JP2008177197A - Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same - Google Patents
Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same Download PDFInfo
- Publication number
- JP2008177197A JP2008177197A JP2007006693A JP2007006693A JP2008177197A JP 2008177197 A JP2008177197 A JP 2008177197A JP 2007006693 A JP2007006693 A JP 2007006693A JP 2007006693 A JP2007006693 A JP 2007006693A JP 2008177197 A JP2008177197 A JP 2008177197A
- Authority
- JP
- Japan
- Prior art keywords
- acid
- driving
- electrolytic capacitor
- electrolytic
- electrolytic solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
本発明は電子機器の電子部品に使用される電解コンデンサ駆動用電解液及びそれを用いた電解コンデンサに関するものである。 The present invention relates to an electrolytic solution for driving an electrolytic capacitor used for an electronic component of an electronic device, and an electrolytic capacitor using the electrolytic solution.
従来、電解コンデンサ等の駆動用電解液としては、芳香族カルボン酸(フタル酸等)の第4級アンモニウム塩を電解質としたもの(例えば、特許文献1参照)、マイレン酸の第4級アンモニウム塩を電解質としたもの(例えば、特許文献2参照)、脂肪族飽和モノカルボン酸(蟻酸等)の第4級アンモニウム塩を電解質としたもの(例えば、特許文献3参照)、脂肪族飽和ジカルボン酸(マロン酸等)の第4級アンモニウム塩を電解質としたもの(例えば、特許文献4参照)などが知られている。 Conventionally, as an electrolytic solution for driving an electrolytic capacitor or the like, a quaternary ammonium salt of aromatic carboxylic acid (phthalic acid or the like) as an electrolyte (for example, see Patent Document 1), a quaternary ammonium salt of maleic acid Using electrolytes (for example, see Patent Document 2), those using quaternary ammonium salts of aliphatic saturated monocarboxylic acids (such as formic acid) as electrolytes (for example, see Patent Document 3), aliphatic saturated dicarboxylic acids ( Known are those using a quaternary ammonium salt of malonic acid or the like as an electrolyte (for example, see Patent Document 4).
また、電解コンデンサの低インピーダンスを低減させる駆動用電解液として、γ−ブチロラクトンを主溶媒とし、溶質として環状アミジン化合物を四級化したイミダゾリウムをカチオン成分とし、酸の共役塩基をアニオン成分とした塩を溶解させたものが用いられている(例えば、特許文献5参照)。
しかしながら上記従来の電解コンデンサにおいて、フタル酸の第4級アンモニウム塩を電解質としたものは電導度が不十分であり、またマレイン酸、蟻酸、マロン酸等の第4級アンモニウム塩を電解質としたものは高温での安定性が不十分であった。 However, in the above-mentioned conventional electrolytic capacitors, those using quaternary ammonium salts of phthalic acid as electrolytes have insufficient conductivity, and those using quaternary ammonium salts such as maleic acid, formic acid and malonic acid as electrolytes Had insufficient stability at high temperatures.
また、第4級アンモニウム塩を電解質とした電解液は、第4級アンモニウムの電気化学的な変質により、コンデンサを構成する材料である樹脂やゴム、金属を劣化させたり、腐食させる等の不具合があった。 In addition, the electrolytic solution using a quaternary ammonium salt as an electrolyte has problems such as deterioration or corrosion of the resin, rubber, or metal that is a material constituting the capacitor due to electrochemical modification of the quaternary ammonium. there were.
一方、環状アミジン化合物を四級化したイミダゾリウムをカチオン成分とし、酸の共役塩基をアニオン成分とした塩を溶解させた電解質を用いたものは、高い電導度を得ることができるものの、陰極側強アルカリを生成し、この強アルカリによって封口ゴムの侵食が引き起こされ、駆動用電解液が漏れるという課題を有している。 On the other hand, using an electrolyte in which a salt containing an imidazolium quaternized cyclic amidine compound as a cation component and an acid conjugate base as an anion component can be used, a high conductivity can be obtained. There is a problem that a strong alkali is generated, the sealing alkali is eroded by the strong alkali, and the driving electrolyte solution leaks.
本発明はこのような従来の課題を解決し、高温多湿下でも安定で長寿命の駆動用電解液を提供し、それを用いて高信頼性の電解コンデンサを提供することを目的とするものである。 An object of the present invention is to solve such conventional problems, to provide a driving electrolyte that is stable and has a long life even under high temperature and high humidity, and to provide a highly reliable electrolytic capacitor using the electrolytic solution. is there.
上記課題を解決するために本発明は、有機溶媒に、(化1)で示されるホウ素錯体骨格とするアニオン塩と、(化2)で示されるアミジン化合物骨格のカチオン塩とからなる電解質を含有し、かつ添加剤として少なくとも硼酸を含有してなることを特徴とする電解コンデンサの駆動用電解液とするものである。 In order to solve the above problems, the present invention contains, in an organic solvent, an electrolyte comprising an anion salt having a boron complex skeleton represented by (Chemical Formula 1) and a cation salt having an amidine compound skeleton represented by (Chemical Formula 2). In addition, an electrolytic solution for driving an electrolytic capacitor is characterized by containing at least boric acid as an additive.
また、上記(化1)で示すホウ素錯体は、ボロジサリチル酸、ボロジグリコール酸、ボロジシュウ酸、ボロジマロン酸、ボロジコハク酸、ボロジアジピン酸、ボロジマレイン酸、ボロジ乳酸、ボロジリンゴ酸、ボロジ酒石酸、ボロジクエン酸、ボロジフタル酸、ボロジ(2−ヒドロキシ)イソ酪酸、ボロジマンデル酸及びボロジ(3−ヒドロキシ)プロピオン酸の群から選ばれた少なくとも1種類であることを特徴とする。 In addition, the boron complex represented by the above (Chemical Formula 1) includes borodisalicylic acid, borodiglycolic acid, borodisoxalic acid, borodimalonic acid, borodisuccinic acid, borodiadipic acid, borodimaleic acid, borodilactic acid, borodimalic acid, boroditartaric acid, borodicitric acid, borodiphthalate It is at least one selected from the group consisting of acid, borodi (2-hydroxy) isobutyric acid, borodimandelic acid and borodi (3-hydroxy) propionic acid.
また、上記ホウ素錯体骨格とアミジン化合物骨格からなる電解質の濃度が10〜50重量部であり、硼酸の添加量が0.5〜3重量部である。 The concentration of the electrolyte composed of the boron complex skeleton and the amidine compound skeleton is 10 to 50 parts by weight, and the amount of boric acid added is 0.5 to 3 parts by weight.
また、添加剤として、リン系化合物、多糖類の少なくとも1種類を含むことを特徴とし、リン系化合物の添加量が0.5〜2重量部であり、多糖類の添加量が0.5〜2重量部である。 Moreover, it is characterized by including at least 1 type of a phosphorus compound and a polysaccharide as an additive, The addition amount of a phosphorus compound is 0.5-2 weight part, and the addition amount of a polysaccharide is 0.5- 2 parts by weight.
また、有機溶媒はγ−ブチロラクトン、エチレングリコール、スルホランまたはそれらの混合溶液を主体とする。 The organic solvent is mainly γ-butyrolactone, ethylene glycol, sulfolane or a mixed solution thereof.
そして、上記電解コンデンサ駆動用電解液を用いた電解コンデンサとするものである。 And it is set as the electrolytic capacitor using the said electrolyte solution for electrolytic capacitor drive.
本発明は、有機溶媒に(化1)で示されるホウ素錯体骨格とするアニオン塩と、(化2)で示されるアミジン化合物骨格のカチオン塩とからなる電解質を含有し、かつ添加剤として少なくとも硼酸を含有した駆動用電解液とすることにより、高い電導度を有する駆動用電解液を得ることができ、高温多湿下においてもホウ素錯体の加水分解が抑制され、特性の安定した電解コンデンサを得ることができる。 The present invention contains an electrolyte composed of an anionic salt having a boron complex skeleton represented by (Chemical Formula 1) and a cation salt of an amidine compound skeleton represented by (Chemical Formula 2) in an organic solvent, and at least boric acid as an additive. By using a driving electrolyte solution containing, a driving electrolyte solution having high conductivity can be obtained, and hydrolysis of the boron complex is suppressed even under high temperature and high humidity, and an electrolytic capacitor having stable characteristics can be obtained. Can do.
また、ホウ素錯体骨格とアミジン化合物骨格からなる電解質の濃度を10〜50重量部の範囲にすることにより、高い電導度を有する駆動用電解液を得ることができる。電解質の濃度が10重量部より少なく、また、50重量部を超える場合は電導度が著しく低下する。 Moreover, by setting the concentration of the electrolyte composed of the boron complex skeleton and the amidine compound skeleton in the range of 10 to 50 parts by weight, a driving electrolyte solution having high conductivity can be obtained. When the concentration of the electrolyte is less than 10 parts by weight and exceeds 50 parts by weight, the conductivity is remarkably lowered.
なお、硼酸の添加量が0.5〜3重量部の範囲にすることにより、駆動用電解液のpHを調整することができ、強アルカリの生成を抑制することができる。 In addition, when the addition amount of boric acid is in the range of 0.5 to 3 parts by weight, the pH of the driving electrolyte can be adjusted, and generation of strong alkali can be suppressed.
(実施の形態)
本発明の一実施の形態における電解コンデンサ駆動用電解液は、有機溶媒に(化1)で示されるホウ素錯体骨格とするアニオン塩と、(化2)で示されるアミジン化合物骨格のカチオン塩とからなる電解質を含有し、かつ添加剤として少なくとも硼酸を含有した電解コンデンサの駆動用電解液とするものである。
(Embodiment)
An electrolytic solution for driving an electrolytic capacitor according to an embodiment of the present invention includes an anion salt having a boron complex skeleton represented by (Chemical Formula 1) in an organic solvent and a cation salt having an amidine compound skeleton represented by (Chemical Formula 2). And an electrolytic solution for driving an electrolytic capacitor containing at least boric acid as an additive.
上記有機溶媒はγ−ブチロラクトン、エチレングリコール、スルホランの少なくとも1種またはそれらの混合溶液を主体とする。 The organic solvent is mainly composed of at least one of γ-butyrolactone, ethylene glycol, sulfolane or a mixed solution thereof.
上記(化1)で示されるホウ素錯体骨格とするアニオン塩としてはボロジサリチル酸、ボロジグリコール酸、ボロジシュウ酸、ボロジマロン酸、ボロジコハク酸、ボロジアジピン酸、ボロジマレイン酸、ボロジ乳酸、ボロジリンゴ酸、ボロジ酒石酸、ボロジクエン酸、ボロジフタル酸、ボロジ(2−ヒドロキシ)イソ酪酸、ボロジマンデル酸及びボロジ(3−ヒドロキシ)プロピオン酸等が挙げられ、特に低インピーダンスの駆動用電解液としてはボロジサリチル酸もしくはボロジグリコール酸が望ましい。 Examples of the anion salt having a boron complex skeleton represented by the above (Chemical Formula 1) include borodisalicylic acid, borodiglycolic acid, borodisoxalic acid, borodimalonic acid, borodisuccinic acid, borodiadipic acid, borodimaleic acid, borodilactic acid, borodimalic acid, boroditartaric acid, Examples include borodicitric acid, borodiphthalic acid, borodi (2-hydroxy) isobutyric acid, borodimandelic acid, and borodi (3-hydroxy) propionic acid. desirable.
このホウ素錯体骨格とするアニオン塩は、硼酸の存在下では加水分解反応が抑制され、高い電導度を維持することができる。なお、硼酸の含有量は0.5〜3重量部の範囲が好ましく、0.5重量部より少ないと効果の発現が少ない、また添加量が3重量部より多いと電解コンデンサ製品の初期容量に悪影響を及ぼす。 This anion salt having a boron complex skeleton can suppress the hydrolysis reaction in the presence of boric acid, and can maintain high electrical conductivity. The content of boric acid is preferably in the range of 0.5 to 3 parts by weight. When the content is less than 0.5 parts by weight, the effect is small. Adversely affect.
また、上記(化2)で示されるアミジン化合物骨格のカチオン塩としては1,3−ジメチルイミダゾリウム、1,3−ジエチルイミダゾリウム、1,2,3−トリメチルイミダゾリウム、1,2,3,4−テトラメチルイミダゾリウム、1,3−ジメチル−2−エチルイミダゾリウム、1,2−ジメチル−3−エチルイミダゾリウム、1,2,3−トリエチルイミダゾリウム、1,2,3,4−テトラエチルイミダゾリウム、1,3−ジメチル−2−フェニルイミダゾリウム、1,3−ジメチル−2−ベンジルイミダゾリウム、1−ベンジル−2,3−ジメチル−イミダゾリウム、1−メチル−3−エチルイミダゾリウムなどが挙げられる。 In addition, as the cation salt of the amidine compound skeleton represented by the above (Chemical Formula 2), 1,3-dimethylimidazolium, 1,3-diethylimidazolium, 1,2,3-trimethylimidazolium, 1,2,3, 4-tetramethylimidazolium, 1,3-dimethyl-2-ethylimidazolium, 1,2-dimethyl-3-ethylimidazolium, 1,2,3-triethylimidazolium, 1,2,3,4-tetraethyl Imidazolium, 1,3-dimethyl-2-phenylimidazolium, 1,3-dimethyl-2-benzylimidazolium, 1-benzyl-2,3-dimethyl-imidazolium, 1-methyl-3-ethylimidazolium, etc. Is mentioned.
これらのイミダゾリウム化合物は、通常のアミン塩およびその4級化アンモニウム塩とは異なり、非局在化したN−C−Nのアミジン基が4級化されているため、陽イオンが共鳴安定化してイオン解離が促進され、高い電導度が得られる。 These imidazolium compounds, unlike ordinary amine salts and quaternized ammonium salts thereof, have a delocalized N—C—N amidine group that is quaternized, so that the cation is resonance-stabilized. As a result, ion dissociation is promoted and high conductivity is obtained.
また、イミダゾリウム環の2位や4位にアルキル基を導入することにより、イミダゾリウム環の熱的な安定性が向上することになるため、ガス発生も少ない。 Further, by introducing an alkyl group at the 2-position or 4-position of the imidazolium ring, the thermal stability of the imidazolium ring is improved, so that gas generation is small.
さらには、電解液中で電気化学反応により水酸化物イオンが生じた場合にも、水酸化物イオンとN−C−Nのアミジン基との反応、分解開環により速やかに電解生成物が消失するため、電解コンデンサを構成する材料である樹脂やゴム、金属を劣化させたり、腐食させることはなくなる。 Furthermore, even when hydroxide ions are generated by an electrochemical reaction in the electrolyte, the electrolytic product disappears quickly due to the reaction between the hydroxide ions and the amidine group of N—C—N, and the decomposition and ring opening. Therefore, the resin, rubber, and metal that are materials constituting the electrolytic capacitor are not deteriorated or corroded.
上記駆動用電解液における電解質の含有量は10〜50重量部の範囲が望ましく、添加量が10重量部より少なく、また50重量部を超える場合、電導度が著しく低下する。 The electrolyte content in the driving electrolyte is desirably in the range of 10 to 50 parts by weight, and when the addition amount is less than 10 parts by weight and exceeds 50 parts by weight, the conductivity is significantly lowered.
また、上記駆動用電解液に添加する添加剤としてはリン系化合物、多糖類の少なくとも1種類を含み、リン系化合物の添加量は0.5〜2重量部の範囲とし、多糖類の添加量は0.5〜2重量部の範囲とする。 The additive to be added to the driving electrolyte includes at least one of a phosphorus compound and a polysaccharide. The addition amount of the phosphorus compound is in the range of 0.5 to 2 parts by weight, and the addition amount of the polysaccharide. Is in the range of 0.5 to 2 parts by weight.
このリン系化合物としては、正リン酸、亜リン酸、次亜リン酸及びこれらの塩等が挙げられ、塩としては、アンモニウム塩、アルミニウム塩、ナトリウム塩、カルシウム塩、カリウム塩である。また、リン酸エチル、リン酸ジエチル、リン酸ブチル、リン酸ジブチル等のリン酸化合物、1−ヒドロキシエチリデン−1,1−ジホスホン酸、アミノトリメチレンホスホン酸、フェニルホスホン酸等のホスホン酸化合物等が挙げられる。また、メチルホスフィン酸、ホスフィン酸ブチル等のホスフィン酸化合物が挙げられる。リン系化合物としてはモノリン酸が特に望ましく、添加量が0.5重量部より少ないと効果の発現が少ない、また添加量が2重量部より多いと製品特性に悪影響を及ぼすものである。 Examples of the phosphorus compound include orthophosphoric acid, phosphorous acid, hypophosphorous acid, and salts thereof, and examples of the salt include ammonium salt, aluminum salt, sodium salt, calcium salt, and potassium salt. In addition, phosphoric acid compounds such as ethyl phosphate, diethyl phosphate, butyl phosphate, and dibutyl phosphate, phosphonic acid compounds such as 1-hydroxyethylidene-1,1-diphosphonic acid, aminotrimethylenephosphonic acid, and phenylphosphonic acid Is mentioned. Moreover, phosphinic acid compounds, such as methylphosphinic acid and butyl phosphinate, are mentioned. Monophosphoric acid is particularly desirable as the phosphorus compound, and if the added amount is less than 0.5 parts by weight, the effect is small, and if the added amount is more than 2 parts by weight, the product characteristics are adversely affected.
また、多糖類としてはマンニット、キシリット、ソルビット、などが挙げられ、中でもキシリットが好ましい。その添加量は0.5〜2重量部の範囲が好ましく、0.5重量部よりも少ない、また2重量部を超える場合、高温多湿性の効果を得ることができない。 Examples of the polysaccharide include mannitol, xylit, sorbit, and the like, and xylit is particularly preferable. The addition amount is preferably in the range of 0.5 to 2 parts by weight, and if it is less than 0.5 parts by weight or exceeds 2 parts by weight, the effect of high temperature and high humidity cannot be obtained.
次に本実施の形態についての具体的な実施例を説明するが、本発明はこれに限定されるものではない。 Next, specific examples of the present embodiment will be described, but the present invention is not limited thereto.
本実施例で用いる電解コンデンサは、図1に示すように、アルミニウム箔よりなる陽極電極としての陽極箔と、同じくアルミニウム箔よりなる陰極電極としての陰極箔とを、その間にセパレータを介在させて対向するように巻き取ることで内部素子11を形成し、この内部素子11の陽極箔及び陰極箔のそれぞれには、引き出し用のリード線12が接続されている。このような構成の内部素子11に駆動用電解液を含浸させ、アルミケース15内に内部素子11を封入してゴムもしくはフェノール樹脂等の封口材14で封入することにより電解コンデンサが構成される。
As shown in FIG. 1, the electrolytic capacitor used in this example is an anode foil as an anode electrode made of an aluminum foil and a cathode foil as a cathode electrode also made of an aluminum foil, with a separator interposed therebetween. The
上記駆動用電解液について、各実施例及び各比較例の組成を(表1)に示す。 About the said electrolyte solution for a drive, the composition of each Example and each comparative example is shown in (Table 1).
上記実施例1〜7および比較例1、2の駆動用電解液を使用して図1に示すような巻き取り形のラジアルリード形電解コンデンサ(定格電圧6.3V、静電容量820μF、サイズ;φ10mm×L12.5mm)を作製した。封口ゴムには樹脂加硫のブチルゴムを使用した。なお、駆動用電解液中の水分は、耐湿での効果をより明確にできるよう8%に調整した。 Winding-type radial lead type electrolytic capacitors (rated voltage 6.3 V, capacitance 820 μF, size; as shown in FIG. 1) using the driving electrolytes of Examples 1 to 7 and Comparative Examples 1 and 2; φ10 mm × L12.5 mm) was produced. Resin vulcanized butyl rubber was used as the sealing rubber. In addition, the water | moisture content in the electrolyte solution for a drive was adjusted to 8% so that the effect in moisture resistance could be clarified more.
次に、上記電解コンデンサを105℃の下で放置し、3000時間経過後の静電容量の変化率(ΔC)、損失角の正接(tanδ)、漏れ電流(LC)を測定した。その結果を(表2)に示す。さらに漏液性試験として、耐湿中85℃85%RHの下で定格電圧を印加し、3000時間経過後の封止部の状態を観察した。その結果を(表3)に示す。 Next, the electrolytic capacitor was allowed to stand at 105 ° C., and the capacitance change rate (ΔC), loss angle tangent (tan δ), and leakage current (LC) after 3000 hours were measured. The results are shown in (Table 2). Further, as a liquid leakage test, a rated voltage was applied at 85 ° C. and 85% RH under humidity resistance, and the state of the sealed portion after 3000 hours was observed. The results are shown in (Table 3).
さらにリフロー膨れ試験に関しては、上記実施例1、2及び比較例1,2の駆動用電解液を用いて、巻き取り形のチップ形電解コンデンサ(定格電圧6.3V、静電容量220μF、サイズ;φ6.3mm×L5.8mm)にて評価した。封口ゴムには樹脂加硫のブチルゴムを使用した。リフローTop温度255℃、230℃30秒以上、200℃70秒以上のリフロー条件下で耐熱評価を実施した。リフローは2回評価を実施した。 Further, for the reflow bulge test, a winding-type chip electrolytic capacitor (rated voltage 6.3 V, electrostatic capacity 220 μF, size; using the driving electrolytes of Examples 1 and 2 and Comparative Examples 1 and 2 above; (φ6.3 mm × L5.8 mm). Resin vulcanized butyl rubber was used as the sealing rubber. The heat resistance was evaluated under reflow conditions of a reflow top temperature of 255 ° C., 230 ° C. for 30 seconds or more, and 200 ° C. for 70 seconds or more. Reflow was evaluated twice.
(表2)から明らかなように、硼酸を含まない実施例1の駆動用電解液では特性変化が大きいが、実施例2〜7の駆動用電解液は、3000h経過した時点でも全ての特性が良好であり、比較例1と比較しても同等以上の特性変化を保持していることがわかる。 As apparent from Table 2, the characteristics of the driving electrolyte solution of Example 1 that does not contain boric acid are large. However, the driving electrolyte solutions of Examples 2 to 7 have all the characteristics even after 3000 hours. It can be seen that even when compared with Comparative Example 1, the characteristic change is equivalent or better.
また、実施例3〜5の電解コンデンサにおいて、電解質の含有量を10、30、50重量部と変化させたものは、駆動用電解液の電導度が低下することなく、静電容量の変化率が少なく、損失角の正接及び漏れ電流の値も小さい。 Moreover, in the electrolytic capacitors of Examples 3 to 5, those in which the content of the electrolyte was changed to 10, 30, and 50 parts by weight did not decrease the conductivity of the driving electrolyte solution, and the capacitance change rate. The loss tangent and leakage current are small.
また(表3)から明らかなように、実施例1〜7の電解コンデンサは比較例1,2と比べて漏液性が優れていることがわかった。 Further, as is clear from (Table 3), it was found that the electrolytic capacitors of Examples 1 to 7 were superior in liquid leakage compared to Comparative Examples 1 and 2.
さらに(表4)から明らかなように、比較例1の3級アミン塩系電解液では、高温リフロー膨れ特性が悪かったが、各実施例の駆動用電解液を用いることにより、製品のゴム膨れも非常に小さく良好な結果を示した。 Further, as apparent from Table 4, the tertiary amine salt electrolyte of Comparative Example 1 had poor high-temperature reflow swell characteristics, but by using the driving electrolyte of each Example, the rubber swell of the product Was also very small and showed good results.
次に、上記実施例2の駆動用電解液に、リン系化合物としてモノリン酸、リン酸トリブチル、リン酸トリフェニル、リン酸尿素、ピロリン酸、次亜リン酸アンモニウム(AHP)の6種類をそれぞれ1.5重量部を添加した駆動用電解液を調整し、これを用いた電解コンデンサを作製したものについて、105℃の下で放置し、500時間経過後の静電容量の変化率(ΔC)、損失角の正接(tanδ)、漏れ電流(LC)を測定した。その結果を(表5)に示す。 Next, six types of phosphoric compounds, monophosphoric acid, tributyl phosphate, triphenyl phosphate, urea phosphate, pyrophosphoric acid, and ammonium hypophosphite (AHP), were respectively added to the driving electrolyte of Example 2 above. A drive electrolytic solution to which 1.5 parts by weight was added was prepared, and an electrolytic capacitor using this was prepared. The product was allowed to stand at 105 ° C., and the rate of change in capacitance after 500 hours (ΔC) The loss angle tangent (tan δ) and leakage current (LC) were measured. The results are shown in (Table 5).
(表5)から明らかなように、リン系化合物の添加剤としてモノリン酸を用いたものが特性変化が小さいことがわかる。 As is clear from Table 5, it is understood that the characteristic change is small when monophosphoric acid is used as the additive of the phosphorus compound.
以上のように、本発明の駆動用電解液を用いることにより、高温多湿下でも安定で長寿命の駆動用電解液を提供し、さらに高温リフロー特性もよく、それを用いて高信頼性の電解コンデンサを供給することができる。 As described above, the use of the driving electrolyte of the present invention provides a driving electrolyte that is stable and has a long life even under high temperature and high humidity, and also has good high-temperature reflow characteristics. Capacitors can be supplied.
このように本発明の電解コンデンサ駆動用電解液は、有機溶媒に(化1)で示されるホウ素錯体骨格とするアニオン塩と、(化2)で示されるアミジン化合物骨格のカチオン塩とからなる電解質を含有し、かつ添加剤として少なくとも硼酸を含有した駆動用電解液とすることにより、高い電導度を有する駆動用電解液を得ることができ、高温多湿下においてもホウ素錯体の加水分解が抑制され、特性の安定した電解コンデンサを得ることができる。 As described above, the electrolytic solution for driving an electrolytic capacitor according to the present invention is an electrolyte composed of an anion salt having a boron complex skeleton represented by (Chemical Formula 1) in an organic solvent and a cation salt having an amidine compound skeleton represented by (Chemical Formula 2). And at least boric acid as an additive, a driving electrolyte having high conductivity can be obtained, and hydrolysis of the boron complex is suppressed even under high temperature and high humidity. An electrolytic capacitor with stable characteristics can be obtained.
本発明による駆動用電解液は、高い電導度を有し、高温多湿下でも安定であり、電解コンデンサ駆動用電解液およびそれを使用した電解コンデンサ用途として有用である。 The driving electrolyte according to the present invention has high conductivity and is stable even under high temperature and high humidity, and is useful as an electrolytic capacitor driving electrolyte and an electrolytic capacitor using the same.
11 内部素子
12 リード線
14 封口体
15 アルミケース
11
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007006693A JP2008177197A (en) | 2007-01-16 | 2007-01-16 | Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007006693A JP2008177197A (en) | 2007-01-16 | 2007-01-16 | Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008177197A true JP2008177197A (en) | 2008-07-31 |
Family
ID=39704036
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007006693A Pending JP2008177197A (en) | 2007-01-16 | 2007-01-16 | Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008177197A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010192574A (en) * | 2009-02-17 | 2010-09-02 | Nippon Kodoshi Corp | Electrolytic capacitor |
WO2019225523A1 (en) * | 2018-05-21 | 2019-11-28 | パナソニックIpマネジメント株式会社 | Electrolytic capacitor |
-
2007
- 2007-01-16 JP JP2007006693A patent/JP2008177197A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010192574A (en) * | 2009-02-17 | 2010-09-02 | Nippon Kodoshi Corp | Electrolytic capacitor |
WO2019225523A1 (en) * | 2018-05-21 | 2019-11-28 | パナソニックIpマネジメント株式会社 | Electrolytic capacitor |
CN112106158A (en) * | 2018-05-21 | 2020-12-18 | 松下知识产权经营株式会社 | Electrolytic capacitor |
JPWO2019225523A1 (en) * | 2018-05-21 | 2021-06-10 | パナソニックIpマネジメント株式会社 | Electrolytic capacitor |
CN112106158B (en) * | 2018-05-21 | 2022-08-12 | 松下知识产权经营株式会社 | Electrolytic capacitor |
US11443901B2 (en) | 2018-05-21 | 2022-09-13 | Panasonic Intellectual Property Management Co., Ltd. | Electrolytic capacitor comprising an electrolytic solution containing a first base component, a first acid component, and a second acid component |
JP7361276B2 (en) | 2018-05-21 | 2023-10-16 | パナソニックIpマネジメント株式会社 | Electrolytic capacitor |
US11935704B2 (en) | 2018-05-21 | 2024-03-19 | Panasonic Intellectual Property Management Co., Ltd. | Electrolytic capacitor comprising an electrolytic solution containing a first base component, a first acid component, and a second acid component |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5492221B2 (en) | Electrolytic solution for aluminum electrolytic capacitor and aluminum electrolytic capacitor using the same | |
WO2000055876A1 (en) | Electrolyte for electrolytic capacitor | |
CN1511327A (en) | Electrolytic solution for electrolytic capacitor and electrolytic capacitor using it | |
KR20120006978A (en) | Electrolytic solution for aluminum electrolytic capacitor, and aluminum electrolytic capacitor | |
TWI575546B (en) | Aluminum Electrolytic Capacitors Electrolyte and Aluminum Electrolytic Capacitors | |
JP4964680B2 (en) | Electrolytic solution for aluminum electrolytic capacitor and aluminum electrolytic capacitor using the same | |
EP0251577B1 (en) | Ammonium salt solution as electrolyte for electrolytic capacitors | |
CN111029152A (en) | Dedicated aluminium electrolytic capacitor of on-vehicle electron | |
JP4304242B2 (en) | Electrolytic solution for electrolytic capacitor and electrolytic capacitor | |
JP2015012247A (en) | Fire retardant electrolytic capacitor | |
JP2008177197A (en) | Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same | |
WO2004017344A1 (en) | Electrolyte for electrochemical capacitor and electrochemical capacitor containing the same | |
JP2012146833A (en) | Electrolyte for electrolytic capacitor, and electrolytic capacitor using the same | |
JP2018164009A (en) | Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same | |
JP4374459B2 (en) | Electrolytic solution for electrolytic capacitor, electrolytic capacitor and electrochemical element | |
CN101473391A (en) | Electrolyte solution for aluminum electrolytic capacitor, and aluminum electrolytic capacitor using the same | |
JP2010171305A (en) | Electrolytic solution for driving electrolytic capacitor, and electrolytic capacitor using the same | |
JP4724336B2 (en) | Electrolytic solution for electrolytic capacitor drive | |
JPH11283880A (en) | Electrolyte for electrolytic capacitor and electrolytic capacitor using the same | |
JP2000252168A (en) | Electrochemical capacitor | |
JP4569729B2 (en) | Aluminum electrolytic capacitor | |
JP2007115947A (en) | Electrolyte for driving electrolytic capacitor | |
JP5012377B2 (en) | Electrolytic capacitor | |
JP4835780B2 (en) | Aluminum electrolytic capacitor | |
JP4697362B2 (en) | Aluminum electrolytic capacitor |