water-soluble resin coating layer forming step of forming a water-soluble coating layer by coating the inner surface of a culture vessel with a water-soluble resin.

本発明の製造方法に用いられる水溶性樹脂とは、水分子とのイオンもしくは水素結合により水和し、その結果として水に溶解するものであり、言い換えれば、水溶性樹脂とは水に溶解するために分子内の主鎖に対して必要充分な量のイオン性もしくは極性の側鎖を持つ樹脂である。なお、ここで水溶性樹脂とは、25℃の水100gに対して1.0g以上溶解可能なものをいう。   The water-soluble resin used in the production method of the present invention is hydrated by an ion or hydrogen bond with a water molecule, and as a result, dissolves in water. In other words, the water-soluble resin dissolves in water. Therefore, it is a resin having a necessary and sufficient amount of ionic or polar side chains with respect to the main chain in the molecule. In addition, water-soluble resin means what can melt | dissolve 1.0g or more with respect to 100g of 25 degreeC water here.

上記水溶性樹脂の平均重合度は、特に限定されないが、100以上、10,000以下が好ましく、特に200以上、5,000以下が好ましい。平均重合度が100以上であると、均一な皮膜を成形することができ、また、平均重合度が10,000以下であれば作業性に適した水溶性の粘度とすることができる。   The average degree of polymerization of the water-soluble resin is not particularly limited, but is preferably 100 or more and 10,000 or less, particularly preferably 200 or more and 5,000 or less. When the average degree of polymerization is 100 or more, a uniform film can be formed, and when the average degree of polymerization is 10,000 or less, a water-soluble viscosity suitable for workability can be obtained.

上記水溶性樹脂としては、例えば、ポリ酢酸ビニルのケン化物、ポリビニルピロリドン、ポリエチレングリコール、ポリアクリルアミド、ポリメタアクリルアミド、ポリヒドロキシエチルメタアクリレート、ポリペンタエリスリトールトリアクリレート、ポリペンタエリスリトールテトラアクリレート、ポリジエチレングリコールジアクリレート、およびそれらを構成するモノマー同士の共重合体、また2−メタクリロイルオキシエチルホスホリルコリンと他のモノマー(例えばブチルメタクリレート等)との共重合体等が挙げられる。これらの中でもポリ酢酸ビニルのケン化物、ポリビニルピロリドン、ポリエチレングリコールの中から選ばれる1種以上と上記反応基からなる構造が好ましい。これにより、ES細胞に対する刺激を抑制し、EB体の形成速度、形成率、および形成したEB体の質を向上することができる。   Examples of the water-soluble resin include saponified polyvinyl acetate, polyvinyl pyrrolidone, polyethylene glycol, polyacrylamide, polymethacrylamide, polyhydroxyethyl methacrylate, polypentaerythritol triacrylate, polypentaerythritol tetraacrylate, polydiethylene glycol diester. Examples thereof include copolymers of acrylates and monomers constituting them, and copolymers of 2-methacryloyloxyethyl phosphorylcholine with other monomers (such as butyl methacrylate). Among these, a structure comprising at least one selected from saponified products of polyvinyl acetate, polyvinyl pyrrolidone, and polyethylene glycol and the reactive group is preferable. Thereby, the stimulation with respect to ES cell can be suppressed and the formation rate of EB body, the formation rate, and the quality of the formed EB body can be improved.

ここで、ポリ酢酸ビニルのケン化物とは、例えば、ポリビニルアルコールまたはビニルアルコールと他の化合物との共重合体をいう。さらには、例えば、ビニルアルコールと、親水基変性、疎水基変性、アニオン変性、カチオン変性、アミド基変性またはアセトアセチル基のような反応基変性させた変性酢酸ビニルのケン化物等も含まれる。   Here, the saponified product of polyvinyl acetate refers to, for example, polyvinyl alcohol or a copolymer of vinyl alcohol and another compound. Furthermore, for example, saponified products of vinyl alcohol and modified vinyl acetate modified with a reactive group such as hydrophilic group modification, hydrophobic group modification, anion modification, cation modification, amide group modification or acetoacetyl group are included.

また、上記ポリ酢酸ビニルのケン化物を用いる場合、上記ポリ酢酸ビニルのケン化物のケン化度は特に限定されないが、該ポリ酢酸ビニル全体の20mol%以上、100mol%以下が好ましく、特に50mol%以上、95mol%以下が好ましい。上記ポリ酢酸ビニルのケン化度が上記範囲内であると、EB体の形成速度、形成率、および形成したEB体の質を特に向上することができる。   Further, when the saponified product of polyvinyl acetate is used, the saponification degree of the saponified product of polyvinyl acetate is not particularly limited, but is preferably 20 mol% or more and 100 mol% or less, particularly 50 mol% or more of the whole polyvinyl acetate. 95 mol% or less is preferable. When the saponification degree of the polyvinyl acetate is within the above range, the formation rate of the EB body, the formation rate, and the quality of the formed EB body can be particularly improved.

上記水溶性樹脂は、20℃における粘度が1mPa・s以上、10mPa・s以下に、好ましくは2mPa・s以上、7mPa・s以下となるよう溶媒を用いて調製されたものを使用することが好ましい。その際に使用する溶媒は水もしくは溶解度を高めるために、水と有機溶媒との混合物を使用することができる。水溶性樹脂の粘度が上記範囲内であると、細胞の接着量が少なく、細胞凝集塊形成効果が特に優れる。充分な細胞の接着低減効果により、良好な細胞凝集塊形成性が得られる。被覆層の厚みとしては、100nm以上5,000nm以下が好ましく、150以上1,000nm以下がより好ましい。
被覆層の厚みを上記下限値以上にすることにより細胞が基材から受ける物理的な刺激をより抑えることができ、厚みを上記上限値以下とすることにより被覆層に取り込まれるたんぱく質の量を少なくし、たんぱく質を介した細胞の接着を抑えることが出来るため、細胞凝集塊形成率を更に向上させることができる。
The water-soluble resin is preferably prepared using a solvent so that the viscosity at 20 ° C. is 1 mPa · s or more and 10 mPa · s or less, preferably 2 mPa · s or more and 7 mPa · s or less. . The solvent used in that case may be water or a mixture of water and an organic solvent in order to increase solubility. When the viscosity of the water-soluble resin is within the above range, the cell adhesion amount is small, and the cell aggregate formation effect is particularly excellent. A sufficient cell aggregate formation property can be obtained due to a sufficient cell adhesion reduction effect. The thickness of the coating layer is preferably from 100 nm to 5,000 nm, and more preferably from 150 nm to 1,000 nm.
By making the thickness of the coating layer equal to or higher than the above lower limit value, it is possible to further suppress physical irritation that the cells receive from the substrate, and by setting the thickness to be equal to or lower than the upper limit value, the amount of protein taken into the coating layer is reduced. In addition, since cell adhesion through protein can be suppressed, the cell aggregate formation rate can be further improved.

上記水溶性樹脂を培養容器内面に被覆させる方法としては、例えば、スピンコート、ディッピング、または上記水溶性樹脂溶液を培養容器内面に分注した後、容器を傾けて溶液を排出する方法を用いることができる。この様な方法で培養容器内面に水溶性樹脂を接触させた後、培養容器内面に残留した水溶性樹脂溶液を乾燥させることで水溶性樹脂被覆層を形成することができる。   Examples of the method for coating the inner surface of the culture vessel with the water-soluble resin include spin coating, dipping, or dispensing the water-soluble resin solution onto the inner surface of the culture vessel and then discharging the solution by tilting the vessel. Can do. After bringing the water-soluble resin into contact with the inner surface of the culture vessel by such a method, the water-soluble resin coating layer can be formed by drying the water-soluble resin solution remaining on the inner surface of the culture vessel.

本発明の製造方法においては、上記工程後に、上記水溶性被覆層を硬化させて非水溶性硬化皮膜層に変性する非水溶性硬化皮膜変性工程を有することを特徴とする。
上記水溶性被覆層を非水溶性硬化皮膜層とすることで、密度の高いイオン性もしくは極性の側鎖を持つ表面を構築することができる。この表面に構築されたイオン性もしくは極性の側鎖は、培養液と接触した際に、静電相互作用もしくは水素結合により水分子と水和し、培養容器表面は実質的に水分子の密な水和層となり、この水和層はES細胞に対する基材表面からの刺激を抑制し、質的に良好なEB体が迅速に形成されることとなる。こうすることで、培養液を接触させた際に、水溶性樹脂の被覆層が溶解、遊離することを防ぎ、培養容器として必要な耐水性を獲得することができる。
The production method of the present invention is characterized by having a water-insoluble cured film modification step of curing the water-soluble coating layer after the step to modify the water-insoluble cured film layer.
By using the water-soluble coating layer as a water-insoluble cured film layer, a surface having a high density ionic or polar side chain can be constructed. The ionic or polar side chain constructed on this surface hydrates with water molecules by electrostatic interaction or hydrogen bonding when in contact with the culture solution, and the surface of the culture vessel is substantially dense with water molecules. This becomes a hydrated layer, and this hydrated layer suppresses stimulation from the surface of the substrate to ES cells, and a qualitatively good EB body is rapidly formed. By doing so, it is possible to prevent the water-soluble resin coating layer from being dissolved and released when the culture solution is brought into contact, and to obtain water resistance necessary for the culture vessel.

上記水溶性皮膜層を硬化させる方法としては特に限定するものではなく、側鎖に硬化させるための官能基、例えば放射線反応性、感光性、熱反応性の官能基を有する水溶性樹脂を用いることができる。例えば、感光性の官能基であれば、ジアゾ基、アジド基、シンモナイル基等が挙げられ、また、熱反応性および放射線反応性の官能基であれば、ビニル基、エポキシ基等を挙げることができる。これらの中でも硬化処理を迅速におこなうことができ、簡易な設備で硬化させることができる感光性の官能基を有する水溶性樹脂が特に好ましい。   The method for curing the water-soluble film layer is not particularly limited, and a water-soluble resin having a functional group for curing to a side chain, for example, a radiation-reactive, photosensitive, or heat-reactive functional group is used. Can do. For example, if it is a photosensitive functional group, a diazo group, an azide group, a simmonyl group, etc. may be mentioned, and if it is a thermally reactive and radiation reactive functional group, a vinyl group, an epoxy group, etc. may be mentioned. it can. Among these, a water-soluble resin having a photosensitive functional group that can be cured rapidly and can be cured with simple equipment is particularly preferable.

光照射により硬化させる場合の光源は、特に限定するものではなく、照度が5.0mW/cm程度の超高圧水銀灯または0.1mW/cm程度のUVランプを使用することができる。光照射による硬化は照度と照射時間で制御することができるため、照度の低い光源を用いる場合は照射時間を長くすればよく、反応性の高い感光基を選択した場合は蛍光灯下で硬化させることも可能である。例えば、5.0mW/cmの超高圧水銀灯を使用した場合は1ないし10秒の照射で、0.1mW/cmのUVランプを使用した場合は3ないし10分の照射で充分に硬化させることができる。 A light source in the case of curing by light irradiation is not particularly limited, can illuminance using 5.0 mW / cm 2 of about ultra-high pressure mercury lamp or 0.1 mW / cm 2 about UV lamps. Curing by light irradiation can be controlled by illuminance and irradiation time, so when using a light source with low illuminance, the irradiation time can be lengthened, and when a highly reactive photosensitive group is selected, it is cured under a fluorescent lamp. It is also possible. For example, when a 5.0 mW / cm 2 ultra-high pressure mercury lamp is used, irradiation is performed for 1 to 10 seconds, and when a 0.1 mW / cm 2 UV lamp is used, it is sufficiently cured by irradiation for 3 to 10 minutes. be able to.

上記感光性の官能基としては、アジド基を含む官能基が特に好ましい。これにより、実用的な230〜500nmの波長で反応させることができ、更に優れた解像性により皮膜の形成性を向上することができる。このように、表面に予め水溶性樹脂被覆層を形成し、該被覆層を硬化させて非水溶性硬化皮膜層に変性する工程によって上記の厚みの被覆層を得ることができる。   As the photosensitive functional group, a functional group containing an azide group is particularly preferable. Thereby, it can be made to react with a practical wavelength of 230-500 nm, and the formability of a film | membrane can be improved with the further outstanding resolution. Thus, a coating layer having the above thickness can be obtained by forming a water-soluble resin coating layer on the surface in advance, curing the coating layer, and modifying it into a water-insoluble cured coating layer.

水溶性樹脂を使用するもう一つの利点としては、硬化後に表面を水で洗浄することで、未反応の樹脂を容易に洗い流すことができるという点である。もし、硬化反応性が悪い等の原因で溶出物が確認された場合は、硬化後に洗浄工程を入れることにより、溶出物を低減し、更に良好なEB体形成率を得ることができる。   Another advantage of using a water-soluble resin is that the unreacted resin can be easily washed away by washing the surface with water after curing. If the eluate is confirmed due to poor curing reactivity or the like, the eluate can be reduced by adding a washing step after curing, and a better EB body formation rate can be obtained.

次に、本発明の胚様体形成用培養容器(以下、単に「培養容器」ということがある)について説明する。本発明の培養容器は、上記本発明の製造方法によって製造されることを特徴とする。   Next, the embryoid body-forming culture container of the present invention (hereinafter sometimes simply referred to as “culture container”) will be described. The culture container of the present invention is manufactured by the above-described manufacturing method of the present invention.

本発明の培養容器は、樹脂製の材料で成形することができる。この樹脂材料は、上記培養容器をディスポーザルタイプにすることができるのに加え、種々の形状を容易に成形することができる。上記樹脂材料としては、例えば、ポリプロピレン樹脂、ポリエチレン樹脂、エチレン-プロピレン共重合体等のポリオレフィン系樹脂または環状ポリオレフィン系樹脂、ポリスチレン、アクリロニトリル−ブタジエン−スチレン系樹脂等のポリスチレン系樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ポリメチルメタクリレート樹脂等のメタクリル系樹脂、塩化ビニル樹脂、ポリブチレンテレフタレート樹脂、ポリアリレート樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルイミド樹脂、ポリテトラフルオロエチレン等のフッ素系樹脂、ポリメチルペンテン樹脂、ポリアクリロニトリル等のアクリル系樹脂、プロピオネート樹脂等の繊維素系樹脂等が挙げられる。これらの中でも培養容器に求められる成形性、透明性、放射線耐性の点においてポリスチレン樹脂が特に好ましい。   The culture container of the present invention can be formed of a resin material. In addition to making the culture vessel into a disposable type, the resin material can be easily molded in various shapes. Examples of the resin material include polypropylene resins, polyethylene resins, polyolefin resins such as ethylene-propylene copolymers or cyclic polyolefin resins, polystyrene resins such as acrylonitrile-butadiene-styrene resins, polycarbonate resins, polyethylene Methacrylic resins such as terephthalate resin, polymethyl methacrylate resin, vinyl chloride resin, polybutylene terephthalate resin, polyarylate resin, polysulfone resin, polyethersulfone resin, polyetheretherketone resin, polyetherimide resin, polytetrafluoroethylene And fluorine resin such as polymethylpentene resin and polyacrylonitrile, and acrylic resin such as polyacrylonitrile, and fiber resin such as propionate resin. Among these, a polystyrene resin is particularly preferable in terms of moldability, transparency, and radiation resistance required for a culture vessel.

上記樹脂材料の重量平均分子量は、特に限定されないが、10,000以上500,000以下が好ましく、特に20,000以上100,000以下が好ましい。重量平均分子量が前記範囲内であると、培養容器の成形性に優れる。
上記重量平均分子量は、例えばサイズ排除クロマトグラフィー法(Gel Permeation Chromatography システム、Shodex KF−800 カラム、何れも昭和電工社製、溶出溶媒:テトラヒドロフラン)を用いて測定することができる。
上記樹脂材料には成形性向上、耐候性向上を目的として、本発明の目的を損なわない範囲で、例えば、炭化水素系、脂肪酸アミド系の滑剤やフェノール系、アミン系の酸化防止剤等の添加剤を添加することができる。
The weight average molecular weight of the resin material is not particularly limited, but is preferably 10,000 or more and 500,000 or less, particularly preferably 20,000 or more and 100,000 or less. When the weight average molecular weight is within the above range, the moldability of the culture vessel is excellent.
The weight average molecular weight can be measured using, for example, a size exclusion chromatography method (Gel Permeation Chromatography system, Shodex KF-800 column, both manufactured by Showa Denko KK, elution solvent: tetrahydrofuran).
For the purpose of improving moldability and weather resistance, the resin material is added within the range not impairing the object of the present invention, for example, hydrocarbon-based, fatty acid amide-based lubricants, phenol-based, amine-based antioxidants, etc. An agent can be added.

上記樹脂材料から本発明の培養容器を製造する場合、例えば射出成形、ブロー成形、インジェクションブロー成形により、製造することができる。   When manufacturing the culture container of this invention from the said resin material, it can manufacture, for example by injection molding, blow molding, and injection blow molding.

本発明の細胞培養容器の形態としては、例えば、マルチウェルプレートおよびシャーレ(ディッシュ)、フラスコ等の容器類が挙げられ、更にシート状の成形品であっても、容器底面等の細胞が培養できる環境下に設置して使用することができる。これらの中でも、バイオリアクターの生成または薬効や毒物の評価、人工臓器の開発研究等で用いられる6〜384穴のマルチウェルプレートやシャーレが好ましい。これにより、細胞凝集塊を用いた評価、研究の精度を向上させることができる。また、ラウンドボトムやVボトムと呼ばれる底面が半球若しくは円錐状のマルチウェルプレートを使用すると1ウェルに1個のEB体が均一な大きさで形成される為、評価・研究に好適に用いることができる。   Examples of the form of the cell culture container of the present invention include containers such as a multi-well plate, a petri dish (dish), and a flask. Furthermore, even in the case of a sheet-like molded product, cells such as the container bottom can be cultured. It can be installed and used in an environment. Among these, a multi-well plate or petri dish having 6 to 384 holes, which is used for bioreactor generation or medicinal effect and toxicological evaluation, artificial organ development research, and the like is preferable. Thereby, the precision of evaluation and research using a cell aggregate can be improved. In addition, when a multi-well plate with a hemispherical or conical bottom surface called a round bottom or V bottom is used, one EB body is formed with a uniform size per well. it can.

培養容器の必須条件である滅菌に関しては、例えば、エチレンオキサイドガス滅菌、感熱滅菌、蒸気滅菌、放射線滅菌等が挙げられるが、γ線あるいは電子線を用いた放射線滅菌が好ましく、大量生産を行う場合は放射線透過性の点でγ線滅菌が特に好ましい。
放射線の吸収線量については特に限定するものではないが、吸収線量が低すぎると滅菌性は確保されず、高すぎると細胞培養容器および被覆層が劣化してしまう場合がある。
Examples of the sterilization that is an essential condition of the culture container include ethylene oxide gas sterilization, heat-sensitive sterilization, steam sterilization, and radiation sterilization. However, radiation sterilization using γ rays or electron beams is preferable, and mass production is performed. In particular, γ-ray sterilization is particularly preferred from the viewpoint of radiolucency.
The absorbed dose of radiation is not particularly limited, but if the absorbed dose is too low, sterility is not ensured, and if it is too high, the cell culture container and the coating layer may deteriorate.

本発明における放射線の吸収線量としては、1kGy以上、50kGy以下が好ましく、5kGy以上、30kGy以下が特に好ましい。これによって本発明の培養容器の特性を充分に保持したまま滅菌性を付与することができる。   The absorbed dose of radiation in the present invention is preferably 1 kGy or more and 50 kGy or less, particularly preferably 5 kGy or more and 30 kGy or less. As a result, sterility can be imparted while sufficiently maintaining the characteristics of the culture container of the present invention.

次に、本発明の培養容器を用いた本発明の胚様体の形成方法について説明する。
線維芽細胞等のフィーダー上で培養した未分化のES細胞を、必要に応じて血清や成長因子等の添加物を加えた既知の培養液に任意の濃度で分散させた細胞懸濁液を本発明の培養容器に播種し、炭酸ガスインキュベーター等の環境下で培養することで、通常2日〜7日間で胚様体の形成を確認することができる。
Next, the method for forming an embryoid body of the present invention using the culture container of the present invention will be described.
A cell suspension in which undifferentiated ES cells cultured on a feeder such as fibroblasts are dispersed at an arbitrary concentration in a known culture solution to which additives such as serum and growth factor are added as required is used. By seeding in the culture vessel of the invention and culturing in an environment such as a carbon dioxide incubator, the formation of embryoid bodies can be confirmed usually in 2 to 7 days.

以下、本発明を実施例および比較例に基づいて詳細に説明するが、本発明はこれに限定されるものではない。
(実施例1)
樹脂材料としてポリスチレン樹脂(PSジャパン社製、HF77)を用いて、射出成形によりディッシュ(シャーレ)を成形した。得られたディッシュにプラズマ処理装置(BRANSON/IPC社製 SERIES7000)を用いてプラズマ処理(酸素プラズマ5分)を行い、前処理としてディッシュ表面に濡れ性を付与した。
得られたディッシュの形状は、高さ13mm、内径35mmであった。
次に、水溶性樹脂として側鎖にアジド基を有するポリビニルアルコール(東洋合成工業社製 AWP、水溶性樹脂の平均重合度1600、感光基の導入率0.65mol%)をアルミ箔で遮光をしたガラス容器中で、20容量%エタノール水溶液に溶解し、1.0重量%の溶液を調整した。
上述のディッシュを前記アルミ箔で遮光したガラス容器に1分間、浸漬した後、取り出し、ディッシュを裏返して溶液を充分廃棄し、40℃で60分一次乾燥した後、UVランプで250nmのUV光を0.1mW/cm×3分間照射して水溶性樹脂を硬化した後、純水で3回繰り返し洗浄し、乾燥後、γ線を吸収線量10kGyで照射(ラジエ工業株式会社において実施)して、本発明の培養容器(ディッシュ)を得た。
得られたディッシュの表面には、上記水溶性樹脂で形成される層が厚さ600nmで形成されていた。なお、層の厚さは液体窒素中で破断したディッシュの破断面を電子顕微鏡(FEI社製 Quanta400F)を用いて測定した。
EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example and a comparative example, this invention is not limited to this.
(Example 1)
Using a polystyrene resin (manufactured by PS Japan Co., Ltd., HF77) as a resin material, a dish was formed by injection molding. The obtained dish was subjected to plasma treatment (oxygen plasma for 5 minutes) using a plasma treatment apparatus (SERIES7000 manufactured by BRANSON / IPC), and wettability was imparted to the dish surface as a pretreatment.
The shape of the obtained dish was 13 mm in height and 35 mm in inner diameter.
Next, polyvinyl alcohol having an azide group in the side chain as a water-soluble resin (AWP manufactured by Toyo Gosei Kogyo Co., Ltd., average polymerization degree of water-soluble resin 1600, introduction rate of photosensitive group 0.65 mol%) was shielded with aluminum foil. In a glass container, it was dissolved in a 20 vol% ethanol aqueous solution to prepare a 1.0 wt% solution.
After immersing the above-mentioned dish in a glass container shielded with aluminum foil for 1 minute, take it out, turn the dish upside down, discard the solution thoroughly, and dry it primarily at 40 ° C. for 60 minutes. Irradiate 0.1 mW / cm 2 × 3 minutes to cure the water-soluble resin, then repeatedly wash with pure water three times, dry, and then irradiate γ-rays with an absorbed dose of 10 kGy (implemented at Raje Industrial Co., Ltd.) The culture container (dish) of the present invention was obtained.
On the surface of the obtained dish, a layer formed of the water-soluble resin was formed with a thickness of 600 nm. The thickness of the layer was measured using an electron microscope (Quanta 400F manufactured by FEI Co., Ltd.) on the fracture surface of the dish broken in liquid nitrogen.

(実施例2)
樹脂材料として環状オレフィン共重合系樹脂(ポリプラスチックス社製、TOPAS(R) 6013)を用いた以外は実施例1と同様にして培養容器(ディッシュ)を得た。
得られたディッシュの表面には、上記側鎖に第1の官能基を有する水溶性樹脂で形成される層が厚さ600nmで形成されていた。
(Example 2)
A culture vessel (dish) was obtained in the same manner as in Example 1 except that a cyclic olefin copolymer resin (manufactured by Polyplastics, TOPAS (R) 6013) was used as the resin material.
On the surface of the obtained dish, a layer formed of a water-soluble resin having the first functional group in the side chain was formed with a thickness of 600 nm.

(比較例1)
実施例1の工程から、水溶性樹脂への浸漬、及びUVランプによる硬化、洗浄、乾燥までの工程を除いた以外は実施例1と同様にして培養容器(ディッシュ)を得た。
(Comparative Example 1)
A culture vessel (dish) was obtained in the same manner as in Example 1, except that the steps from Example 1 to immersion in a water-soluble resin and steps of curing, washing and drying with a UV lamp were omitted.

(比較例2)
水溶性樹脂への浸漬、及びUVランプによる硬化、洗浄、乾燥までの工程を除き、ディッシュをポリヒドロキシエチルメタクリレート共重合体(シグマアルドリッチ社製 poly−2hydroxyethlmethacrylate)の3重量%エタノール溶液に浸漬し、一晩乾燥させた以外は実施例1と同様にして培養容器(ディッシュ)を得た。
(Comparative Example 2)
Except for the steps of immersion in water-soluble resin and curing by UV lamp, washing, and drying, the dish was immersed in a 3% by weight ethanol solution of polyhydroxyethyl methacrylate copolymer (poly-2hydroxyethyl methacrylate) manufactured by Sigma-Aldrich, A culture vessel (dish) was obtained in the same manner as in Example 1 except that it was dried overnight.

得られた培養容器(ディッシュ)について、以下の評価を行った。評価項目と得られた結果を表1に示す。
1.マウスES細胞を用いたEB体形成評価
定法に従いフィーダー(マウス線維芽細胞)上で培養したマウスES細胞を2×104cells/mLとなるように下記の培地に懸濁し、実施例1、2および比較例1、2に2mLづつ播種し、5%の炭酸ガス雰囲気下で培養し、5日後の形態を観察した。
The following evaluation was performed about the obtained culture container (dish). Table 1 shows the evaluation items and the obtained results.
1. Mouse ES cells cultured on a feeder (mouse fibroblast) according to a standard method for evaluating EB body formation using mouse ES cells were suspended in the following medium so as to be 2 × 10 4 cells / mL. In each of Examples 1 and 2, 2 mL was seeded, cultured in a 5% carbon dioxide atmosphere, and the morphology after 5 days was observed.

2.接着細胞の有無
接着細胞の存在の有無及び形態を播種5日後に倒立型顕微鏡(オリンパス株式会社製 BX51)下40倍の倍率で観察した。
2. Presence / absence of adherent cells Presence / absence and form of adherent cells were observed at 40 times magnification under an inverted microscope (BX51, Olympus Corporation) 5 days after sowing.

表1から明らかなように、本発明の製造方法によって得られた培養容器を用いた実施例1、2においては複数個のEB体が形成されており、更に接着・伸展した細胞は確認されなかった。
一方、本発明の製造方法によらない培養容器を用いた比較例1、2では共にEB体は形成されず、接着・伸展した細胞が観察された。
実施例1および比較例1の細胞の状態をそれぞれ図1および図2に示す。
実施例で得られたEB体をゼラチンコートディッシュ(住友ベークライト社製 スミロンセルタイトGシャーレ35φ)に移し、所定の分化誘導条件にて培養することで心筋に分化し、更に拍動が観察され、形成されたEB体が良質であることが確認された。
比較例で接着伸展した細胞は上記と同様の分化誘導条件に移して培養しても、心筋への分化は認められず、非特異的に分化してしまったものと推測される。
As is clear from Table 1, in Examples 1 and 2 using the culture vessel obtained by the production method of the present invention, a plurality of EB bodies were formed, and no further adhered / extended cells were confirmed. It was.
On the other hand, in Comparative Examples 1 and 2 using a culture vessel not based on the production method of the present invention, no EB body was formed, and adhered and extended cells were observed.
The cell states of Example 1 and Comparative Example 1 are shown in FIGS. 1 and 2, respectively.
The EB bodies obtained in the examples were transferred to a gelatin-coated dish (Sumilon Celtite G Petri dish 35φ manufactured by Sumitomo Bakelite Co., Ltd.), differentiated into myocardium by culturing under predetermined differentiation-inducing conditions, and pulsation was further observed. It was confirmed that the formed EB body had good quality.
Even if the cells that have been extended in adhesion in the comparative example are cultured under the same differentiation-inducing conditions as described above, they are not differentiated into myocardium and are presumed to have differentiated nonspecifically.

実施例1の5日後の顕微鏡写真、複数のEB体形成が認められる。A microphotograph after 5 days of Example 1 and formation of a plurality of EB bodies are observed. 比較例1の5日後の顕微鏡写真、EB体は形成されず接着細胞が確認される。The micrograph after 5 days of Comparative Example 1 and EB bodies are not formed, and adherent cells are confirmed. 実施例1で得られたEB体から分化した心筋細胞を示す。The cardiomyocytes differentiated from the EB body obtained in Example 1 are shown.

Claims (9)

胚様体形成用培養容器の製造方法であって、
水溶性樹脂を前記培養容器内面に被覆させて水溶性被覆層を形成する水溶性樹脂被覆層形成工程と、
前記工程後に、前記水溶性被覆層を硬化させて非水溶性硬化皮膜層に変性する非水溶性硬化皮膜変性工程と、
を含むことを特徴とする胚様体形成用培養容器の製造方法。
A method for producing a culture container for embryoid body formation,
A water-soluble resin coating layer forming step of coating the inner surface of the culture vessel with a water-soluble resin to form a water-soluble coating layer;
After the step, a water-insoluble cured film modifying step for curing the water-soluble coating layer and modifying it into a water-insoluble cured film layer;
A method for producing a culture vessel for embryoid body formation, comprising:
前記水溶性樹脂は、側鎖に放射線反応性、感光性、熱反応性の中から選ばれる官能基を有するものである請求項1に記載の胚様体形成用培養容器の製造方法。   The method for producing a culture container for embryoid body formation according to claim 1, wherein the water-soluble resin has a functional group selected from radiation reactivity, photosensitivity, and heat reactivity in a side chain. 前記官能基は、アジド基を有するものを含む請求項1又は2に記載の胚様体形成用培養容器の製造方法。   The said functional group is a manufacturing method of the culture container for embryoid body formation of Claim 1 or 2 containing what has an azide group. 前記水溶性被覆層を硬化させる方法は、光照射による硬化方法を含む請求項1に記載の胚様体形成用培養容器の製造方法。   The method for producing a culture container for embryoid body formation according to claim 1, wherein the method for curing the water-soluble coating layer includes a curing method by light irradiation. 胚様体形成用培養容器であって、
水溶性樹脂を前記培養容器内面に被覆させて水溶性被覆層を形成する水溶性樹脂被覆層形成工程と、
前記工程後に、前記水溶性被覆層を硬化させて非水溶性硬化皮膜層に変性する非水溶性硬化皮膜変性工程と、
によって内面に非水溶性硬化皮膜を有することを特徴とする胚様体形成用培養容器。
A culture vessel for embryoid body formation,
A water-soluble resin coating layer forming step of coating the inner surface of the culture vessel with a water-soluble resin to form a water-soluble coating layer;
After the step, a water-insoluble cured film modifying step for curing the water-soluble coating layer and modifying it into a water-insoluble cured film layer;
A culture vessel for forming an embryoid body characterized by having a water-insoluble cured film on the inner surface.
前記水溶性樹脂は、側鎖に感光性の官能基を有するものを含む請求項5に記載の胚葉体形成用培養容器。   The culture container for forming an embryoid body according to claim 5, wherein the water-soluble resin includes a resin having a photosensitive functional group in a side chain. 前記官能基は、アジド基を有するものを含む請求項6に記載の胚様体形成用培養容器。   The culture container for embryoid body formation according to claim 6, wherein the functional group includes one having an azide group. 前記水溶性被覆層を硬化させる方法は、光照射による硬化方法を含む請求項5に記載の胚様体形成用培養容器。   The culture vessel for embryoid body formation according to claim 5, wherein the method of curing the water-soluble coating layer includes a curing method by light irradiation. 請求項5ないし8のいずれかに記載の胚様体形成用培養容器に、未分化胚性幹細胞を播種し、更に前記未分化胚性幹細胞を培養することにより胚様体を形成させることを特徴とする胚様体形成方法。

9. An embryoid body is formed by seeding undifferentiated embryonic stem cells in the embryoid body-forming culture container according to claim 5 and further culturing the undifferentiated embryonic stem cells. Embryoid body formation method.

JP2007015793A 2007-01-26 2007-01-26 Culturing container for developing embryoid, method for producing the same and method for developing the embryoid Pending JP2008178367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007015793A JP2008178367A (en) 2007-01-26 2007-01-26 Culturing container for developing embryoid, method for producing the same and method for developing the embryoid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007015793A JP2008178367A (en) 2007-01-26 2007-01-26 Culturing container for developing embryoid, method for producing the same and method for developing the embryoid

Publications (1)

Publication Number Publication Date
JP2008178367A true JP2008178367A (en) 2008-08-07

Family

ID=39722766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007015793A Pending JP2008178367A (en) 2007-01-26 2007-01-26 Culturing container for developing embryoid, method for producing the same and method for developing the embryoid

Country Status (1)

Country Link
JP (1) JP2008178367A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133514A1 (en) 2011-03-30 2012-10-04 住友ベークライト株式会社 Culture vessel for forming embryoid body
WO2013183777A1 (en) 2012-06-08 2013-12-12 独立行政法人理化学研究所 Vessel for culturing human es cells
JP2016025871A (en) * 2010-01-08 2016-02-12 住友ベークライト株式会社 Culture vessel for forming aggregated cell mass
KR20160117631A (en) 2014-05-22 2016-10-10 스미또모 베이크라이트 가부시키가이샤 Cell mass culture vessel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004254622A (en) * 2003-02-26 2004-09-16 Yamanashi Tlo:Kk Culturing container and culturing method for forming embryoid body (eb) of embryonic stem cell (es cell)
WO2005001019A1 (en) * 2003-06-25 2005-01-06 Nof Corporation Container for germ layer formation and method of forming germ layer
JP2006149329A (en) * 2004-12-01 2006-06-15 Univ Of Tokyo Method for preparing ciliated epithelial cell
JP2006204232A (en) * 2005-01-31 2006-08-10 Sumitomo Bakelite Co Ltd Method for producing cell culture vessel and cell culture vessel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004254622A (en) * 2003-02-26 2004-09-16 Yamanashi Tlo:Kk Culturing container and culturing method for forming embryoid body (eb) of embryonic stem cell (es cell)
WO2005001019A1 (en) * 2003-06-25 2005-01-06 Nof Corporation Container for germ layer formation and method of forming germ layer
JP2006149329A (en) * 2004-12-01 2006-06-15 Univ Of Tokyo Method for preparing ciliated epithelial cell
JP2006204232A (en) * 2005-01-31 2006-08-10 Sumitomo Bakelite Co Ltd Method for producing cell culture vessel and cell culture vessel

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016025871A (en) * 2010-01-08 2016-02-12 住友ベークライト株式会社 Culture vessel for forming aggregated cell mass
JP2017104143A (en) * 2010-01-08 2017-06-15 住友ベークライト株式会社 Culture vessel for forming aggregated cell mass
WO2012133514A1 (en) 2011-03-30 2012-10-04 住友ベークライト株式会社 Culture vessel for forming embryoid body
EP2692854A4 (en) * 2011-03-30 2014-11-19 Sumitomo Bakelite Co Culture vessel for forming embryoid body
WO2013183777A1 (en) 2012-06-08 2013-12-12 独立行政法人理化学研究所 Vessel for culturing human es cells
US10487310B2 (en) 2012-06-08 2019-11-26 Riken Vessel for culturing human ES cells
KR20160117631A (en) 2014-05-22 2016-10-10 스미또모 베이크라이트 가부시키가이샤 Cell mass culture vessel
US10472598B2 (en) 2014-05-22 2019-11-12 Sumitomo Bakelite Co., Ltd. Cell mass culture vessel

Similar Documents

Publication Publication Date Title
JP2009050194A (en) Vessel for cell aggregate-forming culture
JP6365717B2 (en) Culture vessel for cell aggregate formation
JP2008061609A (en) Method for producing cell-culturing container and cell culturing container
WO2012133514A1 (en) Culture vessel for forming embryoid body
JP6678934B2 (en) Culture container for single cell aggregate formation
JP4967238B2 (en) Cell culture container manufacturing method and cell culture container
US8557583B2 (en) Cell culture support and manufacture thereof
JP6826244B1 (en) Culture materials and their uses
KR101969115B1 (en) Platform for preparing surface stimuli-responsive 3D multicellular spheroids and Use Thereof
JP5151892B2 (en) Multiwell plate
JP2008220205A (en) Container for forming neural stem cell aggregate, method for producing the same and method for preparing neural stem cell aggregate
JP2008178367A (en) Culturing container for developing embryoid, method for producing the same and method for developing the embryoid
WO2013047655A1 (en) CULTURE VESSEL FOR iPS CELL
US20230036162A1 (en) Cell culture substrates, methods and uses thereof
JP5240816B2 (en) Cell adhesion control film
JP4269256B2 (en) Nerve cell culture substrate and method for producing the same
JP6953863B2 (en) A method for adjusting the peelability of a cell sheet, a method for producing a cell sheet, and a method for producing a cell culture container.
JP2023178108A (en) Cell culture substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120703