JP2008174811A - Method for forming metal conductive layer, method for forming conductive spring, and conductive spring - Google Patents

Method for forming metal conductive layer, method for forming conductive spring, and conductive spring Download PDF

Info

Publication number
JP2008174811A
JP2008174811A JP2007010720A JP2007010720A JP2008174811A JP 2008174811 A JP2008174811 A JP 2008174811A JP 2007010720 A JP2007010720 A JP 2007010720A JP 2007010720 A JP2007010720 A JP 2007010720A JP 2008174811 A JP2008174811 A JP 2008174811A
Authority
JP
Japan
Prior art keywords
metal
forming
conductive layer
spring
nanoparticle dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007010720A
Other languages
Japanese (ja)
Other versions
JP5110560B2 (en
Inventor
Yuji Suzuki
雄二 鈴木
Nobuhide Kasagi
伸英 笠木
Takumi Tsutsumino
匠 堤野
Yoshihiko Sakane
好彦 坂根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
AGC Inc
Original Assignee
Asahi Glass Co Ltd
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, University of Tokyo NUC filed Critical Asahi Glass Co Ltd
Priority to JP2007010720A priority Critical patent/JP5110560B2/en
Publication of JP2008174811A publication Critical patent/JP2008174811A/en
Application granted granted Critical
Publication of JP5110560B2 publication Critical patent/JP5110560B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for forming a metal conductive layer capable of forming a metal conductive layer with a fine wire width by a simple method; to provide a method for forming a conductive spring; and to provide a conductive spring. <P>SOLUTION: In the surface of a substrate 10 formed by silicon or the like, a flow passage 12 into which a metal nanoparticle-dispersed liquid flows and a liquid pool 16 communicated with the flow passage 12 via a communication path 14 are formed. When the metal nanoparticle-dispersed liquid is poured into the liquid pool 16 in this state, the metal nanoparticle-dispersed liquid flows into the flow passage 12 via the communication path 14 by a capillary phenomenon. Next, the metal nanoparticle-dispersed liquid is heated via the substrate 10 or directly, and the metal nanoparticles are flocculated, so as to form a metal conductive layer. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、金属導電層形成方法、導電性ばね形成方法及び導電性ばねに関する。   The present invention relates to a metal conductive layer forming method, a conductive spring forming method, and a conductive spring.

近年、リソグラフィー法よりも簡易な方法により微細なパターンを形成する方法として、金属ナノインクを用いたパターン形成が種々提案されている。例えば、下記特許文献1には、基材の表面特性を制御し、パターン形成部の親液性を他の部分より高くして、金属ナノインクを選択的に堆積し、所望のパターンを得る技術が開示されている。   In recent years, various pattern formations using metal nano-inks have been proposed as a method for forming a fine pattern by a simpler method than the lithography method. For example, Patent Document 1 below discloses a technique for controlling a surface property of a substrate, making a pattern forming unit more lyophilic than other portions, selectively depositing metal nano ink, and obtaining a desired pattern. It is disclosed.

また、下記特許文献2には、金属ナノインクをインクジェットにより吐出して微細パターンを形成する技術が開示されている。
特開2006−303199号公報 特開2003−80694号公報
Patent Document 2 below discloses a technique for forming a fine pattern by ejecting metal nano-ink by inkjet.
JP 2006-303199 A JP 2003-80694 A

しかし、上記特許文献1記載の従来技術では、使用する金属ナノインクの量が多くなる上、基材の表面特性の制御が煩雑になるという問題がある。また、特許文献2記載の従来技術では、線幅を50μm程度までしか細くできないという問題がある。   However, the conventional technique described in Patent Document 1 has a problem that the amount of metal nano ink used is increased and the control of the surface characteristics of the substrate is complicated. Further, the conventional technique described in Patent Document 2 has a problem that the line width can only be reduced to about 50 μm.

本発明は、上記従来の課題に鑑みなされたものであり、その目的は、簡易な方法により微細な線幅の金属導電層を形成することができる金属導電層形成方法、導電性ばね形成方法及び導電性ばねを提供することにある。   The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a metal conductive layer forming method, a conductive spring forming method, and a method for forming a metal conductive layer having a fine line width by a simple method. It is to provide a conductive spring.

上記目的を達成するために、請求項1記載の金属導電層形成方法の発明は、絶縁材料の内部または表面に、金属ナノ粒子分散液が流れ込む流路を形成する工程と、前記流路に前記金属ナノ粒子分散液を毛細管現象により流し込む工程と、前記金属ナノ粒子分散液を加熱し、金属ナノ粒子を凝集させて金属導電層を形成する工程と、を備えることを特徴とする。   In order to achieve the above object, the method of forming a metal conductive layer according to claim 1 includes a step of forming a flow channel into which the metal nanoparticle dispersion liquid flows in or on the surface of the insulating material, and And a step of pouring the metal nanoparticle dispersion liquid by capillary action and a step of heating the metal nanoparticle dispersion liquid to aggregate the metal nanoparticles to form a metal conductive layer.

請求項2記載の発明は、請求項1記載の金属導電層形成方法において、前記金属ナノ粒子分散液が、前記絶縁材料の内部または表面に形成した液溜から毛細管現象により前記流路に流し込まれることを特徴とする。   According to a second aspect of the present invention, in the metal conductive layer forming method according to the first aspect, the metal nanoparticle dispersion is poured into the flow path by a capillary phenomenon from a liquid reservoir formed in or on the surface of the insulating material. It is characterized by that.

請求項3記載の発明は、請求項1または請求項2記載の金属導電層形成方法において、前記金属ナノ粒子が、銀のナノ粒子であることを特徴とする。   According to a third aspect of the present invention, in the metal conductive layer forming method according to the first or second aspect, the metal nanoparticles are silver nanoparticles.

請求項4記載の導電性ばね形成方法の発明は、型材料にばねの形状の溝を形成する工程と、前記溝の両壁及び底部に有機物である絶縁材料層を蒸着し、内部または表面に金属ナノ粒子分散液が流れ込む流路を有する絶縁材料構造体を形成する工程と、前記流路に前記金属ナノ粒子分散液を毛細管現象により流し込む工程と、前記金属ナノ粒子分散液を加熱し、金属ナノ粒子を凝集させて金属導電層を形成する工程と、前記型材料を除去する工程と、を備えることを特徴とする。   According to a fourth aspect of the present invention, there is provided a conductive spring forming method comprising: forming a spring-shaped groove in a mold material; and depositing an insulating material layer, which is an organic substance, on both walls and the bottom of the groove. A step of forming an insulating material structure having a flow path into which the metal nanoparticle dispersion flows, a step of flowing the metal nanoparticle dispersion into the flow path by capillary action, and heating the metal nanoparticle dispersion to form a metal The method includes a step of aggregating nanoparticles to form a metal conductive layer, and a step of removing the mold material.

請求項5記載の発明は、請求項4記載の導電性ばね形成方法において、前記金属ナノ粒子分散液が、前記型材料に形成した液溜から毛細管現象により前記流路に流し込むことを特徴とする。   According to a fifth aspect of the present invention, in the conductive spring forming method according to the fourth aspect, the metal nanoparticle dispersion is poured into the flow path by a capillary phenomenon from a liquid reservoir formed in the mold material. .

請求項6記載の発明は、請求項4または請求項5記載の導電性ばね形成方法において、前記絶縁材料がポリパラキシリレンであることを特徴とする。   According to a sixth aspect of the present invention, in the conductive spring forming method according to the fourth or fifth aspect, the insulating material is polyparaxylylene.

請求項7記載の導電性ばねの発明は、有機物である絶縁材料により形成されたばね部と、前記ばね部の内部または表面に形成された、金属ナノ粒子が凝集した金属導電層と、を備えることを特徴とする。   According to a seventh aspect of the present invention, there is provided the conductive spring according to claim 7, comprising: a spring portion formed of an insulating material that is an organic substance; and a metal conductive layer formed by aggregation or aggregation of metal nanoparticles formed inside or on the surface of the spring portion. It is characterized by.

請求項1から請求項3の発明によれば、微細な流路に毛細管現象により金属ナノ粒子分散液を流し込むので、微細なパターンを容易に製造することができる。   According to the first to third aspects of the invention, since the metal nanoparticle dispersion liquid is poured into the fine flow path by capillary action, a fine pattern can be easily manufactured.

請求項4から請求項6の発明によれば、ばねの内部または表面に金属導電層が形成された導電性ばね形成方法を提供できる。   According to the fourth to sixth aspects of the present invention, there can be provided a conductive spring forming method in which a metal conductive layer is formed inside or on the surface of the spring.

請求項7の発明によれば、ばねの内部または表面に金属導電層が形成された導電性ばねを提供できる。   According to invention of Claim 7, the electroconductive spring in which the metal conductive layer was formed in the inside or surface of a spring can be provided.

以下、本発明を実施するための最良の形態(以下、実施形態という)を、図面に従って説明する。   Hereinafter, the best mode for carrying out the present invention (hereinafter referred to as an embodiment) will be described with reference to the drawings.

図1(a),(b)には、本発明にかかる金属導電層形成方法の一実施形態の説明図が示される。図1(a)が平面図であり、図1(b)が図1(a)のb−b断面図である。   FIGS. 1A and 1B are explanatory views of an embodiment of a metal conductive layer forming method according to the present invention. FIG. 1A is a plan view, and FIG. 1B is a cross-sectional view taken along line bb in FIG.

図1(a),(b)において、シリコン等で形成された基板10の表面には、金属ナノ粒子分散液が流れ込む流路12が形成されている。また、基板10の表面には、流路12に連通路14により連通する液溜16も形成されている。この状態で、液溜16に金属ナノ粒子分散液を注入すると、毛細管現象により連通路14を介して流路12に金属ナノ粒子分散液が流れ込む。次に、基板10を介してあるいは直接金属ナノ粒子分散液を加熱し、金属ナノ粒子を凝集させて金属導電層を形成する。   In FIGS. 1A and 1B, a channel 12 into which a metal nanoparticle dispersion liquid flows is formed on the surface of a substrate 10 made of silicon or the like. Further, a liquid reservoir 16 communicating with the flow path 12 through the communication path 14 is also formed on the surface of the substrate 10. When the metal nanoparticle dispersion liquid is injected into the liquid reservoir 16 in this state, the metal nanoparticle dispersion liquid flows into the flow path 12 through the communication path 14 by capillary action. Next, the metal nanoparticle dispersion is heated through the substrate 10 or directly, and the metal nanoparticles are aggregated to form a metal conductive layer.

なお、図1(a),(b)の例では、流路12に液溜16から金属ナノ粒子分散液を流し込む例が示されているが、流路12のいずれか一箇所または複数箇所に金属ナノ粒子分散液を滴下し、毛細管現象により流路12に金属ナノ粒子分散液を流し込んでもよい。   In the example of FIGS. 1A and 1B, an example in which the metal nanoparticle dispersion liquid is poured into the flow channel 12 from the liquid reservoir 16 is shown. However, at any one or a plurality of locations in the flow channel 12. The metal nanoparticle dispersion liquid may be dropped, and the metal nanoparticle dispersion liquid may be poured into the flow path 12 by capillary action.

また、図1(a),(b)の例では、流路12が基板10の表面に形成されているが、基板10の内部に形成されていてもよい。   Further, in the example of FIGS. 1A and 1B, the flow path 12 is formed on the surface of the substrate 10, but may be formed inside the substrate 10.

ここで、上記金属ナノ粒子分散液は、金属ナノ粒子(金属の微粒子)を溶媒中に分散剤を使用して分散させたものである。金属ナノ粒子の材料としては、例えば、金、銀、銅、白金、パラジウム、ニッケル及びこれらの合金等の導電性が優れている金属が好適である。その平均一次粒子径は、微細パターンを形成するために細かいほうが好ましく、1〜100nmとするのがよい。また、溶媒としては、トルエン、テトラデカンまたはアルコール等の有機溶媒や水を使用することができる。また、分散剤としては、上記溶媒中で金属ナノ粒子の凝集を防止し、安定的に分散状態を維持できるものであればよく、例えばアルキルアミン、クエン酸等を使用することができる。このような金属ナノ粒子分散液としては、例えば旭硝子株式会社製の銀ナノメタルインク、銅ナノメタルインクあるいはULVAC社製の銀ナノメタルインク等を使用することができる。   Here, the metal nanoparticle dispersion is obtained by dispersing metal nanoparticles (metal fine particles) in a solvent using a dispersant. As a material for the metal nanoparticles, for example, a metal having excellent conductivity such as gold, silver, copper, platinum, palladium, nickel, and alloys thereof is suitable. The average primary particle diameter is preferably fine in order to form a fine pattern, and is preferably 1 to 100 nm. Moreover, as a solvent, organic solvents, such as toluene, tetradecane, or alcohol, and water can be used. Moreover, as a dispersing agent, what prevents the aggregation of a metal nanoparticle in the said solvent and can maintain a dispersed state stably, for example, an alkylamine, a citric acid, etc. can be used. As such a metal nanoparticle dispersion, for example, silver nanometal ink manufactured by Asahi Glass Co., Ltd., copper nanometal ink, silver nanometal ink manufactured by ULVAC, or the like can be used.

本実施形態によれば、流路12に金属ナノ粒子分散液を毛細管現象により流し込むので、流路12の径が微細であっても容易に流し込むことができ、線幅が50μm以下の微細パターンを簡易に製造することができる。   According to this embodiment, since the metal nanoparticle dispersion is poured into the flow channel 12 by capillary action, it can be easily poured even if the diameter of the flow channel 12 is fine, and a fine pattern with a line width of 50 μm or less can be formed. It can be manufactured easily.

上述した本実施形態の金属導電層形成方法により微細なパターンを形成する基板10の材料としては、上記シリコンに限られるものではなく、ポリイミド、ガラスエポキシ、PDMS(ポリジメチルシロキサン)、ガラス、アクリル樹脂等の絶縁材料の他、基板上に上記絶縁材料または二酸化ケイ素、窒化ケイ素等の絶縁層を形成したものでもよい。   The material of the substrate 10 on which a fine pattern is formed by the metal conductive layer forming method of the present embodiment described above is not limited to the above silicon, but polyimide, glass epoxy, PDMS (polydimethylsiloxane), glass, acrylic resin. In addition to insulating materials such as those described above, the above insulating material or an insulating layer such as silicon dioxide or silicon nitride may be formed on a substrate.

本実施形態の金属導電層形成方法の他の応用例としては、樹脂製のばねの表面または内部に微細な金属導電層を設けた導電性ばねがある。ここで、気相中で重合可能なばねの材料としては、ポリマーでは、ポリパラキシリレン,フッ化ポリパラキシリレンまたはそれらのフッ素化誘導体がある。また、モノマーとしては、エチレン,プロピレン,スチレン,ビニルクロライド等のオレフィンモノマー、TFE(テトラフルオロエチレン),CTFE(クロロトリフルオロエチレン),VdF(ビニリデンフルオライド),パーフルオロアリルビニルエーテル,パーフルオロブテニルビニルエーテル等のフッ素系オレフィンモノマー、メチルメタクリレート,メチルアクリレート,フルオロアクリレート等のアクリルモノマー等がある。   As another application example of the metal conductive layer forming method of the present embodiment, there is a conductive spring in which a fine metal conductive layer is provided on the surface or inside of a resin spring. Here, as a material of the spring that can be polymerized in the gas phase, as a polymer, there is polyparaxylylene, fluorinated polyparaxylylene, or a fluorinated derivative thereof. As monomers, olefin monomers such as ethylene, propylene, styrene, vinyl chloride, TFE (tetrafluoroethylene), CTFE (chlorotrifluoroethylene), VdF (vinylidene fluoride), perfluoroallyl vinyl ether, perfluorobutenyl There are fluorine-based olefin monomers such as vinyl ether, acrylic monomers such as methyl methacrylate, methyl acrylate, and fluoro acrylate.

以下、本発明の具体例を実施例として説明する。   Hereinafter, specific examples of the present invention will be described as examples.

実施例1.
・基板表面に金属導電層を形成する方法
図2(a)〜(d)には、本実施例の工程を説明するための基板断面図が示される。図2(a)において、シリコン基板100上の酸化膜(厚さ2ミクロン)102上にフォトレジスト104をスピンコートにより塗布し、フォトリソグラフィにより電極形状をパタニングする。
Example 1.
-Method for Forming Metal Conductive Layer on Substrate Surface FIGS. 2A to 2D are cross-sectional views of the substrate for explaining the steps of this embodiment. In FIG. 2A, a photoresist 104 is applied on an oxide film (thickness 2 microns) 102 on a silicon substrate 100 by spin coating, and an electrode shape is patterned by photolithography.

次に、図2(b)に示されるように、バッファードフッ酸により酸化膜102をエッチングし、シリコン表面を露出させた後、シリコン深掘エッチング装置(DRIE)によりSFガスとCガスの高密度プラズマの中でシリコン基板100に幅20〜40ミクロンの溝106を形成する。また、同時に金属ナノ粒子分散液を溜めるための液溜108も溝106と同様に形成しておく。このシリコン深掘エッチング工程では、酸化膜102上のフォトレジスト104も除去される。 Next, as shown in FIG. 2B, the oxide film 102 is etched with buffered hydrofluoric acid to expose the silicon surface, and then SF 6 gas and C 4 F are etched with a silicon deep etching apparatus (DRIE). A groove 106 having a width of 20 to 40 microns is formed in the silicon substrate 100 in a high-density plasma of 8 gases. At the same time, a liquid reservoir 108 for storing the metal nanoparticle dispersion is also formed in the same manner as the groove 106. In this silicon deep etching step, the photoresist 104 on the oxide film 102 is also removed.

その後、図2(c)に示されるように、パラキシリレンダイマーを用いて10〜25ミクロン厚のポリパラキシリレン(通称、パリレン:Parylene)層を絶縁材料110として蒸着する。この蒸着は、例えばCVD(化学気相成長法)で行うことができる。蒸着終了後、ポリパラキシリレン層の表面には溝幅とほぼ同じのV字の谷が形成される。この谷が金属ナノ粒子分散液の流路112となる。なお、図2(b)で形成した液溜108と流路112との間は、図示しない連通路により連絡しておく。   After that, as shown in FIG. 2C, a polyparaxylylene (common name: Parylene) layer having a thickness of 10 to 25 microns is deposited as an insulating material 110 using a paraxylylene dimer. This vapor deposition can be performed by, for example, CVD (chemical vapor deposition). After the vapor deposition is completed, a V-shaped valley substantially the same as the groove width is formed on the surface of the polyparaxylylene layer. This valley becomes the flow path 112 of the metal nanoparticle dispersion. Note that the liquid reservoir 108 formed in FIG. 2B and the flow path 112 are communicated with each other through a communication path (not shown).

なお、図2(a),(b),(c)で説明した工程は、金属ナノ粒子分散液の流路112を形成する方法の一例であり、インプリント,レーザー加工等の方法により基板100上に直接流路112を形成してもよい。   2A, 2B, and 2C is an example of a method of forming the metal nanoparticle dispersion liquid channel 112, and the substrate 100 is formed by a method such as imprinting or laser processing. The flow path 112 may be formed directly on the top.

次に、図2(d)に示されるように、予めシリコン基板100上に作り込んでおいた液溜108に、金属導電層の材料となる金属ナノ粒子分散液114として銀粒子をテトラデカン溶媒に分散させた、ULVAC社製の銀ナノメタルインク L−Ag1TeHを注入する。液溜108に注入された金属ナノ粒子分散液114は、毛細管現象により液溜108から流路112に連通路を介して流れ込む。   Next, as shown in FIG. 2 (d), silver particles are used in a tetradecane solvent as a metal nanoparticle dispersion liquid 114, which is a material for the metal conductive layer, in a liquid reservoir 108 previously formed on the silicon substrate 100. Dispersed silver nanometal ink L-Ag1TeH manufactured by ULVAC is injected. The metal nanoparticle dispersion liquid 114 injected into the liquid reservoir 108 flows from the liquid reservoir 108 into the flow path 112 through the communication path by capillary action.

次に、金属ナノ粒子分散液の溶媒を気化させ、または銀粒子の表面の分散剤を離脱させるために、150℃のオーブン中で1時間ベークを行うと、図2(d)に示されるように、銀粒子が凝集し、流路112に沿った金属導電層116が形成される。なお、流路112に金属ナノ粒子分散液114を流し込むためには、液溜108の形成が必須条件ではない。金属ナノ粒子分散液114を流路112の一箇所または複数箇所に滴下するだけで毛細管現象により金属ナノ粒子分散液114を流路112に流し込むことができる。   Next, in order to vaporize the solvent of the metal nanoparticle dispersion or release the dispersant on the surface of the silver particles, baking is performed in an oven at 150 ° C. for 1 hour, as shown in FIG. In addition, the silver particles aggregate to form the metal conductive layer 116 along the flow path 112. In order to flow the metal nanoparticle dispersion liquid 114 into the flow path 112, formation of the liquid reservoir 108 is not an essential condition. The metal nanoparticle dispersion liquid 114 can be poured into the flow path 112 by capillary action simply by dropping the metal nanoparticle dispersion liquid 114 at one or a plurality of locations in the flow path 112.

・絶縁材料表面に形成した金属導電層の評価
上述した工程で製作した金属導電層116の電気抵抗をマルチメーター(アドバンテスト社製 AD−7451)で測定した。
-Evaluation of the metal conductive layer formed on the surface of the insulating material The electric resistance of the metal conductive layer 116 manufactured in the above-described process was measured with a multimeter (AD-7451 manufactured by Advantest Corporation).

幅40ミクロンの流路112に沿って形成した金属導電層116の場合、抵抗値は長さ1mmあたり約3オームであり、体積抵抗率は13マイクロオーム・cm程度であった。これは原料として用いたナノメタルインク(ULVAC社製 L−Ag1TeH)のカタログ値10マイクロオーム・cmとほぼ等しく、本実施例により形成した金属導電層116は、プリント基板その他の導電部として問題なく使用できることが確認された。   In the case of the metal conductive layer 116 formed along the flow path 112 having a width of 40 microns, the resistance value was about 3 ohms per 1 mm length, and the volume resistivity was about 13 micro ohms · cm. This is almost equal to the catalog value of 10 micro ohm · cm of the nano metal ink (ULVAC L-Ag1TeH) used as a raw material, and the metal conductive layer 116 formed in this example can be used as a printed circuit board or other conductive part without any problem. It was confirmed that it was possible.

実施例2.
・ばね内部に金属導電層を備える導電性ばね形成方法
図3(a)〜(g)には、本実施例の工程を説明するための基板断面図が示される。図3(a)において、シリコン基板100上の酸化膜(厚さ2ミクロン)102上にフォトレジスト104をスピンコートにより塗布し、フォトリソグラフィによりバネ形状をパタニングする。
Example 2
-Conductive spring forming method provided with a metal conductive layer inside the spring FIGS. 3A to 3G are substrate cross-sectional views for explaining the steps of the present embodiment. In FIG. 3A, a photoresist 104 is applied onto an oxide film (thickness 2 microns) 102 on a silicon substrate 100 by spin coating, and a spring shape is patterned by photolithography.

次に、図3(b)に示されるように、バッファードフッ酸により酸化膜102をエッチングし、バネとなる部分のシリコン表面を露出させた後、シリコン深掘エッチング装置(DRIE)によりSFガスとCガスの高密度プラズマの中でシリコン基板100に幅20,30または40ミクロン、深さ200〜400ミクロン程度の溝106を形成する。また、同時に金属ナノ粒子分散液を溜めるための液溜108も溝106と同様に形成しておく。なお、図2(a),(b),(c)における流路112の形成の場合と同様に、溝106はインプリント,レーザ加工等の方法により形成してもよい。 Next, as shown in FIG. 3 (b), the oxide film 102 is etched with buffered hydrofluoric acid to expose the silicon surface of the portion to be a spring, and then SF 6 is etched by a silicon deep etching apparatus (DRIE). gas and C 4 F 8 the width 20, 30 or 40 microns into the silicon substrate 100 in a high density plasma gas to form a groove 106 having a depth of about 200 to 400 microns. At the same time, a liquid reservoir 108 for storing the metal nanoparticle dispersion is also formed in the same manner as the groove 106. Note that the grooves 106 may be formed by a method such as imprinting or laser processing, as in the case of forming the flow path 112 in FIGS. 2 (a), 2 (b), and 2 (c).

その後、図3(c)に示されるように、パラキシリレンダイマーを用いて、10〜25ミクロン厚のポリパラキシリレン層を絶縁材料110として蒸着する。蒸着時、溝106の上部角部には蒸着膜が速く形成されるため、蒸着終了後、溝106の内部に幅5〜10ミクロン程度の空隙118が形成された絶縁材料構造体が得られる。なお、図3(b)で形成した液溜108と空隙118との間は、図示しない連通路により連絡しておく。   Thereafter, as shown in FIG. 3C, a polyparaxylylene layer having a thickness of 10 to 25 microns is deposited as an insulating material 110 using a paraxylylene dimer. At the time of vapor deposition, a vapor deposition film is quickly formed at the upper corner of the groove 106. Therefore, after the vapor deposition is completed, an insulating material structure in which a gap 118 having a width of about 5 to 10 microns is formed inside the groove 106 is obtained. Note that the liquid reservoir 108 and the gap 118 formed in FIG. 3B are communicated with each other through a communication path (not shown).

次に、図3(d)に示されるように、予めシリコン基板100上に作り込んでおいた液溜108に、金属導電層の材料となる金属ナノ粒子分散液114として銀粒子をテトラデカン溶媒に分散させた、ULVAC社製の銀ナノメタルインク L−Ag1TeHを注入する。液溜108に注入された金属ナノ粒子分散液114は、毛細管現象により液溜108から空隙118に連通路を介して流れ込む。   Next, as shown in FIG. 3 (d), silver particles are used in a tetradecane solvent as a metal nanoparticle dispersion liquid 114, which is a material of the metal conductive layer, in a liquid reservoir 108 previously formed on the silicon substrate 100. Dispersed silver nanometal ink L-Ag1TeH manufactured by ULVAC is injected. The metal nanoparticle dispersion liquid 114 injected into the liquid reservoir 108 flows from the liquid reservoir 108 into the gap 118 via the communication path by capillary action.

次に、金属ナノ粒子分散液の溶媒を気化させ、または銀粒子の表面の分散剤を離脱させるために、150℃のオーブン中で1時間ベークを行うと、図3(d)に示されるように、銀粒子が凝集し、空隙118に沿った金属導電層116が形成される。なお、空隙118に金属ナノ粒子分散液114を流し込むためには、液溜108の形成が必須条件ではない。空隙118の適宜な位置で絶縁材料110に孔を開け、この孔の上に金属ナノ粒子分散液114を滴下するだけで毛細管現象により金属ナノ粒子分散液114を空隙118に流し込むことができる。   Next, in order to vaporize the solvent of the metal nanoparticle dispersion or release the dispersant on the surface of the silver particles, baking is performed in an oven at 150 ° C. for 1 hour, as shown in FIG. In addition, the silver particles aggregate to form the metal conductive layer 116 along the gap 118. In order to flow the metal nanoparticle dispersion liquid 114 into the void 118, formation of the liquid reservoir 108 is not an essential condition. The metal nanoparticle dispersion liquid 114 can be poured into the gap 118 by capillary action simply by opening a hole in the insulating material 110 at an appropriate position of the gap 118 and dropping the metal nanoparticle dispersion liquid 114 onto the hole.

次に、シリコン基板100全面に真空蒸着により銅薄膜を形成し、フォトリソグラフィによりパタニングして図3(e)に示されるような銅薄膜120を得る。この銅薄膜120をマスクとして酸素プラズマにより絶縁材料110をエッチングし、さらにバッファードフッ酸により酸化膜102を除去して、図3(f)に示されるように、一部の溝106周囲のシリコン基板100を露出させる。   Next, a copper thin film is formed on the entire surface of the silicon substrate 100 by vacuum deposition, and is patterned by photolithography to obtain a copper thin film 120 as shown in FIG. Using the copper thin film 120 as a mask, the insulating material 110 is etched by oxygen plasma, and the oxide film 102 is removed by buffered hydrofluoric acid. As shown in FIG. The substrate 100 is exposed.

最後に、銅薄膜120をウェットエッチングした後、XeFガスを用いてシリコン基板100をエッチングし、図3(g)に示されるように、周囲のシリコン基板100から独立したばね構造を得る。以上により、ばねの内部に金属導電層116が形成され、20,30及び40ミクロン幅のパリレン製導電性ばねが3種類得られた。なお、本実施例においては、金属導電層116がばねの内部に形成されているが、実施例1のように、ポリパラキシリレン層の表面に生じるV字の谷に沿って、すなわち導電性ばねの表面に金属導電層116を形成してもよい。 Finally, after the copper thin film 120 is wet-etched, the silicon substrate 100 is etched using XeF 2 gas to obtain a spring structure independent of the surrounding silicon substrate 100 as shown in FIG. As described above, the metal conductive layer 116 was formed inside the spring, and three types of conductive springs made of parylene having a width of 20, 30 and 40 microns were obtained. In this embodiment, the metal conductive layer 116 is formed inside the spring. However, as in the first embodiment, along the V-shaped valley formed on the surface of the polyparaxylylene layer, that is, the conductivity. A metal conductive layer 116 may be formed on the surface of the spring.

・パリレン製の導電性ばねの評価
上述した工程で製作した導電性ばねを小型スピーカーに取りつけ、周波数発生器(テクトロニクス社製 AFG−3022)と小型アンプ(Velleman社製 P2632)によりスピーカーを微小振動させてデバイスを外側から振動させた。パリレン製の導電性ばねで支えられた振動子をCCDカメラ(SONY製 XC−75)で観察することにより、振動子の振幅を測定した。また、導電性ばねの電気抵抗は、導電性ばねの端部にリード線を取付け、両端の抵抗をマルチメーター(アドバンテスト社製 AD−7451)で測定した。
・ Evaluation of Parylene-made conductive spring The conductive spring manufactured in the above-described process is attached to a small speaker, and the speaker is minutely vibrated by a frequency generator (AFG-3022 manufactured by Tektronix) and a small amplifier (P2632 manufactured by Velleman). The device was vibrated from the outside. The amplitude of the vibrator was measured by observing the vibrator supported by a conductive spring made of parylene with a CCD camera (XC-75 made by SONY). The electrical resistance of the conductive spring was measured by attaching a lead wire to the end of the conductive spring and measuring the resistance at both ends with a multimeter (AD-7451 manufactured by Advantest).

上記測定の結果、20,30,40ミクロン幅の導電性ばねで支えられる振動子について、共振周波数がそれぞれ81,155,270Hzであった。これは、内部に金属導電層116を形成しないパリレン製のばねに対して50〜80%バネ定数が増加していることを示しているが、0.3mm以上の振幅で振動させることができ、実用上問題のないばねが得られることがわかった。   As a result of the above measurement, the resonance frequencies of the vibrators supported by the conductive springs having a width of 20, 30, and 40 microns were 81, 155, and 270 Hz, respectively. This shows that the spring constant is increased by 50 to 80% with respect to the parylene spring in which the metal conductive layer 116 is not formed, but can be vibrated with an amplitude of 0.3 mm or more, It was found that a spring having no problem in practical use can be obtained.

また、電気抵抗は100Ω程度であり、実用に耐える値であることがわかった。   Further, the electric resistance was about 100Ω, and it was found that the value was practically usable.

さらに、最大振幅0.3mmで10回以上振動させた場合でも、バネ定数、電気抵抗値の変化は小さく、耐久性も備えることがわかった。 Furthermore, it was found that even when the maximum amplitude was 0.3 mm and the vibration was repeated 10 7 times or more, changes in the spring constant and electric resistance value were small and durability was provided.

ここで、以上の実施例1,2におけるSF及びCの高密度プラズマによるエッチング条件の概略は、以下の通りである。
装置:アルカテル社製AMS−100
プラズマ出力:1800W
ガス:SF,C
ボッシュプロセス
サイクロタイム SF 5秒,C 2秒
Here, the outline of the etching conditions by SF 6 and C 4 F 8 high-density plasma in Examples 1 and 2 is as follows.
Apparatus: AMS-100 manufactured by Alcatel
Plasma output: 1800W
Gas: SF 6, C 4 F 8
Bosch process cyclo time SF 6 5 seconds, C 4 F 8 2 seconds

また、酸素プラズマによるエッチング条件の概略は、以下の通りである。
装置:サムコ社製RIE−10NR
ガス:酸素
プラズマ出力:100W
Moreover, the outline of the etching conditions by oxygen plasma is as follows.
Apparatus: RIE-10NR manufactured by Samco
Gas: Oxygen plasma output: 100W

図4には、実施例2で製作した導電性ばねの応用例が示される。図4において、基板10は中空構造とされており、内部にエレクトレット発電装置等の素子18が形成されている。この素子18は、基板10に対して導電性ばね20により振動可能に支持されている。素子18には、適宜な駆動回路22から導電性ばね20を介して駆動電力が供給され、振動駆動される構成となっている。あるいは、素子18で発生した信号を、導電性ばね20を介して外部に取り出す構成とすることもできる。   FIG. 4 shows an application example of the conductive spring manufactured in the second embodiment. In FIG. 4, the substrate 10 has a hollow structure, and an element 18 such as an electret power generator is formed therein. The element 18 is supported by the conductive spring 20 with respect to the substrate 10 so as to vibrate. The element 18 is configured to be driven to vibrate by being supplied with drive power from the appropriate drive circuit 22 via the conductive spring 20. Alternatively, a signal generated by the element 18 can be extracted to the outside through the conductive spring 20.

本発明にかかる金属導電層形成方法の一実施形態の説明図である。It is explanatory drawing of one Embodiment of the metal conductive layer formation method concerning this invention. 実施例1の工程を説明するための基板断面図である。FIG. 6 is a substrate cross-sectional view for explaining a process of the first embodiment. 実施例2の工程を説明するための基板断面図である。10 is a substrate cross-sectional view for explaining a process of Example 2. FIG. 実施例2で製作した導電性ばねの応用例を示す図である。6 is a diagram illustrating an application example of a conductive spring manufactured in Example 2. FIG.

符号の説明Explanation of symbols

10 基板、12 流路、14 連通路、16 液溜、18 素子、20 導電性ばね、22 駆動回路、100 シリコン基板、102 酸化膜、104 フォトレジスト、106 溝、108 液溜、110 絶縁材料、112 流路、114 金属ナノ粒子分散液、116 金属導電層、118 空隙、120 銅薄膜。   10 substrate, 12 flow path, 14 communication path, 16 liquid reservoir, 18 element, 20 conductive spring, 22 drive circuit, 100 silicon substrate, 102 oxide film, 104 photoresist, 106 groove, 108 liquid reservoir, 110 insulating material, 112 flow path, 114 metal nanoparticle dispersion, 116 metal conductive layer, 118 void, 120 copper thin film.

Claims (7)

絶縁材料の内部または表面に、金属ナノ粒子分散液が流れ込む流路を形成する工程と、
前記流路に前記金属ナノ粒子分散液を毛細管現象により流し込む工程と、
前記金属ナノ粒子分散液を加熱し、金属ナノ粒子を凝集させて金属導電層を形成する工程と、
を備えることを特徴とする金属導電層形成方法。
Forming a flow path through which the metal nanoparticle dispersion flows in or on the surface of the insulating material;
Pouring the metal nanoparticle dispersion into the flow path by capillary action;
Heating the metal nanoparticle dispersion and aggregating the metal nanoparticles to form a metal conductive layer;
A method for forming a metal conductive layer, comprising:
請求項1記載の金属導電層形成方法において、前記金属ナノ粒子分散液は、前記絶縁材料の内部または表面に形成した液溜から毛細管現象により前記流路に流し込まれることを特徴とする金属導電層形成方法。   2. The metal conductive layer forming method according to claim 1, wherein the metal nanoparticle dispersion liquid is poured into the flow path by a capillary phenomenon from a liquid reservoir formed inside or on the surface of the insulating material. Forming method. 請求項1または請求項2記載の金属導電層形成方法において、前記金属ナノ粒子は、銀のナノ粒子であることを特徴とする金属導電層形成方法。   3. The method for forming a metal conductive layer according to claim 1, wherein the metal nanoparticles are silver nanoparticles. 型材料にばねの形状の溝を形成する工程と、
前記溝の両壁及び底部に有機物である絶縁材料層を蒸着し、内部または表面に金属ナノ粒子分散液が流れ込む流路を有する絶縁材料構造体を形成する工程と、
前記流路に前記金属ナノ粒子分散液を毛細管現象により流し込む工程と、
前記金属ナノ粒子分散液を加熱し、金属ナノ粒子を凝集させて金属導電層を形成する工程と、
前記型材料を除去する工程と、
を備えることを特徴とする導電性ばね形成方法。
Forming a spring-shaped groove in the mold material;
Vapor-depositing an insulating material layer which is an organic substance on both walls and the bottom of the groove, and forming an insulating material structure having a flow path through which the metal nanoparticle dispersion flows in or on the surface;
Pouring the metal nanoparticle dispersion into the flow path by capillary action;
Heating the metal nanoparticle dispersion and aggregating the metal nanoparticles to form a metal conductive layer;
Removing the mold material;
A method of forming a conductive spring, comprising:
請求項4記載の導電性ばね形成方法において、前記金属ナノ粒子分散液は、前記型材料に形成した液溜から毛細管現象により前記流路に流し込むことを特徴とする導電性ばね形成方法。   5. The method for forming a conductive spring according to claim 4, wherein the metal nanoparticle dispersion liquid is poured into the flow path by a capillary phenomenon from a liquid reservoir formed in the mold material. 請求項4または請求項5記載の導電性ばね形成方法において、前記絶縁材料がポリパラキシリレンであることを特徴とする導電性ばね形成方法。   The method for forming a conductive spring according to claim 4 or 5, wherein the insulating material is polyparaxylylene. 有機物である絶縁材料により形成されたばね部と、
前記ばね部の内部または表面に形成された、金属ナノ粒子が凝集した金属導電層と、
を備えることを特徴とする導電性ばね。
A spring portion formed of an insulating material that is organic,
A metal conductive layer in which metal nanoparticles are aggregated, formed inside or on the surface of the spring portion;
A conductive spring comprising:
JP2007010720A 2007-01-19 2007-01-19 Method for forming conductive spring Active JP5110560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007010720A JP5110560B2 (en) 2007-01-19 2007-01-19 Method for forming conductive spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007010720A JP5110560B2 (en) 2007-01-19 2007-01-19 Method for forming conductive spring

Publications (2)

Publication Number Publication Date
JP2008174811A true JP2008174811A (en) 2008-07-31
JP5110560B2 JP5110560B2 (en) 2012-12-26

Family

ID=39702034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007010720A Active JP5110560B2 (en) 2007-01-19 2007-01-19 Method for forming conductive spring

Country Status (1)

Country Link
JP (1) JP5110560B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016016461A (en) * 2014-07-04 2016-02-01 日本電信電話株式会社 Method for manufacturing spring for minute vibration element

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01274382A (en) * 1988-04-04 1989-11-02 Subirex Corp Microwave heating digester
JP2002536503A (en) * 1999-02-03 2002-10-29 バイエル アクチェンゲゼルシャフト Molded parts capable of metal plating
JP2002361127A (en) * 2001-06-05 2002-12-17 Canyon Corp Spring element, trigger spray having the same and spray container equipped therewith
JP2003025300A (en) * 2001-07-12 2003-01-29 Fuji Photo Film Co Ltd Method of introducing nano particle into micro space, and structure manufactured using it
WO2005025787A1 (en) * 2003-09-12 2005-03-24 National Institute Of Advanced Industrial Science And Technology Metal nano particle liquid dispersion capable of being sprayed in fine particle form and being applied in laminated state
JP2006291303A (en) * 2005-04-12 2006-10-26 Kyoto Univ Particulate assembling structure and assembling method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01274382A (en) * 1988-04-04 1989-11-02 Subirex Corp Microwave heating digester
JP2002536503A (en) * 1999-02-03 2002-10-29 バイエル アクチェンゲゼルシャフト Molded parts capable of metal plating
JP2002361127A (en) * 2001-06-05 2002-12-17 Canyon Corp Spring element, trigger spray having the same and spray container equipped therewith
JP2003025300A (en) * 2001-07-12 2003-01-29 Fuji Photo Film Co Ltd Method of introducing nano particle into micro space, and structure manufactured using it
WO2005025787A1 (en) * 2003-09-12 2005-03-24 National Institute Of Advanced Industrial Science And Technology Metal nano particle liquid dispersion capable of being sprayed in fine particle form and being applied in laminated state
JP2006291303A (en) * 2005-04-12 2006-10-26 Kyoto Univ Particulate assembling structure and assembling method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016016461A (en) * 2014-07-04 2016-02-01 日本電信電話株式会社 Method for manufacturing spring for minute vibration element

Also Published As

Publication number Publication date
JP5110560B2 (en) 2012-12-26

Similar Documents

Publication Publication Date Title
JP5305993B2 (en) Capacitive electromechanical transducer manufacturing method and capacitive electromechanical transducer
CN103189305B (en) The FEEDBACK CONTROL of size in nano-pore and nano-fluid device
US20090151429A1 (en) Micro gas sensor and manufacturing method thereof
TW516061B (en) Manufacturing method for triode-type electron emitting source
US20110316100A1 (en) Mems microphone and method for manufacturing same
JP2010179457A (en) Fine three-dimensional structure
Kim et al. Onset condition of pulsating cone-jet mode of electrohydrodynamic jetting for plane, hole, and pin type electrodes
JP4362629B2 (en) Manufacturing method of batch transfer type inkjet nozzle plate
JP2011152010A (en) Power generation device
JP2017510999A (en) Symmetric double piezoelectric stack microelectromechanical piezoelectric device
JP5110560B2 (en) Method for forming conductive spring
JP5230810B2 (en) Resonator and manufacturing method thereof
JP4302591B2 (en) Droplet formation condition determination method, droplet volume measurement method, particle number measurement method, and droplet formation apparatus
JP2012244349A (en) Micro mechanical vibrator and method of manufacturing the same
Lee et al. Fabrication of high aspect ratio insulating nozzle using glass reflow process and its electrohydrodynamic printing characteristics
Yang et al. Addressable electrohydrodynamic jetting via tuning the potential drop of liquid within the printhead
SE463654B (en) MEMBRANE STRUCTURE AS WELL AS MANUFACTURING THEM
KR101829302B1 (en) Method for manufacturing assembly structure of nanomaterial and apparatus therefor
Khan Magnetic Polymer Composite Transducers for Integrated Systems
KR20190081504A (en) 3d nano structure manufacturing method and 3d nano device manufacturing method
Li et al. Fast and versatile electrostatic disc microprinting for piezoelectric elements
KR101012617B1 (en) Acoustic transducer, method for manufacturing the same and acoustic device having the same
JP2011032574A (en) Electro-deposition of nano pattern
JP2006073610A (en) Multilayer wiring board, manufacturing method thereof, electrooptic device, manufacturing method thereof, electronic equipment, and manufacturing method thereof
KR20150113471A (en) The manufactoring method of fine metal mesh

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121003

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350