JP2008175415A - Grain drier - Google Patents

Grain drier Download PDF

Info

Publication number
JP2008175415A
JP2008175415A JP2007007134A JP2007007134A JP2008175415A JP 2008175415 A JP2008175415 A JP 2008175415A JP 2007007134 A JP2007007134 A JP 2007007134A JP 2007007134 A JP2007007134 A JP 2007007134A JP 2008175415 A JP2008175415 A JP 2008175415A
Authority
JP
Japan
Prior art keywords
grain
moisture
moisture value
drying
variation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007007134A
Other languages
Japanese (ja)
Inventor
Hiroto Morimoto
浩人 森本
Masashi Yumitate
正史 弓立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Original Assignee
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd, Iseki Agricultural Machinery Mfg Co Ltd filed Critical Iseki and Co Ltd
Priority to JP2007007134A priority Critical patent/JP2008175415A/en
Publication of JP2008175415A publication Critical patent/JP2008175415A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Solid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a circulation type grain drier capable of detecting a moisture value of every grain layer and drying the grain while equalizing the dispersion of moisture values by mixing upper and lower grain layers. <P>SOLUTION: In this grain drier where grain is circulated through a storage chamber 2, a drying chamber 3 and a grain collecting chamber 4, the drying chamber 3 is provided with a plurality of right and left grain flow-down passages 9, feed-out valves 10 for feeding out the grain are respectively disposed at lower portions of the plurality of right and left grain flow-down passages 9, a moisture detecting means SE5 is disposed for detecting the moisture value of the grain during circulation, the charged dry grain is divided into the plurality of grain layers LV1-LV10, and a representative moisture value of each of grain layers LV1-LV10 is detected by a control portion 41, wherein the plurality of feed-out valves 10, 10 are rotated and driven at different speeds when a dispersion state of the representative moisture values of the grain layers LV1-LV10 is determined to be outside of a set range. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、穀物乾燥機に関するものである。   The present invention relates to a grain dryer.

循環式穀物乾燥機において、複数の穀粒流下通路の下部に繰出モータによって流下通路からの穀粒を正逆転駆動しながら繰り出す繰出バルブを設け、所定量毎の穀粒を繰り出しながら乾燥し、水分検出手段及びこの検出データに基づいて水分のバラツキを算出するバラツキ算出手段を設け、検出水分値があらかじめ決定している水分値以上であって、水分バラツキが所定値以上の場合に、当該水分バラツキが所定値以下になるまで繰出バルブの連続駆動回転数を変更すべく繰出制御手段を設け、流下通路からの繰出穀粒量を変更し混合を促進するものは公知である(特許文献1)。
特開2001−183060号公報
In the circulation type grain dryer, a feeding valve is provided at the lower part of the plurality of grain flow passages to feed the grains from the flow down passage forward and backward by a feed motor, and the moisture is dried while feeding the grains every predetermined amount. There is provided a detection means and a variation calculation means for calculating a variation in moisture based on the detection data. When the detected moisture value is equal to or greater than a predetermined moisture value and the moisture variation is equal to or greater than a predetermined value, the moisture variation is determined. It is well known that a feed control means is provided to change the continuous drive rotational speed of the feed valve until the value becomes equal to or less than a predetermined value, and the mixing grain amount from the flow-down passage is changed to promote mixing (Patent Document 1).
JP 2001-183060 A

循環式の穀物乾燥機には異なる圃場から収穫された穀粒を順次張り込むために、穀粒層毎に水分値が異なる場合がある。この発明は、穀粒層毎に水分値のバラツキがある場合に、上下の穀粒層を混合し水分値を均等化しながら乾燥し仕上げ乾燥精度の向上を図ろうとするものである。   Since the grains harvested from different fields are sequentially put into the circulation type grain dryer, the moisture value may be different for each grain layer. In the present invention, when there is a variation in moisture value for each grain layer, the upper and lower grain layers are mixed and dried while equalizing the moisture value to improve the finishing drying accuracy.

請求項1の発明は、貯溜室(2)と乾燥室(3)と集穀室(4)とを穀粒が循環する穀物乾燥機において、乾燥室(3)には左右複数の穀粒流下通路(9)を設け、該左右複数の穀粒流下通路(9)それぞれの下部には穀粒を繰り出す繰出バルブ(10)を設け、循環中の穀粒の水分値を検出する水分検出手段(SE5)を設け、張込乾燥穀粒を複数の穀粒層(LV1〜LV10)に区分して各穀粒層(LV1〜LV10)毎の代表水分値を制御部(41)で検出する構成とし、前記穀粒層(LV1〜LV10)の代表水分値のバラツキ状態が設定範囲外と判定されると前記複数の繰出バルブ(10,10)を異なる速度で回転駆動する構成としたことを特徴とする穀物乾燥機とする。   The invention of claim 1 is a grain dryer in which grains circulate in a storage chamber (2), a drying chamber (3), and a cereal collection chamber (4). A moisture detecting means (9) for providing a passage (9), and for providing a feeding valve (10) for feeding out the grain at the lower part of each of the left and right grain lowering passages (9) to detect the moisture value of the circulating grain. SE5) is provided, and the dried dry grain is divided into a plurality of grain layers (LV1 to LV10), and the representative moisture value for each grain layer (LV1 to LV10) is detected by the control unit (41). When the variation state of the representative moisture values of the grain layers (LV1 to LV10) is determined to be outside the set range, the plurality of feeding valves (10, 10) are configured to rotate at different speeds. Cereal dryer.

前記構成によると、循環式穀物乾燥機に穀粒が張り込まれると、水分検出手段(SE5)により複数の穀粒層(LV1〜LV10)それぞれの代表水分値が検出される。そして、穀粒層の代表水分値の水分バラツキが設定範囲外の場合に、繰出バルブ(10,10)が異なる速度で回転し、左右の穀粒流下通路(9)から異なる量の穀粒が繰り出されることで上下の穀粒層の穀粒が混合される。   According to the said structure, if a grain is stuck in a circulation type grain dryer, the representative moisture value of each of several grain layers (LV1-LV10) will be detected by a moisture detection means (SE5). And when the moisture variation of the representative moisture value of the grain layer is outside the set range, the feeding valves (10, 10) rotate at different speeds, and different amounts of grain are left from the left and right grain flow passages (9). By being fed out, the grains of the upper and lower grain layers are mixed.

請求項2の発明は、貯溜室(2)と乾燥室(3)と集穀室(4)とを穀粒が循環する穀物乾燥機において、乾燥室(3)には左右複数の穀粒流下通路(9)を設け、該左右複数の穀粒流下通路(9)それぞれの下部には穀粒を繰り出す繰出バルブ(10)を設け、循環中の穀粒の水分値を検出する水分検出手段(SE5)を設け、該水分検出手段(SE5)が設定水分値以下を検出すると繰出バルブ(10)を異なる速度で回転駆動する構成としたことを特徴とする穀物乾燥機とする。   The invention of claim 2 is a grain dryer in which grains circulate in a storage chamber (2), a drying chamber (3), and a cereal collection chamber (4). A moisture detecting means (9) for providing a passage (9), and for providing a feeding valve (10) for feeding out the grain at the lower part of each of the left and right grain lowering passages (9) to detect the moisture value of the circulating grain. SE5) is provided, and when the moisture detecting means (SE5) detects a value equal to or lower than the set moisture value, the feeding valve (10) is driven to rotate at different speeds.

前記構成によると、循環式穀物乾燥機に穀粒が張り込まれると、水分検出手段(SE5)により穀粒の水分値が検出され、該水分検出手段(SE5)が設定水分値以下を検出すると繰出バルブ(10)を異なる速度で回転駆動する。   According to the above configuration, when the grain is put into the circulation type grain dryer, the moisture value of the grain is detected by the moisture detection means (SE5), and the moisture detection means (SE5) detects the set moisture value or less. The feeding valve (10) is rotationally driven at different speeds.

請求項1の発明は、張り込まれた穀粒の水分値のバラツキが大きい場合に穀粒層を上下方向に崩すことで、穀粒を混合し穀粒水分値を均等化しながら乾燥することができる。
請求項2の発明は、穀粒が高水分時に繰出バルブ(10)を異なる速度で回転駆動すると、速度が遅いほうの繰出バルブ(10)側の穀粒流下通路(9)の穀粒が停滞して蒸れてしまう欠点があったが、ある程度乾燥された後に繰出バルブ(10)を異なる速度で回転駆動することで穀粒の蒸れを防止しながら穀粒層(LV1〜LV10)の穀粒バラツキを解消することができる。
In the invention of claim 1, when there is a large variation in the moisture value of the stuck grain, the grain layer is broken up and down to mix the grain and dry it while equalizing the grain moisture value. it can.
In the invention of claim 2, when the feeding valve (10) is rotationally driven at a different speed when the grain is high in moisture, the grain in the grain lowering passage (9) on the side of the feeding valve (10) having the lower speed is stagnant. There was a disadvantage that it was steamed, but after drying to some extent, rotating the feeding valve (10) at different speeds to prevent the steaming of the grain while preventing the grain variation of the grain layer (LV1 to LV10) Can be eliminated.

以下この発明の実施の形態を図面に基づき説明する。
まず、図1及び図2に基づきこの発明を実施する循環式穀物乾燥機の全体構成について説明する。
Embodiments of the present invention will be described below with reference to the drawings.
First, based on FIG.1 and FIG.2, the whole structure of the circulation type grain dryer which implements this invention is demonstrated.

1は穀物乾燥機の機枠で、この機枠1内には穀粒を貯留する貯溜室2、穀粒を乾燥する乾燥室3及び乾燥室3で乾燥した穀粒が通過する集穀室4を上方から下方に順次配設している。乾燥室3には機体正面から見て左右にわたって穀粒流下通路9を複数並設し、内側の穀粒流下通路9の間にはバーナ5の熱風が通過する熱風室6を配設し、内側の穀粒流下通路9の左右外側には吸引排気ファン7に通じる排風室8をそれぞれ配設し、穀粒流下通路9の下端部にはそれぞれ繰出バルブ10を設けている。   Reference numeral 1 denotes a machine frame of a grain dryer. In this machine frame 1, a storage room 2 for storing grains, a drying room 3 for drying grains, and a grain collection room 4 through which the grains dried in the drying room 3 pass. Are sequentially arranged from above to below. The drying chamber 3 has a plurality of grain flow passages 9 arranged side by side as viewed from the front of the machine body, and a hot air chamber 6 through which the hot air of the burner 5 passes is disposed between the inner grain flow passages 9. The left and right outer sides of the grain flow passage 9 are respectively provided with exhaust air chambers 8 leading to the suction exhaust fan 7, and the grain flow passage 9 is provided with a feeding valve 10 at the lower end thereof.

なお、この繰出バルブ10は、例えば図6に示すように、円筒体の上下に所定幅の上下開口溝部10a,10bを軸方向に沿うように形成し、繰出バルブ10の上下開口溝部10a,10bを上下に向く状態で待機し、繰出バルブモータM3への制御出力によりまず、360度時計方向に正転し、下開口溝部10bが上昇回転する途中で主としてV字型に形成する穀粒流下通路9の左側部の穀粒を取り込みながら下向きになる位置になり穀粒を集穀室4に排出する。次いで、反時計方向に360度逆転し、穀粒流下通路9の右側部の穀粒を取り込みながら下向きになる位置になり穀粒を集穀室4に排出するように構成している。   For example, as shown in FIG. 6, the feeding valve 10 has upper and lower opening grooves 10 a and 10 b having a predetermined width on the upper and lower sides of the cylindrical body along the axial direction, and the upper and lower opening grooves 10 a and 10 b of the feeding valve 10. , In a state of facing up and down, and by a control output to the feed valve motor M3, first, it is rotated forward 360 degrees clockwise, and the grain lowering passage formed mainly in a V shape during the upward rotation of the lower opening groove 10b While taking the grain of the left part of 9, it becomes a position which becomes downward, and the grain is discharged to the collection room 4. Subsequently, it is rotated 360 degrees in the counterclockwise direction, and it is configured to be in a downward position while taking in the grain on the right side of the grain flow down passage 9 and to discharge the grain to the collection chamber 4.

そして、この繰出バルブ10を所定時間毎に所定時間の正回転、停止、逆回転、停止させて、穀物を穀粒流下通路9に滞留して所定時間熱風を浴びせて乾燥し、その後に繰出バルブ10を駆動して穀粒を流下排出し、貯溜室2で待機している次の乾燥穀粒層と入替えて順次乾燥するように構成している。   Then, the feeding valve 10 is rotated forward, stopped, reversely rotated, and stopped for a predetermined time every predetermined time, and the grain is retained in the grain flow passage 9 and dried by hot air for a predetermined time, and thereafter the feeding valve. 10 is driven to flow down and discharge the grain, and the next dry grain layer waiting in the storage chamber 2 is replaced and dried sequentially.

前記機枠1の外側には集穀室4の前後一側に集めた穀物を貯溜室2に揚穀還元する昇降機11を立設している。この昇降機11内には上下に軸架した駆動プーリ12a及び従動プーリ12bにバケットベルト13を巻き掛け、集穀室4の底部に設ける下部搬送装置14により乾燥穀物を前後一側に移送し、昇降機11により揚穀するように構成している。この昇降機11で揚穀された穀物は、昇降機11の投げ口から上部搬送装置16の始端側に供給され、更に上部搬送装置16により横送して貯溜室2の上部中央部に配設する回転拡散板18に送り、貯溜室2内に拡散落下させるように構成している。   On the outer side of the machine frame 1, an elevator 11 is erected so that the grains collected on one side of the front and rear sides of the grain collection room 4 are returned to the storage room 2. In this elevator 11, a bucket belt 13 is wound around a driving pulley 12 a and a driven pulley 12 b that are vertically pivoted, and the dried grain is transferred to the front and rear side by a lower conveying device 14 provided at the bottom of the cereal collection chamber 4. 11 is configured to cereal. The grains that have been cerealed by the elevator 11 are supplied from the throw port of the elevator 11 to the start end side of the upper transport device 16, and are further fed laterally by the upper transport device 16 to be disposed in the upper central portion of the storage chamber 2. It is configured to be sent to the diffusion plate 18 and diffused and dropped into the storage chamber 2.

前記昇降機11、下部搬送装置14、上部搬送装置16から構成されている穀物循環系は、昇降機11の機枠上部に配設している昇降機モータ(図示省略)により駆動される。また、昇降機11における上下中途部の壁面には、バケットベルト13の上昇行程と下降行程の間隔部に取込み口(図示省略)を設けて、この取込み口(図示省略)の下方部位に水分センサSE5を着脱自在に配設している。この水分センサSE5は、例えば一対の電極ロール間でサンプル粒を1粒ずつ圧縮粉砕し、その抵抗値を電気的に処理して穀粒の水分値に換算する公知のものである。   The grain circulation system composed of the elevator 11, the lower transport device 14, and the upper transport device 16 is driven by an elevator motor (not shown) disposed on the upper frame of the elevator 11. In addition, an intake port (not shown) is provided in the space between the upward and downward strokes of the bucket belt 13 on the wall surface in the middle part of the elevator 11 and the moisture sensor SE5 is provided below the intake port (not shown). Is detachably disposed. The moisture sensor SE5 is a known sensor that compresses and pulverizes sample grains one by one between a pair of electrode rolls, and electrically converts the resistance value into a moisture value of the grain.

次に、穀物乾燥機の作用について説明する。
張込ホッパ(図示省略)から昇降機11を利用して貯溜室2に所定量の穀物を張り込む。次いで、穀物種類、乾燥仕上水分値等を設定し、乾燥作業を開始する。貯溜室2内の穀物は乾燥室3を流下し熱風を浴びながら集穀室4に流下する。熱風により乾燥された穀類は下部搬送装置14で一側に移送され、次いで昇降機11により揚穀され、上部搬送装置16に引き継がれ再び貯溜室2に循環移送され、暫くの間調質作用を受ける。このような行程を繰り返しながら仕上水分値に到達すると、乾燥作業は終了する。
Next, the operation of the grain dryer will be described.
A predetermined amount of grain is put into the storage chamber 2 by using the elevator 11 from a holding hopper (not shown). Next, the grain type, dry finish moisture value, etc. are set, and the drying operation is started. Grains in the storage chamber 2 flow down through the drying chamber 3 and flow down into the collection chamber 4 while taking hot air. The cereal dried by the hot air is transferred to one side by the lower conveying device 14, then cerealed by the elevator 11, taken over by the upper conveying device 16, and circulated again to the storage chamber 2, and undergoes a tempering action for a while. . When the finishing moisture value is reached while repeating such a process, the drying operation is finished.

次に、図3に基づき制御ブロック構成について説明する。
バーナ風胴25の上方に設けたコントロールボックス45にはコントローラ(CPU)41を設けている。コントローラ41の入力側には、各種スイッチ及びセンサを接続している。コントローラ41の入力側には、張込スイッチSW0、通風乾燥スイッチSW1、乾燥スイッチSW2、排出スイッチSW3、停止スイッチSW4、タイマの増加スイッチSW9、タイマの減少スイッチSW10、緊急停止スイッチ11を接続し、また、入力回路を介して外気温度センサSE1、熱風温度センサSE2、排風温度センサSE3、水分計電極温度センサSE4、水分センサSE5、張込量センサSE6を接続している。
Next, a control block configuration will be described with reference to FIG.
A controller (CPU) 41 is provided in a control box 45 provided above the burner wind tunnel 25. Various switches and sensors are connected to the input side of the controller 41. On the input side of the controller 41, an extension switch SW0, a ventilation drying switch SW1, a drying switch SW2, a discharge switch SW3, a stop switch SW4, a timer increase switch SW9, a timer decrease switch SW10, and an emergency stop switch 11 are connected. Further, an outside air temperature sensor SE1, a hot air temperature sensor SE2, an exhaust air temperature sensor SE3, a moisture meter electrode temperature sensor SE4, a moisture sensor SE5, and a tension amount sensor SE6 are connected via an input circuit.

また、コントローラ41には入力回路を介して穀物種類設定スイッチSW7、水分値設定スイッチSW8、張込量設定スイッチSW9を接続し、また、出力回路を介して穀物表示装置34b、水分表示装置35a、張込量表示装置36bを接続している。   The controller 41 is connected with a grain type setting switch SW7, a moisture value setting switch SW8, and an overhang amount setting switch SW9 via an input circuit, and also with a grain display device 34b, a moisture display device 35a, via an output circuit. The tension amount display device 36b is connected.

また、コントローラ(制御部)41の出力側には、出力回路を介して送風機モータM1、昇降機モータM2、繰出バルブモータM3、バーナ燃焼系のバーナファンモータ(図示省略)、バーナ気化筒モータ(図示省略)、燃料供給用の電磁ポンプ(図示省略)、燃料バルブ(図示省略)、イグナイタ(図示省略)、水分計モータ(図示省略)を接続し、また、出力回路を介して各種表示項目のデジタル表示をする表示部32、穀物乾燥機の各種異常表示用の異常表示モニタ33等を接続している。   Further, on the output side of the controller (control unit) 41, a blower motor M1, an elevator motor M2, a feed valve motor M3, a burner combustion motor burner fan motor (not shown), and a burner vaporizing cylinder motor (not shown) are connected via an output circuit. Omission), an electromagnetic pump for fuel supply (not shown), a fuel valve (not shown), an igniter (not shown), a moisture meter motor (not shown), and a digital display of various display items via an output circuit A display unit 32 for displaying, an abnormality display monitor 33 for displaying various abnormalities of the grain dryer, and the like are connected.

コントローラ41のバーナ駆動信号は電磁ポンプ(図示省略)のON/OFF信号及び大小供給信号、バーナ気化筒モータ(図示省略)の回転数指令信号、バーナファンモータ(図示省略)の回転数指令信号、イグナイタ(図示省略)の通電信号等があり、燃料供給量、燃焼空気供給量及び気化筒回転数を同調制御し液体燃料を気化燃焼させるように構成している。   The burner drive signal of the controller 41 includes an ON / OFF signal and a large / small supply signal of an electromagnetic pump (not shown), a rotation speed command signal of a burner vaporizing cylinder motor (not shown), a rotation speed command signal of a burner fan motor (not shown), There is an energization signal or the like of an igniter (not shown), and the fuel supply amount, the combustion air supply amount, and the vaporizing cylinder rotational speed are controlled in synchronization to vaporize and burn the liquid fuel.

また、乾燥作業中には、予め設定記憶されている熱風設定温度と熱風温度センサSE2の検出熱風温度とを比較し、その差が小になるように周期的にオンされる燃料供給用の電磁ポンプ(図示省略)のオンタイム信号を長短に変更制御しながら乾燥作業をし、穀物水分が目標水分値になると乾燥作業を停止する。   Also, during the drying operation, the hot air set temperature preset and stored is compared with the hot air temperature detected by the hot air temperature sensor SE2, and the electromagnetic waves for fuel supply that are periodically turned on so as to reduce the difference are compared. The drying operation is performed while changing the on-time signal of a pump (not shown) to be longer or shorter, and when the grain moisture reaches the target moisture value, the drying operation is stopped.

次に、水分値の検出及び表示構成について説明する。
乾燥穀粒は収穫穀稈の倒伏の具合や、刈取時期の早い遅い等の関係で水分値のバラツキがあり、また、大型の穀物乾燥機では異なる圃場の穀粒を同時に乾燥することもあり、張込穀粒は張込層により異なる水分値を形成することがある。このような状況下では、水分値を測定した穀粒層でバラツキが生じ、全体として過乾燥や未乾燥で乾燥作業が終了するという不具合が発生する。この実施形態ではこのような不具合を解消しようとするものである。
Next, the moisture value detection and display configuration will be described.
Dried kernels vary in moisture levels due to factors such as the degree of lodging of harvested cereals and the early and late harvesting times. Noodle grains may form different moisture values depending on the tension layer. Under such circumstances, a variation occurs in the grain layer whose moisture value is measured, and there arises a problem that the drying operation is terminated as a whole by being overdried or not dried. This embodiment is intended to solve such a problem.

穀粒の張り込みが終了すると、紐で吊り下げられた錘40を下降させて張込穀粒上面に当接させて張込穀粒量を検出する張込量センサSE6により穀粒の張込量が検出され、あるいは、張込量設定スイッチSE9により張込量が設定されると、この検出設定張込量、乾燥室3の乾燥穀粒量、前記繰出バルブ10の繰出タイミング、繰出速度により、所定の計算式に基づき全張込量の乾燥穀粒層数(LV1〜LV10)及び全張込量の乾燥作業が一循環するに要する時間(n)、測定回数(M)が算出決定される(図5)。なお、図1に示すように、穀物の満量張り込みの場合には、乾燥穀粒層をLV10に設定するように構成している。   When the tension of the grain is finished, the weight 40 suspended by the string is lowered and brought into contact with the upper surface of the tension grain to detect the amount of the tension grain. Is detected, or when the amount of tension is set by the amount of tension setting switch SE9, the detection setting tension amount, the amount of dry grains in the drying chamber 3, the timing of feeding the feeding valve 10, the feeding speed, Based on a predetermined calculation formula, the number of dry grain layers (LV1 to LV10) with the total amount of penetration, the time (n) required for one cycle of the drying operation with the total amount of insertion, and the number of measurements (M) are calculated and determined. (FIG. 5). As shown in FIG. 1, in the case of full grain filling, the dry grain layer is set to LV10.

ここで穀粒層とは張込穀粒を上下方向に便宜上複数の層としてみなすことで、張込穀粒のバラツキ状態を把握しやすくするためのものである。
乾燥スイッチSW2をONし乾燥作業が開始されると、穀粒が最初に乾燥室3及び集穀室4を通過し貯溜室2に一回循環する過程で、図5に基づいて、各穀粒層(LV1〜LV10)から所定のサンプル粒数(例えば32粒)を水分センサSE5に取り込み、一対の電極ロール間でサンプル粒を1粒ずつ圧縮粉砕し、その抵抗値を電気的に処理し、バラツキ最高水分値、バラツキ最低水分値及び平均水分値を算出して記憶装置に記憶し、各乾燥穀粒層毎のバラツキ最高水分値、バラツキ最低水分値及び平均水分値を前記表示部32に順次表示する。なお、図4は各穀粒層(LV1〜LV10)毎の代表水分値となる平均水分値の検出例を示している。
Here, the grain layer is to make it easy to grasp the variation state of the stretched grain by regarding the stretched grain as a plurality of layers for convenience in the vertical direction.
When the drying switch SW2 is turned ON and the drying operation is started, each grain passes through the drying chamber 3 and the collection chamber 4 and circulates once in the storage chamber 2 in accordance with FIG. A predetermined number of sample grains (for example, 32 grains) is taken into the moisture sensor SE5 from the layers (LV1 to LV10), the sample grains are compressed and pulverized one by one between a pair of electrode rolls, and the resistance value is electrically processed. The variation maximum moisture value, the variation minimum moisture value, and the average moisture value are calculated and stored in the storage device, and the variation maximum moisture value, the variation minimum moisture value, and the average moisture value for each dry grain layer are sequentially displayed on the display unit 32. indicate. In addition, FIG. 4 has shown the example of a detection of the average moisture value used as the representative moisture value for every grain layer (LV1-LV10).

この構成によると、穀物乾燥機内の全穀粒を穀粒層(LV1〜LV10)に区分し、各穀粒層(LV1〜LV10)における水分値のバラツキ及び代表水分値を算出表示するので、乾燥穀粒全体のバラツキ具合を通観することができる。従って、各穀粒層(LV1〜LV10)について、それぞれバラツキ具合、及び、未乾燥あるいは過乾燥の具合を知ることができ、穀粒層(LV1〜LV10)に応じた適切な乾燥対応、例えば高水分の穀粒層の乾燥時にバーナ5の燃焼量を上げて乾燥を促進させる等の対応をとることができ、むら乾燥を防止することができる。   According to this configuration, the whole grain in the grain dryer is divided into grain layers (LV1 to LV10), and variations in moisture values and representative moisture values in each grain layer (LV1 to LV10) are calculated and displayed. You can see the variation of the whole grain. Therefore, for each grain layer (LV1 to LV10), it is possible to know the degree of variation and the degree of undried or overdried, and appropriate drying response according to the grain layer (LV1 to LV10), for example, high It is possible to take measures such as increasing the combustion amount of the burner 5 to accelerate drying when the grain layer of moisture is dried, and uneven drying can be prevented.

次に、本発明の繰出バルブ10の繰り出し制御について説明する。
この制御は、張込穀粒の穀粒層に設定範囲外の水分むらがある場合に、水分むらを残さないように繰出乾燥するもので、繰出バルブ10を同じ時間の正転及び逆転を繰り返す通常繰出駆動から、正転時間と逆転時間の長さを変更し、上下に隣接している穀粒層層を混じりあうようにして水分むらを解消しようとするものである。
Next, the feeding control of the feeding valve 10 of the present invention will be described.
In this control, when the grain layer of the stretched grain has moisture unevenness outside the set range, the feed valve 10 is repeatedly dried so as not to leave the moisture unevenness, and the feeding valve 10 repeats normal rotation and reverse rotation for the same time. From the normal feeding drive, the length of the forward rotation time and the reverse rotation time is changed, and the unevenness of moisture is attempted to be mixed by mixing the adjacent grain layer layers.

通常乾燥作業時の繰出バルブ10の駆動は、正逆転駆動を同じ周期で繰り返して行い、籾、麦の穀粒種別に対応して、駆動時間及び停止時間を変更することで循環量を変えるようにしている。   The drive of the feeding valve 10 during the normal drying operation is performed by repeating the forward / reverse drive at the same cycle, and changing the drive time and the stop time according to the grain type of straw and wheat to change the circulation amount. I have to.

本出願人は、水分むらのある穀粒の乾燥に関し次の知見を得た。即ち、循環式穀物乾燥機において繰出バルブ10の正逆駆動を同じ周期で繰り返して穀粒を繰り出し乾燥作業をすると、麦の場合には流れ込みのよさと粒の小ささから、乾燥初期に水分むらが多少あっても、乾燥作業中に穀粒乾燥の水分移行が進み、乾燥作業終了時にはほとんど水分むらがなくなっている。しかし、籾の場合には、全体に混じりあうことがなく籾殻により水分移行が少ないことから、乾燥仕上がり時に水分むらが残っている。   The present applicant has obtained the following knowledge regarding drying of grains with uneven moisture. That is, when the grain is fed and dried by repeating the forward / reverse drive of the feeding valve 10 in the same cycle in the circulation type grain dryer, in the case of wheat, the unevenness of moisture in the early stage of drying due to good flow and small grain size. Even if there is a slight amount of water, the moisture transfer of grain drying proceeds during the drying operation, and there is almost no moisture unevenness at the end of the drying operation. However, in the case of rice bran, since it does not mix with the whole and there is little moisture transfer by the rice husk, moisture unevenness remains in the dry finish.

そこで、通常乾燥時の繰出バルブ10の正逆転駆動の周期を変更することにより、水分むらを解消し穀粒の損傷を回避しながら仕上げ水分値まで乾燥しようとするものである。
図4に示すように、乾燥作業が開始されると、張込穀粒を複数の穀粒層(LV1〜LV10)に区分し初期水分値を測定し、穀粒層毎の最高水分値及び最低水分値、平均水分値(代表水分値)、標準偏差をそれぞれ算出し、全穀粒層の代表水分値の上下が設定範囲以上(例えば3%以上)になるとバラツキ有りと判定する。
Therefore, by changing the forward / reverse drive period of the feeding valve 10 during normal drying, the moisture is eliminated and the grain is dried to the final moisture value while avoiding grain damage.
As shown in FIG. 4, when the drying operation is started, the stretched grain is divided into a plurality of grain layers (LV1 to LV10), the initial moisture value is measured, and the highest moisture value and the lowest value for each grain layer are measured. A moisture value, an average moisture value (representative moisture value), and a standard deviation are respectively calculated, and when the upper and lower values of the representative moisture value of the whole grain layer are equal to or greater than a set range (for example, 3% or more), it is determined that there is variation.

そして、水分値のバラツキがないと判定された場合には、例えば、穀粒循環量が1時間当り8トンのときには、通常繰出駆動状態(正転時間t1を45Sec、停止時間2Secとし、逆転時間t2を45Sec、停止時間2Sec)とし、繰出バルブ10により穀粒を繰り出す。すると、図8に示すように、乾燥室3に滞留している左右の穀粒が交互に同じ量ずつ繰り出され、異なる穀粒層の穀粒が混じり合わない状態で繰り出され乾燥される。   When it is determined that there is no variation in moisture value, for example, when the amount of grain circulation is 8 tons per hour, the normal payout drive state (normal rotation time t1 is 45 Sec, stop time 2Sec, reverse rotation time) The t2 is 45 Sec and the stop time is 2 Sec), and the grain is fed by the feeding valve 10. Then, as shown in FIG. 8, the left and right kernels staying in the drying chamber 3 are alternately fed out by the same amount, and are fed out and dried in a state where the grains of different grain layers are not mixed.

また、水分値のバラツキがあると判断した場合には、バラツキ解消繰出駆動状態(正転時間t120Sec、停止時間2Sec、逆転時間t264Sec、停止時間2Sec)とし、繰出バルブ10により穀粒を繰り出す。すると、図7に示すように、穀粒流下通路9に滞留している穀粒が、一側に対して他側が多く繰り出された結果、張込時の穀粒層は左右方向にわたって崩れ、異なる穀粒層の穀粒が混じり合いながら繰り出され乾燥され、混合した穀粒は循環され新たな穀粒層Fとして貯溜室2に順次貯溜される。   Further, when it is determined that there is a variation in the moisture value, the variation elimination feeding drive state (forward rotation time t120Sec, stop time 2Sec, reverse rotation time t264Sec, stop time 2Sec) is set, and the grain is fed out by the feeding valve 10. Then, as shown in FIG. 7, as a result of the grain staying in the grain flow passage 9 being drawn out on the other side more than the other side, the grain layer at the time of stretching collapses in the left-right direction and is different. The grains in the grain layer are fed out and dried while being mixed, and the mixed grain is circulated and stored in the storage chamber 2 as a new grain layer F sequentially.

しかして、繰出バルブ10による穀粒の繰り出し量を左右で異なるよう駆動することで上下穀粒層の穀粒が順次混合されバラツキが解消される。
なお、穀粒層毎の代表水分値のバラツキが設定範囲内(例えば1.5%)になることを検出するか、設定時間が経過すると、繰出バルブ10の駆動を左右同じに戻すよう制御する。
Thus, the grains in the upper and lower grain layers are sequentially mixed by driving the feeding amount of the grains by the feeding valve 10 to be different on the left and right sides, and the variation is eliminated.
In addition, when it detects that the variation | variation of the representative moisture value for every grain layer becomes in a setting range (for example, 1.5%), or when setting time passes, it controls to return the drive of the delivery valve 10 to right and left same. .

前記構成によると、水分むら穀粒の乾燥時には、繰出バルブ10をバラツキ解消繰出駆動状態で駆動することにより、乾燥室3に滞留している左右の穀粒が一側に対して他側が多く繰り出され、左右の穀粒が混じり合いながら繰り出されて穀粒の混合が促進され水分むらを解消することができる。   According to the above configuration, when drying the uneven grain, the left and right grains staying in the drying chamber 3 are fed out more on the other side than the one side by driving the feeding valve 10 in a variation-removing feeding driving state. Thus, the left and right kernels are fed out while being mixed with each other, and the mixing of the kernels is promoted so that the moisture unevenness can be eliminated.

また、水分むら穀粒の乾燥の場合には、バラツキ解消駆動状態の正転時間t1を20Sec、停止時間を2Sec、逆転時間t2を64.3Sec、停止時間を2Secとして、これらの合計時間を88.6Secとし、通常繰出駆動状態の繰出合計時間、88.6Secと同じにすることで、1周期当りの左右繰出バルブ10の繰出量を同じにするように構成してもよい。このように構成すると、繰出穀粒が受ける乾燥熱量が変わらないので均等に乾燥を進行させるができる。   Further, in the case of drying the uneven grain, the forward rotation time t1 in the dispersion elimination driving state is 20 Sec, the stop time is 2 Sec, the reverse rotation time t2 is 64.3 Sec, the stop time is 2 Sec, and the total time is 88. .6Sec, and the same total feed time in the normal payout drive state, 88.6Sec, may be configured to make the feed amount of the left and right feed valves 10 per cycle the same. If comprised in this way, since the dry calorie | heat amount which a delivery grain receives does not change, drying can be advanced uniformly.

また、水分むら穀粒の乾燥をするに当り、所定水分値(例えば、20%)以上の穀粒層があると通常繰出駆動状態で繰出バルブ10を駆動しながら乾燥し、全ての穀粒層が所定水分値(例えば、20%)以下になると、通常繰出駆動状態からバラツキ解消駆動状態へ変更できるように構成してもよい。あるいは、乾燥作業開始から設定時間経過後(例えば2時間後)に通常繰出駆動状態からバラツキ解消駆動状態へ変更できるようにしても良い。   In addition, when drying the uneven grain, if there is a grain layer of a predetermined moisture value (for example, 20%) or more, the grain is dried while driving the feeding valve 10 in the normal feeding drive state, and all the grain layers May be changed from the normal pay-out driving state to the variation-removing driving state when the water content falls below a predetermined moisture value (for example, 20%). Alternatively, the normal feeding drive state may be changed to the variation elimination driving state after a set time has elapsed from the start of the drying operation (for example, two hours later).

このように構成すると、高水分時の穀粒の穀粒流下通路9における停滞時間を短くし、穀粒の蒸れによる品質の低下を防止することができる。なお、図8はその制御フローの一例を示すものである。   If comprised in this way, the stagnation time in the grain flow down passage 9 of the grain at the time of high moisture can be shortened, and the fall of the quality by the steaming of a grain can be prevented. FIG. 8 shows an example of the control flow.

また、繰出バルブ10のバラツキ解消繰出駆動を次のように構成してもよい。水分むら穀粒の乾燥を行なうに当り、乾燥作業が開始されると、穀粒の初期水分値を測定し、バラツキ最高水分値、バラツキ最低水分値及び平均水分値をそれぞれ算出する。そして、最高水分値及び最低水分値からバラツキ水分値を算出し、算出バラツキ水分値と基準バラツキ水分値を比較して水分むらの大小を判定する。次いで、平均水分値と乾燥目標水分値から必要乾燥水分値を算出し、この必要乾燥水分値とバラツキ解消に要する基準必要乾燥水分値から、連続乾燥作業で水分むらの解消が困難か否かを判定する。そして、連続乾燥作業では水分むらの解消が困難と判定すると、乾燥作業に通風乾燥作業(熱風送らずに外気空気のみを送風する)を加えて、繰出バルブ10をバラツキ解消繰出駆動状態で駆動しながら循環させる。   Further, the variation elimination feeding drive of the feeding valve 10 may be configured as follows. When drying the unevenness grain, when the drying operation is started, the initial moisture value of the grain is measured, and the variation maximum moisture value, the variation minimum moisture value, and the average moisture value are calculated. Then, a variation moisture value is calculated from the maximum moisture value and the minimum moisture value, and the calculated variation moisture value and the reference variation moisture value are compared to determine the magnitude of moisture unevenness. Next, the required dry moisture value is calculated from the average moisture value and the target dry moisture value. Based on this required dry moisture value and the standard required dry moisture value required to eliminate the variation, it is determined whether it is difficult to eliminate the unevenness of moisture in the continuous drying operation. judge. If it is determined that it is difficult to eliminate the unevenness of moisture in the continuous drying operation, the drying operation is added to the drying operation (only the outside air is blown without sending the hot air), and the feeding valve 10 is driven in the variation driving operation state. While circulating.

このように構成することにより、乾燥開始時の水分値が目標水分値に近い場合にも、水分むらを解消しながら目標水分値に仕上げることができる。
また、繰出バルブ10のバラツキ解消繰出駆動を次のように構成してもよい。水分むら穀粒の乾燥を行なうに当り、乾燥作業が開始されると、穀粒の初期水分値を測定し、バラツキ最高水分値、バラツキ最低水分値及び平均水分値をそれぞれ算出する。そして、最高水分値及び最低水分値からバラツキ水分値を算出し、算出バラツキ水分値と基準バラツキ水分値から水分むらの大小を判定する。そして、水分むらの大小に応じて長短の乾燥休止時間を設け、この乾燥休止時間では通風乾燥をしながら、繰出バルブ10をバラツキ解消繰出駆動状態で駆動しながら水分むら解消を実行し、穀粒の混合を促進させる。
By configuring in this way, even when the moisture value at the start of drying is close to the target moisture value, it is possible to finish the target moisture value while eliminating unevenness in moisture.
Further, the variation elimination feeding drive of the feeding valve 10 may be configured as follows. When drying the unevenness grain, when the drying operation is started, the initial moisture value of the grain is measured, and the variation maximum moisture value, the variation minimum moisture value, and the average moisture value are calculated. Then, a variation moisture value is calculated from the maximum moisture value and the minimum moisture value, and the magnitude of moisture unevenness is determined from the calculated variation moisture value and the reference variation moisture value. Then, depending on the size of the moisture unevenness, long and short drying suspension times are provided, and during this drying suspension time, the moisture unevenness is eliminated while the feeding valve 10 is driven in the variation driven delivery state while ventilation drying is performed. To promote mixing.

前記構成によると、乾燥開始時の水分値が目標水分値に近い場合にも、穀粒の循環量を多くし水分むらを解消しながら目標水分値に仕上げることができる。
また、繰出バルブ10のバラツキ解消繰出駆動を次のように構成してもよい。水分むら穀粒の乾燥を行なうに当り、乾燥作業が開始から所定時間経過時(あるいは仕上げ水分値から所定水分値低い中間水分値)までは、通常繰出駆動状態で繰出バルブ10を駆動しながら初期の通常乾燥作業をする。次いで、穀粒の中間水分値を測定し、バラツキ最高水分値、バラツキ最低水分値及び平均水分値をそれぞれ算出し、最高水分値及び最低水分値からバラツキ水分値を算出し、算出バラツキ水分値と基準バラツキ水分値から水分むらの大小を判定する。そして、水分むらの大小に応じて長短の乾燥休止時間を設定し、この設定乾燥休止時間では通風乾燥をしながら、バラツキ解消駆動状態で繰出バルブ10を駆動し、穀粒の混合を促進しながら穀粒を乾燥する。
According to the said structure, even when the moisture value at the time of a drying start is close to a target moisture value, it can finish to a target moisture value, increasing the circulation amount of a grain and eliminating moisture irregularity.
Further, the variation elimination feeding drive of the feeding valve 10 may be configured as follows. When drying the unevenness of the grain, the initial operation is performed while the feeding valve 10 is driven in the normal feeding driving state until the predetermined time elapses from the start of the drying operation (or the intermediate moisture value lower than the finished moisture value by the predetermined moisture value). Normal drying work. Next, the intermediate moisture value of the grain is measured, the variation maximum moisture value, the variation minimum moisture value, and the average moisture value are calculated, respectively, the variation moisture value is calculated from the maximum moisture value and the minimum moisture value, and the calculated variation moisture value and The level of moisture unevenness is determined from the reference variation moisture value. And, according to the size of the unevenness of moisture, a long and short drying suspension time is set, and while the drying drying time is ventilated, the feeding valve 10 is driven in a dispersion-removing driving state to promote mixing of the grains. Dry the kernels.

前記構成によると、穀粒の過剰な乾燥を防止しながら穀粒の循環量を多くし、水分むらを解消しながら目標水分値に仕上げることができる。
なお、前記設定乾燥休止時間の終了時に、乾燥穀粒を複数の穀粒層に分けて穀粒の中間水分値を測定し、バラツキ最高水分値、バラツキ最低水分値及び平均水分値をそれぞれ算出し、最高水分値及び最低水分値からバラツキ水分値を算出し、水分むらのある穀粒層についてだけ、水分むらを解消するためにバラツキ解消駆動状態で繰出バルブ10を駆動するように構成してもよい。このように構成することにより、水分むらの解消精度を高めることができる。
According to the said structure, the amount of circulation of a grain can be increased, preventing excessive drying of a grain, and it can finish to a target moisture value, eliminating a water nonuniformity.
At the end of the set drying pause time, the dried grain is divided into a plurality of grain layers, the intermediate moisture value of the grain is measured, and the variation maximum moisture value, the variation minimum moisture value, and the average moisture value are respectively calculated. Alternatively, the variation moisture value may be calculated from the maximum moisture value and the minimum moisture value, and the feeding valve 10 may be driven in the variation elimination driving state only for the grain layer with moisture irregularity in order to eliminate the moisture irregularity. Good. By comprising in this way, the cancellation | release precision of a moisture nonuniformity can be raised.

次に、乾燥作業終了時の水分値表示を次のように行なうように構成してもよい。乾燥仕上げ水分値の設定範囲の水分値(例えば+1.5%程度)の時点で、乾燥機内の全乾燥穀粒を複数ブロックに区分して各ブロックの水分値を測定し、これら穀粒層の中間平均水分値を測定する。そして、水分値が仕上げ水分値になり乾燥作業の終了時には、前記中間平均水分値から「1.5%」減少した水分値を仕上げ水分値として表示部32に表示する。前記構成によると、乾燥終了時に水分値表示を迅速にすることができる。   Next, the moisture value at the end of the drying operation may be displayed as follows. At the time of the moisture value (for example, about + 1.5%) in the set range of the dry finish moisture value, the total dry grain in the dryer is divided into a plurality of blocks, and the moisture value of each block is measured. Measure the mean average moisture value. When the moisture value becomes the finished moisture value and the drying operation is completed, the moisture value reduced by “1.5%” from the intermediate average moisture value is displayed on the display unit 32 as the finished moisture value. According to the said structure, a moisture value display can be made quick at the time of completion | finish of drying.

また、次のように構成してもよい。乾燥作業開始時(あるいは、乾燥作業の途中、あるいはは乾燥作業終了時)に、それぞれの水分値を測定し把握する。制御盤には高水分部分排出スイッチ(図示省略)、低水分部分排出スイッチ(図示省略)を設け、繰出バルブ10の穀粒繰出速度と複数の穀粒層の水分値情報により、要望部分である高水分値部分の穀粒、あるいは、低水分値部分の穀粒が上部搬送装置16の排出漏斗41(図2に示す)に到達したときに排出弁41aを開き、要望部分の穀粒のみを排出する。なお、表示部32に乾燥作業終了時の穀粒層毎の水分値を表示するように構成してもよい。   Moreover, you may comprise as follows. At the start of the drying operation (or during the drying operation or at the end of the drying operation), each moisture value is measured and grasped. The control panel is provided with a high moisture partial discharge switch (not shown) and a low moisture partial discharge switch (not shown), and is a desired portion based on the grain feeding speed of the feeding valve 10 and the moisture value information of a plurality of grain layers. When the grain of the high moisture value part or the grain of the low moisture value part reaches the discharge funnel 41 (shown in FIG. 2) of the upper transport device 16, the discharge valve 41a is opened, and only the grain of the desired part is obtained. Discharge. In addition, you may comprise so that the moisture value for every grain layer at the time of completion | finish of drying work may be displayed on the display part 32. FIG.

また、表示部32に穀粒層毎の水分値をグラフ表示するにあたり、水分むらが残っている場合には、水分むら解消のために要する追加乾燥時間を合わせて表示するようにし、また、水分むらが残っていない場合には、通風循環乾燥が必要ないことを表示するようにしてもよい。   In addition, when the moisture value for each grain layer is displayed in a graph on the display unit 32, when the moisture unevenness remains, the additional drying time required for eliminating the moisture unevenness is also displayed. If no unevenness remains, it may be displayed that ventilation circulation drying is not necessary.

前記構成によると、高水分値穀粒部分、あるいは、低水分値穀粒部分を排出し、水分値の均等化した穀粒だけを纏めたり、また、オペレータが穀粒層毎の水分値を知ることができる。   According to the said structure, a high moisture value grain part or a low moisture value grain part is discharged | emitted, and only the grain in which the moisture value was equalized is collected, and an operator knows the moisture value for every grain layer. be able to.

次に、乾燥制御の他の実施形態について説明する。
この実施形態は、青米の多く混じっている穀粒を乾燥作業の途中で一時的に乾燥作業を中止し、後日仕上げ乾燥をする乾燥方法に関するものである。
Next, another embodiment of the drying control will be described.
This embodiment relates to a drying method in which a grain containing a large amount of blue rice is temporarily stopped in the middle of the drying operation and finish-dried at a later date.

乾燥作業開始時(あるいは、乾燥作業の途中)に、穀物乾燥機内の穀粒を複数の穀粒層に区分し水分むらを測定し把握する。そして、乾燥作業が中途水分値(例えば、籾の場合で18〜20%)で乾燥作業が停止した場合には、基準バラツキ水分値と各穀粒層のバラツキ最高水分値、バラツキ最低水分値及び平均水分値を比較し、バラツキの大きなときには、バラツキの大小に応じて所定時間の通風乾燥作業を追加実行し、その後に乾燥作業を一時中止するように構成する。   At the start of the drying operation (or during the drying operation), the grain in the grain dryer is divided into a plurality of grain layers, and the moisture unevenness is measured and grasped. When the drying operation is stopped at an intermediate moisture value (for example, 18 to 20% in the case of straw), the reference variation moisture value, the variation maximum moisture value of each grain layer, the variation minimum moisture value, and The average moisture value is compared, and when the variation is large, a ventilation drying operation for a predetermined time is additionally executed according to the variation, and then the drying operation is temporarily stopped.

前記構成によると、高水分穀粒の乾燥を促進し水分むらを少なくしながら、乾燥中止時の穀粒の腐敗や変色を防止することができる。
本実施の形態の繰出バルブ10はV字型に形成する二つの穀粒流下通路9の下端に一つ備えた構成のため、正逆転する構成としたため周期を変える制御を行なっているが、一つの穀粒流下通路9毎に一つの繰出バルブ10を設ける構成においては繰出バルブ10の繰り出し速度を左右で異なるよう構成することで異なる穀粒層の穀粒を混合させる構成としても良い。
According to the said structure, the decay and discoloration of the grain at the time of a drying stop can be prevented, promoting the drying of a high moisture grain and reducing a water nonuniformity.
Since the feeding valve 10 of the present embodiment is provided with one at the lower ends of the two grain flow passages 9 formed in a V-shape, the control is performed to change the cycle because it is configured to rotate forward and backward. In the configuration in which one feed valve 10 is provided for each grain flow down passage 9, the feed speed of the feed valve 10 may be different on the left and right sides to mix the grains of different grain layers.

穀物乾燥機の切断正面図Cutting front view of grain dryer 穀物乾燥機の切断側面図Grain dryer cutting side view 制御ブロック図Control block diagram 本発明の水分値測定データMoisture value measurement data of the present invention 張込穀粒量と循環時間と乾燥開始直後の循環時間における水分値測定回数を示した図The figure which showed the amount of the moisture value measurement in the amount of cereal grains, the circulation time, and the circulation time immediately after the start of drying 繰出バルブの斜視図Perspective view of feeding valve 穀物乾燥機の穀粒繰出状態を示す正面図Front view showing grain feeding state of grain dryer フローチャートflowchart

符号の説明Explanation of symbols

1 穀物乾燥機
2 貯溜室
3 乾燥室
4 集穀室
5 バーナ
6 熱風室
7 吸引排気ファン
8 排風室
9 穀物流下通路
10 繰出バルブ
41 バラツキ検出手段
41 通常繰出駆動手段
41 バラツキ解消繰出駆動手段
M3 繰出バルブモータ
SE5 水分検出手段
SE5 バラツキ検出手段
DESCRIPTION OF SYMBOLS 1 Grain dryer 2 Storage chamber 3 Drying chamber 4 Grain collection chamber 5 Burner 6 Hot air chamber 7 Suction exhaust fan 8 Ventilation chamber 9 Grain flow passage 10 Feeding valve 41 Unevenness detecting means 41 Normal unwinding driving means 41 Unevenness unwinding feeding means M3 Feed valve motor SE5 Moisture detection means SE5 Dispersion detection means

Claims (2)

貯溜室(2)と乾燥室(3)と集穀室(4)とを穀粒が循環する穀物乾燥機において、乾燥室(3)には左右複数の穀粒流下通路(9)を設け、該左右複数の穀粒流下通路(9)それぞれの下部には穀粒を繰り出す繰出バルブ(10)を設け、循環中の穀粒の水分値を検出する水分検出手段(SE5)を設け、張込乾燥穀粒を複数の穀粒層(LV1〜LV10)に区分して各穀粒層(LV1〜LV10)毎の代表水分値を制御部(41)で検出する構成とし、前記穀粒層(LV1〜LV10)の代表水分値のバラツキ状態が設定範囲外と判定されると前記複数の繰出バルブ(10,10)を異なる速度で回転駆動する構成としたことを特徴とする穀物乾燥機。   In the grain dryer in which the grains circulate through the storage chamber (2), the drying chamber (3), and the cereal collection chamber (4), the drying chamber (3) is provided with a plurality of left and right grain flow passages (9), A feeding valve (10) for feeding out the grain is provided at the lower part of each of the left and right grain flow passages (9), and a moisture detecting means (SE5) for detecting the moisture value of the circulating grain is provided. The dried grain is divided into a plurality of grain layers (LV1 to LV10) and the representative moisture value for each grain layer (LV1 to LV10) is detected by the control unit (41), and the grain layer (LV1) ~ LV10) Grain dryer characterized by having a configuration in which the plurality of feeding valves (10, 10) are rotationally driven at different speeds when the variation state of the representative moisture value of LV10) is determined to be outside the set range. 貯溜室(2)と乾燥室(3)と集穀室(4)とを穀粒が循環する穀物乾燥機において、乾燥室(3)には左右複数の穀粒流下通路(9)を設け、該左右複数の穀粒流下通路(9)それぞれの下部には穀粒を繰り出す繰出バルブ(10)を設け、循環中の穀粒の水分値を検出する水分検出手段(SE5)を設け、該水分検出手段(SE5)が設定水分値以下を検出すると繰出バルブ(10,10)を異なる速度で回転駆動する構成としたことを特徴とする穀物乾燥機。   In the grain dryer in which the grains circulate through the storage chamber (2), the drying chamber (3), and the cereal collection chamber (4), the drying chamber (3) is provided with a plurality of left and right grain flow passages (9), A feeding valve (10) for feeding out the grain is provided at the lower part of each of the left and right grain flow passages (9), and a moisture detecting means (SE5) for detecting the moisture value of the circulating grain is provided. A grain dryer characterized in that, when the detection means (SE5) detects a value below the set moisture value, the feeding valves (10, 10) are rotationally driven at different speeds.
JP2007007134A 2007-01-16 2007-01-16 Grain drier Pending JP2008175415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007007134A JP2008175415A (en) 2007-01-16 2007-01-16 Grain drier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007007134A JP2008175415A (en) 2007-01-16 2007-01-16 Grain drier

Publications (1)

Publication Number Publication Date
JP2008175415A true JP2008175415A (en) 2008-07-31

Family

ID=39702563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007007134A Pending JP2008175415A (en) 2007-01-16 2007-01-16 Grain drier

Country Status (1)

Country Link
JP (1) JP2008175415A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156482A (en) * 2007-12-25 2009-07-16 Iseki & Co Ltd Grain drying machine
JP2009156481A (en) * 2007-12-25 2009-07-16 Iseki & Co Ltd Grain drying machine
JP2014035116A (en) * 2012-08-08 2014-02-24 Iseki & Co Ltd Grain drier
JP2015141003A (en) * 2014-01-30 2015-08-03 株式会社山本製作所 Grain dryer
JP2018013312A (en) * 2016-07-22 2018-01-25 株式会社サタケ Grain drying method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156482A (en) * 2007-12-25 2009-07-16 Iseki & Co Ltd Grain drying machine
JP2009156481A (en) * 2007-12-25 2009-07-16 Iseki & Co Ltd Grain drying machine
JP2014035116A (en) * 2012-08-08 2014-02-24 Iseki & Co Ltd Grain drier
JP2015141003A (en) * 2014-01-30 2015-08-03 株式会社山本製作所 Grain dryer
JP2018013312A (en) * 2016-07-22 2018-01-25 株式会社サタケ Grain drying method

Similar Documents

Publication Publication Date Title
JP5293004B2 (en) Circulating grain dryer
JP2008175415A (en) Grain drier
JP2010054148A5 (en)
JP2008039221A (en) Grain drier
JP2015224835A (en) Crop dryer machine
JP5391560B2 (en) Grain dryer
JP2009287870A (en) Grain dryer
JP2008298324A (en) Grain drier
JP4985064B2 (en) Grain dryer
JP2008298324A5 (en)
JP2011220563A (en) Grain drying apparatus
JP6244947B2 (en) Grain dryer
JP2008032257A (en) Grain drying machine
JP6299387B2 (en) Grain dryer
JP2008256327A (en) Grain drier
JP2009068756A (en) Grain drying machine
JP4946183B2 (en) Grain dryer
JP2011002205A (en) Grain drier
JP2016061479A (en) Grain drier
JP2010127551A (en) Grain dryer
JP5359592B2 (en) Grain dryer
JP5011983B2 (en) Grain dryer
JP2019082276A (en) Grain dryer
JP6394546B2 (en) Grain dryer control equipment
JP3526465B2 (en) Display of scheduled drying time of grain dryer