JP2008175267A - Steam valve apparatus and power generation plant having it - Google Patents

Steam valve apparatus and power generation plant having it Download PDF

Info

Publication number
JP2008175267A
JP2008175267A JP2007008229A JP2007008229A JP2008175267A JP 2008175267 A JP2008175267 A JP 2008175267A JP 2007008229 A JP2007008229 A JP 2007008229A JP 2007008229 A JP2007008229 A JP 2007008229A JP 2008175267 A JP2008175267 A JP 2008175267A
Authority
JP
Japan
Prior art keywords
valve
steam
valve body
seat
valve seat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007008229A
Other languages
Japanese (ja)
Inventor
Kura Shindo
蔵 進藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007008229A priority Critical patent/JP2008175267A/en
Publication of JP2008175267A publication Critical patent/JP2008175267A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Turbines (AREA)
  • Lift Valve (AREA)
  • Details Of Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the generation of noise or vibration from the minute opening to the vicinity of the middle opening, and enable the improvement in the efficiency of a steam turbine by reducing the pressure drop at the full opening or its vicinity. <P>SOLUTION: The steam governing valve 42 includes a valve chest 57 formed with a valve body 56, a valve seat 58 which has a spherically curved surface and which is provided for the valve main body at the position facing the valve chest, and a valve body 60 which is driven by a valve rod 59 and which has a spherically curved surface, and which is held in the valve chest. The opening of the steam governing valve is defined by the contact and separation of the spherically curved surfaces of the valve seat and the valve body. A recessed part 62 having an edge 61 at the rim is provided on the bottom side of the valve body. A chamber member 63 located on the outside of the valve body and a flow guide 64 arranged in the recessed part of the valve body is provided for the valve body 56. The steam passage 65 at the full opening or its vicinity is formed by the chamber member, the valve body, the flow guide, the inner peripheral surface 56A of the valve main body, and the valve seat. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、火力発電所または原子力発電所などの発電設備に適用される蒸気タービンの蒸気弁装置、及びこの蒸気弁装置を備えた発電設備に関する。   The present invention relates to a steam valve device for a steam turbine applied to a power generation facility such as a thermal power plant or a nuclear power plant, and a power generation facility including the steam valve device.

一般に、火力発電所や原子力発電所などの発電設備に適用される蒸気タービンには、負荷変化に応じて蒸気の流量を制御し、または突発事故時に蒸気の供給を遮断するために、数多くの蒸気弁装置が設けられている。   In general, a steam turbine applied to a power generation facility such as a thermal power plant or a nuclear power plant has a large number of steams in order to control the flow rate of steam according to a load change or shut off the supply of steam in the event of a sudden accident. A valve device is provided.

図13は蒸気タービンに使用されている従来の蒸気弁装置の説明図である。この図13には、蒸気タービンの非常時等に蒸気タービンに流入する蒸気を瞬時に止める主蒸気止め弁10と、蒸気流量を制御するための蒸気加減弁20が示されている。   FIG. 13 is an explanatory diagram of a conventional steam valve device used in a steam turbine. FIG. 13 shows a main steam stop valve 10 that instantaneously stops steam flowing into the steam turbine in an emergency of the steam turbine, and a steam control valve 20 for controlling the steam flow rate.

蒸気加減弁20の弁本体21は、その側方部が主蒸気止め弁10と連通して連結されており、弁本体21の上端部に上蓋22を有し、弁本体21の内方部に隆起状をなす弁座23が設けられ、この弁座23に当接する弁体24に結合された弁棒25が、上蓋22を貫通して油筒27に連結されている。   The valve body 21 of the steam control valve 20 has a side portion connected to the main steam stop valve 10 and is connected to the valve body 21, and has an upper lid 22 at the upper end portion of the valve body 21. A valve seat 23 having a raised shape is provided, and a valve rod 25 coupled to a valve body 24 that contacts the valve seat 23 passes through the upper lid 22 and is connected to an oil cylinder 27.

図示しないボイラ等からの蒸気流は、主蒸気止め弁10へ矢印Iの如く流入し、蒸気加減弁20から矢印Oの如く流出する。蒸気加減弁20の油筒27に油圧が作用すると、弁棒25を介して弁体24が上下動して蒸気加減弁20は開閉動作をなし、この開閉動作によって蒸気流量が制御され、図示しない蒸気タービンへ蒸気が流れる。   A steam flow from a boiler or the like (not shown) flows into the main steam stop valve 10 as indicated by arrow I and flows out of the steam control valve 20 as indicated by arrow O. When oil pressure is applied to the oil cylinder 27 of the steam control valve 20, the valve body 24 moves up and down via the valve rod 25, and the steam control valve 20 opens and closes. The steam flow is controlled by this opening and closing operation, not shown. Steam flows to the steam turbine.

なお、蒸気加減弁20の油筒27には、ピストン26と閉鎖用バネ29が組み付けられており、このピストン26の下部に給排油口28が設置されている。この給排油口28には、サーボ弁やダンプ弁等の油圧機器が接続されるが、図13では図示を省略している。   A piston 26 and a closing spring 29 are assembled to the oil cylinder 27 of the steam control valve 20, and a supply / discharge oil port 28 is installed at the lower part of the piston 26. Although hydraulic equipment such as a servo valve and a dump valve is connected to the supply / discharge oil port 28, the illustration thereof is omitted in FIG.

一方、主蒸気止め弁10も蒸気加減弁20と同様に構成され、弁本体21の上端部に上蓋12を有し、弁本体11の内包部に隆起状をなす弁座14が設けられ、この弁座14に当接する弁体15が、弁棒16を介して油筒17に連結されている。この油筒17に油圧が作用すると、弁棒16を介して弁体15が上下動して主蒸気止め弁10は開閉動作をなし、この開閉動作によって蒸気の供給、遮断が実施される。尚、図13中の符号13はストレーナを示す。   On the other hand, the main steam stop valve 10 is also configured in the same manner as the steam control valve 20, and has an upper lid 12 at the upper end portion of the valve main body 21, and a valve seat 14 having a raised shape at the inner portion of the valve main body 11. A valve body 15 that contacts the valve seat 14 is connected to an oil cylinder 17 via a valve rod 16. When oil pressure is applied to the oil cylinder 17, the valve body 15 moves up and down via the valve rod 16, and the main steam stop valve 10 opens and closes. Steam is supplied and shut off by this opening and closing operation. In addition, the code | symbol 13 in FIG. 13 shows a strainer.

一般に、発電設備用蒸気タービンに使用される蒸気弁装置、特に蒸気加減弁20においては、騒音、振動、エロージョンあるいは材料劣化などの不適合な事例が知られている。   In general, in the steam valve device used in the steam turbine for power generation equipment, particularly the steam control valve 20, incompatible cases such as noise, vibration, erosion or material deterioration are known.

このような蒸気加減弁20は、弁体24及び弁座23を備えた弁室において弁体24を移動させることにより、弁体24と弁座23との間の絞り機能によって蒸気流量を制御するように構成されている。上述の騒音や振動は、弁体24廻りの流れの乱れや不安定な流れ等に誘発されて発生するものと考えられる(例えば特許文献1参照)。   Such a steam control valve 20 controls the steam flow rate by the throttle function between the valve body 24 and the valve seat 23 by moving the valve body 24 in the valve chamber provided with the valve body 24 and the valve seat 23. It is configured as follows. The above-described noise and vibration are considered to be induced by a turbulent flow or an unstable flow around the valve body 24 (see, for example, Patent Document 1).

最近では、発電設備の蒸気条件の上昇(超臨界圧力プラント)や蒸気タービンの単機容量の増加にともない、更なる改善が施された改良技術が提案されている(例えば特許文献2参照)。   Recently, an improved technique has been proposed in which further improvements have been made in accordance with an increase in steam conditions (supercritical pressure plant) of a power generation facility and an increase in the unit capacity of a steam turbine (see, for example, Patent Document 2).

上述の特許文献1、2における蒸気加減弁20は、図14及び図15に示すように、球形曲面に形成され、縁辺にエッジ31を備えた凹陥部30を有する弁体24と、該弁体24が当接する位置から下流側へ向かって徐々に拡口するように球形曲面を有する弁座23とを具備し、これらの弁体24と弁座23の球形曲面どうしが当接するように構成されている。   As shown in FIGS. 14 and 15, the steam control valve 20 in Patent Documents 1 and 2 described above is formed in a spherical curved surface, and has a valve body 24 having a recessed portion 30 having an edge 31 on an edge, and the valve body. The valve seat 23 has a spherical curved surface so as to gradually widen toward the downstream side from the position where the valve 24 abuts. The valve body 24 and the spherical curved surface of the valve seat 23 are configured to abut each other. ing.

従って、この蒸気加減弁20では、弁体24の底部側に、縁辺にエッジ31を備えた凹陥部30が設けられたことから、微小開度から中間開度付近において、弁体24に沿う蒸気の流れが当該弁体24のエッジ31で剥離されて、弁座23に沿う安定した流れとなり、これにより騒音や振動の発生を防止することができる。
特開昭56−109955号公報 特開2006―63957号広報
Therefore, in this steam control valve 20, since the recessed part 30 provided with the edge 31 is provided on the bottom side of the valve body 24, the steam along the valve body 24 in the vicinity of the intermediate opening from the minute opening. Is peeled off at the edge 31 of the valve body 24 and becomes a stable flow along the valve seat 23, thereby preventing the generation of noise and vibration.
JP-A-56-109955 Japanese Unexamined Patent Publication No. 2006-63957

しかしながら、従来の蒸気加減弁20の弁体24は、縁辺にエッジ31を備えた凹陥部30を有する形状であり、弁体24の開き始めから中間開度付近の領域では、本来の機能である騒音・振動の防止に有効であるが、全開開度時などの高弁開度状態においては、弁体24の直下がデッドスペースとなり、図15の矢印に示すように、このデッドスペース内に渦が発生して圧力損失が生じてしまう。   However, the valve body 24 of the conventional steam control valve 20 has a concave portion 30 with an edge 31 on the edge, and is an original function in the region near the intermediate opening from the beginning of opening of the valve body 24. Although effective in preventing noise and vibration, in a high valve opening state such as when the valve is fully opened, a dead space is directly under the valve body 24, and a vortex is formed in this dead space as shown by an arrow in FIG. Will occur and pressure loss will occur.

ところで、最近の蒸気タービンでは、発電事業主らによる市場の要求として性能向上(効率向上)が強く求められている。この蒸気タービンの効率の内訳としては、蒸気タービンそのものの内部効率も重要であるが、蒸気タービンの入口に設置された蒸気加減弁20等における上述の圧力損失も極めて重要である。つまり、蒸気加減弁20等に生ずる圧力損失は、熱力学的に有効な仕事をする前の蒸気タービン入口の蒸気圧力を低下させることを意味し、結果的に、蒸気タービンの効率に大きな影響(効率低下)を与えるものとなっている。このため、蒸気加減弁20等の蒸気弁装置では、全開開度状態における圧力損失をいかに低減するかが永年の懸案であった。   By the way, in recent steam turbines, performance improvement (efficiency improvement) is strongly demanded as a market demand by power generation business owners. As a breakdown of the efficiency of the steam turbine, the internal efficiency of the steam turbine itself is important, but the above-described pressure loss in the steam control valve 20 installed at the inlet of the steam turbine is also extremely important. In other words, the pressure loss that occurs in the steam control valve 20 or the like means that the steam pressure at the inlet of the steam turbine before the thermodynamically effective work is reduced, resulting in a large influence on the efficiency of the steam turbine ( Efficiency reduction). For this reason, in the steam valve device such as the steam control valve 20, it has been a long-standing concern how to reduce the pressure loss in the fully opened state.

本発明の目的は、上述の事情を考慮してなされたものであり、微小開度から中間開度付近において騒音や振動の発生を防止でき、全開開度またはその近傍において圧力損失を低減して蒸気タービンの効率を向上させることができる蒸気弁装置及びそれを備えた発電設備を提供することにある。   The object of the present invention has been made in consideration of the above-mentioned circumstances, and can prevent noise and vibration from the minute opening to the intermediate opening, and reduce the pressure loss at or near the fully opened opening. An object of the present invention is to provide a steam valve device capable of improving the efficiency of a steam turbine and a power generation facility including the same.

本発明は、弁本体により弁室が形成され、当該弁本体には、上記弁室を臨む位置に球形曲面を有する弁座が設けられ、前記弁室には、弁棒により駆動されて球形曲面を有する弁体が収容され、これらの弁座及び弁体の球形曲面が接離することで弁開度が設定される蒸気弁装置において、前記弁体の底部側に、縁辺にエッジを備えた凹陥部が設けられ、前記弁本体側には、前記弁体の外側に位置するチャンバ部材と、前記弁体の前記凹陥部内に配設されるフローガイドとが設けられ、これらのチャンバ部材、弁体、フローガイド、前記弁本体の内面及び前記弁座により、全開開度またはその近傍での蒸気通路部が形成されるよう構成されたことを特徴とするものである。   In the present invention, a valve chamber is formed by a valve body, and the valve body is provided with a valve seat having a spherical curved surface at a position facing the valve chamber, and the valve chamber is driven by a valve rod and has a spherical curved surface. In the steam valve device in which the valve opening is set by contacting and separating the valve seat and the spherical curved surface of the valve body, an edge is provided on the edge side on the bottom side of the valve body. A recessed portion is provided, and on the valve body side, a chamber member positioned outside the valve body and a flow guide disposed in the recessed portion of the valve body are provided. The body, the flow guide, the inner surface of the valve main body, and the valve seat form a steam passage portion at or near the fully open position.

本発明によれば、弁体の底部側に、縁辺にエッジを備えた凹陥部が設けられたことから、微小開度から中間開度付近において、弁体に沿う蒸気の流れが当該弁体のエッジで剥離されて、弁座に沿う安定した流れとなるので、騒音や振動の発生を防止できる。また、弁体の外側にチャンバ部材が、弁体の凹陥部内にフローガイドがそれぞれ設けられたことから、全開開度またはその近傍での蒸気通路部において弁体付近の流路面積の変化が少なくなる。このため、この蒸気通路部を流れる蒸気の流れが弁体の凹陥部付近で渦を生ずることがなく、従って圧力損失が抑制されるので、蒸気タービンの効率を向上させることができる。   According to the present invention, since the concave portion provided with the edge on the edge side is provided on the bottom side of the valve body, the flow of steam along the valve body near the intermediate opening from the minute opening degree Since it is peeled off at the edge and becomes a stable flow along the valve seat, generation of noise and vibration can be prevented. In addition, since the chamber member is provided outside the valve body, and the flow guide is provided in the recessed portion of the valve body, the change in the flow passage area near the valve body is small in the full opening degree or in the steam passage portion in the vicinity thereof. Become. For this reason, the flow of the steam flowing through the steam passage portion does not cause a vortex in the vicinity of the recessed portion of the valve body, and hence pressure loss is suppressed, so that the efficiency of the steam turbine can be improved.

以下、本発明を実施するための最良の形態を、図面に基づき説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

[A]第1の実施の形態
図1は、本発明に係る蒸気弁装置の第1の実施の形態である蒸気加減弁における全閉状態を示す断面図である。図2は、図1の蒸気加減弁の微小開度状態を示す断面図である。図3は、図1の蒸気加減弁2の中間開度状態を示す縦断面図である。図4は、図1の蒸気加減弁の全開開度状態を示す縦断面図である。図9は、図1〜図4に示す蒸気加減弁を装備した発電設備を示す系統図である。
[A] First Embodiment FIG. 1 is a cross-sectional view showing a fully closed state of a steam control valve, which is a first embodiment of a steam valve device according to the present invention. FIG. 2 is a cross-sectional view showing a minute opening state of the steam control valve of FIG. FIG. 3 is a longitudinal sectional view showing an intermediate opening state of the steam control valve 2 of FIG. FIG. 4 is a longitudinal sectional view showing a fully opened state of the steam control valve of FIG. FIG. 9 is a system diagram showing a power generation facility equipped with the steam control valve shown in FIGS.

図9に示す発電設備55では、ボイラ40からの蒸気は、主蒸気止め弁41、蒸気加減弁42を通過し高圧タービン50で膨張して仕事をした後、逆止弁47を経由して再びボイラ40の再熱器にて加熱され、再熱蒸気止め弁43、インターセプト弁44を経て中圧タービン51、低圧タービン52へ順次流入して膨張し仕事をする。蒸気は、低圧タービン52で仕事をした後、復水器53にて水に戻され、給水ポンプ54にて昇圧されて再びボイラ40に供給されて循環する。   In the power generation equipment 55 shown in FIG. 9, the steam from the boiler 40 passes through the main steam stop valve 41 and the steam control valve 42, expands in the high-pressure turbine 50 and works, and then again passes through the check valve 47. Heated by the reheater of the boiler 40, sequentially flows into the intermediate pressure turbine 51 and the low pressure turbine 52 via the reheat steam stop valve 43 and the intercept valve 44, and expands to work. The steam is worked by the low-pressure turbine 52 and then returned to water by the condenser 53, boosted by the feed water pump 54, supplied to the boiler 40 and circulated again.

また、発電設備55の運用効率を高めるために、発電設備55によっては、高圧タービンバイパス管48や低圧タービンバイパス管49が設置されて、タービン50、51、52の運転状態に拘らずボイラ40を単独で運転できるようになっている。高圧タービンバイパス管48は、ボイラ40の出口側から分岐しボイラ40の再熱器の入口側に接続されて、高圧タービンバイパス弁45を備える。また、低圧タービンバイパス管49は、ボイラ40の再熱器の出口側から分岐し復水器53の入口側に接続されて、低圧タービンバイパス弁46を備える。   In addition, in order to increase the operation efficiency of the power generation equipment 55, depending on the power generation equipment 55, a high pressure turbine bypass pipe 48 and a low pressure turbine bypass pipe 49 are installed, and the boiler 40 is installed regardless of the operating state of the turbines 50, 51, 52. It is possible to drive alone. The high-pressure turbine bypass pipe 48 branches from the outlet side of the boiler 40 and is connected to the inlet side of the reheater of the boiler 40 and includes a high-pressure turbine bypass valve 45. The low-pressure turbine bypass pipe 49 is branched from the outlet side of the reheater of the boiler 40 and connected to the inlet side of the condenser 53, and includes a low-pressure turbine bypass valve 46.

上述の発電設備55に装備された蒸気弁装置としての蒸気加減弁42は、図1及び図5に示すように、弁本体56により弁室57が形成され、この弁本体56には、弁室57を臨む位置に球形曲面を有する弁座58が設けられ、弁室57には、弁棒59により駆動されて球形曲面を有する弁体60が収容され、これらの弁座58及び弁体60の球形曲面が接離することで弁開度が設定されるものである。そして、弁体60の底部側に、縁辺にエッジ61を備えた凹陥部62が設けられ、弁本体56には、上蓋66を介して、弁体60の外側に位置するチャンバ部材63と、弁体60の凹陥部62内に配設されるフローガイド64とが設けられる。これらのチャンバ部材63、弁体60、フローガイド64、弁体56の内周面56A及び弁座58により、全開開度またはその近傍での蒸気通路部65が形成される。   As shown in FIGS. 1 and 5, the steam control valve 42 as a steam valve device provided in the above-described power generation facility 55 has a valve chamber 57 formed by a valve body 56, and the valve body 56 includes a valve chamber 57. A valve seat 58 having a spherical curved surface is provided at a position facing 57, and a valve body 60 driven by a valve rod 59 and having a spherical curved surface is accommodated in the valve chamber 57, and the valve seat 58 and the valve body 60 are The valve opening is set by the contact and separation of the spherical curved surface. A concave portion 62 having an edge 61 on the edge is provided on the bottom side of the valve body 60, and a valve member 56 is provided with a chamber member 63 positioned outside the valve body 60 via an upper lid 66, and a valve A flow guide 64 disposed in the recessed portion 62 of the body 60 is provided. The chamber member 63, the valve body 60, the flow guide 64, the inner peripheral surface 56 </ b> A of the valve body 56 and the valve seat 58 form a steam passage portion 65 at or near the fully open position.

つまり、弁本体56上端部に上蓋66を備え、弁本体56の内部に弁座58が設けられる。この弁座58に当接する弁体60には弁棒59が結合され、この弁棒59が上蓋66を貫通して、図示しない油筒に連結されている。この油筒に油圧が作用すると、弁棒59を介して弁体60は図1〜図5において上下動する。上蓋66における弁棒59の貫通部は、弁棒59の摺動面となることからブッシュが組み付けられているが、本実施の形態では図示を省略している。   That is, the upper lid 66 is provided at the upper end of the valve body 56, and the valve seat 58 is provided inside the valve body 56. A valve rod 59 is coupled to the valve body 60 in contact with the valve seat 58, and the valve rod 59 passes through the upper lid 66 and is connected to an oil cylinder (not shown). When hydraulic pressure is applied to the oil cylinder, the valve body 60 moves up and down in FIGS. Since the penetrating portion of the valve stem 59 in the upper lid 66 is a sliding surface of the valve stem 59, a bush is assembled, but the illustration is omitted in the present embodiment.

弁体60は、天部67を有する円筒形状に形成されて内側に凹陥部62が設けられ、この凹陥部62のエッジ61の直径は、弁体60の内径と一致している。弁体60の底部側に、縁辺にエッジ61を備えた凹陥部62が設けられたことで、図2及び図3に示すように、蒸気加減弁42の微小開度から中間開度付近において、弁体60に沿う蒸気の流れがこの弁体60のエッジ61により剥離されて、弁座58に沿う安定した流れとなるので、騒音や振動の発生が防止される。このときの蒸気の流れは、上述の如く弁座58に沿う弁座付着流となっているので、フローガイド64の外表面70に沿った流れは存在しない。   The valve body 60 is formed in a cylindrical shape having a top portion 67 and is provided with a recessed portion 62 on the inner side. The diameter of the edge 61 of the recessed portion 62 matches the inner diameter of the valve body 60. By providing a recessed portion 62 having an edge 61 on the edge on the bottom side of the valve body 60, as shown in FIGS. 2 and 3, in the vicinity of the intermediate opening from the minute opening of the steam control valve 42, Since the steam flow along the valve body 60 is separated by the edge 61 of the valve body 60 and becomes a stable flow along the valve seat 58, generation of noise and vibration is prevented. Since the steam flow at this time is a valve seat adhering flow along the valve seat 58 as described above, there is no flow along the outer surface 70 of the flow guide 64.

上蓋66の一部は、弁本体56の内部側に延在されてチャンバ部材63として構成され、このチャンバ部材63の内部に弁体60が収納される。この弁体60の内部には、弁座58へ向かってその中央部85が凸状に突出し、先端が先細りに形成されたフローガイド64が配設されている。フローガイド64の中央部85が凸状に突出し、先端が先細り形状に形成されることで、全開開度またはその近傍での蒸気通路部65の流路面積が、弁座58よりも上流側の円環形状部分65Aから弁座58よりも下流側の円形状部分65Bへと滑らかに移行し、図4及び図5に示す全開開度またはその近傍において蒸気が流れ易くなる。   A part of the upper lid 66 extends to the inside of the valve body 56 and is configured as a chamber member 63, and the valve body 60 is accommodated in the chamber member 63. Inside the valve body 60, a flow guide 64 having a central portion 85 protruding in a convex shape toward the valve seat 58 and having a tapered tip is disposed. The central portion 85 of the flow guide 64 protrudes in a convex shape and the tip is formed in a tapered shape, so that the flow passage area of the steam passage portion 65 at the fully open position or in the vicinity thereof is upstream of the valve seat 58. Smooth transition from the annular portion 65A to the circular portion 65B on the downstream side of the valve seat 58 facilitates the flow of steam at or near the fully open position shown in FIGS.

当該フローガイド64は、複数個の段付きスクリューピン68を用いてチャンバ部材63に固定され、このチャンバ部材63と一体化される。尚、弁体60には、当該弁体60の移動方向となる軸方向に延びる長孔69が加工されている。この長孔69内に段付きスクリューピン68が配設されることで、段付きスクリューピン68と弁体60との接触が回避される。また、弁体60には、チャンバ部材63の内部の圧力を開放するためのバランス孔60Aが形成されて、弁体60の上下動作が確保される。   The flow guide 64 is fixed to the chamber member 63 using a plurality of stepped screw pins 68, and is integrated with the chamber member 63. The valve body 60 is processed with a long hole 69 extending in the axial direction that is the moving direction of the valve body 60. By disposing the stepped screw pin 68 in the long hole 69, contact between the stepped screw pin 68 and the valve body 60 is avoided. Further, the valve body 60 is formed with a balance hole 60A for releasing the pressure inside the chamber member 63, and the vertical movement of the valve body 60 is ensured.

全開開度またはその近傍での蒸気通路部65は、前述の如く、チャンバ部材63、弁体60、フローガイド64、弁本体56の内周面56A及び弁座58にて形成される。そして、この蒸気通路部65の流路面積は、弁本体56の内周面56Aとチャンバ部材63にて画成される上流側の円環形状部分65Aから、弁座58にて画成される下流側の円形状部分65Bへ向かって徐々に減少し、最終的に弁座58の開口面積(弁座58の内径により規定される面積)に至るまで、極端な変化がなく、連続してスムーズに変化するよう構成される。これにより、全開開度またはその近傍において、この蒸気通路部65を流れる蒸気は、図4の矢印に示すように、弁体60の下部付近で渦を生ずることなく滑らかに流れるので、圧力損失が抑制される。   As described above, the steam passage portion 65 at or near the fully open opening is formed by the chamber member 63, the valve body 60, the flow guide 64, the inner peripheral surface 56A of the valve body 56, and the valve seat 58. The flow passage area of the steam passage portion 65 is defined by the valve seat 58 from the upstream annular portion 65A defined by the inner peripheral surface 56A of the valve body 56 and the chamber member 63. It gradually decreases toward the circular portion 65B on the downstream side, and there is no extreme change until it finally reaches the opening area of the valve seat 58 (the area defined by the inner diameter of the valve seat 58). Configured to change. As a result, the steam flowing through the steam passage 65 at or near the full opening degree flows smoothly without generating a vortex in the vicinity of the lower part of the valve body 60 as shown by the arrow in FIG. It is suppressed.

全開開度状態における蒸気通路部65の代表的な流路面積の変化特性を、図7の曲線Aに示す。この蒸気通路部65の流路面積は、上流の弁本体56の内周面56Aから下流の弁座58へ向かって徐々に減少し、弁体60と弁座58で構成された部分が最小になるように設定され、その後微増しながら、最終的には弁座58の内径で規定される面積に至るようになっている。弁体60と弁座58で構成された部分が最小となるのは、蒸気加減弁42がこの部分で蒸気の流量を制御するためである。   A typical change characteristic of the flow passage area of the steam passage portion 65 in the fully opened state is shown by a curve A in FIG. The flow passage area of the steam passage portion 65 gradually decreases from the inner peripheral surface 56A of the upstream valve body 56 toward the downstream valve seat 58, and the portion formed by the valve body 60 and the valve seat 58 is minimized. It is set so that it will become, and after that, it will increase slightly and will finally reach the area prescribed | regulated by the internal diameter of the valve seat 58. FIG. The reason why the portion formed by the valve body 60 and the valve seat 58 is minimized is that the steam control valve 42 controls the flow rate of steam at this portion.

蒸気通路部65の入口部(最上流端)から出口部(最下流端)までの流路面積の変化特性は、圧力損失が最も少なくなるように最適設計がなされ、その特性は前述の曲線Aであったり、入口部と出口部を結んだ直線Bであったり、湾曲した曲線Cや曲線Dである。また、最小の流路面積部をどの位置に設定するかなども、圧力損失が最も少なくなるように最適に設定される。   The change characteristic of the flow path area from the inlet (upstream end) to the outlet (downstream end) of the steam passage 65 is optimally designed so that the pressure loss is minimized, and the characteristic is the curve A described above. Or a straight line B connecting the entrance and exit, or a curved curve C or curve D. Further, the position where the minimum flow passage area is set is also optimally set so that the pressure loss is minimized.

ここで、図8(A),(B)を用いて、全開開度状態における蒸気通路部65の流路面積の求め方を説明する。   Here, using FIG. 8A and FIG. 8B, a method for obtaining the flow path area of the steam passage portion 65 in the fully opened state will be described.

まず、この蒸気通路部65の入口部(上流側)の流路面積は、弁本体56の内周面56Aとチャンバ部材63の外周面とで構成された円環形状部分65Aの面積である。また、蒸気通路部65の出口部(下流側)の流路面積は、弁座58の内径により規定される円形状部分65Bの面積である。   First, the flow path area of the inlet portion (upstream side) of the steam passage portion 65 is an area of an annular portion 65 </ b> A configured by the inner peripheral surface 56 </ b> A of the valve body 56 and the outer peripheral surface of the chamber member 63. Further, the flow path area of the outlet portion (downstream side) of the steam passage portion 65 is the area of the circular portion 65 </ b> B defined by the inner diameter of the valve seat 58.

次に、蒸気通路部65の入口部から出口部までの途中の流路面積を、幾何学的に求める。全開開度状態のときには、チャンバ部材63、弁体60、フローガイド64、弁座58、弁本体56の内周面56Aによって全開開度状態における蒸気通路部65が構成される。この蒸気通路部65では、流れ方向に沿って無数の円錐台71A、71B、71C…が連続して仮想される。これらの円錐台71A、71B、71C…の上底面73と下底面72の面積を除いた側面74の面積(側面積)が、蒸気通路部65の各円錐台位置での流路面積となる。円錐台71A、71B、71C…の下底面72の半径をR、上底面73の半径をR、高さをhとすると、各円錐台の側面積は、
[数1]
円錐台の側面積=π x ((h+(R−R1/2 x (R+R
となる。
Next, the flow path area on the way from the inlet part to the outlet part of the steam passage part 65 is obtained geometrically. When in the fully opened position, the chamber member 63, the valve body 60, the flow guide 64, the valve seat 58, and the inner peripheral surface 56A of the valve body 56 constitute the steam passage portion 65 in the fully opened position. In the steam passage portion 65, innumerable truncated cones 71A, 71B, 71C,... Are continuously imagined along the flow direction. The area (side area) of the side surface 74 excluding the areas of the upper bottom surface 73 and the lower bottom surface 72 of these truncated cones 71A, 71B, 71C... Is the flow path area at each truncated cone position of the steam passage portion 65. When the radius of the lower bottom surface 72 is R 1 , the radius of the upper bottom surface 73 is R 2 , and the height is h, the side areas of the truncated cones 71A, 71B, 71C.
[Equation 1]
Side area of the truncated cone = π x ((h 2 + (R 1 −R 2 ) 2 ) 1/2 x (R 1 + R 2 )
It becomes.

また、全開開度状態のときの蒸気通路部65におけるフローガイド64の先端部分では、円錐台ではなく円錐75が仮想される。この円錐75の側面の面積(側面積)が、当該蒸気通路部65の円錐75位置における流路面積である。この円錐75の底面の半径をR、高さをhとすると、円錐75の側面積は下式により求まる。 Further, at the tip end portion of the flow guide 64 in the steam passage portion 65 in the fully opened opening state, a cone 75 is virtually assumed instead of the truncated cone. The area (side area) of the side surface of the cone 75 is the flow area at the position of the cone 75 of the steam passage portion 65. When the radius of the bottom surface of the cone 75 is R 0 and the height is h 0 , the side area of the cone 75 is obtained by the following equation.

[数2]
円錐の側面積=π x R x(h +R 1/2
以上のようにして、全開開度状態における蒸気通路部65の各位置での流路面積を求め、この流路面積の変化特性が図7に示すような最適な特性になるように、弁本体56の内周面56A、チャンバ部材63、弁体60、フローガイド64及び弁座58の寸法や形状を変化させながら、この蒸気通路部65の形状を決定する。但し、これらの寸法の全てが変数では蒸気通路部65の形状を決定できないので、圧力損失の低減及び騒音や振動の発生防止の観点から、最低限の基準となる寸法や形状が、以下のように具体的に規定される。
[Equation 2]
Side area of cone = π x R 0 x (h 0 2 + R 0 2 ) 1/2
As described above, the flow passage area at each position of the steam passage portion 65 in the fully opened state is obtained, and the valve body is set so that the change characteristic of the flow passage area becomes the optimum characteristic as shown in FIG. While changing the dimensions and shapes of the inner peripheral surface 56A of 56, the chamber member 63, the valve body 60, the flow guide 64, and the valve seat 58, the shape of the steam passage portion 65 is determined. However, since the shape of the steam passage portion 65 cannot be determined if all of these dimensions are variables, the minimum standard dimensions and shapes are as follows from the viewpoint of reducing pressure loss and preventing noise and vibration. Are specifically defined.

まず、図5に示すように、フローガイド64の蒸気通路部65を形成する外表面70の縦断面形状は、当該フローガイド64の外部に中心Orを有する半径Rrの曲線からなる逆曲率部となっている。これにより、全開開度またはその近傍で蒸気通路部65内を流れ、フローガイド64の外表面70に沿う蒸気の流れは、弁座58の軸P方向に平行な流れになり易くなり、合流時に衝突することなく弁座58の下流側へ流れる。これにより、フローガイド64の下方において渦の発生が抑制されて、圧力損失が低減される。   First, as shown in FIG. 5, the longitudinal cross-sectional shape of the outer surface 70 that forms the steam passage portion 65 of the flow guide 64 has an inverse curvature portion formed by a curve of a radius Rr having a center Or outside the flow guide 64. It has become. As a result, the flow of the steam along the outer surface 70 of the flow guide 64 at the full opening degree or in the vicinity thereof, and the flow of the steam along the outer surface 70 of the flow guide 64 easily becomes a flow parallel to the axis P direction of the valve seat 58. It flows to the downstream side of the valve seat 58 without colliding. Thereby, generation | occurrence | production of a vortex is suppressed under the flow guide 64, and pressure loss is reduced.

また、弁体60の凹陥部62におけるエッジ61の直径Diは、この弁体60に当接する弁座58のシート径をDoとするとき、
[数3]
Do>Di≧0.9Do
の範囲に設定され、また弁座58の内径Dthは、
[数4]
Di>Dth≧0.8Do
の範囲に設定される。これにより、微小開度から中間開度付近において、蒸気通路部65内を流れる蒸気は、弁座58に沿う安定した流れとなって(図2及び図3の矢印参照)、騒音や振動の発生が防止される。
Further, the diameter Di of the edge 61 in the recessed portion 62 of the valve body 60 is set such that the seat diameter of the valve seat 58 that contacts the valve body 60 is Do,
[Equation 3]
Do> Di ≧ 0.9 Do
And the inner diameter Dth of the valve seat 58 is
[Equation 4]
Di> Dth ≧ 0.8 Do
Is set in the range. As a result, the steam flowing in the steam passage section 65 in the vicinity of the minute opening to the intermediate opening becomes a stable flow along the valve seat 58 (see arrows in FIGS. 2 and 3), and noise and vibration are generated. Is prevented.

更に、弁体60の曲率半径Rは、この弁体60に当接する弁座58のシート径をDoとするとき、
[数5]
R=(0.52〜0.6)Do
の範囲に設定され、また、弁座58の曲率半径rは、
[数6]
r≧0.6Do
の範囲に設定される。これによっても、微小開度から中間開度付近において蒸気通路部65内を流れる蒸気は、弁座58に沿う安定した流れとなって、騒音や振動の発生が防止される。
Further, the radius of curvature R of the valve body 60 is set so that the seat diameter of the valve seat 58 contacting the valve body 60 is Do.
[Equation 5]
R = (0.52-0.6) Do
And the radius of curvature r of the valve seat 58 is
[Equation 6]
r ≧ 0.6 Do
Is set in the range. Also by this, the steam flowing in the steam passage portion 65 in the vicinity of the minute opening to the intermediate opening becomes a stable flow along the valve seat 58, and noise and vibration are prevented from being generated.

また、図5及び図6に示すように、弁座58の上流側近傍における弁本体56の内表面56Aの縦断面形状は、弁座58の曲率半径rに外接する曲線76で当該弁座58に接続され(図6(A))、または弁座58の曲率半径rに外接し、且つ任意の角度を有する直線(好ましくは、頂角が略90度の逆三角形状の側辺77)で当該弁座58に接続される形状に形成される(図6(B))。これにより、弁本体56の内表面56Aに不要な空間が形成されることがないので、この弁座58上流側近傍において渦の発生が抑制される。   5 and 6, the longitudinal cross-sectional shape of the inner surface 56A of the valve body 56 in the vicinity of the upstream side of the valve seat 58 is a curve 76 circumscribing the curvature radius r of the valve seat 58. (Fig. 6 (A)) or a straight line circumscribing the radius of curvature r of the valve seat 58 and having an arbitrary angle (preferably, an inverted triangular side 77 having an apex angle of approximately 90 degrees). A shape connected to the valve seat 58 is formed (FIG. 6B). As a result, no unnecessary space is formed on the inner surface 56A of the valve body 56, so that the generation of vortices in the vicinity of the upstream side of the valve seat 58 is suppressed.

以上のように構成されたことから、本実施の形態によれば、次の効果(1)〜(3)を奏する。   With the configuration as described above, the following effects (1) to (3) are achieved according to the present embodiment.

(1)弁体60の底部側に、縁辺にエッジ61を備えた凹陥部62が設けられたことから、蒸気加減弁42の微小開度から中間開度付近において、弁体60に沿う蒸気の流れが当該弁体60のエッジ61にて剥離されて、弁座58に沿う安定した流れとなるので、騒音や振動の発生を防止できる。   (1) Since the recessed portion 62 having the edge 61 on the edge side is provided on the bottom side of the valve body 60, the steam along the valve body 60 is near the intermediate opening from the minute opening of the steam control valve 42. Since the flow is separated at the edge 61 of the valve body 60 and becomes a stable flow along the valve seat 58, generation of noise and vibration can be prevented.

(2)弁体60の外側にチャンバ部材63が、弁体60の凹陥部62内にフローガイド64がそれぞれ設けられたことから、全開開度またはその近傍での蒸気通路部56において弁体60付近での流路面積の変化が少なくなる。このため、この全開開度またはその近傍での蒸気通路部56を流れる蒸気の流れが弁体60の下方で渦を生ずることがなく、従って圧力損失が抑制されるので、蒸気タービンの効率を向上させることができる。   (2) Since the chamber member 63 is provided outside the valve body 60 and the flow guide 64 is provided in the recessed portion 62 of the valve body 60, the valve body 60 in the steam passage portion 56 at or near the full opening degree. The change in the channel area in the vicinity is reduced. For this reason, the flow of the steam flowing through the steam passage portion 56 at or near the full opening degree does not cause a vortex below the valve body 60, and therefore pressure loss is suppressed, thereby improving the efficiency of the steam turbine. Can be made.

(3)例えば、コンバインドサイクルの発電設備における蒸気タービンでは、蒸気加減弁42を常時全開開度状態で運用するケースが多い。一方、本実施形態の蒸気加減弁42では、上記(2)の如く、全開開度またはその近傍で蒸気タービンの効率を向上させることができる。従って、コンバインドサイクルのような高効率の発電設備に本実施形態の蒸気加減弁42を用いることで、発電設備全体の効率を向上させることができる。   (3) For example, in a steam turbine in a combined cycle power generation facility, there are many cases where the steam control valve 42 is always operated in a fully open state. On the other hand, in the steam control valve 42 of the present embodiment, the efficiency of the steam turbine can be improved at or near the fully open position as described in (2) above. Therefore, the efficiency of the entire power generation facility can be improved by using the steam control valve 42 of the present embodiment in a highly efficient power generation facility such as a combined cycle.

[B]第2の実施の形態
第2の実施の形態において、前記第1の実施の形態と同様な部分は、同一の符号を付して説明を簡略化し、または省略する。
[B] Second Embodiment In the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description will be simplified or omitted.

この第2の実施の形態の蒸気加減弁が前記第1の実施の形態の蒸気加減弁42と異なる点は、弁座58の曲率半径rの値と、弁座58の入口構造の形状である。つまり、本実施の形態では、弁体60の曲率半径Rは、この弁体60に当接する弁座58のシート径をDoとするとき、前記第1の実施の形態と同様に、
[数7]
R=(0.52〜0.6)Do
の範囲に設定されるが、弁座58の曲率半径rは、
[数8]
r=(0.45〜0.85)Do
の範囲に設定される。更に、この弁座58の入り口とその周囲の弁本体56における内周面56Aとから成る弁座58の入口構造の形状が、ベルマウス形状に形成されている。
The steam control valve of the second embodiment differs from the steam control valve 42 of the first embodiment in the value of the radius of curvature r of the valve seat 58 and the shape of the inlet structure of the valve seat 58. . That is, in the present embodiment, the curvature radius R of the valve body 60 is the same as in the first embodiment when the seat diameter of the valve seat 58 that contacts the valve body 60 is Do.
[Equation 7]
R = (0.52-0.6) Do
The radius of curvature r of the valve seat 58 is
[Equation 8]
r = (0.45-0.85) Do
Is set in the range. Furthermore, the shape of the inlet structure of the valve seat 58 which consists of the inlet_port | entrance of this valve seat 58 and the internal peripheral surface 56A in the surrounding valve main body 56 is formed in the bellmouth shape.

従って、本実施の形態においても、弁座58の入口構造の形状がベルマウス形状に形成されたことで、弁座58の周囲から当該弁座58内へ流れ込む蒸気がスムーズな流れとなって圧力損失が抑制されるので、前記第1の実施の形態の効果(1)〜(3)と同様な効果を奏する。   Therefore, also in the present embodiment, the shape of the inlet structure of the valve seat 58 is formed in the bell mouth shape, so that the steam flowing from the periphery of the valve seat 58 into the valve seat 58 becomes a smooth flow and pressure. Since the loss is suppressed, the same effects as the effects (1) to (3) of the first embodiment are obtained.

[C]第3の実施の形態(図10)
図10は、本発明に係る蒸気弁装置の第3の実施の形態である蒸気加減弁のおける全開開度状態を示す縦断面図である。この第3の実施の形態において、前記第1の実施の形態と同様な部分は、同一の符号を付して説明を簡略化し、または省略する。
[C] Third embodiment (FIG. 10)
FIG. 10 is a longitudinal sectional view showing a fully opened state of the steam control valve which is the third embodiment of the steam valve device according to the present invention. In the third embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description will be simplified or omitted.

本実施の形態が前記第1の実施の形態と異なる点は、フローガイド64の蒸気通路部65を形成する外表面78の形状である。つまり、本実施の形態におけるフローガイド64の蒸気通路部65を形成する外表面78の縦断面形状は、全開開度時において弁体60のエッジ61端の球形曲面に外接する直線79として形成されている。   This embodiment is different from the first embodiment in the shape of the outer surface 78 that forms the steam passage portion 65 of the flow guide 64. That is, the longitudinal cross-sectional shape of the outer surface 78 that forms the steam passage portion 65 of the flow guide 64 in the present embodiment is formed as a straight line 79 that circumscribes the spherical curved surface at the end of the edge 61 of the valve body 60 at the fully opened position. ing.

これにより、全開開度またはその近傍で蒸気通路部65内を流れ、フローガイド64の外表面78に沿う蒸気の流れは、弁座58の軸P方向に平行な流れになり易くなり、合流時に衝突することなく弁座58の下流側へ流れる。これにより、フローガイド64の下方において渦の発生が抑制されて、圧力損失が低減される。従って、本実施の形態においても、前記第1の実施の形態の効果(1)〜(3)と同様な効果を奏する。   As a result, the flow of the steam along the outer surface 78 of the flow guide 64 at the full opening degree or in the vicinity thereof tends to be a flow parallel to the direction of the axis P of the valve seat 58. It flows to the downstream side of the valve seat 58 without colliding. Thereby, generation | occurrence | production of a vortex is suppressed under the flow guide 64, and pressure loss is reduced. Therefore, the present embodiment also provides the same effects as the effects (1) to (3) of the first embodiment.

[D]第4の実施の形態(図11)
図11は、本発明に係る蒸気弁装置の第4の実施の形態である蒸気加減弁における全開開度状態を示す縦断面図である。この第4の実施の形態において、前記第1の実施の形態と同様な部分は、同一の符号を付して説明を簡略化し、または省略する。
[D] Fourth embodiment (FIG. 11)
FIG. 11: is a longitudinal cross-sectional view which shows the fully open opening state in the steam control valve which is 4th Embodiment of the steam valve apparatus which concerns on this invention. In the fourth embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description will be simplified or omitted.

本実施の形態が前記第1の実施の形態と異なる点は、フローガイド64の中央部85の最先端に平坦部分80が設けられた点である。つまり、本実施の形態におけるフローガイド64は、下流の弁座58へ向かって中央部85が凸状に突出し、その先端が先細りに形成されると共に、最先端に平坦部分80が形成されている。この平坦部分80は、例えばフローガイド64の軸に直交した平面として形成される。また、この場合、フローガイド64の蒸気通路部65を形成する外表面の縦断面形状は、第1の実施の形態の逆曲率部を備えた外表面70であってもよく、または、第3の実施の形態の外表面79であってもよい。   The present embodiment is different from the first embodiment in that a flat portion 80 is provided at the forefront of the central portion 85 of the flow guide 64. That is, in the flow guide 64 in the present embodiment, the central portion 85 protrudes in a convex shape toward the downstream valve seat 58, the tip thereof is tapered, and the flat portion 80 is formed at the forefront. . The flat portion 80 is formed as a plane orthogonal to the axis of the flow guide 64, for example. In this case, the longitudinal cross-sectional shape of the outer surface forming the steam passage portion 65 of the flow guide 64 may be the outer surface 70 provided with the reverse curvature portion of the first embodiment, or the third It may be the outer surface 79 of the embodiment.

このように、フローガイド64の凸状の中央部85の最先端に平坦部分80が形成されていても、全開開度またはその近傍で蒸気通路部65内を流れ、フローガイド64の外表面70または78に沿う蒸気の流れは、弁座58の軸P方向に平行な流れになり易くなるので、フローガイド64の下方に渦が発生せず、圧力損失が低減される。従って、本実施の形態においても、前記第1の実施の形態の効果(1)〜(3)と同様な効果を奏する。   Thus, even if the flat portion 80 is formed at the forefront of the convex central portion 85 of the flow guide 64, the flow guide 64 flows in the steam passage portion 65 at or near the full opening degree, and the outer surface 70 of the flow guide 64. Alternatively, the steam flow along 78 is likely to be parallel to the direction of the axis P of the valve seat 58, so that no vortex is generated below the flow guide 64 and pressure loss is reduced. Therefore, the present embodiment also provides the same effects as the effects (1) to (3) of the first embodiment.

[E]第5の実施の形態(図12)
図12は、本発明に係る蒸気弁装置の第5の実施の形態である蒸気加減弁における全開開度状態を示す縦断面図である。この第5の実施の形態において、前記第1の実施の形態と同様な部分は、同一の符号を付して説明を簡略化し、または省略する。
[E] Fifth embodiment (FIG. 12)
FIG. 12 is a longitudinal sectional view showing a fully opened state of the steam control valve which is the fifth embodiment of the steam valve device according to the present invention. In the fifth embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description will be simplified or omitted.

本実施の形態が前記第1の実施の形態と異なる点は、弁棒59における弁体60側の端部にシート面81が設けられ、弁棒59が貫通する弁本体56側の部分(即ち弁本体56に装着された上蓋66の弁棒59貫通部に設けられたブッシュ83)にシート面82が設けられ、これらのシート面81と82が全開開度時に気密状態に当接して構成された点である。   This embodiment is different from the first embodiment in that a seat surface 81 is provided at an end of the valve stem 59 on the valve body 60 side, and a portion on the valve main body 56 side through which the valve stem 59 penetrates (that is, A seat surface 82 is provided on a bush 83) provided in a valve rod 59 penetrating portion of the upper lid 66 mounted on the valve body 56, and these seat surfaces 81 and 82 are configured to abut in an airtight state when fully opened. It is a point.

つまり、弁棒59の摺動部には、弁体60側の端部にシート面81が形成される。また、上蓋66において、弁棒59が貫通する部分にブッシュ83が組み付けられ、このブッシュ83にシート面82が設けられる。これらのシート面81と82は、蒸気加減弁42の全開開度時に、これらシート面81、82から蒸気が漏れないように、気密状態に当接してシールされる。これらのシート面81及び82は、例えば45度のテーパ面に形成されたものが好ましい。   That is, the seat surface 81 is formed at the end portion on the valve body 60 side in the sliding portion of the valve stem 59. Further, a bush 83 is assembled to a portion of the upper lid 66 where the valve rod 59 penetrates, and a seat surface 82 is provided on the bush 83. These seat surfaces 81 and 82 are sealed in contact with each other in an airtight state so that steam does not leak from the seat surfaces 81 and 82 when the steam control valve 42 is fully opened. These sheet surfaces 81 and 82 are preferably formed to have a tapered surface of 45 degrees, for example.

従って、本実施の形態によれば、前記第1の実施の形態の効果(1)〜(3)と同様な効果を奏するほか、次の効果(4)を奏する。   Therefore, according to the present embodiment, in addition to the same effects (1) to (3) as in the first embodiment, the following effect (4) is achieved.

(4)弁体60を駆動する弁棒59と、この弁棒59を貫通する上蓋66のブッシュ83とにシート面81、82がそれぞれ形成され、これらのシート面81、82が全開開度時に気密状態で当接するよう構成されている。これにより、蒸気加減弁42の全開開度時に、上蓋66に加工されたリークオフ穴84から蒸気が流出することが防止される。この結果、例えばコンバインドサイクルの蒸気タービン発電設備において、蒸気加減弁42が連続的に全開開度で運用されたときにも、蒸気タービンに流入し有効に仕事をすべき蒸気を系外に無駄に放出することが防止されるので、蒸気タービンの効率を更に向上させることができる。   (4) Seat surfaces 81 and 82 are respectively formed on the valve stem 59 that drives the valve body 60 and the bush 83 of the upper lid 66 that passes through the valve stem 59. When the seat surfaces 81 and 82 are fully opened, It is comprised so that it may contact | abut in an airtight state. This prevents the steam from flowing out from the leak-off hole 84 formed in the upper lid 66 when the steam control valve 42 is fully opened. As a result, for example, in a steam turbine power generation facility of a combined cycle, even when the steam control valve 42 is continuously operated at the fully opened position, the steam that flows into the steam turbine and should work effectively is wasted outside the system. Since the discharge is prevented, the efficiency of the steam turbine can be further improved.

以上、本発明を上記各実施の形態に基づいて説明したが、本発明はこれに限定されるものではない。例えば、本実施の形態では、蒸気弁装置が蒸気加減弁42の場合を述べたが、主蒸気止め弁41等の他の蒸気弁装置に適用されてもよい。   As mentioned above, although this invention was demonstrated based on said each embodiment, this invention is not limited to this. For example, in the present embodiment, the case where the steam valve device is the steam control valve 42 has been described. However, the steam valve device may be applied to other steam valve devices such as the main steam stop valve 41.

本発明に係る蒸気弁装置の第1の実施の形態である蒸気加減弁における全閉状態を示す断面図。Sectional drawing which shows the fully closed state in the steam control valve which is 1st Embodiment of the steam valve apparatus which concerns on this invention. 図1の蒸気加減弁の微小開度状態を示す断面図。Sectional drawing which shows the micro opening degree state of the steam control valve of FIG. 図1の蒸気加減弁2の中間開度状態を示す縦断面図。The longitudinal cross-sectional view which shows the intermediate opening state of the steam control valve 2 of FIG. 図1の蒸気加減弁の全開開度状態を示す縦断面図。The longitudinal cross-sectional view which shows the fully open opening state of the steam control valve of FIG. 図4の全開状態の蒸気加減弁において各部材の寸法を示す断面図。Sectional drawing which shows the dimension of each member in the steam control valve of the fully open state of FIG. 図5の弁座入口部分の寸法を示す縦断面図。The longitudinal cross-sectional view which shows the dimension of the valve-seat inlet part of FIG. 図4及び図5に示す蒸気通路部の流路面積の変化特性を示すグラフ。The graph which shows the change characteristic of the flow-path area of the steam channel part shown in FIG.4 and FIG.5. 図4及び図5に示す蒸気通路部の流路面積を求めるための説明図。Explanatory drawing for calculating | requiring the flow-path area of the steam channel part shown in FIG.4 and FIG.5. 図1〜図4に示す蒸気加減弁を装備した発電設備を示す系統図。The system diagram which shows the electric power generation equipment equipped with the steam control valve shown in FIGS. 本発明に係る蒸気弁装置の第3の実施の形態である蒸気加減弁における全開開度状態を示す縦断面図。The longitudinal cross-sectional view which shows the fully open opening state in the steam control valve which is 3rd Embodiment of the steam valve apparatus which concerns on this invention. 本発明に係る蒸気弁装置の第4の実施の形態である蒸気加減弁における全開開度状態を示す縦断面図。The longitudinal cross-sectional view which shows the fully open opening state in the steam control valve which is 4th Embodiment of the steam valve apparatus which concerns on this invention. 本発明に係る蒸気弁装置の第5の実施の形態である蒸気加減弁における全開開度状態を示す縦断面図。The longitudinal cross-sectional view which shows the fully open opening state in the steam control valve which is 5th Embodiment of the steam valve apparatus which concerns on this invention. 従来の蒸気弁装置(蒸気止め弁、蒸気加減弁)を示す縦断面図。The longitudinal cross-sectional view which shows the conventional steam valve apparatus (steam stop valve, steam control valve). 図13の蒸気加減弁の全閉状態を示す縦断面図。The longitudinal cross-sectional view which shows the fully closed state of the steam control valve of FIG. 図13の蒸気加減弁の全開開度状態における蒸気の流れを示す縦断面図。The longitudinal cross-sectional view which shows the flow of the steam in the fully open opening state of the steam control valve of FIG.

符号の説明Explanation of symbols

42 蒸気加減弁(蒸気弁装置)
55 発電設備
56 弁本体
56A 内周面
57 弁室
58 弁座
59 弁棒
60 弁体
61 エッジ
62 凹陥部
63 チャンバ部材
64 フローガイド
65 蒸気通路部
67 天部
70、78 外表面
79 直線
80 平坦部分
81、82 シート面
O1 中心
42 Steam control valve (steam valve device)
55 Power generation equipment 56 Valve body 56A Inner peripheral surface 57 Valve chamber 58 Valve seat 59 Valve rod 60 Valve body 61 Edge 62 Recessed portion 63 Chamber member 64 Flow guide 65 Steam passage portion 67 Top portion 70, 78 Outer surface 79 Straight line 80 Flat portion 81, 82 Sheet surface O1 center

Claims (15)

弁本体により弁室が形成され、当該弁本体には、上記弁室を臨む位置に球形曲面を有する弁座が設けられ、前記弁室には、弁棒により駆動されて球形曲面を有する弁体が収容され、これらの弁座及び弁体の球形曲面が接離することで弁開度が設定される蒸気弁装置において、
前記弁体の底部側に、縁辺にエッジを備えた凹陥部が設けられ、
前記弁本体側には、前記弁体の外側に位置するチャンバ部材と、前記弁体の前記凹陥部内に配設されるフローガイドとが設けられ、
これらのチャンバ部材、弁体、フローガイド、前記弁本体の内面及び前記弁座により、全開開度またはその近傍での蒸気通路部が形成されるよう構成されたことを特徴とする蒸気弁装置。
A valve chamber is formed by the valve body, the valve body is provided with a valve seat having a spherical curved surface at a position facing the valve chamber, and the valve chamber is driven by a valve rod and has a spherical curved surface. In the steam valve device in which the valve opening is set by contacting and separating the spherical curved surfaces of these valve seats and valve bodies,
On the bottom side of the valve body, a concave portion having an edge on the edge is provided,
The valve body side is provided with a chamber member located outside the valve body, and a flow guide disposed in the recessed portion of the valve body,
A steam valve device configured to form a steam passage portion at or near the full opening degree by the chamber member, the valve body, the flow guide, the inner surface of the valve body, and the valve seat.
前記フローガイドは、チャンバ部材に一体的に固定されたことを特徴とする請求項1に記載の蒸気弁装置。 The steam valve device according to claim 1, wherein the flow guide is integrally fixed to the chamber member. 前記弁体は、天部を有する円筒形状に形成されて内側に凹陥部が設けられ、この凹陥部のエッジの直径Diが、当該弁体の内径であることを特徴とする請求項1または2に記載の蒸気弁装置。 The said valve body is formed in the cylindrical shape which has a top part, and a recessed part is provided inside, The diameter Di of the edge of this recessed part is the internal diameter of the said valve body, The Claim 1 or 2 characterized by the above-mentioned. The steam valve device described in 1. 前記蒸気通路部の流路面積は、上流側から下流の弁座側へ向かって徐々に減少し最終的に前記弁座の開口面積に至るまでに、連続してスムーズに変化するよう構成されたことを特徴とする請求項1乃至3のいずれかに記載の蒸気弁装置。 The flow passage area of the steam passage portion is configured to gradually and smoothly change from the upstream side toward the downstream valve seat side until finally reaching the opening area of the valve seat. The steam valve device according to any one of claims 1 to 3, wherein: 前記蒸気通路部は、弁体と弁座で構成される部分の流路面積が最小となるよう構成されたことを特徴とする請求項1乃至4のいずれかに記載の蒸気弁装置。 The steam valve device according to any one of claims 1 to 4, wherein the steam passage portion is configured such that a flow passage area of a portion constituted by a valve body and a valve seat is minimized. 前記フローガイドは、下流の弁座側へ向かって中央部が凸状に突出し、その先端が先細りに形成されたことを特徴とする請求項1乃至5のいずれかに記載の蒸気弁装置。 The steam valve device according to any one of claims 1 to 5, wherein the flow guide has a central portion protruding in a convex shape toward the downstream valve seat side, and a tip of the flow guide is tapered. 前記フローガイドの蒸気通路部を形成する面の縦断面形状は、当該フローガイドの外部に中心を有する曲率の曲線からなる逆曲率部を備えたことを特徴とする請求項1乃至6のいずれかに記載の蒸気弁装置。 The longitudinal cross-sectional shape of the surface which forms the vapor | steam channel | path part of the said flow guide is provided with the reverse curvature part which consists of a curve of the curvature which has a center in the exterior of the said flow guide. The steam valve device described in 1. 前記フローガイドの蒸気通路部を形成する面の縦断面形状は、全開開度時において弁体のエッジ端の球形曲面に外接する直線として形成されたことを特徴とする請求項1乃至6のいずれかに記載の蒸気弁装置。 The vertical cross-sectional shape of the surface forming the steam passage portion of the flow guide is formed as a straight line circumscribing the spherical curved surface at the edge end of the valve body when the opening degree is fully open. A steam valve device according to claim 1. 前記フローガイドは、下流の弁座側へ向かって中央部が凸状に突出し、その先端が先細りに形成されると共に、最先端に平坦部分が設けられたことを特徴とする請求項1乃至8のいずれかに記載の蒸気弁装置。 9. The flow guide according to claim 1, wherein a central portion protrudes in a convex shape toward the downstream valve seat side, a tip end thereof is tapered, and a flat portion is provided at the forefront. The steam valve device according to any one of the above. 前記弁体の凹陥部のエッジ直径Diは、当該弁体に当接する弁座のシート径をDoとするとき、
[数1]
Do>Di≧0.9Do
の範囲に設定され、また、前記弁座の内径Dthは、
[数2]
Di>Dth≧0.8Do
の範囲に設定されたことを特徴とする請求項1乃至9のいずれかに記載の蒸気弁装置。
When the edge diameter Di of the recessed portion of the valve body is set to Do, the seat diameter of the valve seat contacting the valve body,
[Equation 1]
Do> Di ≧ 0.9 Do
And the inner diameter Dth of the valve seat is
[Equation 2]
Di> Dth ≧ 0.8 Do
The steam valve device according to any one of claims 1 to 9, wherein the steam valve device is set in a range of.
前記弁体の曲率半径Rは、当該弁体に当接する弁座のシート径をDoとするとき、
[数3]
R=(0.52〜0.6)Do
の範囲に設定され、また、前記弁座の曲率半径rは、
[数4]
r≧0.6Do
の範囲に設定されたことを特徴とする請求項1乃至10のいずれかに記載の蒸気弁装置。
When the radius of curvature R of the valve body is Do, the seat diameter of the valve seat in contact with the valve body is
[Equation 3]
R = (0.52-0.6) Do
And the radius of curvature r of the valve seat is
[Equation 4]
r ≧ 0.6 Do
The steam valve device according to any one of claims 1 to 10, wherein the steam valve device is set in a range of.
前記弁体の曲率半径Rは、当該弁体に当接する弁座のシート径をDoとするとき、
[数5]
R=(0.52〜0.6)Do
の範囲に設定され、また、前記弁座の曲率半径rは、
[数6]
r=(0.45〜0.85)Do
の範囲に設定され、更に、当該弁座の入り口とその周囲の弁本体の内面とが、ベルマウス形状に形成されたことを特徴とする請求項1乃至10のいずれかに記載の蒸気弁装置。
When the radius of curvature R of the valve body is Do, the seat diameter of the valve seat in contact with the valve body is
[Equation 5]
R = (0.52-0.6) Do
And the radius of curvature r of the valve seat is
[Equation 6]
r = (0.45-0.85) Do
The steam valve device according to any one of claims 1 to 10, wherein an inlet of the valve seat and an inner surface of the surrounding valve body are formed in a bell mouth shape. .
前記弁座近傍の弁本体内面における縦断面形状は、前記弁座の曲率半径rに外接する曲線で当該弁座に接続され、または前記弁座の曲率半径rに外接し、且つ任意の角度を有する直線で当該弁座に接続される形状に形成されたことを特徴とする請求項1乃至11のいずれかに記載の蒸気弁装置。 The longitudinal cross-sectional shape of the inner surface of the valve body in the vicinity of the valve seat is connected to the valve seat with a curve circumscribing the curvature radius r of the valve seat, or circumscribes the curvature radius r of the valve seat and has an arbitrary angle. The steam valve device according to any one of claims 1 to 11, wherein the steam valve device is formed in a shape connected to the valve seat by a straight line having a straight line. 前記弁棒における弁体側の端部にシート面が設けられ、上記弁棒が貫通する弁本体側の部分にシート面が設けられ、これらのシート面が全開開度時に気密状態に当接するよう構成されたことを特徴とする請求項1乃至13のいずれかに記載の蒸気弁装置。 A seat surface is provided at an end of the valve stem on the valve body side, a seat surface is provided at a portion on the valve body side through which the valve stem penetrates, and these seat surfaces are configured to abut in an airtight state when fully opened. The steam valve device according to any one of claims 1 to 13, wherein the steam valve device is provided. 請求項1乃至14のいずれかに記載の蒸気弁装置を備えたことを特徴とする発電設備。 A power generation facility comprising the steam valve device according to any one of claims 1 to 14.
JP2007008229A 2007-01-17 2007-01-17 Steam valve apparatus and power generation plant having it Pending JP2008175267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007008229A JP2008175267A (en) 2007-01-17 2007-01-17 Steam valve apparatus and power generation plant having it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007008229A JP2008175267A (en) 2007-01-17 2007-01-17 Steam valve apparatus and power generation plant having it

Publications (1)

Publication Number Publication Date
JP2008175267A true JP2008175267A (en) 2008-07-31

Family

ID=39702437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007008229A Pending JP2008175267A (en) 2007-01-17 2007-01-17 Steam valve apparatus and power generation plant having it

Country Status (1)

Country Link
JP (1) JP2008175267A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010270900A (en) * 2009-05-25 2010-12-02 Mitsubishi Heavy Ind Ltd Valve device
JP2012026466A (en) * 2010-07-20 2012-02-09 Advics Co Ltd Electromagnetic valve
JP2012112271A (en) * 2010-11-22 2012-06-14 Mitsubishi Heavy Ind Ltd Turbine steam control valve and combined steam valve
WO2015046226A1 (en) 2013-09-24 2015-04-02 株式会社東芝 Governing valve device and power generating equipment
JP2015086756A (en) * 2013-10-29 2015-05-07 三菱重工業株式会社 Steam regulator valve
JP2016169719A (en) * 2015-03-16 2016-09-23 富士電機株式会社 Built-in type compound steam valve
JP2016534289A (en) * 2013-07-25 2016-11-04 シーメンス アクティエンゲゼルシャフト Valve for turbomachine
WO2017073466A1 (en) * 2015-10-30 2017-05-04 三菱日立パワーシステムズ株式会社 Vapor valve and vapor turbine system
JP2018509565A (en) * 2015-01-14 2018-04-05 シーメンス アクティエンゲゼルシャフト Regulating valves and turbines
CN110541935A (en) * 2019-08-30 2019-12-06 珠海格力电器股份有限公司 Low-noise electronic expansion valve and refrigerating machine
US10591084B2 (en) 2015-11-12 2020-03-17 Mitsubishi Hitachi Power Systems, Ltd. Steam valve and steam turbine system
CN112594443A (en) * 2020-12-09 2021-04-02 天生桥二级水力发电有限公司 Fairing and pressure reducing valve
CN113847106A (en) * 2020-06-28 2021-12-28 上海电气电站设备有限公司 Steam inlet structure of steam turbine
WO2022132430A1 (en) * 2020-12-14 2022-06-23 Flowserve Management Company Erosion resistant plug and seat valve

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010270900A (en) * 2009-05-25 2010-12-02 Mitsubishi Heavy Ind Ltd Valve device
JP2012026466A (en) * 2010-07-20 2012-02-09 Advics Co Ltd Electromagnetic valve
JP2012112271A (en) * 2010-11-22 2012-06-14 Mitsubishi Heavy Ind Ltd Turbine steam control valve and combined steam valve
JP2016534289A (en) * 2013-07-25 2016-11-04 シーメンス アクティエンゲゼルシャフト Valve for turbomachine
US10087773B2 (en) 2013-07-25 2018-10-02 Siemens Aktiengesellschaft Valve for a turbomachine
KR101789452B1 (en) 2013-07-25 2017-10-23 지멘스 악티엔게젤샤프트 Valve for a turbomachine
US9903219B2 (en) 2013-09-24 2018-02-27 Kabushiki Kaisha Toshiba Steam governing valve apparatus and power generation facility
CN105579671A (en) * 2013-09-24 2016-05-11 株式会社东芝 Governing valve device and power generating equipment
KR20160045849A (en) 2013-09-24 2016-04-27 가부시끼가이샤 도시바 Governing valve device and power generating equipment
WO2015046226A1 (en) 2013-09-24 2015-04-02 株式会社東芝 Governing valve device and power generating equipment
KR101831221B1 (en) * 2013-09-24 2018-02-22 가부시끼가이샤 도시바 Governing valve device and power generating equipment
JP2015063917A (en) * 2013-09-24 2015-04-09 株式会社東芝 Steam valve device and power generating installation
JP2015086756A (en) * 2013-10-29 2015-05-07 三菱重工業株式会社 Steam regulator valve
US10253647B2 (en) 2015-01-14 2019-04-09 Siemens Aktiengesellschaft Regulating valve and turbine
JP2018509565A (en) * 2015-01-14 2018-04-05 シーメンス アクティエンゲゼルシャフト Regulating valves and turbines
JP2016169719A (en) * 2015-03-16 2016-09-23 富士電機株式会社 Built-in type compound steam valve
CN108138580A (en) * 2015-10-30 2018-06-08 三菱日立电力系统株式会社 Steam valve and steam turbine system
KR20180057694A (en) 2015-10-30 2018-05-30 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Steam valves and steam turbine systems
DE112016005003T5 (en) 2015-10-30 2018-07-26 Mitsubishi Hitachi Power Systems, Ltd. STEAM VALVE AND STEAM TURBINE SYSTEM
JP2017082722A (en) * 2015-10-30 2017-05-18 三菱日立パワーシステムズ株式会社 Steam valve and steam turbine system
WO2017073466A1 (en) * 2015-10-30 2017-05-04 三菱日立パワーシステムズ株式会社 Vapor valve and vapor turbine system
US10480662B2 (en) 2015-10-30 2019-11-19 Mitsubishi Hitachi Power Systems, Ltd. Steam valve and steam turbine system
KR102053555B1 (en) * 2015-10-30 2019-12-06 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Steam Valves & Steam Turbine Systems
DE112016005003B4 (en) 2015-10-30 2022-07-14 Mitsubishi Power, Ltd. STEAM VALVE AND STEAM TURBINE SYSTEM
US10591084B2 (en) 2015-11-12 2020-03-17 Mitsubishi Hitachi Power Systems, Ltd. Steam valve and steam turbine system
CN110541935A (en) * 2019-08-30 2019-12-06 珠海格力电器股份有限公司 Low-noise electronic expansion valve and refrigerating machine
CN113847106A (en) * 2020-06-28 2021-12-28 上海电气电站设备有限公司 Steam inlet structure of steam turbine
CN112594443A (en) * 2020-12-09 2021-04-02 天生桥二级水力发电有限公司 Fairing and pressure reducing valve
WO2022132430A1 (en) * 2020-12-14 2022-06-23 Flowserve Management Company Erosion resistant plug and seat valve

Similar Documents

Publication Publication Date Title
JP2008175267A (en) Steam valve apparatus and power generation plant having it
JP6092062B2 (en) Steam valve device and power generation equipment
EP2503105B1 (en) Steam valve device and steam turbine plant
JP5701019B2 (en) Combination steam valve and steam turbine
EP3212974B1 (en) Choked flow valve with clamped seat ring
CN106715923B (en) Fluid pressure drive device, combined steam valve and the steamturbine of steam valve
EP3277994B1 (en) Energy recovering flow control valves
EP2796669B1 (en) Steam valve apparatus
JP5631789B2 (en) Steam valve
RU2388955C2 (en) Shut-off throttling valve
JP5562250B2 (en) HYDRAULIC DEVICE, ENERGY CONVERSION EQUIPMENT PROVIDED WITH THE DEVICE, AND METHOD FOR ADJUSTING THE DEVICE
JP7102197B2 (en) Steam valve and power generation equipment
JP6390659B2 (en) Fuel injection valve
JP5611005B2 (en) Adjustable and combined steam valves for steam turbines
JP2006329073A (en) Steam valve and power generation facility equipped therewith
CN210830529U (en) Multistage clearance throttle air-vent valve
KR102565764B1 (en) Turbine bypass valve
JP2009250146A (en) Steam valve device and control method of steam turbine using it
JP6862335B2 (en) Combination valve and power plant
JP6933538B2 (en) Steam valve gear and steam turbine plant equipped with it
JP6332088B2 (en) Integrated compound steam valve
GB2042687A (en) Steam Turbine Control Valve
US20150276067A1 (en) Steam valve
JP2023014453A (en) Steam turbine and steam valve device
EP1707754A2 (en) Pilot valve for steam turbine

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20100426

Free format text: JAPANESE INTERMEDIATE CODE: A7424