JP2008175730A - Apparatus for measuring speed of mobile station - Google Patents

Apparatus for measuring speed of mobile station Download PDF

Info

Publication number
JP2008175730A
JP2008175730A JP2007010280A JP2007010280A JP2008175730A JP 2008175730 A JP2008175730 A JP 2008175730A JP 2007010280 A JP2007010280 A JP 2007010280A JP 2007010280 A JP2007010280 A JP 2007010280A JP 2008175730 A JP2008175730 A JP 2008175730A
Authority
JP
Japan
Prior art keywords
speed
mobile station
cycle slip
speed measuring
traveling speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007010280A
Other languages
Japanese (ja)
Other versions
JP4786559B2 (en
Inventor
Kenji Takahata
健二 高畑
Koichi Okamura
浩一 岡村
Tomoaki Higuchi
智明 樋口
Tatsu Tanaka
龍 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Churyo Engineering Co Ltd
Original Assignee
Churyo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Churyo Engineering Co Ltd filed Critical Churyo Engineering Co Ltd
Priority to JP2007010280A priority Critical patent/JP4786559B2/en
Publication of JP2008175730A publication Critical patent/JP2008175730A/en
Application granted granted Critical
Publication of JP4786559B2 publication Critical patent/JP4786559B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for measuring a speed of a mobile station capable of reducing the period when the speed cannot be measured by a GPS and can measure the travel speed of the mobile station even if cycle slip occurs. <P>SOLUTION: A first speed measuring means 23 fuses the Doppler speed determined based on Doppler frequency Da from a positioning means 22 and an integral speed obtained by integrating acceleration at the optimal mixture ratio according to the difference between them, and measures travel speed V1 of the mobile station. A second speed measuring means 25 measures travel speed V2 of the mobile station by a TD (Time Differential) method based on the position Db of the mobile station from the positioning means 22. A switch control means 24 performs switch control so that travel speed V1 is measured by the first speed measuring means 23 after the occurrence of the cycle slip and in the initial stage of restoration from the cycle slip, and travel speed V2 is measured by the second speed measuring means 25 when cycle slip does not occur. This control reduces the cleanup period of the speed measurement. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、4個以上のGPS衛星から発信される搬送波を受信し、当該搬送波に含まれるデータに基づいて移動局の走行速度を計測する移動局の速度計測装置に関する。   The present invention relates to a mobile station speed measuring apparatus that receives a carrier wave transmitted from four or more GPS satellites and measures a traveling speed of the mobile station based on data included in the carrier wave.

GPS衛星から発信される搬送波を受信する受信機を備えた移動局が移動しているとき、GPS衛星との間に遮蔽物(例えば山や樹木等のような自然物や、建物,トンネル,架橋等のような建設物など)が介在すると一時的に搬送波を受信できず、サイクルスリップが発生する。このサイクルスリップが発生すると正確な測位ができなくなるため、サイクルスリップの発生を検出する技術の一例が開示されている(例えば特許文献1を参照)。
特開2006−220512号公報
When a mobile station equipped with a receiver that receives a carrier wave transmitted from a GPS satellite is moving, there are shielding objects (such as natural objects such as mountains and trees, buildings, tunnels, bridges, etc.) between the GPS satellites. If there is a construction such as), a carrier wave cannot be received temporarily and a cycle slip occurs. Since accurate positioning cannot be performed when this cycle slip occurs, an example of a technique for detecting the occurrence of the cycle slip is disclosed (see, for example, Patent Document 1).
JP 2006-220512 A

しかし、サイクルスリップの発生を検出できたとしても、搬送波を受信できなくなる以上はTD(Time Differential)法等によって移動局の走行速度を計測することもできない。仮に搬送波の受信を再開できたとしても、計測誤差が許容範囲内に収まるまでの回復時間(例えば6秒間〜10秒間等)を要する。したがって、サイクルスリップの発生によって移動局の走行速度を計測できない期間が生じるという問題点があった。なお、サイクルスリップのために搬送波を受信できない期間に加速度を積分して走行速度を求める方法も考えられるが、サイクルスリップからの回復時間が長いために積分誤差が大きくなり、実用的でない。   However, even if the occurrence of cycle slip can be detected, the traveling speed of the mobile station cannot be measured by the TD (Time Differential) method or the like as long as the carrier wave cannot be received. Even if reception of the carrier wave can be resumed, a recovery time (for example, 6 seconds to 10 seconds) until the measurement error falls within the allowable range is required. Therefore, there is a problem that a period during which the traveling speed of the mobile station cannot be measured occurs due to the occurrence of cycle slip. Although a method of obtaining the traveling speed by integrating the acceleration during a period in which the carrier wave cannot be received due to the cycle slip can be considered, the integration error becomes large due to the long recovery time from the cycle slip, which is not practical.

また、サイクルスリップの有無を検出するには、特許文献1の技術では多量の演算処理(最小二乗法による近似値を求める等)を行っている。演算処理が多量であれば検出に時間を要するので、検出後の処理に移行できないという問題点もあった。   Further, in order to detect the presence or absence of cycle slip, the technique of Patent Document 1 performs a large amount of arithmetic processing (such as obtaining an approximate value by the least square method). If there is a large amount of arithmetic processing, it takes time to detect, so that there is a problem that it is not possible to shift to processing after detection.

本発明はこのような点に鑑みてなしたものであり、移動局が移動しているときにサイクルスリップが発生したとしても、GPSによる速度計測ができない時間を従来よりも少なくして移動局の走行速度を計測できるようにした移動局の速度計測装置を提供することを目的とする。   The present invention has been made in view of such points, and even if a cycle slip occurs when the mobile station is moving, the time during which the speed measurement by GPS is not possible can be reduced compared to the conventional case. It is an object of the present invention to provide a mobile station speed measuring device capable of measuring a traveling speed.

(1)課題を解決するための手段(以下では単に「解決手段」と呼ぶ。)1は、4個以上のGPS衛星から発信された搬送波を受信する受信機を備え、受信した搬送波に含まれるデータに基づいて移動局の走行速度を計測する移動局の速度計測装置であって、前記搬送波に含まれるデータに基づいて、ドプラー周波数と移動局の位置とを求めて出力する測位手段と、前記測位手段から出力されたドプラー周波数に基づいて求められるドプラー速度(すなわち観測更新データ)と、加速度を積分して得られる積分速度(すなわち時間更新データ)との差に応じて観測更新データと時間更新データを最適な混合比(例えばカルマンゲイン)によって融合して移動局の走行速度を計測する第1速度計測手段と、前記測位手段から出力された移動局の位置に基づいて、TD(Time Differential)法により移動局の走行速度を計測する第2速度計測手段と、サイクルスリップが発生時に、サイクルスリップ発生中は加速度センサーによって計測された加速度をカルマンフィルタによる時間更新および、ノイズフィルタリングして移動局の走行速度を計測し、サイクルスリップからの回復の初期段階は、前記第1速度計測手段により移動局の走行速度を計測し、その後に前記精度低下指標が所定値未満になったら前記第2速度計測手段により移動局の走行速度を計測するように切り替え制御を行う切替制御手段とを有することを要旨とする。 (1) Means for solving the problem (hereinafter simply referred to as “solution means”) 1 includes a receiver for receiving a carrier wave transmitted from four or more GPS satellites, and is included in the received carrier wave. A mobile station speed measuring device for measuring a traveling speed of a mobile station based on data, wherein positioning means for obtaining and outputting a Doppler frequency and a position of the mobile station based on data included in the carrier wave, and Observation update data and time update according to the difference between the Doppler velocity calculated based on the Doppler frequency output from the positioning means (that is, observation update data) and the integrated velocity obtained by integrating the acceleration (ie, time update data). A first speed measuring means for measuring the traveling speed of the mobile station by fusing data with an optimal mixing ratio (for example, Kalman gain), and a mobile station output from the positioning means; Second speed measuring means for measuring the traveling speed of the mobile station based on the position by the TD (Time Differential) method, and when the cycle slip occurs, the acceleration measured by the acceleration sensor is updated by the Kalman filter during the occurrence of the cycle slip. In addition, noise filtering is performed to measure the traveling speed of the mobile station. In the initial stage of recovery from cycle slip, the traveling speed of the mobile station is measured by the first speed measuring means, and then the accuracy reduction index is a predetermined value. The gist of the invention is that it has switching control means for performing switching control so as to measure the traveling speed of the mobile station by the second speed measuring means.

TD法に比べて、サイクルスリップが発生してからドプラー周波数を得るまでの期間は大幅に短い(例えば0.2秒間〜4秒間等)。解決手段1によれば、切替制御手段がサイクルスリップが発生した否かで第1速度計測手段と第2速度計測手段とを切り替える。特に移動局が移動しているときにサイクルスリップが発生すると、第1速度計測手段はドプラー速度と加速度を積分して得られる積分速度との差に応じて最適な混合比で融合して移動局の走行速度を計測する。したがって、サイクルスリップが発生してもGPS衛星からのTD測位値またはドプラー速度が計測できないGPS搬送波が使用不可な時間を従来よりも少なくして移動局の走行速度を計測できる。   Compared with the TD method, the period from when the cycle slip occurs until the Doppler frequency is obtained is significantly shorter (for example, 0.2 second to 4 seconds). According to the solving means 1, the switching control means switches between the first speed measuring means and the second speed measuring means depending on whether or not a cycle slip has occurred. In particular, when a cycle slip occurs while the mobile station is moving, the first speed measuring means fuses at an optimal mixing ratio according to the difference between the Doppler speed and the integral speed obtained by integrating the acceleration. Measure the running speed of Therefore, even when a cycle slip occurs, it is possible to measure the traveling speed of the mobile station by reducing the time during which the GPS carrier wave that cannot measure the TD positioning value or the Doppler speed from the GPS satellite is unavailable.

(2)解決手段2は、解決手段1に記載した移動局の速度計測装置であって、切替制御手段は、GPS衛星の配置に関連する精度低下指標を求め、当該精度低下指標が所定値以上になるときは前記第1速度計測手段により移動局の走行速度を計測し、前記精度低下指標が所定値未満のときは第2速度計測手段により移動局の走行速度を計測するように切り替え制御を行うことを要旨とする。 (2) The solving means 2 is the mobile station speed measuring device described in the solving means 1, wherein the switching control means obtains an accuracy decrease index related to the arrangement of GPS satellites, and the accuracy decrease index is a predetermined value or more. Switching control is performed so that the traveling speed of the mobile station is measured by the first speed measuring means, and the traveling speed of the mobile station is measured by the second speed measuring means when the accuracy reduction index is less than a predetermined value. The gist is to do.

精度低下指標はGPS衛星の配置に関連する指標であって、位置に関する指標(PDOP),水平方向の精度に関する指標(HDOP),高度に関する指標(VDOP),時間に関する指標(TDOP)などがある。このうち位置に関する指標(PDOP)が最適である。   The accuracy degradation index is an index related to the arrangement of GPS satellites, and includes a position index (PDOP), a horizontal accuracy index (HDOP), an altitude index (VDOP), and a time index (TDOP). Of these, the position index (PDOP) is most suitable.

解決手段2によれば、精度低下指標はGPS衛星に対する近似距離や擬似距離等に基づいて演算すれば求められるので、特許文献1に比べれば大幅に少ない演算量で済む。切替制御手段は精度低下指標が所定値を閾値としてサイクルスリップの有無を検出するので、計測の空白期間を従来よりもさらに少なくできるだけでなく最適な計測誤差になるような切り替えを実現できる。   According to Solution 2, since the accuracy reduction index is obtained by calculation based on the approximate distance or pseudo distance to the GPS satellite, the calculation amount is much smaller than that of Patent Document 1. Since the switching control means detects the presence or absence of cycle slip with the accuracy reduction index as a threshold value, it is possible to realize switching that not only makes the measurement blank period even smaller than in the prior art but also results in an optimal measurement error.

(3)解決手段3は、解決手段1または2に記載した移動局の速度計測装置であって、加速度センサーによって計測された加速度をカルマンフィルタによる時間更新および、ノイズフィルタリングして移動局の走行速度を計測する第3速度計測手段を有し、切替制御手段は、サイクルスリップが発生してから第1速度計測手段により移動局の走行速度を計測できるまでの間、前記第3速度計測手段により移動局の走行速度を計測するように切り替え制御を行うことを要旨とする。 (3) The solving means 3 is the mobile station speed measuring device described in the solving means 1 or 2, wherein the acceleration measured by the acceleration sensor is time-updated by a Kalman filter and noise filtering is performed to obtain the traveling speed of the mobile station. A third speed measuring means for measuring, and the switching control means is configured so that the third speed measuring means allows the mobile station to measure the travel speed of the mobile station after the cycle slip has occurred. The gist is to perform switching control so as to measure the traveling speed of the vehicle.

サイクルスリップが発生してから第1速度計測手段により移動局の走行速度を計測できるまでにも時間を要する(例えば2秒程度)。解決手段3によれば、第1速度計測手段および第2速度計測手段のいずれでも移動局の走行速度を計測できない期間中であっても、第3速度計測手段の加速度センサーによって計測された加速度をカルマンフィルタによる時間更新および、ノイズフィルタリングして移動局の走行速度を計測する。したがって、サイクルスリップが発生したとしても、空白期間を無くして継続的に移動局の走行速度を計測できる。   It takes time (for example, about 2 seconds) until the traveling speed of the mobile station can be measured by the first speed measuring means after the occurrence of the cycle slip. According to the solution means 3, the acceleration measured by the acceleration sensor of the third speed measurement means is obtained even during a period in which neither the first speed measurement means nor the second speed measurement means can measure the traveling speed of the mobile station. The running speed of the mobile station is measured by time update by Kalman filter and noise filtering. Therefore, even if a cycle slip occurs, the traveling speed of the mobile station can be continuously measured without a blank period.

本発明によれば、移動局が移動しているときにサイクルスリップが発生したとしても、GPSによる速度計測ができない時間を従来よりも少なくして移動局の走行速度を計測することができる。   According to the present invention, even if a cycle slip occurs while the mobile station is moving, the traveling speed of the mobile station can be measured by reducing the time during which the speed measurement by GPS is not possible compared to the prior art.

本発明を実施するための最良の形態について、図面を参照しながら説明する。なお移動局は例えば自動車や電車等が該当するが、本形態では自動車に適用した例を説明する。   The best mode for carrying out the present invention will be described with reference to the drawings. The mobile station corresponds to, for example, a car or a train. In this embodiment, an example applied to a car will be described.

図1には本発明の構成例を表す。速度計測装置20は自動車に備えられる。この速度計測装置20は、受信機21,測位手段22,第1速度計測手段23,切替制御手段24,第2速度計測手段25,第3速度計測手段26などを有する。各手段は、ソフトウェアの実行またはハードウェア構成の機能によってそれぞれ実現される。   FIG. 1 shows a configuration example of the present invention. The speed measuring device 20 is provided in an automobile. The speed measuring device 20 includes a receiver 21, positioning means 22, first speed measuring means 23, switching control means 24, second speed measuring means 25, third speed measuring means 26, and the like. Each means is realized by execution of software or a function of hardware configuration.

受信機21は、4個以上のGPS衛星10から発信される搬送波Cを受信する。測位手段22は受信機21で受信された搬送波Cに含まれるデータに基づいて、ドプラー周波数Da,現在位置Db,精度低下指標Dcなどを求めて出力する。本例では、精度低下指標Dcとして位置に関する指標(PDOP)を用いる。   The receiver 21 receives a carrier wave C transmitted from four or more GPS satellites 10. The positioning means 22 obtains and outputs the Doppler frequency Da, the current position Db, the accuracy reduction index Dc, and the like based on the data included in the carrier wave C received by the receiver 21. In this example, a position-related index (PDOP) is used as the accuracy decrease index Dc.

第1速度計測手段23はドプラー速度演算手段23aや融合フィルタ手段23bなどを有し、測位手段22から出力されたドプラー周波数Daを受けて自動車の走行速度V1を計測して出力する。ドプラー速度演算手段23aは、ドプラー周波数Daに基づいてドプラー速度を演算する。こうして演算されるドプラー速度は観測更新データに相当する。またドプラー速度とは別個に加速度を積分して積分速度が演算され、こうして演算される積分速度は時間更新データに相当する。融合フィルタ手段23bは、ドプラー速度演算手段23aによって演算されたドプラー速度と、加速度を積分して得られる積分速度との差に応じて観測更新データと時間更新データを最適な混合比(例えばカルマンゲイン)によって融合して自動車の走行速度V1を推定し、計測結果として出力する。   The first speed measuring means 23 includes a Doppler speed calculating means 23a, a fusion filter means 23b, etc., receives the Doppler frequency Da output from the positioning means 22, and measures and outputs the traveling speed V1 of the automobile. The Doppler speed calculation means 23a calculates the Doppler speed based on the Doppler frequency Da. The Doppler speed calculated in this way corresponds to the observation update data. Further, the integral speed is calculated by integrating the acceleration separately from the Doppler speed, and the calculated integral speed corresponds to the time update data. The fusion filter means 23b converts the observation update data and the time update data into an optimum mixing ratio (for example, Kalman gain) according to the difference between the Doppler speed calculated by the Doppler speed calculation means 23a and the integration speed obtained by integrating the acceleration. ) To estimate the running speed V1 of the automobile and output it as a measurement result.

第2速度計測手段25はTD法速度演算手段25aや融合フィルタ手段25bなどを有し、測位手段22から出力された現在位置Dbを受けてTD法により自動車の走行速度V2を計測する。TD法速度演算手段25aは、前回と今回の現在位置Dbに基づいて移動速度を演算する。こうして演算される移動速度は観測更新データに相当する。移動速度とは別個に上述した積分速度が演算される(時間更新データに相当)。融合フィルタ手段25bは、TD法速度演算手段25aによって演算された移動速度と、加速度を積分して得られる積分速度との差に応じて観測更新データと時間更新データを最適な混合比(例えばカルマンゲイン)によって融合して自動車の走行速度V2を推定し、計測結果として出力する。   The second speed measuring means 25 includes a TD method speed calculating means 25a, a fusion filter means 25b, etc., and receives the current position Db output from the positioning means 22 and measures the traveling speed V2 of the vehicle by the TD method. The TD method speed calculating means 25a calculates the moving speed based on the previous and current current position Db. The moving speed calculated in this way corresponds to observation update data. The integral speed described above is calculated separately from the moving speed (corresponding to time update data). The fusion filter unit 25b converts the observation update data and the time update data into an optimum mixture ratio (for example, Kalman) according to the difference between the moving speed calculated by the TD method speed calculation unit 25a and the integration speed obtained by integrating the acceleration. The driving speed V2 of the vehicle is estimated by combining with the gain) and output as a measurement result.

ここで、融合フィルタ手段23b,25bの構成例について図2を参照しながら説明する。図2には、ジャーク(加速度変化率)を駆動源とする離散時間形のカルマンフィルタを用いて構成した例を表す。なお図1の融合フィルタ手段23bと融合フィルタ手段25bは同一の構成であるので、ここでは融合フィルタ手段23bを代表して説明する。   Here, a configuration example of the fusion filter means 23b and 25b will be described with reference to FIG. FIG. 2 shows an example in which a discrete-time Kalman filter using jerk (acceleration change rate) as a drive source is used. Since the fusion filter means 23b and the fusion filter means 25b in FIG. 1 have the same configuration, here, the fusion filter means 23b will be described as a representative.

図1において、融合フィルタ手段23bは、図2のカルマンフィルタ30,融合部32,加速度センサー34などを有する。カルマンフィルタ30はドプラー速度濾波部30aと加速度濾波部30bとからなる。ドプラー速度濾波部30aは、ドプラー速度(TD速度)を入力してフィルタリングを行い、フィルタリング速度を出力する。当該ドプラー速度濾波部30aにおけるカルマンゲインK,観測行列H,離散系伝達特性z−1,遷移行列Fについて、次式(1)のような連続系運動方程式を離散化した運動方程式に対する離散型カルマンフィルタが成り立つ。なお、ジャークεは加速度変化率を意味する。 In FIG. 1, the fusion filter means 23b has the Kalman filter 30, the fusion part 32, the acceleration sensor 34, etc. of FIG. The Kalman filter 30 includes a Doppler velocity filtering unit 30a and an acceleration filtering unit 30b. The Doppler speed filtering unit 30a receives the Doppler speed (TD speed), performs filtering, and outputs the filtering speed. A discrete Kalman filter for a motion equation obtained by discretizing a continuous motion equation such as the following equation (1) for the Kalman gain K, the observation matrix H, the discrete transfer characteristic z −1 , and the transition matrix F in the Doppler velocity filtering unit 30a. Holds. The jerk ε means the acceleration change rate.

Figure 2008175730
Figure 2008175730

加速度濾波部30bは、加速度センサー34から出力された加速度を入力して積分を行い、積分速度を出力する。当該加速度濾波部30bにおけるカルマンゲインK,観測行列H,離散系伝達特性z−1,遷移行列Fについて、次式(2)のような連続系運動方程式を離散化した運動方程式に対する離散型カルマンフィルタが成り立つ。

Figure 2008175730
The acceleration filtering unit 30b receives the acceleration output from the acceleration sensor 34, performs integration, and outputs an integration speed. For the Kalman gain K, the observation matrix H, the discrete transfer characteristic z −1 , and the transition matrix F in the acceleration filtering unit 30b, a discrete Kalman filter for a motion equation obtained by discretizing a continuous motion equation such as the following equation (2) is provided. It holds.
Figure 2008175730

融合部32は、ドプラー速度濾波部30aから出力されたフィルタリング速度と、加速度濾波部30bから出力された積分速度とを融合して出力する。すなわちドプラー速度濾波部30aの観測更新周波数と加速度濾波部30bの観測更新周波数とは異なる(通常は両者は一致している)。本例では、ドプラー速度濾波部30aの観測更新周波数が5[Hz]であり、加速度濾波部30bの観測更新周波数が100[Hz]である。したがって、フィルタリング速度の間隙を積分速度で埋めるように補間を行って出力する。   The fusing unit 32 fuses the filtering speed output from the Doppler velocity filtering unit 30a and the integration velocity output from the acceleration filtering unit 30b and outputs the result. That is, the observation update frequency of the Doppler velocity filtering unit 30a is different from the observation update frequency of the acceleration filtering unit 30b (normally, both are the same). In this example, the observation update frequency of the Doppler velocity filtering unit 30a is 5 [Hz], and the observation update frequency of the acceleration filtering unit 30b is 100 [Hz]. Therefore, interpolation is performed so as to fill the gap of the filtering speed with the integration speed, and the result is output.

第3速度計測手段26は加速度センサー26aや速度演算手段26bなどを有し、加速度センサー26aによって計測された加速度αを速度演算手段26bがカルマンフィルタによる時間更新および、ノイズフィルタリングを演算することにより自動車の走行速度V3を計測する。   The third speed measuring unit 26 includes an acceleration sensor 26a, a speed calculating unit 26b, and the like. The speed calculating unit 26b calculates time update by a Kalman filter and noise filtering by calculating the acceleration α measured by the acceleration sensor 26a. The traveling speed V3 is measured.

切替制御手段24は、測位手段22から出力された精度低下指標Dcを受けて、第1速度計測手段23から出力された走行速度V1と、第2速度計測手段25から出力された走行速度V2と、第3速度計測手段26から出力された走行速度V3とのうちでいずれかに自動的に切り替えて複合速度Voとして出力する。具体的には、精度低下指標Dcが所定値(例えば2や3であって適宜に設定できる。)以上になればサイクルスリップが発生したとして第1速度計測手段23の走行速度V1に切り替えて出力する。ただし、サイクルスリップが発生した直後は第1速度計測手段23も復帰するまでは走行速度V1を出力することができないので、第3速度計測手段26の走行速度V3に切り替えて出力する。一方、精度低下指標Dcが所定値未満ならばサイクルスリップが発生していないとして第2速度計測手段25の走行速度V2に切り替えて出力する。   The switching control unit 24 receives the accuracy decrease index Dc output from the positioning unit 22, and the traveling speed V 1 output from the first speed measuring unit 23 and the traveling speed V 2 output from the second speed measuring unit 25. The travel speed V3 output from the third speed measurement means 26 is automatically switched to any one of the travel speeds V3 and output as a composite speed Vo. Specifically, if the accuracy drop index Dc is equal to or higher than a predetermined value (for example, 2 or 3 and can be set as appropriate), it is switched to the traveling speed V1 of the first speed measuring means 23 and output, assuming that a cycle slip has occurred. To do. However, immediately after the occurrence of the cycle slip, the traveling speed V1 cannot be output until the first speed measuring means 23 also returns, so that the traveling speed V3 of the third speed measuring means 26 is switched and output. On the other hand, if the accuracy decrease index Dc is less than the predetermined value, it is switched to the traveling speed V2 of the second speed measuring means 25 and output, assuming that no cycle slip has occurred.

上述のように構成された速度計測装置20を用いて計測を行うと、図3のような試験結果が得られた。時刻t1に精度低下指標Dcが大幅に大きくなってサイクルスリップが発生すると、ドプラー速度演算手段23aで演算されるドプラー速度と、TD法速度演算手段25aで演算されるTD速度はともに正常でなくなる。そのため、第3速度計測手段26の走行速度V3を複合速度Voとして出力する(すなわちVo=V3)。このように走行速度V3を複合速度Voとして出力する状態は、時刻t1から0.2秒間〜4秒間等(すなわち回復の初期段階)を経過した後の時刻t2まで続く。   When the measurement was performed using the speed measuring device 20 configured as described above, a test result as shown in FIG. 3 was obtained. When the accuracy drop index Dc becomes significantly large at time t1 and a cycle slip occurs, both the Doppler speed calculated by the Doppler speed calculation means 23a and the TD speed calculated by the TD method speed calculation means 25a become abnormal. Therefore, the traveling speed V3 of the third speed measuring means 26 is output as the composite speed Vo (that is, Vo = V3). Thus, the state in which the traveling speed V3 is output as the composite speed Vo continues from time t1 to time t2 after elapse of 0.2 second to 4 seconds or the like (that is, the initial stage of recovery).

時刻t2になるとドプラー周波数Daにかかるサイクルスリップが終わって復帰するために精度低下指標Dcも幾分小さくなる。そのためにドプラー速度演算手段23aで演算されるドプラー速度が正常になり、第1速度計測手段23の走行速度V1を複合速度Voとして出力する(すなわちVo=V1)。
さらに時刻t1から6秒間〜10秒間等(すなわち回復時間)を経過した時刻t3になると、現在位置Dbにかかるサイクルスリップが終わって復帰する。そのためにTD法速度演算手段25aで演算されるTD速度が正常になり、第2速度計測手段25の走行速度V2を複合速度Voとして出力する(すなわちVo=V2)。
At time t2, since the cycle slip applied to the Doppler frequency Da ends and returns, the accuracy reduction index Dc is also somewhat reduced. Therefore, the Doppler speed calculated by the Doppler speed calculating means 23a becomes normal, and the traveling speed V1 of the first speed measuring means 23 is output as the composite speed Vo (that is, Vo = V1).
Further, at time t3 when 6 seconds to 10 seconds or the like (that is, recovery time) has elapsed from time t1, the cycle slip applied to the current position Db is completed and returned. Therefore, the TD speed calculated by the TD method speed calculating means 25a becomes normal, and the traveling speed V2 of the second speed measuring means 25 is output as the composite speed Vo (that is, Vo = V2).

上述した実施の形態によれば、以下に表す各効果を得ることができる。
(1)TD法に比べると、時刻t1にサイクルスリップが発生してから、時刻t2にドプラー周波数Daを得るまでの期間は大幅に短い(図3を参照)。切替制御手段24がサイクルスリップが発生した否かで第1速度計測手段23と第2速度計測手段25とを切り替える。自動車が移動しているときにサイクルスリップが発生しても、第1速度計測手段23はドプラー速度(観測更新データ)と加速度を積分して得られる積分速度(時間更新データ)との差に応じて観測更新データと時間更新データを最適な混合比(例えばカルマンゲイン)によって融合して複合速度Voを出力することで自動車の走行速度を計測する。したがって、サイクルスリップが発生してもGPS衛星10からのTD測位値またはドプラー速度の空白期間を従来よりも少なくして自動車の走行速度を計測できる。
According to the embodiment described above, the following effects can be obtained.
(1) Compared with the TD method, the period from when a cycle slip occurs at time t1 to when the Doppler frequency Da is obtained at time t2 is significantly shorter (see FIG. 3). The switching control means 24 switches between the first speed measuring means 23 and the second speed measuring means 25 depending on whether or not a cycle slip has occurred. Even if a cycle slip occurs while the vehicle is moving, the first speed measurement means 23 responds to the difference between the Doppler speed (observation update data) and the integration speed (time update data) obtained by integrating the acceleration. Then, the traveling speed of the automobile is measured by fusing the observation update data and the time update data at an optimum mixing ratio (for example, Kalman gain) and outputting the composite speed Vo. Therefore, even if a cycle slip occurs, it is possible to measure the traveling speed of the automobile by reducing the TD positioning value from the GPS satellite 10 or the blank period of the Doppler speed as compared with the prior art.

(2)精度低下指標Dc(PDOP;位置に関する指標)はGPS衛星10に対する近似距離や擬似距離等に基づいて演算すれば求められるので、大幅に少ない演算量で済む。切替制御手段24は精度低下指標Dcが所定値を閾値としてサイクルスリップの有無を検出するので、計測の空白期間を従来よりもさらに少なくできるだけでなく、最適な計測誤差になるような切り替えを実現できる。 (2) Since the accuracy reduction index Dc (PDOP; position index) is obtained by calculation based on the approximate distance or pseudo distance to the GPS satellite 10, a considerably small calculation amount is sufficient. Since the switching control means 24 detects the presence or absence of cycle slip with the accuracy reduction index Dc as a threshold value, it is possible not only to make the measurement blank period even smaller than before, but also to realize switching that results in an optimal measurement error. .

(3)時刻t1にサイクルスリップが発生してから、第1速度計測手段23および第2速度計測手段25のいずれでも自動車の走行速度を計測できない時刻t2までの期間中であっても、第3速度計測手段26が加速度センサー26aによって計測された加速度を積分してカルマンフィルタによる時間更新および、ノイズフィルタリングを行って自動車の走行速度V1を計測して複合速度Voとして出力した(図3を参照)。したがって、サイクルスリップが発生したとしても、空白期間を無くして継続的に自動車の走行速度を計測できる。なお、時刻t1から時刻t2までの期間は短いので積分誤差も小さく(RMSで約0.2[m/s])、実用性も確保される。 (3) Even during the period from the occurrence of the cycle slip at time t1 to the time t2 when neither the first speed measurement means 23 nor the second speed measurement means 25 can measure the traveling speed of the vehicle, the third The speed measuring means 26 integrates the acceleration measured by the acceleration sensor 26a, performs time update by a Kalman filter, and performs noise filtering to measure the traveling speed V1 of the automobile and output it as a composite speed Vo (see FIG. 3). Therefore, even if a cycle slip occurs, the traveling speed of the automobile can be continuously measured without a blank period. Since the period from time t1 to time t2 is short, the integration error is small (approximately 0.2 [m / s] in RMS), and practicality is ensured.

〔他の実施の形態〕
以上では本発明を実施するための最良の形態について説明したが、本発明は当該形態に何ら限定されるものではない。言い替えれば、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施することもできる。例えば、次に示す各形態を実現してもよい。
[Other Embodiments]
Although the best mode for carrying out the present invention has been described above, the present invention is not limited to this mode. In other words, the present invention can be implemented in various forms without departing from the gist of the present invention. For example, the following forms may be realized.

(1)上述した実施の形態では、第1速度計測手段23と第2速度計測手段25に同一の融合フィルタ手段を備えたが(図1を参照)、単一の融合フィルタ手段27を備えてもよい(図4を参照)。以下では図4の構成例について簡単に説明するが、図1と同一の構成については別個に説明する場合を除いて同一の符号を付している。 (1) In the above-described embodiment, the first speed measurement means 23 and the second speed measurement means 25 are provided with the same fusion filter means (see FIG. 1), but a single fusion filter means 27 is provided. (See FIG. 4). In the following, the configuration example of FIG. 4 will be briefly described. However, the same configurations as those in FIG. 1 are denoted by the same reference numerals unless otherwise described.

図4に表す速度計測装置20は、受信機21,測位手段22,ドプラー速度演算手段23a,TD法速度演算手段25a,切替制御手段24,融合フィルタ手段27,加速度センサー26a,速度演算手段26bなどを有する。なお図1との関係では、ドプラー速度演算手段23aおよび融合フィルタ手段27等が第1速度計測手段23に相当し、TD法速度演算手段25aおよび融合フィルタ手段27等が第2速度計測手段25に相当し、加速度センサー26a,速度演算手段26bおよび融合フィルタ手段27等が第3速度計測手段26に相当する。   A speed measuring device 20 shown in FIG. 4 includes a receiver 21, positioning means 22, Doppler speed calculating means 23a, TD method speed calculating means 25a, switching control means 24, fusion filter means 27, acceleration sensor 26a, speed calculating means 26b, and the like. Have In relation to FIG. 1, the Doppler speed calculation means 23 a and the fusion filter means 27 are equivalent to the first speed measurement means 23, and the TD method speed calculation means 25 a and the fusion filter means 27 are equivalent to the second speed measurement means 25. The acceleration sensor 26a, the speed calculation means 26b, the fusion filter means 27, and the like correspond to the third speed measurement means 26.

ドプラー速度演算手段23aは、測位手段22から出力されたドプラー周波数Daに基づいてドプラー速度Vdを演算して切替制御手段24に出力する。TD法速度演算手段25aは、測位手段22から出力された現在位置Dbに基づいてTD速度Vtを演算して切替制御手段24に出力する。切替制御手段24は、精度低下指標Dcが所定値以上になるか未満になるかでドプラー速度VdとTD速度Vtとを切り替え、走行速度Viとして出力する。ただし、サイクルスリップによってドプラー速度演算手段23aおよびTD法速度演算手段25aの双方で演算不能な期間(すなわち図3に表す時刻t1から時刻t2まで)は走行速度Viを出力しない。   The Doppler speed calculation means 23 a calculates the Doppler speed Vd based on the Doppler frequency Da output from the positioning means 22 and outputs it to the switching control means 24. The TD method speed calculation means 25 a calculates the TD speed Vt based on the current position Db output from the positioning means 22 and outputs it to the switching control means 24. The switching control means 24 switches between the Doppler speed Vd and the TD speed Vt depending on whether the accuracy decrease index Dc is greater than or less than a predetermined value, and outputs it as the traveling speed Vi. However, the traveling speed Vi is not output during a period in which both the Doppler speed calculating means 23a and the TD method speed calculating means 25a cannot calculate due to cycle slip (that is, from time t1 to time t2 shown in FIG. 3).

融合フィルタ手段27は図1に表す融合フィルタ手段23b,25bと同一の構成である。この融合フィルタ手段27は、切替制御手段24から出力された走行速度Vi(観測更新データ)と、速度演算手段26bによって演算された積分速度Vs(時間更新データ)との差に応じて観測更新データと時間更新データを最適な混合比(例えばカルマンゲイン)によって融合し、自動車の複合速度Voを計測結果として出力する。なお、切替制御手段24が走行速度Viを出力しないときは、積分速度Vsを自動車の複合速度Voとして出力する。
図4のように構成した場合でも、上述した実施の形態と同様に、サイクルスリップが発生しても空白期間を従来よりも少なくして自動車の走行速度を計測できる。また、融合フィルタ手段の数が少なくなる分だけコストを低く抑えることができる。
The fusion filter means 27 has the same configuration as the fusion filter means 23b and 25b shown in FIG. The fusion filter means 27 is provided with observation update data according to the difference between the travel speed Vi (observation update data) output from the switching control means 24 and the integrated speed Vs (time update data) calculated by the speed calculation means 26b. And the time update data are merged at an optimum mixing ratio (for example, Kalman gain), and the combined speed Vo of the automobile is output as a measurement result. Note that when the switching control means 24 does not output the traveling speed Vi, the integrated speed Vs is output as the combined speed Vo of the automobile.
Even in the case of the configuration shown in FIG. 4, as in the above-described embodiment, even when a cycle slip occurs, it is possible to measure the traveling speed of the automobile by reducing the blank period compared to the conventional case. Further, the cost can be kept low by the amount of the fusion filter means being reduced.

(2)上述した実施の形態では、融合フィルタ手段23b,25b,27にはカルマンフィルタ30を主として用いた(図2を参照)。この形態に代えて、最小二乗法や線形回帰式などのような他の推定フィルタを用いてもよい。こうした他の推定フィルタを用いた場合であっても、フィルタリング速度や積分速度が得られ、最終的に走行速度や複合速度を出力することができる。 (2) In the above-described embodiment, the Kalman filter 30 is mainly used for the fusion filter means 23b, 25b, and 27 (see FIG. 2). Instead of this form, another estimation filter such as a least square method or a linear regression equation may be used. Even when such other estimation filters are used, the filtering speed and the integrated speed can be obtained, and the traveling speed and the combined speed can be finally output.

(3)上述した実施の形態では、精度低下指標Dcとして位置に関する指標(PDOP)を用いたが、水平方向の精度に関する指標(HDOP),高度に関する指標(VDOP),時間に関する指標(TDOP)のうちで一以上を用いてもよい。いずれの指標にせよ大幅に少ない演算量で求まるので、GPSによる速度計測ができない時間を従来よりもさらに少なくできる。 (3) In the above-described embodiment, the position-related index (PDOP) is used as the accuracy-decreasing index Dc. However, the horizontal accuracy index (HDOP), altitude index (VDOP), and time index (TDOP) One or more may be used. Since any of the indices can be obtained with a considerably small amount of calculation, the time during which speed measurement by GPS cannot be performed can be further reduced compared to the conventional method.

(4)上述した実施の形態では、精度低下指標Dcに基づいてサイクルスリップの発生を検出した。この形態に代えて、測位手段22から出力されるドプラー周波数Daおよび現在位置Dbのうちで一方または双方の変化率に基づいてサイクルスリップの発生を検出してもよい。サイクルスリップが発生すれば搬送波を受信できなくなり、測位手段22で演算するドプラー周波数Daおよび現在位置Dbもまた発生前と大きく数値が変化する。したがって、変化率が一定値以上になればサイクルスリップが発生したものとして切替制御手段24が切り替えを行うように構成する。この構成によれば、精度低下指標Dcを用いなくても上述した実施の形態と同様の作用効果を得ることができる。 (4) In the above-described embodiment, the occurrence of cycle slip is detected based on the accuracy reduction index Dc. Instead of this form, the occurrence of cycle slip may be detected based on the rate of change of one or both of the Doppler frequency Da and the current position Db output from the positioning means 22. If a cycle slip occurs, it becomes impossible to receive a carrier wave, and the values of the Doppler frequency Da and the current position Db calculated by the positioning means 22 are greatly changed from those before the occurrence. Therefore, if the rate of change becomes equal to or greater than a certain value, it is configured that the switching control means 24 performs switching assuming that a cycle slip has occurred. According to this configuration, it is possible to obtain the same effect as that of the above-described embodiment without using the accuracy decrease index Dc.

(5)上述した実施の形態では、速度計測装置20は自動車の速度を計測する用途に適用した。この形態に代えて、ドライビングロボットの精密速度センサーとして適用したり、オートクルーズの精密速度センサーとして適用することもできる。このような適用においても、上述した実施の形態と同様の作用効果を得ることができる。 (5) In the above-described embodiment, the speed measuring device 20 is applied to an application for measuring the speed of an automobile. It can replace with this form and can also be applied as a precision speed sensor of a driving robot or a precision speed sensor of auto cruise. Even in such an application, the same effects as those of the above-described embodiment can be obtained.

本発明の構成例を表すブロック図である。It is a block diagram showing the example of a structure of this invention. 融合フィルタ手段の構成例を表すブロック図である。It is a block diagram showing the structural example of a fusion filter means. 速度計測装置を用いて行った計測例を表すチャート図である。It is a chart figure showing the example of measurement performed using the speed measuring device. 他の構成例を表すブロック図である。It is a block diagram showing the other structural example.

符号の説明Explanation of symbols

10 GPS衛星
20 速度計測装置
21 受信機
22 測位手段
23 第1速度計測手段
23a ドプラー速度演算手段
23b,25b,27 融合フィルタ手段
24 切替制御手段
25 第2速度計測手段
25a TD法速度演算手段
26 第3速度計測手段
26a 加速度センサー
26b 速度演算手段
30 カルマンフィルタ
30a ドプラー速度濾波部
30b 加速度濾波部
32 融合部
34 加速度センサー
C 搬送波
Da ドプラー周波数
Db 現在位置
Dc 精度低下指標
V1,V2,V3,Vi 走行速度
Vd ドプラー速度
Vt TD速度
Vs 積分速度
Vo 複合速度
α 加速度
DESCRIPTION OF SYMBOLS 10 GPS satellite 20 Speed measuring device 21 Receiver 22 Positioning means 23 First speed measuring means 23a Doppler speed calculating means 23b, 25b, 27 Fusion filter means 24 Switching control means 25 Second speed measuring means 25a TD method speed calculating means 26 First 3 Speed measurement means 26a Acceleration sensor 26b Speed calculation means 30 Kalman filter 30a Doppler speed filtering section 30b Acceleration filtering section 32 Fusion section 34 Acceleration sensor C Carrier wave Da Doppler frequency Db Current position Dc Accuracy reduction index V1, V2, V3, Vi Traveling speed Vd Doppler speed Vt TD speed Vs Integral speed Vo Composite speed α Acceleration

Claims (3)

4個以上のGPS衛星から発信された搬送波を受信する受信機を備え、受信した搬送波に含まれるデータに基づいて移動局の走行速度を計測する移動局の速度計測装置であって、
前記搬送波に含まれるデータに基づいて、ドプラー周波数と移動局の位置とを求めて出力する測位手段と、
前記測位手段から出力されたドプラー周波数に基づいて求められるドプラー速度と、加速度を積分して得られる積分速度との差に応じて最適な混合比によって融合して移動局の走行速度を計測する第1速度計測手段と、
前記測位手段から出力された移動局の位置に基づいて、TD(Time Differential)法により移動局の走行速度を計測する第2速度計測手段と、
サイクルスリップが発生後、サイクルスリップからの回復の初期段階は前記第1速度計測手段により移動局の走行速度を計測し、サイクルスリップが発生しないときは前記第2速度計測手段により移動局の走行速度を計測するように切り替え制御を行う切替制御手段とを有する移動局の速度計測装置。
A mobile station speed measuring device comprising a receiver for receiving a carrier wave transmitted from four or more GPS satellites, and measuring a traveling speed of the mobile station based on data included in the received carrier wave,
Positioning means for obtaining and outputting the Doppler frequency and the position of the mobile station based on the data included in the carrier wave;
First, the traveling speed of the mobile station is measured by fusing with the optimum mixing ratio according to the difference between the Doppler speed calculated based on the Doppler frequency output from the positioning means and the integrated speed obtained by integrating the acceleration. 1 speed measuring means;
A second speed measuring means for measuring the traveling speed of the mobile station by a TD (Time Differential) method based on the position of the mobile station output from the positioning means;
After the cycle slip occurs, the initial stage of recovery from the cycle slip measures the traveling speed of the mobile station by the first speed measuring means, and when the cycle slip does not occur, the traveling speed of the mobile station by the second speed measuring means. A mobile station speed measuring device comprising switching control means for performing switching control so as to measure the frequency.
請求項1に記載した移動局の速度計測装置であって、
切替制御手段は、GPS衛星の配置に関連する精度低下指標を求め、当該精度低下指標が所定値以上になるときは前記第1速度計測手段により移動局の走行速度を計測し、前記精度低下指標が所定値未満のときは第2速度計測手段により移動局の走行速度を計測するように切り替え制御を行う移動局の速度計測装置。
A mobile station speed measuring apparatus according to claim 1,
The switching control means obtains an accuracy decrease index related to the arrangement of the GPS satellites, and when the accuracy decrease index exceeds a predetermined value, measures the traveling speed of the mobile station by the first speed measurement means, and the accuracy decrease index A mobile station speed measuring device that performs switching control so that the second speed measuring means measures the traveling speed of the mobile station when the value is less than a predetermined value.
請求項1または2に記載した移動局の速度計測装置であって、
加速度センサーによって計測された加速度をカルマンフィルタによる時間更新および、ノイズフィルタリングして移動局の走行速度を計測する第3速度計測手段を有し、
切替制御手段は、サイクルスリップが発生中は第3速度計測手段により移動局の走行速度を計測し、サイクルスリップからの回復の初期段階は、前記第1速度計測手段により移動局の走行速度を計測し、その後に前記精度低下指標が所定値未満になったら第2速度計測手段により移動局の走行速度を計測するように切り替え制御を行う移動局の速度計測装置。
A mobile station speed measuring device according to claim 1 or 2,
A third speed measuring means for measuring the traveling speed of the mobile station by updating the time measured by the acceleration sensor using a Kalman filter and noise filtering;
The switching control means measures the traveling speed of the mobile station by the third speed measuring means while the cycle slip is occurring, and measures the traveling speed of the mobile station by the first speed measuring means at the initial stage of recovery from the cycle slip. Then, the mobile station speed measurement device performs switching control so that the second speed measurement means measures the travel speed of the mobile station when the accuracy decrease index becomes less than a predetermined value.
JP2007010280A 2007-01-19 2007-01-19 Mobile station speed measurement device Expired - Fee Related JP4786559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007010280A JP4786559B2 (en) 2007-01-19 2007-01-19 Mobile station speed measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007010280A JP4786559B2 (en) 2007-01-19 2007-01-19 Mobile station speed measurement device

Publications (2)

Publication Number Publication Date
JP2008175730A true JP2008175730A (en) 2008-07-31
JP4786559B2 JP4786559B2 (en) 2011-10-05

Family

ID=39702856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007010280A Expired - Fee Related JP4786559B2 (en) 2007-01-19 2007-01-19 Mobile station speed measurement device

Country Status (1)

Country Link
JP (1) JP4786559B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014010141A (en) * 2012-07-03 2014-01-20 Kubota Corp Vehicle speed detector and program of vehicle speed detector
WO2014070492A1 (en) * 2012-11-01 2014-05-08 Motorola Mobility Llc Systems and methods for generating compensated speed values for doppler-enabled device
WO2014129302A1 (en) * 2013-02-21 2014-08-28 古野電気株式会社 Positioning method, positioning program, positioning device, mobile terminal, and moving body
JP2016125921A (en) * 2015-01-05 2016-07-11 三菱プレシジョン株式会社 Speed measuring device and moving object
CN109444935A (en) * 2018-10-17 2019-03-08 桂林电子科技大学 A kind of Doppler's detection and reparation for cycle slips method of low sampling rate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07286853A (en) * 1994-04-15 1995-10-31 Nissan Motor Co Ltd Position detector for vehicle
JPH0836042A (en) * 1994-07-22 1996-02-06 Matsushita Electric Ind Co Ltd Gps receiver and speed deciding means using the gps receiver

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07286853A (en) * 1994-04-15 1995-10-31 Nissan Motor Co Ltd Position detector for vehicle
JPH0836042A (en) * 1994-07-22 1996-02-06 Matsushita Electric Ind Co Ltd Gps receiver and speed deciding means using the gps receiver

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014010141A (en) * 2012-07-03 2014-01-20 Kubota Corp Vehicle speed detector and program of vehicle speed detector
WO2014070492A1 (en) * 2012-11-01 2014-05-08 Motorola Mobility Llc Systems and methods for generating compensated speed values for doppler-enabled device
US9164179B2 (en) 2012-11-01 2015-10-20 Google Technology Holdings LLC Systems and methods for generating compensated speed values for doppler-enabled device
WO2014129302A1 (en) * 2013-02-21 2014-08-28 古野電気株式会社 Positioning method, positioning program, positioning device, mobile terminal, and moving body
JP2016125921A (en) * 2015-01-05 2016-07-11 三菱プレシジョン株式会社 Speed measuring device and moving object
CN109444935A (en) * 2018-10-17 2019-03-08 桂林电子科技大学 A kind of Doppler's detection and reparation for cycle slips method of low sampling rate
CN109444935B (en) * 2018-10-17 2022-10-21 桂林电子科技大学 Doppler cycle slip detection and restoration method with low sampling rate

Also Published As

Publication number Publication date
JP4786559B2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
US9405016B2 (en) System and method for complex navigation using dead reckoning and GPS
JP5270184B2 (en) Satellite navigation / dead reckoning integrated positioning system
US7957897B2 (en) GPS-based in-vehicle sensor calibration algorithm
EP2141507B1 (en) Global positioning system and dead reckoning (GPS&amp;DR) integrated navigation system
JP3875714B2 (en) Moving body acceleration / distance estimation circuit, moving body positioning device, and moving body positioning method
EP0838660B1 (en) Velocity calculating apparatus
US20110257882A1 (en) Road map feedback server for tightly coupled gps and dead reckoning vehicle navigation
EP2541203A1 (en) Road map feedback server for tightly coupled gps and dead reckoning vehicle navigation
US20060234699A1 (en) System and method for establishing the instantaneous speed of an object
Sánchez et al. Use of a FishEye camera for GNSS NLOS exclusion and characterization in urban environments
JP4786559B2 (en) Mobile station speed measurement device
JP2008157705A (en) Navigation system and gps position accuracy determination method
EP2541198B1 (en) Road map feedback corrections in tightly coupled gps and dead reckoning vehicle navigation
JP2008116370A (en) Mobile location positioning device
KR100525517B1 (en) Car navigation system and control method thereof
JP2013024845A (en) Tightly coupled gps and dead reckoning navigation for vehicle
EP2541197B1 (en) Tightly coupled gps and dead-reckoning vehicle navigation
JP2005195395A (en) Moving object acceleration/distance estimating circuit, pseudo-distance estimating circuit for positioning navigation, moving object positioning device, and moving object positioning method
JP2009192462A (en) Positioning method, program, and positioning apparatus
JP2010175323A (en) Vehicle-mounted apparatus
CN103781641B (en) The method of the data in the tire pressure monitoring system of filter motor-car
JP4807301B2 (en) Attitude angle measuring device and attitude angle measuring method used for the attitude angle measuring device
JP2010112759A (en) Mobile body positioning apparatus
KR20220053497A (en) Method for providing gnss sensor data
JP2008232761A (en) Positioning device for mobile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110713

R150 Certificate of patent or registration of utility model

Ref document number: 4786559

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees