JP2008174605A - Fiber-reinforced resin - Google Patents

Fiber-reinforced resin Download PDF

Info

Publication number
JP2008174605A
JP2008174605A JP2007007802A JP2007007802A JP2008174605A JP 2008174605 A JP2008174605 A JP 2008174605A JP 2007007802 A JP2007007802 A JP 2007007802A JP 2007007802 A JP2007007802 A JP 2007007802A JP 2008174605 A JP2008174605 A JP 2008174605A
Authority
JP
Japan
Prior art keywords
fiber
reinforcing
fibers
reinforced resin
bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007007802A
Other languages
Japanese (ja)
Other versions
JP5194453B2 (en
Inventor
Shunei Sekido
俊英 関戸
Akihiko Kitano
彰彦 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2007007802A priority Critical patent/JP5194453B2/en
Publication of JP2008174605A publication Critical patent/JP2008174605A/en
Application granted granted Critical
Publication of JP5194453B2 publication Critical patent/JP5194453B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a fiber-reinforced resin which considers the limit of a fiber-reinforced resin molded by a conventional general SMC, uses a reinforcing fiber bundle of short fibers in a specific range and readily develops mechanical properties such as a high degree of isotropy, a high strength, etc. <P>SOLUTION: The fiber-reinforced resin comprises a reinforcing fiber base composed of a group of a reinforcing fiber bundle of short fibers and a matrix resin composed of a thermosetting resin. The fiber bundle of the reinforcing fiber base in an amount of ≥90% is composed of a fiber bundle separated so as to make the number of single fibers of ≤100 and the number of straight fiber bundles is ≥70% the number of the total fiber bundles. The orientation of the fiber bundles is two-dimensionally pseudo-isotropy and the volume content of the reinforcing fiber is ≥35%. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、繊維強化樹脂に関し、とくに、短繊維の強化繊維を用いた、高い強度を発現可能な繊維強化樹脂に関する。   The present invention relates to a fiber reinforced resin, and in particular, to a fiber reinforced resin using a short fiber reinforced fiber and capable of expressing high strength.

強化繊維を用いて樹脂を強化した繊維強化樹脂には、連続繊維からなる織物や一方向シートを強化繊維基材とするものと、短繊維の強化繊維を用いたものがある。連続繊維の強化繊維基材を用いた繊維強化樹脂は、強度特性等の異方性が極めて高く、主としてその異方性を前提とした、あるいはその異方性を利用した用途に適用されている。一方、短繊維の強化繊維からなる強化繊維基材を用いた繊維強化樹脂では、この異方性を軽減可能ではあるものの、その製法によっては、相当程度の異方性が残り、かつ、発現可能な強度等の機械特性にも限界がある。   There are two types of fiber reinforced resins in which a resin is reinforced with reinforced fibers, one using a woven or unidirectional sheet made of continuous fibers as a reinforced fiber base, and one using reinforced fibers of short fibers. A fiber reinforced resin using a continuous fiber reinforced fiber base material has extremely high anisotropy such as strength characteristics, and is mainly applied to applications based on or using the anisotropy. . On the other hand, the fiber reinforced resin using a reinforced fiber base material composed of short fiber reinforced fibers can reduce this anisotropy, but depending on the manufacturing method, a considerable degree of anisotropy remains and can be expressed. There are limits to mechanical properties such as strength.

短繊維の強化繊維を用いた繊維強化樹脂の代表的なものとして、SMC(Sheet Molding Compound)により成形された繊維強化樹脂が知られている。強化繊維(例えば、炭素繊維)は、工業的には通常、強化繊維の繊維束(ストランド)として製造され、生産性や製造コスト等を考慮して、通常、単糸数が1,000本(1K)から48,000本(48K)までの繊維束として製造されている。上記SMCでは、このような強化繊維の繊維束が用いられている。   A fiber reinforced resin molded by SMC (Sheet Molding Compound) is known as a representative fiber reinforced resin using reinforced fibers of short fibers. Reinforcing fibers (for example, carbon fibers) are industrially usually manufactured as fiber bundles (strands) of reinforcing fibers, and the number of single yarns is usually 1,000 (1K) in consideration of productivity and manufacturing cost. ) To 48,000 (48K) fiber bundles. In the SMC, a fiber bundle of such reinforcing fibers is used.

図6に、SMCにおける強化繊維基材の概念を示す。すなわち、SMCでは、半硬化状態の熱硬化性樹脂フィルム(シート)上に、連続繊維の強化繊維からなる強化繊維束を所定の長さにカット(チョップド化)しながら、カットされた短繊維の強化繊維からなる強化繊維束51をランダムな方向に散布し、樹脂をホットプレス含浸してシート化することにより、樹脂含浸した強化繊維基材50が得られる(通常、半硬化樹脂と強化繊維基材50とのプリプレグの形態)。この強化繊維基材50は、一般的には連続して製造される。このようなSMCのシート化工程には、強化繊維束を開繊し、分繊する工程がないので、図中円内の繊維束51のように、強化繊維の繊維束が、その単糸が実質的に分繊されることなく前記所定量(1K〜48K本)に収束されたままの状態(つまり、ストランド形態のままの状態)にあり、その分、強化繊維の配向状態としての等方性は低い。しかし、ストランド状態であるので、繊維束としての剛性が高いため、真直状態の繊維長(上記カット長)は長くすることが可能である。その半面、SMCの特徴である加圧成形時に樹脂含浸された繊維束が、低粘度の樹脂とともにプレス圧で流され、成形体の曲面部や角部、コーナー部などで繊維が曲がったり折れたりする箇所が多くなる。また、成形体の強度を向上するために強化繊維の体積含有率を増大させようとしてプレス圧を強引に上げると、繊維束同士の重なりによる屈曲によって、平坦部でも繊維束の曲がりや繊維折れが発生しやすくなる。これら繊維束の曲がりや繊維折れが発生していると、その部位から破壊に繋がる亀裂が進展しやすくなり、繊維強化樹脂の強度向上が望めないことになる。つまり、従来一般のSMCによって成形された繊維強化樹脂では、強度向上に限界がある。   In FIG. 6, the concept of the reinforced fiber base material in SMC is shown. That is, in SMC, while cutting a reinforced fiber bundle made of continuous fiber reinforced fibers to a predetermined length on a thermosetting resin film (sheet) in a semi-cured state, A reinforcing fiber bundle 51 made of reinforcing fibers is dispersed in random directions, and a resin is impregnated with a hot press to form a sheet, whereby a resin-impregnated reinforcing fiber substrate 50 is obtained (usually semi-cured resin and reinforcing fiber base). Prepreg form with the material 50). The reinforcing fiber base 50 is generally manufactured continuously. In such a SMC sheeting process, there is no process for opening and splitting the reinforcing fiber bundle, so that the fiber bundle of reinforcing fibers, like the fiber bundle 51 in the circle in the figure, has a single yarn. It is in a state where it is converged to the predetermined amount (1K to 48K) without being divided into fibers (that is, in a state of strands), and isotropic as the orientation state of the reinforcing fibers. The nature is low. However, since it is in a strand state and has high rigidity as a fiber bundle, the straight fiber length (the cut length) can be increased. On the other hand, fiber bundles impregnated with resin at the time of pressure molding, which is a feature of SMC, are flowed by pressing pressure together with low-viscosity resin, and the fibers are bent or bent at the curved surface, corners, corners, etc. There are many places to do. In addition, when the press pressure is forcibly increased in order to increase the volume content of the reinforcing fiber in order to improve the strength of the molded body, the fiber bundle is bent or broken even in the flat part due to bending due to the overlap of the fiber bundles. It tends to occur. When these fiber bundles are bent or broken, cracks that lead to breakage tend to develop from the site, and the strength of the fiber reinforced resin cannot be improved. That is, there is a limit to the strength improvement in the fiber reinforced resin molded by the conventional general SMC.

また、SMCでは、多数の強化繊維が集束された繊維束の状態のままの強化繊維基材であるため、強化繊維束をあるレベル以上に密集させることは困難である(プレス圧で強引に密集させようとすると、上述の問題が顕著になる)。そのため、通常、繊維体積含浸率としては、40%に至らず、繊維体積含浸率増大による強度向上には限界がある。また、各繊維束が1K以上の単糸からなる比較的太い繊維束であるため、繊維束間の樹脂部分が比較的大きくなり、上述のような破壊の起点となる繊維束の曲がりや繊維折れが発生していると、樹脂部分で破壊に繋がる亀裂がより進展しやすくなる。この面からも、従来一般のSMCによって成形された繊維強化樹脂では、強度向上に限界が生じる。   In addition, since the SMC is a reinforcing fiber base material in a state of a bundle of fibers in which a large number of reinforcing fibers are bundled, it is difficult to close the reinforcing fiber bundles to a certain level or more (forcibly densely packed by pressing pressure). If you try to do so, the above-mentioned problem becomes remarkable). For this reason, the fiber volume impregnation rate usually does not reach 40%, and there is a limit to improving the strength by increasing the fiber volume impregnation rate. In addition, since each fiber bundle is a relatively thick fiber bundle made of single yarn of 1K or more, the resin portion between the fiber bundles becomes relatively large, and the bending or fiber breakage of the fiber bundle that becomes the starting point of breakage as described above. When this occurs, cracks that lead to breakage at the resin portion are more likely to progress. Also from this aspect, there is a limit to the strength improvement in the fiber reinforced resin formed by the conventional general SMC.

そこで本発明の課題は、上記のような従来一般のSMCによって成形された繊維強化樹脂の限界に鑑み、特定範囲の短繊維の強化繊維束を用いた、等方性の程度の高い、かつ、高い強度等の機械特性を容易に発現可能な繊維強化樹脂を提供することにある。   Therefore, in view of the limitations of the conventional fiber reinforced resin formed by the general SMC as described above, the subject of the present invention is a highly isotropic grade using a reinforced fiber bundle of short fibers in a specific range, and An object of the present invention is to provide a fiber reinforced resin capable of easily expressing mechanical properties such as high strength.

上記課題を解決するために、本発明に係る繊維強化樹脂は、短繊維の強化繊維の繊維束の集団からなる強化繊維基材と熱硬化性樹脂からなるマトリックス樹脂よりなる繊維強化樹脂であって、強化繊維基材の繊維束の90%以上が、単糸数が100本以下となるように分繊された繊維束からなり、真直な繊維束数が全繊維束数の70%以上であり、繊維束の配向が二次元的に擬似等方性であり、かつ、強化繊維の体積含有率が35%以上であることを特徴とするものからなる。   In order to solve the above-mentioned problems, the fiber reinforced resin according to the present invention is a fiber reinforced resin composed of a reinforced fiber substrate composed of a bundle of fiber bundles of short reinforced fibers and a matrix resin composed of a thermosetting resin. 90% or more of the fiber bundles of the reinforcing fiber base are composed of fiber bundles that are split so that the number of single yarns is 100 or less, and the number of straight fiber bundles is 70% or more of the total number of fiber bundles, The orientation of the fiber bundle is two-dimensionally quasi-isotropic, and the volume content of the reinforcing fibers is 35% or more.

この本発明に係る繊維強化樹脂においては、強化繊維基材の繊維束の90%以上が、単糸数が100本以下となるように分繊された繊維束からなり、従来一般のSMCにおける1K以上に比べ、少なくとも1オーダー以上少ない単糸数の繊維束まで分繊されている。つまり、このように100本以下であれば、従来一般のSMCに比べて明確かつ十分な有意差を持たせることができる。繊維束の90%以上が、単糸数が100本以下であれば特に限定されず、完全な単糸レベルまで分散されたものであってもよい。ただし現実的には、1K以上のストランド形態のものからカットした状態で、全ての繊維を完全な単糸レベルまで分散させることは困難であるので、単糸数の少ない方は10本以上程度まででよい。   In the fiber reinforced resin according to the present invention, 90% or more of the fiber bundle of the reinforcing fiber base is composed of a fiber bundle that is split so that the number of single yarns is 100 or less, and is 1K or more in a conventional general SMC. In comparison, the fiber bundle is divided into fiber bundles having at least one order of number of single yarns. That is, if it is 100 or less in this way, a clear and sufficient significant difference can be given compared with the conventional general SMC. 90% or more of the fiber bundle is not particularly limited as long as the number of single yarns is 100 or less, and may be dispersed to a complete single yarn level. However, in reality, it is difficult to disperse all the fibers to a complete single yarn level in a state of being cut from a strand shape of 1K or more, so the number of single yarns is about 10 or more. Good.

また、本発明に係る繊維強化樹脂においては、真直な繊維束数の全繊維束数に対する比率が70%以上であり、好ましくは80%以上、より好ましくは90%以上である。真直な繊維束数は、後述の測定法によって定量的に測定できる。   In the fiber reinforced resin according to the present invention, the ratio of the straight fiber bundle number to the total fiber bundle number is 70% or more, preferably 80% or more, more preferably 90% or more. The number of straight fiber bundles can be quantitatively measured by the measurement method described later.

また、本発明に係る繊維強化樹脂においては、より等方性の材料を目指しているため繊維束の配向が二次元的に擬似等方性であることが必要である。擬似等方性であるか否かも、後述の判定法によって判定できる。繊維束の配向が二次元的に擬似等方性であることにより、従来のSMCによって成形された繊維強化樹脂に比べ、はるかに均一な機械特性を有する繊維強化樹脂となる。   In addition, since the fiber reinforced resin according to the present invention aims at a more isotropic material, the orientation of the fiber bundle needs to be two-dimensionally quasi-isotropic. Whether it is pseudo-isotropic or not can also be determined by a determination method described later. Since the orientation of the fiber bundle is two-dimensionally quasi-isotropic, it becomes a fiber reinforced resin having much more uniform mechanical properties than a fiber reinforced resin molded by conventional SMC.

さらに、本発明に係る繊維強化樹脂においては、強化繊維の体積含有率が35%以上であり、好ましくは40%以上、より好ましくは45%以上、とくに好ましくは50%以上である。繊維束の90%以上が、単糸数が100本以下となるように分繊されており、真直な繊維束数が全繊維束数の70%以上であり、かつ、繊維束の配向が二次元的に擬似等方性であることにより、特別に高いプレス圧を加えなくても、このような高い繊維体積含有率が可能になり、それによって高い機械特性が容易に発現できるようになる。   Furthermore, in the fiber reinforced resin according to the present invention, the volume content of the reinforcing fiber is 35% or more, preferably 40% or more, more preferably 45% or more, and particularly preferably 50% or more. 90% or more of the fiber bundles are separated so that the number of single yarns is 100 or less, the number of straight fiber bundles is 70% or more of the total number of fiber bundles, and the orientation of the fiber bundles is two-dimensional. By being pseudo-isotropic, it is possible to achieve such a high fiber volume content without applying a particularly high press pressure, thereby easily exhibiting high mechanical properties.

本発明に係る繊維強化樹脂においては、とくに真直な繊維束数の割合を高く確保し、かつ、高い繊維体積含有率を確保するために、繊維束が、強化繊維の繊維長の95%以上が3mm以上12mm以下の範囲にある炭素繊維を含むことが好ましい。また、繊維束が、強化繊維の繊維長の95%以上が3mm以上40mm以下の範囲にあるガラス繊維を含む構成とすることも可能である。これら炭素繊維とガラス繊維のハイブリッド形態も可能である。   In the fiber reinforced resin according to the present invention, in particular, in order to ensure a high ratio of the number of straight fiber bundles and to secure a high fiber volume content, the fiber bundle is 95% or more of the fiber length of the reinforcing fibers. It is preferable that the carbon fiber exists in the range of 3 mm or more and 12 mm or less. In addition, the fiber bundle may include glass fibers in which 95% or more of the fiber length of the reinforcing fibers is in the range of 3 mm to 40 mm. Hybrid forms of these carbon fibers and glass fibers are also possible.

本発明に係る繊維強化樹脂の製造においては、抄紙工程を含むことがとくに好ましい。例えば、上記強化繊維基材が、繊維束を抄紙工程で抄造し、目付を100g/m2以上にした強化繊維基材からなることが好ましい。このような抄紙工程を含むことにより、良好な疑似等方性が確保され、かつ、容易に高い繊維体積含有率が達成される。中でも、上記強化繊維基材が、バッチ抄造により、予め製品形状またはその展開形状に形成された濾過網を用いて抄造された強化繊維基材からなることが好ましい。 In the production of the fiber reinforced resin according to the present invention, it is particularly preferable to include a papermaking process. For example, it is preferable that the reinforcing fiber substrate is made of a reinforcing fiber substrate in which a fiber bundle is made by a paper making process and a basis weight is 100 g / m 2 or more. By including such a papermaking process, good pseudoisotropy is ensured and a high fiber volume content is easily achieved. Especially, it is preferable that the said reinforced fiber base material consists of the reinforced fiber base material paper-made using the filtration net | network previously formed in the product shape or the expansion | deployment shape by batch papermaking.

本発明に係る繊維強化樹脂における繊維束の分繊の方法については特に限定されない。例えば、上記繊維束が、カード精紡機で開繊された繊維束からなる構成とすることができる。   The fiber bundle splitting method in the fiber reinforced resin according to the present invention is not particularly limited. For example, the said fiber bundle can be set as the structure which consists of a fiber bundle opened with the card spinning machine.

本発明に係る繊維強化樹脂においては、上記短繊維の強化繊維の繊維束からなる強化繊維基材と、各種強化繊維基材との組み合わせ形態を採用することもできる。例えば、上記短繊維の強化繊維の繊維束からなる強化繊維基材の少なくとも一面側に連続繊維からなる別の強化繊維基材(例えば、連続繊維からなる強化繊維織物や一方向シート材)が配設されている構成とすることができる。このような連続繊維からなる別の強化繊維基材は、例えば、成形体の表面層形成のために配置することができる。   In the fiber reinforced resin which concerns on this invention, the combination form of the reinforced fiber base material which consists of a fiber bundle of the said reinforced fiber of a short fiber, and various reinforced fiber base materials is also employable. For example, another reinforcing fiber substrate made of continuous fibers (for example, a reinforcing fiber fabric made of continuous fibers or a unidirectional sheet material) is arranged on at least one side of the reinforcing fiber substrate made of a bundle of short fiber reinforcing fibers. It can be set as the installed structure. Another reinforcing fiber substrate made of such continuous fibers can be arranged, for example, for forming a surface layer of a molded body.

本発明に係る繊維強化樹脂を所定の形状に成形するに際しては、代表的にはRTM(Resin Transfer Molding)成形方法を採用することができるが、RFI(Resin Film Infusion )成形方法も採用可能である。   When the fiber reinforced resin according to the present invention is molded into a predetermined shape, an RTM (Resin Transfer Molding) molding method can be typically employed, but an RFI (Resin Film Infusion) molding method can also be employed. .

本発明に係る繊維強化樹脂によれば、特定の形態まで分繊された大半が真直な繊維束が擬似等方性をもって配向された強化繊維基材とマトリックス樹脂とから構成され、かつ、強化繊維の体積含有率が35%以上と高いので、従来のSMCによる繊維強化樹脂では得られない、高い機械特性を均一に発現させることが可能になる。   According to the fiber reinforced resin according to the present invention, a fiber bundle composed of a reinforced fiber base material and a matrix resin in which a mostly straight fiber bundle that has been split to a specific form is oriented with pseudoisotropy, and the reinforced fiber Since the volume content of is as high as 35% or more, high mechanical properties that cannot be obtained with a conventional fiber reinforced resin by SMC can be expressed uniformly.

以下に、本発明について、望ましい実施の形態とともに、より詳細に説明する。
本発明の完成に至った基本的な技術思想について説明する。強化繊維樹脂(FRP)成形体に曲げ荷重などの負荷が掛かった際、その材料の破壊は殆どが強化繊維の端部から亀裂(クラック)が発生し、やがてその亀裂が繊維端部周辺のマトリックス樹脂部を伝播して近くにある他の繊維端部に伝播していき、最終的に成形体を横断して全体破壊に至る。そこで、亀裂が発生した或る繊維の端部近くに他の繊維の端部が存在していないか、存在している割合が低いと、その発生亀裂が伝播し易い対象が無いか、発生亀裂が伝播する確率が低下するため、発生亀裂の伝播作用が低下し、該亀裂はそれ以上成長し難くなる。すなわち、その成形体の破壊抵抗レベルが高まることになり、その結果該成形体の耐荷重が向上することになる。
Hereinafter, the present invention will be described in more detail with preferred embodiments.
The basic technical idea that led to the completion of the present invention will be described. When a load such as a bending load is applied to the reinforced fiber resin (FRP) molded body, most of the destruction of the material causes a crack from the end of the reinforcing fiber, and the crack eventually becomes a matrix around the end of the fiber. It propagates through the resin part and propagates to other fiber end parts in the vicinity, and finally crosses the molded body to cause total destruction. Therefore, if the end of another fiber does not exist near the end of a certain fiber where the crack has occurred, or if the ratio of the existing fiber is low, there is no target that the crack is likely to propagate, or the generated crack Therefore, the propagation effect of the generated crack is reduced, and the crack becomes difficult to grow any more. That is, the fracture resistance level of the molded body is increased, and as a result, the load resistance of the molded body is improved.

しかしながら、強化繊維が短繊維で構成されている場合は、必然的に繊維端部が多数存在する。したがって、繊維端部で発生した亀裂は、比較的容易に他の近くの繊維端部に向かってマトリックス樹脂伝いに伝播して行き、やがては該亀裂が成形体の本体を横断してしまい本体の破壊に至ることになる。しかし、亀裂が発生した繊維端部と該亀裂が伝播していく最も近い他の繊維端部との間に強化繊維が横断するように存在すれば(つまり、他の強化繊維がその端部が位置しないように存在すれば)、亀裂の伝播は該強化繊維によって制止され易くなり、亀裂発生から破壊に至る「破壊」に対する抵抗レベルが向上することになる。すなわち、成形体の耐荷重が向上(機械特性が向上)することになる。   However, when the reinforcing fiber is composed of short fibers, there are inevitably many fiber ends. Therefore, the crack generated at the end of the fiber propagates relatively easily toward the other end of the fiber along the matrix resin, and eventually the crack crosses the main body of the molded body. It will lead to destruction. However, if the reinforcing fiber exists so as to cross between the end of the fiber where the crack has occurred and the other end of the fiber nearest to which the crack propagates (that is, the end of the other reinforcing fiber If they are not located), the propagation of cracks is likely to be restrained by the reinforcing fibers, and the resistance level against “breakage” from crack generation to breakage is improved. That is, the load resistance of the molded body is improved (mechanical characteristics are improved).

この概念を、例えば図1を用いて説明する。図1は、端部(a)に亀裂(クラック)(c)が発生した繊維束(A)と、該端部(a)に最も距離が近い端部(b)を有する繊維束(B)の各端部間(a〜b間)に端部ではない繊維束が所定の本数存在する状態を示している。すなわち、繊維強化樹脂成形体の中の三次元配向状態にある強化繊維束の集合体において、或る繊維束(A)の端部(a)で発生した亀裂(c)は、該繊維束(A)を取り巻くマトリックス樹脂伝いに繊維束(B)の端部(b)の方向に伝播していこうとしても、それらの間の繊維束(例えば、ここでは「健全繊維束」と称する。)によって伝播が遮られ、それ以上進展することが阻止されている状態を示している。ただ、その健全繊維束の数が所定量を下回ると、亀裂の進展が確実に阻止されるとは限らず、破壊へと進展するおそれが残る。このような健全繊維束を所定本数以上存在させるためには、従来のSMCにおける1K以上の繊維束のままでは不可能であり、繊維束の単糸数をある本数以下にすることによって初めて達成可能となる。この思想に基づいて、本発明では、従来のSMCに対し明らかな有意差をもたせるために、従来のSMCに比べ1オーダー以上少ない、単糸数が100本以下の、分繊された繊維束と規定されている。ただし、1K以上のストランドから分繊する場合、全ての繊維束をこのように単糸数100本以下とすることは現実的でないので、本発明では明確に優れた効果が発揮されるよう、繊維束の90%以上がこのような単糸数100本以下の繊維束であることを要件として規定した。   This concept will be described with reference to FIG. FIG. 1 shows a fiber bundle (A) having a crack (c) at the end (a) and a fiber bundle (B) having an end (b) closest to the end (a). A state is shown in which a predetermined number of fiber bundles that are not ends exist between the ends (between a and b). That is, in the aggregate of reinforcing fiber bundles in the three-dimensional orientation state in the fiber reinforced resin molded body, the crack (c) generated at the end (a) of a certain fiber bundle (A) Even if it is going to propagate in the direction of the end part (b) of the fiber bundle (B) through the matrix resin surrounding A), the fiber bundle between them (for example, referred to herein as “sound fiber bundle”). It shows a state where propagation is blocked and further progress is prevented. However, if the number of the healthy fiber bundles is less than a predetermined amount, the progress of cracks is not necessarily prevented and the possibility of progressing to destruction remains. In order to allow such a healthy fiber bundle to exist in a predetermined number or more, it cannot be achieved with a fiber bundle of 1K or more in the conventional SMC, and can be achieved only by reducing the number of single yarns of the fiber bundle to a certain number or less. Become. Based on this idea, in the present invention, in order to give a clear significant difference from the conventional SMC, the fiber bundle is defined as a split fiber bundle having a single yarn count of 100 or less compared to the conventional SMC. Has been. However, when splitting from strands of 1K or more, it is not realistic to set all the fiber bundles to 100 or less single yarns in this way. It was defined as a requirement that 90% or more of the fiber bundles had 100 single yarns or less.

また、上記のように繊維束端部間に所定数以上の健全繊維束を存在させるためには、各繊維束ができるだけ曲がりなく真直な状態である方が有利である。つまり、繊維束が曲がっていると必然的に端部間隔が短くなり、健全繊維束の本数確保が難しくなることから、真直な繊維の本数が多い方が有利であると言える。しかしながら、成形前の基材だけの状態時では総ての繊維束が真直でも、樹脂含浸時に樹脂の流動と共に繊維束が流され、折れや曲がりなどの変形が起きるおそれがある。しかし、上記のように高い耐荷重を発揮させるためには、少なくとも70%以上が真直であることが必要であり、好ましくは80%以上、より好ましくは90%以上の繊維束が真直であることが望ましい。これによっても、SMCによる繊維強化樹脂と明らかな差を持たせることが可能になる。   Moreover, in order to allow a predetermined number or more of healthy fiber bundles to exist between the fiber bundle end portions as described above, it is advantageous that each fiber bundle is as straight as possible without bending. That is, if the fiber bundle is bent, the end interval is inevitably shortened, and it becomes difficult to secure the number of healthy fiber bundles. Therefore, it can be said that it is advantageous to have a large number of straight fibers. However, even when all the fiber bundles are straight in the state of the base material before molding, the fiber bundles are caused to flow along with the flow of the resin at the time of resin impregnation, and deformation such as bending or bending may occur. However, in order to exert a high load resistance as described above, it is necessary that at least 70% or more is straight, and preferably a fiber bundle of 80% or more, more preferably 90% or more is straight. Is desirable. This also makes it possible to have a clear difference from the fiber reinforced resin by SMC.

ここで、「真直な繊維束」とは、次のような判定方法によって判定されるものであり、本発明では、この方法によって判定された「真直な繊維束」が全繊維束の70%以上であることが必要である。   Here, the “straight fiber bundle” is determined by the following determination method. In the present invention, the “straight fiber bundle” determined by this method is 70% or more of the total fiber bundle. It is necessary to be.

真直な繊維束の判定は、以下の定義で行う。
(1)繊維強化樹脂を400〜600℃の温度で加熱し、樹脂だけを焼き飛ばす。この際、熱風などにより繊維が動かぬように注意する。
(2)単位体積(1辺が繊維長の3倍の立方体が適当)中の繊維束をピンセットなどで、形態が変化せぬように抜き取る。
(3)次に、繊維長の2倍の長さからなる約60℃に傾斜した円筒体に繊維束を通し、その繊維束に押し込み力を作用させず自然に通過するかを判定する。淀みなく通過した繊維束を「真直な繊維束」と見なす。
但し、上記円筒体の内径は、炭素繊維用は2mm、ガラス繊維用は4mmである。
以上は繊維束が単糸数100本以下に分繊された正常な繊維束に対する測定法であるが、SMCのような単糸数が100本以上になる場合は、太径であるので繊維束を直接定規で測れるため、変極部の凹凸高さが4mm以下を「真直な繊維束」と見なした。
The straight fiber bundle is determined according to the following definition.
(1) The fiber reinforced resin is heated at a temperature of 400 to 600 ° C. to burn off only the resin. At this time, care should be taken not to move the fiber due to hot air.
(2) A fiber bundle in a unit volume (a cube whose one side is three times the fiber length is appropriate) is extracted with tweezers or the like so that the form does not change.
(3) Next, the fiber bundle is passed through a cylindrical body having a length twice as long as the fiber length and inclined at about 60 ° C., and it is determined whether the fiber bundle naturally passes without applying a pressing force. A fiber bundle that has passed without stagnation is regarded as a “straight fiber bundle”.
However, the inner diameter of the cylindrical body is 2 mm for carbon fiber and 4 mm for glass fiber.
The above is a measurement method for a normal fiber bundle in which the fiber bundle is split into 100 or less single yarns. However, when the number of single yarns is 100 or more, such as SMC, the fiber bundle is directly attached because of the large diameter. Since it can be measured with a ruler, an uneven height of 4 mm or less at the inflection part was regarded as a “straight fiber bundle”.

そして、上記の如く、単糸数100本以下の繊維束の割合を90%以上とすることにより、従来のSMCにおける1K以上の繊維束の集団からなる強化繊維基材を用いていた場合に比べ、はるかに等方性の程度を高めることが可能になる。すなわち、本発明においては、繊維束の配向が二次元的に疑似等方性であり、それによって、SMCによる成形体では得られない均一な機械特性が得られることとなる。   And, as described above, by setting the ratio of the fiber bundle having a single yarn number of 100 or less to 90% or more, compared to the case of using a reinforcing fiber base made of a group of fiber bundles of 1K or more in the conventional SMC, It becomes possible to increase the degree of isotropicity far. That is, in the present invention, the orientation of the fiber bundle is two-dimensionally quasi-isotropic, whereby uniform mechanical properties that cannot be obtained with a molded body by SMC can be obtained.

ここで「繊維束の配向が二次元的に疑似等方性である」か否かは、本発明では、次のような方法によって定量的に測定できる。
(繊維束の配向の測定方法)
樹脂成形する前の強化繊維基材を、又は成形後に樹脂を焼き飛ばした強化繊維基材を、短繊維の強化繊維長(例えば、12mm)を半径とする円をとって平面状に投影し(平面図としてみて)、その円の360°を各5°づつに区画し、各5°づつの角度範囲の領域内の80%以上に、その角度範囲内の方向に配向している繊維束が存在している場合、「繊維束の配向が二次元的に疑似等方性である」と規定する。
Here, whether or not “the orientation of the fiber bundle is two-dimensionally pseudo-isotropic” can be quantitatively measured in the present invention by the following method.
(Measurement method of fiber bundle orientation)
A reinforcing fiber substrate before resin molding or a reinforcing fiber substrate obtained by burning the resin after molding is projected on a plane with a circle whose radius is the reinforcing fiber length of short fibers (for example, 12 mm) ( (Viewed as a plan view), 360 ° of the circle is divided into 5 ° portions, and fiber bundles oriented in the direction within the angular range are divided into 80% or more within the angular range of each 5 ° portion. If present, it is defined that “the orientation of the fiber bundle is two-dimensionally quasi-isotropic”.

単糸数100本以下の繊維束の割合を90%以上であり、真直な繊維束が全繊維束の70%以上であり、かつ、繊維束の配向が二次元的に疑似等方性であることにより、容易に35%以上の強化繊維の体積含有率が達成可能となる。繊維体積含有率は、好ましくは40%以上、より好ましくは45%以上、とくに好ましくは50%以上である。このような高い繊維体積含有率により、高い機械特性が容易に発現できるようになる。   The ratio of fiber bundles with 100 or less single yarns is 90% or more, straight fiber bundles are 70% or more of all fiber bundles, and the orientation of the fiber bundles is two-dimensional pseudo-isotropic. As a result, a volume content of reinforcing fibers of 35% or more can be easily achieved. The fiber volume content is preferably 40% or more, more preferably 45% or more, and particularly preferably 50% or more. With such a high fiber volume content, high mechanical properties can be easily expressed.

本発明に係る繊維強化樹脂においては、強化繊維は、単糸の直径が例えば5〜20μm(望ましくは、5〜10μm)、長さが2mm〜30mm(特に、3〜12mmが好ましい)の炭素繊維からなり、三次元方向に極めてランダムに配向された状態であるのが望ましく、特に平面方向には上述の如く擬似等方性の配向状態にあることが望ましい。   In the fiber reinforced resin according to the present invention, the reinforcing fiber is a carbon fiber having a single yarn diameter of, for example, 5 to 20 μm (preferably 5 to 10 μm) and a length of 2 mm to 30 mm (particularly 3 to 12 mm is preferable). It is desirable to be in a state of being randomly oriented in the three-dimensional direction, and in particular to be in a quasi-isotropic orientation state as described above in the plane direction.

長さに関しては特に重要で、抄紙工程で分散させることを目指しているが、長さが1/2インチを超えた長さのものから、抄紙工程での繊維の分散性が、分繊された単糸が集合して毛玉状になったり、繊維束が100本を越えるもの同士が、ひどいものは1000本以上のまま出会ったりして、急激に低下する傾向にあり、繊維の単糸間で互いに絡み合ったり、単糸まで分散したものの折れや曲がりが多発する傾向が出てくる。そうなると、繊維束端部間の健全繊維数としての本数は満足しても集合体がその本数を満たしただけで、本来の亀裂伝播を遮断する機能としては低いため、結局強度向上には繋がらないおそれがある。したがって、短繊維の炭素繊維長の95%以上が3〜12mmの範囲にあることが好ましい。   The length is particularly important, and we aim to disperse it in the papermaking process, but the fiber dispersibility in the papermaking process has been split from the length exceeding 1/2 inch. Single yarns gather together to form pills, fiber bundles with more than 100 fibers, and terrible ones with 1000 or more tend to come together and tend to drop rapidly. There is a tendency that folds and bends occur frequently even though they are intertwined or even dispersed to a single yarn. Then, even if the number as the number of healthy fibers between the fiber bundle ends is satisfied, the aggregate only satisfies the number, and the function of blocking the original crack propagation is low, so it does not lead to improvement in strength after all. There is a fear. Therefore, it is preferable that 95% or more of the carbon fiber length of the short fiber is in the range of 3 to 12 mm.

また、炭素繊維の他にガラス繊維を混入させてもよく、それらの混合比率や長さは用途の要求特性で設定すればよいが、基本的にはガラス繊維でも同様で、長さが40mmを超えた辺りから上記の絡み合いや毛玉、折れ等の発生による分散性低下が激増してくる。繊維径と長さの関係、即ちアスペクト比などを考慮すると、炭素繊維の長さは3〜12mmに、ガラス繊維の長さは3〜40mm(炭素繊維とのハイブリッド構成を考慮すると、ガラス繊維の長さも3〜12mmが好ましい。)に設定することが、強度向上に必要な所望の繊維分散性を確保するために(繊維の変形防止や絡み難さの点で)好ましい。特に、上記長さの繊維の全体から締める割合も、望ましくは100%であるが、少なくとも95%以上あると良く、逆にそれを低下すると、その部分からの亀裂伝播が顕著となり、強度向上効果が急激に低下するおそれがある。また、価格面で厳しい用途には、このような強化繊維のハイブリット化は、特に好適である。   Further, glass fibers may be mixed in addition to carbon fibers, and their mixing ratio and length may be set according to the required characteristics of the application, but basically the same applies to glass fibers, and the length is 40 mm. The dispersibility reduction due to the occurrence of the above-described entanglement, pills, creases, etc. increases dramatically from above. Considering the relationship between the fiber diameter and the length, that is, the aspect ratio, the length of the carbon fiber is 3 to 12 mm, the length of the glass fiber is 3 to 40 mm (considering the hybrid configuration with the carbon fiber, It is preferable to set the length to 3 to 12 mm.) In order to ensure the desired fiber dispersibility necessary for strength improvement (in terms of prevention of fiber deformation and difficulty in entanglement). In particular, the ratio of tightening from the entire length of the fiber is desirably 100%, but it should be at least 95%, and conversely, if it is lowered, crack propagation from that portion becomes prominent, and the strength improvement effect May decrease rapidly. In addition, such a reinforced fiber hybrid is particularly suitable for applications that are difficult in terms of price.

また、強化繊維基材を構成する強化繊維としては、単に短繊維のカット繊維だけの状態の他に、短繊維基材又はその積層体の少なくとも片側の表層部に連続繊維基材(例えば織物、一方向シート等)が配置される場合もある。すなわち、特に高い曲げ応力が作用する部位等は、選択的に上記連続繊維を両側表層部に配置すると効果的である。場合によっては、短繊維基材よりも連続繊維基材の量が上回る場合もあり得る。   Further, as the reinforcing fiber constituting the reinforcing fiber base, in addition to the state of only the cut fiber of the short fiber, the continuous fiber base (for example, woven fabric, A unidirectional sheet or the like may be arranged. That is, it is effective to selectively dispose the continuous fibers on both side surface layer portions in a portion where particularly high bending stress acts. In some cases, the amount of continuous fiber substrate may be greater than the short fiber substrate.

マトリックス樹脂は、RTM成形上必須の要件である粘度が比較的低い熱硬化性樹脂であり、流動時の粘度が3poise(300cm poise)以下の低粘度状態が望ましい。   The matrix resin is a thermosetting resin having a relatively low viscosity, which is an essential requirement for RTM molding, and a low viscosity state in which the viscosity during flow is 3 poise (300 cm poise) or less is desirable.

本発明の強化繊維の繊維束(ストランド形態)は、通常は製造上(経済性)から単糸数が1,000本(1K)から48,000本(48K)までそれぞれ用途に応じて適宜設定されている。その繊維束を1/10〜1/数10以下の単糸数が100本以下の繊維束まで分繊し、更にランダム方向に分散させるためには、既にパルプや合成繊維の分野では公知となっている以下のような抄造方法が考えられる。   The fiber bundle (strand form) of the reinforcing fiber of the present invention is usually appropriately set according to the use from the production (economical) to the number of single yarns from 1,000 (1K) to 48,000 (48K). The fiber bundle is already known in the field of pulp and synthetic fibers in order to divide the fiber bundle into fiber bundles of 1/10 to 1 / several tens or less of single yarns of 100 or less and further disperse them in a random direction. The following paper making methods can be considered.

その方法として、強化繊維が炭素繊維の場合、
A.湿式では、抄紙の抄造方法がある。すなわち、
(1)炭素繊維束(ストランド;1K〜48K糸)を所定の繊維長に切断し、貯蔵する。(2)水に界面活性剤や増粘剤などを添加した分散液槽中に切断された炭素繊維を所定量投入する。
(3)槽内の分散液を撹拌して、強化繊維表層に付着しているサイジング剤などによって粘着しているストランド中の単糸同士を相互に分離させて、分散させる。
(4)(ワイヤーと呼ばれる)傾斜網で脱水し、濾過したのち、バインダーを塗布後熱風で乾燥して引き取る。
なお、傾斜網の目開きは、炭素繊維の場合、#60〜#300メッシュ辺りが適正であり、繊維長さや分散液槽に投入するストランドの太さによって使い分けている。
As the method, when the reinforcing fiber is carbon fiber,
A. In the wet method, there is a paper making method. That is,
(1) A carbon fiber bundle (strand; 1K to 48K yarn) is cut into a predetermined fiber length and stored. (2) A predetermined amount of the cut carbon fiber is put into a dispersion tank in which a surfactant or a thickener is added to water.
(3) The dispersion in the tank is agitated, and the single yarns in the strands adhered by the sizing agent adhering to the reinforcing fiber surface layer are separated from each other and dispersed.
(4) After dehydrating and filtering with an inclined net (called a wire), the binder is applied and then dried with hot air and taken off.
In addition, in the case of carbon fiber, the mesh opening of the inclined net is appropriate around # 60 to # 300 mesh, and is properly used depending on the fiber length and the thickness of the strand put into the dispersion tank.

B.乾式では、紡績工程で用いられるカード機に掛ける方法がある。
(1)炭素繊維ストランド(1K〜48K糸)を所定の繊維長に切断し、貯蔵する。
(2)カード機に切断された炭素繊維を所定量投入し、分繊する。
(3)分繊率が低い場合は、再度カード機に掛けて、単糸レベル近くまで分繊させる。
B. In the dry method, there is a method of hanging on a card machine used in the spinning process.
(1) A carbon fiber strand (1K to 48K yarn) is cut into a predetermined fiber length and stored.
(2) A predetermined amount of the cut carbon fiber is put into a card machine and separated.
(3) If the splitting rate is low, hang it on the card machine again and split it to near the single yarn level.

そして、抄紙やカード機で分繊する際の目付も重要である。従来のような100g/m2以下の比較的低い目付で作製すると、実用目付にするためには積層枚数を増やし、厚めの基材になって基材製造効率が悪いことと、FRPの繊維体積率を高めるために厚めの基材を押圧して凝縮させると、繊維に曲がりや折れが発生するなどの問題が起きる。したがって、本発明では上記方法で基材を製造する場合、最低でも100g/m2を超える目付、望ましくは200〜600g/m2の目付で製造のが好ましい。600g/m2を超える高目付にすると、凹凸の大きい複雑な形状の製品を成形する場合、繊維が三次元的な構成をしているため基材がその形状に賦形する際に繊維の曲がりや折れなどの繊維乱れが発生する。特に、曲面のコーナー部の半径が小さい程折れやすく、追随し難い。 In addition, the basis weight when the paper is separated with a paper machine or a card machine is also important. If it is produced with a comparatively low basis weight of 100 g / m 2 or less as in the prior art, the number of laminated layers is increased in order to obtain a practical basis weight, resulting in a thicker base material and poor base material production efficiency, and the fiber volume of FRP. When a thick base material is pressed and condensed in order to increase the rate, problems such as bending and bending of the fiber occur. Therefore, in the present invention when manufacturing a substrate by the above method, the basis weight of greater than 100 g / m 2 at least, preferably preferably produced in basis weight of 200 to 600 g / m 2. When a high basis weight exceeding 600 g / m 2 is used, when forming a product with a large unevenness and a complicated shape, the fiber bends when the base material is shaped into the shape because the fiber has a three-dimensional structure. Fiber disturbance such as breakage and breakage occurs. In particular, the smaller the radius of the corner of the curved surface, the easier it is to break and it is difficult to follow.

本発明においては、強化繊維基材の形態として、短繊維だけで形成された基材に、例えば連続繊維で形成された基材を組み合わせることも可能である。比較的高い曲げ負荷などが作用する場合、適正な健全繊維数からなる短繊維の強化繊維束の集合体であっても、所詮短繊維だけで構成されているため、最も高い応力が作用する表層は耐荷重に限界がある。そのため、高い応力が作用する表層だけは、織物などの連続繊維で構成することにより、各部位に作用する負荷の大きさに応じた補強がなされ、耐力が向上する。例えば図2に示すように、両側の表層に連続強化繊維からなる基材62(各2層)を配置し、中間層だけを上記構成の短繊維の強化繊維からなる基材61で構成するとコストパフォーマンスが高くなり、より実用的なハイブリッド繊維基材60となる。さらに、各層はPVAなどのバインダーで結着され、適度の形態保持性を有し、場合によってはFRP成形前に、所定の成形体の形状に賦形され、成形中に繊維の乱れなどが無いよう事前処置(プリフォーム化)される。   In the present invention, as a form of the reinforcing fiber base material, for example, a base material formed of continuous fibers can be combined with a base material formed of only short fibers. When a relatively high bending load is applied, even the aggregate of short fiber reinforced fiber bundles with the appropriate number of healthy fibers is composed of only short fibers, so the surface layer on which the highest stress acts Has a limit in load capacity. Therefore, only the surface layer on which high stress acts is constituted by continuous fibers such as woven fabric, whereby reinforcement according to the magnitude of the load acting on each part is made and the proof stress is improved. For example, as shown in FIG. 2, it is costly to arrange a base material 62 (two layers each) made of continuous reinforcing fibers on the surface layers on both sides and to form only the intermediate layer with the base material 61 made of short fiber reinforcing fibers having the above-described configuration. A performance becomes high and it becomes the more practical hybrid fiber base material 60. FIG. Furthermore, each layer is bound with a binder such as PVA, and has an appropriate form retention property. In some cases, it is shaped into a predetermined shape before FRP molding, and there is no disorder of fibers during molding. Pre-treatment (preform) is performed.

例えば単糸レベル近くまで分散した強化繊維基材は、抄紙によって得られると前述したが、一般的に量産する場合、連続抄造設備にて連続した抄紙基材(製品)を製造し、所定のサイズに切断して製品化されるが、強化繊維で最終製品をFRP成形する場合も、事前に製品形状に強化繊維基材をトリミングしてからFRP成形する。その場合、トリミング後の不要な基材は廃棄されるため、強化繊維材料の歩留まりが悪いという問題がある。そこで、抄紙する際に、最終製品の形状またはその展開図にした形状で抄紙すると、殆ど強化繊維材料を廃棄することが無くなるので、材料歩留まりが大幅に改善できる。そのための抄造装置を図3に例示する。上記のような方法で抄紙を行うには、連続では困難であり、図3に示すような1回ずつ抄紙するバッチ抄造方法で行う必要がある。図3に示すバッチ抄造装置70において、混合分散槽71には強化繊維を濾過するための濾過網74(#60〜#300メッシュ)が底面側に設置され、水に界面活性剤や増粘剤などが添加された分散液と、所定の長さに切断されそのた強化繊維のストランドとが、それぞれの繊維貯蔵槽72および分散液貯蔵槽73から所定量だけ配送される。それらが配送さられた後混合分散槽71は撹拌機75で槽内を撹拌されて、強化繊維のストランドは槽内で単糸レベル近くまで分繊される。その後、底部にある排出口77のコックを解放して混合分散槽71内の分散液は総て槽外に排出される。その際に、強化繊維は被抄紙基材76として濾過網74上に残されて、抄造が完了する。その後、蓋を開けて槽内からその形状が最終製品形状に形成された濾過網74と抄紙された強化繊維基材76を取り出し、適度にPVA(ポリビニルアルコール)などのバインダーを塗布した後オーブンなどで乾燥して、製品形状に形成された強化繊維基材を取り出す。また、排出した分散液は貯蔵槽に戻して可能な限り再利用する。   For example, the reinforcing fiber base dispersed to near the single yarn level is described above as being obtained by papermaking. However, in general mass production, a continuous papermaking base (product) is manufactured by a continuous papermaking facility, and a predetermined size is obtained. However, when the final product is FRP-molded with reinforcing fibers, the reinforcing fiber substrate is trimmed into a product shape in advance and then FRP-molded. In that case, since unnecessary base materials after trimming are discarded, there is a problem that the yield of the reinforcing fiber material is poor. Therefore, when making paper, if the paper is made in the shape of the final product or the developed shape, almost no reinforcing fiber material is discarded, so that the material yield can be greatly improved. A paper making apparatus for this purpose is illustrated in FIG. It is difficult to perform paper making by the above method, and it is necessary to carry out by a batch paper making method in which paper making is performed once as shown in FIG. In the batch paper making apparatus 70 shown in FIG. 3, the mixing and dispersing tank 71 is provided with a filtration net 74 (# 60 to # 300 mesh) for filtering reinforcing fibers on the bottom side, and a surfactant or thickener in water. And the like, and a strand of reinforcing fibers cut to a predetermined length are delivered from the fiber storage tank 72 and the dispersion liquid storage tank 73 by a predetermined amount. After they are delivered, the mixing and dispersing tank 71 is stirred in the tank by a stirrer 75, and the strands of reinforcing fibers are separated into a single yarn level in the tank. Thereafter, the cock of the discharge port 77 at the bottom is released, and all the dispersion in the mixing and dispersing tank 71 is discharged out of the tank. At that time, the reinforcing fibers are left as the paper base 76 on the filter screen 74, and the paper making is completed. Then, the lid is opened, the filter net 74 whose shape is formed into the final product shape and the paper-reinforced reinforcing fiber base material 76 are taken out from the tank, and an oven or the like is applied after appropriately applying a binder such as PVA (polyvinyl alcohol). Then, the reinforcing fiber base formed into a product shape is taken out. The discharged dispersion is returned to the storage tank and reused as much as possible.

図4に、上記単糸レベル近くまで分散し、健全繊維束数が適正本数とされた状態の強化繊維基材80を用い、マトリックス樹脂としての熱硬化性樹脂にてFRP成形する場合の成形方法を示す。すなわち、両面型内にキャビティを有する下型82に、強化繊維基材80を配置して上型81を閉じ、吸引口83から型内の空気を吸引して型のキャビティ内を減圧した後、熱硬化性樹脂を注入口84から圧入して強化繊維基材80に含浸させ、樹脂を加熱硬化させるRTM成形方法を示す。本強化繊維の様に短繊維を高密度、即ちVf(繊維体積含有率)が40%以上の場合は、樹脂の流動抵抗が高く、含浸が非常に難しくなるので、強化繊維積層体の中間に易樹脂流動媒体を入れてもよい。そして、樹脂注入を直接その易樹脂流動媒体に注入し易いように、図示したように該易樹脂流動媒体85を強化繊維基材80よりも樹脂注入側に少し飛び出させ、飛び出した部位(図示の溝部:ランナー)に樹脂注入口84を直接配置すると樹脂注入初期から樹脂流動が円滑に行われ、樹脂含浸が効率よく進行する。なお、図4における86は、上型81、下型82間に配置されたシール用O−リングを示している。   FIG. 4 shows a molding method in which FRP molding is performed with a thermosetting resin as a matrix resin, using a reinforcing fiber base 80 in a state where the number of healthy fiber bundles is dispersed to near the single yarn level. Indicates. That is, after the reinforcing fiber base 80 is disposed on the lower mold 82 having a cavity in the double-sided mold, the upper mold 81 is closed, and air in the mold is sucked from the suction port 83 to depressurize the mold cavity, An RTM molding method in which a thermosetting resin is press-fitted from an injection port 84 and impregnated into the reinforcing fiber base 80 and the resin is heat-cured will be described. When the short fibers are high density like this reinforcing fiber, that is, when the Vf (fiber volume content) is 40% or more, the flow resistance of the resin is high and impregnation becomes very difficult. An easy resin fluid medium may be added. Then, in order to make it easy to inject the resin injection directly into the easy resin flow medium, as shown in the drawing, the easy resin flow medium 85 is slightly protruded to the resin injection side from the reinforcing fiber base 80 and the protruded portion (illustrated When the resin injection port 84 is directly disposed in the groove portion (runner), the resin flow is smoothly performed from the beginning of the resin injection, and the resin impregnation proceeds efficiently. 4 denotes a sealing O-ring disposed between the upper die 81 and the lower die 82.

上記易樹脂流動媒体は、強化繊維からなる積層基材の面方向の樹脂流動抵抗より低い樹脂流動特性(例えば、強化繊維積層基材に対して1/2〜1/20の流動抵抗)をなす媒体であれば殆ど何でも適用可能であるが、材質としてFRP成形品のマトリックス樹脂との接着性や濡れ性が所定の特性を下回らないように選定する必要がある。そのような特性を満足すると共に経済性の面からも樹脂製が望ましいが、無機繊維の強化繊維を用いてもよい。樹脂製としては、低い流動抵抗をなすように構成しやすい織布や不織布が形成可能な熱可塑性樹脂が最適である。特に、短繊維又は連続繊維からなるマット形態や、連続繊維でもメッシュ状の織物等が好適である。また、樹脂充填量の観点から易樹脂流動媒体の目付としては、10〜1500g/m2の範囲とすることが好ましい。 The easy resin flow medium has a resin flow characteristic lower than the resin flow resistance in the surface direction of the laminated substrate made of reinforcing fibers (for example, a flow resistance of 1/2 to 1/20 with respect to the reinforcing fiber laminated substrate). Almost anything can be applied as long as it is a medium, but it is necessary to select the material so that the adhesiveness and wettability with the matrix resin of the FRP molded product does not fall below a predetermined characteristic. Resin is preferable from the viewpoint of satisfying such characteristics and economical efficiency, but inorganic fiber reinforced fibers may be used. As the resin, a thermoplastic resin capable of forming a woven fabric or a non-woven fabric that can be easily configured to have a low flow resistance is optimal. In particular, a mat form composed of short fibers or continuous fibers, or a mesh-like woven fabric or the like is preferable. As the basis weight of the free-resin flow medium from the viewpoint of the resin filling amount is preferably in the range of 10~1500g / m 2.

具体的な材料としては、下記のものが挙げられる。
(1)耐炎糸不織布:トラスコ中山(株)製カーボンフェルト50CF(布帛の形態:フェルト状不織布、目付:680g/m2)。
(2)コンティニアスストランドマット:日本板硝子社製 (布帛の形態:ガラス連続繊維不織布、目付:300〜600g/m2)。
(3)ガラス繊維不織布:日東紡社製サーフェスマットMF30P100BS6(布帛の形態:ガラス連続繊維不織布、目付:30g/m2)。適用時は5〜15ply積層する。
(4)チョップドストランドマット:旭ファイバーグラス社製“ガラスロン”CM(布帛の形態:ガラス短繊維不織布、目付:300〜600g/m2)。
(5)メッシュ織物:NBC社製ナイロンメッシュンNB20(布帛の形態:ナイロン平織物、厚み:520μm)
Specific materials include the following.
(1) Flame resistant yarn nonwoven fabric: carbon felt 50CF manufactured by TRUSCO NAKAYAMA Co., Ltd. (form of fabric: felted nonwoven fabric, basis weight: 680 g / m 2 ).
(2) Continuous strand mat: manufactured by Nippon Sheet Glass Co., Ltd. (form of fabric: glass continuous fiber nonwoven fabric, basis weight: 300 to 600 g / m 2 ).
(3) Glass fiber nonwoven fabric: Surface mat MF30P100BS6 manufactured by Nittobo Co., Ltd. (form of fabric: glass continuous fiber nonwoven fabric, basis weight: 30 g / m 2 ). When applied, 5-15 ply is laminated.
(4) Chopped strand mat: “Glass Ron” CM manufactured by Asahi Fiber Glass Co., Ltd. (form of fabric: non-woven glass fiber, basis weight: 300 to 600 g / m 2 ).
(5) Mesh fabric: Nylon Meshon NB20 manufactured by NBC (form of fabric: nylon plain fabric, thickness: 520 μm)

図5に別のFRP成形方法を示す。すなわち、半硬化状態の熱硬化性樹脂シート93を、前記強化繊維基材90とペアで積層し、所定の枚数を積層した後に樹脂が完全硬化する温度またはそれ以上に加熱した金型(上型91、下型92)でプレス成形する、所謂RFI(Resin Film Infusion)・ホットプレス成形法である。RTM成形方法に比べて、基材内のガス抜きが難しいためボイドやピンホールなどが発生しやすい欠点はあるが、プレス機でホットプレスするだけで簡易的に成形できることや、樹脂注入装置などの設備が不要で、比較的軽備な設備で済むなどのメリットがある。ただ、ガス抜きは外段取りで該樹脂シートと基材を積層した状態で全体をフィルムで覆い、真空吸引しておくとかなり改善はされる。また、ガス抜きと同時に樹脂硬化温度より20〜40℃低く又はそれ以下の低温の雰囲気下で樹脂を軟化させた状態で成形体の形状に賦形することも、特に複雑な形状の場合は効果的である。更にまた、同じRFI成形でプレスを真空バッグやオートクレーブで行ってもよい。   FIG. 5 shows another FRP molding method. That is, a semi-cured thermosetting resin sheet 93 is laminated with the reinforcing fiber base 90 in pairs, and a mold (upper mold) heated to a temperature at which the resin is completely cured after being laminated in a predetermined number or more. 91, lower mold 92), which is a so-called RFI (Resin Film Infusion) hot press molding method. Compared to the RTM molding method, it is difficult to degas the base material, so there are drawbacks that voids and pinholes are likely to occur, but it can be easily molded simply by hot pressing with a press machine, There is a merit that facilities are unnecessary and a relatively light facility is sufficient. However, the degassing is considerably improved if the whole is covered with a film in a state where the resin sheet and the base material are laminated by external setup and vacuum suction is performed. In addition, it is also effective to form a molded product in the softened state in a low temperature atmosphere of 20 to 40 ° C. lower or lower than the resin curing temperature at the same time as degassing. Is. Furthermore, you may press with a vacuum bag and an autoclave by the same RFI shaping | molding.

表1に実施例、比較例の条件および結果を示す。実施例および比較例で適用したマトリックス樹脂は、総てエポキシ樹脂であり、成形方法によってその形態は異なるが、物性上の差異はない。   Table 1 shows the conditions and results of Examples and Comparative Examples. The matrix resins applied in the examples and comparative examples are all epoxy resins, and the form varies depending on the molding method, but there is no difference in physical properties.

<実施例1>
(1)強化繊維:東レ株式会社製炭素繊維“トレカ”T700SC×12K、カット長=8mm
(2)基材分散方法:湿式の分散方法として、抄紙プロセスにて単糸レベル近くまで開繊されており、また90%以上が真直繊維であり繊維同士の絡みや折れ、曲がりなどは、体積比率で全体の5%以下であった。
目付/層:150 g/m2、結着剤;PVA。
各繊維束の単糸本数は20本/束以上のものはなく、また各々の繊維束端部間の健全繊維束数は単糸数で約150本以上のものが全体の95%以上であることを確認した。
(3)FRP成形:RTM成形法を適用。形状、方法は図4に示した通りで、成形温度は100℃であった。
上記(2)の基材を8層積層し、中間に下記の易樹脂流動媒体を配設した。
易樹脂流動媒体部を除く繊維体積含有率が50%になる板厚で成形した。
易樹脂流動媒体:NBC社製メッシュ織物、ナイロンメッシュンNB20(布帛の形態;ナイロン平織物、厚み;520μm)
FRP成形品を約500℃で加熱して樹脂を焼き飛ばし、残った強化繊維を分析した結果は、表1の実施例1に示す通りで本発明を満足するものであった。
<Example 1>
(1) Reinforcing fiber: Toray Industries, Inc. carbon fiber “Torayca” T700SC × 12K, cut length = 8 mm
(2) Substrate dispersion method: As a wet dispersion method, fibers are opened to near the single yarn level in the papermaking process, and more than 90% are straight fibers, and entanglement, bending, bending, etc. of fibers are The ratio was 5% or less of the whole.
Fabric weight / layer: 150 g / m 2 , binder; PVA.
The number of single yarns in each fiber bundle is not more than 20 / bundle, and the number of healthy fiber bundles between the ends of each fiber bundle is about 150% or more of the single yarn and is 95% or more of the total. It was confirmed.
(3) FRP molding: RTM molding method is applied. The shape and method were as shown in FIG. 4, and the molding temperature was 100 ° C.
Eight layers of the base material (2) were laminated, and the following easy resin flow medium was disposed in the middle.
The fiber volume content excluding the easy resin flow medium part was molded at a plate thickness of 50%.
Easy resin flow medium: NBC mesh fabric, nylon meshon NB20 (form of fabric: nylon plain fabric, thickness: 520 μm)
The FRP molded product was heated at about 500 ° C. to burn off the resin, and the result of analyzing the remaining reinforcing fibers was as shown in Example 1 in Table 1 and satisfied the present invention.

<実施例2>
(1)強化繊維:東レ株式会社製炭素繊維(CF)“トレカ”T700SC×6K、カット長=12mm、
日東紡株式会社製ガラス繊維(GF)チョップドストランドCS13C−897、カット長=13mm(フィランメント径=10μm)
(2)基材分散方法:乾式の分散方法として、カード機にて単糸レベル近くまで開繊した。炭素繊維とガラス繊維の比率は、重量比で2:1とした。
目付/層=400g/m2、結着剤;PVA。
各繊維束の単糸本数は50本/束以上のものはなく、また殆どが真直繊維ばかりで、繊維同士が絡み合ったり、折れや曲がりなどは体積比率で全体の3.5%以下であった。
また、各々の繊維束端部間の健全繊維束数は単糸数で約300本以上であるものが全体の90%以上であることを確認した。
(3)FRP成形:RFI成形法を適用した。形状、方法は図5に示した通りである。
上記(2)の基材を3層積層。図5に示す通り、各基材毎にエポキシ樹脂シートを積層し、温度120℃に加熱された金型でホットプレスして成形した。
該エポキシ樹脂シートは、基材に樹脂含浸した際に繊維体積含有率が約52%になる厚みに調整した(樹脂フロー状況で多少ばらつく)。
成形品を同様に加熱し樹脂を焼き飛ばした後の分析結果は表1の通りである。
<Example 2>
(1) Reinforcing fiber: Carbon fiber (CF) “Torayca” T700SC × 6K manufactured by Toray Industries, Inc., cut length = 12 mm,
Nittobo glass fiber (GF) chopped strand CS13C-897, cut length = 13 mm (filament diameter = 10 μm)
(2) Substrate dispersion method: As a dry dispersion method, the fiber was opened to near the single yarn level with a card machine. The ratio of carbon fiber to glass fiber was 2: 1 by weight.
Basis weight / layer = 400 g / m 2 , binder; PVA.
The number of single yarns in each fiber bundle was not more than 50 / bundle, and most were just straight fibers, and the fibers were intertwined, bent or bent, and the volume ratio was 3.5% or less.
Further, it was confirmed that the number of healthy fiber bundles between the end portions of each fiber bundle was about 300% or more in terms of the number of single yarns was 90% or more.
(3) FRP molding: RFI molding method was applied. The shape and method are as shown in FIG.
Three layers of the substrate (2) above are laminated. As shown in FIG. 5, the epoxy resin sheet was laminated | stacked for every base material, and it hot-pressed and shape | molded with the metal mold | die heated at the temperature of 120 degreeC.
The epoxy resin sheet was adjusted to a thickness at which the fiber volume content was about 52% when the base material was impregnated with the resin (varies somewhat in the resin flow situation).
Table 1 shows the analysis results after the molded product was similarly heated to burn off the resin.

<比較例1>
(1)強化繊維:東レ株式会社製炭素繊維“トレカ”T700SC×12K、カット長=23〜25mm
(2)基材分散方法:実施例1と全く同様の抄紙プロセスにて単糸レベル近くまで開繊した。
目付/層=400g/m2、結着剤:PVA。
各繊維束の単糸本数は10本/束〜2K本/束までばらつき、約40%が100本/束以上であった。また、各所に繊維同士の絡みや毛玉、繊維の曲がりが多発していた(体積比率で30%以上)。
各々の繊維束端部間の健全繊維束数は、数束から約100束まであることを確認した。(3)FRP成形:実施例1と全く同様のRTM成形法を適用し、方法、手順、条件も実施例1と同様とした。
上記(2)の基材を8層積層し、中間に実施例1と全く同様の易樹脂流動媒体を配設した。
易樹脂流動媒体部を除く繊維体積含有率が50%になる板厚で成形した。
<Comparative Example 1>
(1) Reinforcing fiber: Carbon fiber “Torayca” T700SC × 12K manufactured by Toray Industries, Inc., cut length = 23-25 mm
(2) Substrate dispersion method: The fiber was opened to near the single yarn level by the same papermaking process as in Example 1.
Basis weight / layer = 400 g / m 2 , binder: PVA.
The number of single yarns in each fiber bundle varied from 10 / bundle to 2K / bundle, and about 40% was 100 / bundle or more. In addition, tangling of fibers, pills, and bending of the fibers frequently occurred in various places (30% or more by volume ratio).
It was confirmed that the number of healthy fiber bundles between each fiber bundle end was from several bundles to about 100 bundles. (3) FRP molding: The same RTM molding method as in Example 1 was applied, and the method, procedure, and conditions were the same as in Example 1.
Eight layers of the base material of (2) above were laminated, and an easy resin flow medium exactly the same as in Example 1 was disposed in the middle.
The fiber volume content excluding the easy resin flow medium part was molded at a plate thickness of 50%.

<比較例2>
(1)強化繊維:東レ株式会社製炭素繊維“トレカ”T700SC×12K、カット長=18〜20mm
(2)基材分散方法:これまでの方法と異なり、一般的なSMC(Sheet Molding Compound)成形法を適用した。先ずSMC成形のための中間基材を、図6の説明時で適用したSMC成形装置にて実施した。
熱硬化性樹脂フィルム上に、強化繊維束(ストランド)を所定の長さにカット(チョップド化)しながらランダムに方向に散布し、ホットプレスしてカットした繊維束に含浸してシート化(中間基材)を作成した。そして、搬送された該シートを所定の長さに切断し、所定の離型紙を介して積層した。
本SMCのシート化にはストランドを更に開繊し、分繊する工程がないので、ほぼ総ての繊維束は単糸レベル近くまでどころか、殆ど分繊されることはなく所定量(12K=単糸12,000本)に収束されたストランドの状態のままであった。ただ、ストランド状態であるので、繊維束の剛性が高いためカット長を長めにしたが、成形前は殆どが真直状態のままであった。
(3)FRP成形:上記SMC基材を所定量使用し、図5の金型を用いてプレス成形した。金型温度は160℃、プレス圧は80kg/cm2とした。繊維体積含浸率を算出すると約34%に相当した。
FRP成形体を約500℃で樹脂を焼き飛ばし、強化繊維の状態を観察した。プレス成形で樹脂と共に繊維束も流動している箇所が多くあったが、繊維束は余り開繊されることなく、多くが12Kのままから、分散されていても3K位までであった。また、コーナや角部などでは樹脂流動と共に流動した繊維束が曲がった状態のものが多く、更にまた繊維束単位で分散しているため、繊維束端部間に全く他の繊維束がないものから、数本の繊維束(従って、12K〜30K本)が健全繊維束として存在していたが、全く健全繊維束がない部位が多数有ったため、強度向上は望めない結果であった。
<Comparative example 2>
(1) Reinforcing fiber: Toray Industries, Inc. carbon fiber “Torayca” T700SC × 12K, cut length = 18-20mm
(2) Base material dispersion method: Unlike conventional methods, a general SMC (Sheet Molding Compound) molding method was applied. First, an intermediate base material for SMC molding was implemented by the SMC molding apparatus applied at the time of the explanation of FIG.
On a thermosetting resin film, reinforcing fiber bundles (strands) are randomly sprinkled in a predetermined length while being cut (chopped) and impregnated into a fiber bundle cut by hot pressing to form a sheet (intermediate) Substrate). And the conveyed sheet | seat was cut | disconnected to predetermined length, and it laminated | stacked through the predetermined release paper.
Since this SMC sheet does not have a process of further opening and splitting the strands, almost all the fiber bundles are not split to the single yarn level, but are almost not split into a predetermined amount (12K = single). 12,000 yarns) were still in the state of strands converged. However, since it was in a strand state, the cut length was lengthened because the fiber bundle had high rigidity, but most of the shape remained straight before molding.
(3) FRP molding: A predetermined amount of the SMC substrate was used, and press molding was performed using the mold shown in FIG. The mold temperature was 160 ° C. and the press pressure was 80 kg / cm 2 . The fiber volume impregnation rate was calculated to correspond to about 34%.
The resin was burned off at about 500 ° C. for the FRP molded body, and the state of the reinforcing fibers was observed. Although many fiber bundles were flowing together with the resin in the press molding, the fiber bundles were not unfolded much, and most of them remained at 12K, and even when dispersed, they were up to about 3K. Also, in many corners and corners, the fiber bundle that has flowed along with the resin flow is bent, and since the fiber bundle is dispersed in units, there is no other fiber bundle between the fiber bundle ends. From these results, several fiber bundles (thus, 12K to 30K) were present as healthy fiber bundles. However, there were many sites without any healthy fiber bundles, and thus no improvement in strength was expected.

上記実施例および比較例に記載した条件でFRP成形した成形体の各種条件および物性測定結果を表1に示す。   Table 1 shows the various conditions and physical property measurement results of the molded articles formed by FRP molding under the conditions described in the above Examples and Comparative Examples.

Figure 2008174605
Figure 2008174605

以上の比較結果から、本発明による強化繊維の分散状態を達成すれば、実施例1や2のように、従来の分散状態に対して大きく、曲げ強度や、参考までに記載したIzod衝撃値までも改善されると言える。   From the above comparison results, if the dispersion state of the reinforcing fiber according to the present invention is achieved, the bending strength and the Izod impact value described for reference are large as compared with the conventional dispersion state as in Examples 1 and 2. Can be said to be improved.

このように、本発明に係る繊維強化樹脂では、強化繊維が短繊維からなるため、織物等の連続繊維に比べて成形前のプリフォーム時に製品形状に賦形し易く、製品形状に近い所謂ニアネットシェイプが可能となり、成形準備工程と成形後工程(バリ除去処理)の簡略化が図れる。また、成形体の強度が向上し、上記効果をなす短繊維構成でありながら、短繊維構成の課題であった強度が大幅に向上し、織物などの連続繊維構成に近い強度を発揮する。すなわち、コストパフォーマンスが大幅に向上する。   As described above, in the fiber reinforced resin according to the present invention, the reinforcing fiber is made of short fibers, so that it is easier to form into a product shape at the time of preforming before molding than a continuous fiber such as a woven fabric, and so-called near-near product shape. Net shape is possible, and the molding preparation process and the post-molding process (burr removal process) can be simplified. Further, the strength of the molded body is improved, and the strength that has been a problem of the short fiber configuration is greatly improved while exhibiting the strength close to that of a continuous fiber such as a woven fabric, although the short fiber configuration has the above effects. That is, cost performance is greatly improved.

本発明に係る繊維強化樹脂は、三次元形状をなすスポーツ用品、自動車用部材、一般産業用途全般に適用可能である。特に、形状が複雑なほど、従来品に比して優位性を発揮できる。   The fiber reinforced resin according to the present invention can be applied to sports equipment, automobile members, and general industrial applications having a three-dimensional shape. In particular, the more complicated the shape, the more superior to the conventional product.

本発明における強化繊維基材の概念を示す説明図である。It is explanatory drawing which shows the concept of the reinforced fiber base material in this invention. 本発明における強化繊維基材の積層形態の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the lamination | stacking form of the reinforced fiber base material in this invention. 本発明において抄造工程を採用する場合の一例を示すバッチ抄造装置の概略構成図である。It is a schematic block diagram of the batch papermaking apparatus which shows an example in the case of employ | adopting a papermaking process in this invention. 本発明におけるRTM成形の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of RTM shaping | molding in this invention. 本発明におけるRFI成形の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of RFI shaping | molding in this invention. 従来のSMCにおける強化繊維基材の一例を示す概略部分平面図である。It is a general | schematic fragmentary top view which shows an example of the reinforced fiber base material in the conventional SMC.

符号の説明Explanation of symbols

A、B:繊維束
a、b:繊維端部
c :亀裂(クラック)
50 :SMC基材
51 :繊維束(ストランド)
60 :ハイブリッド繊維基材
61 :短繊維基材
62 :連続繊維基材
70 :バッチ抄造装置
71 :混合分散槽
72 :繊維貯蔵槽
73 :分散液貯蔵槽
74 :濾過網
75 :撹拌機
76 :被抄紙基材
77 :排出口
80 :強化繊維基材
81 :上型
82 :下型
83 :吸引口
84 :注入口
85 :易樹脂流動媒体
86 :シール用O−リング
90 :強化繊維基材
91 :上型
92 :下型
93 :熱硬化性樹脂シート
A, B: Fiber bundle a, b: Fiber end c: Crack (crack)
50: SMC base material 51: Fiber bundle (strand)
60: Hybrid fiber base material 61: Short fiber base material 62: Continuous fiber base material 70: Batch paper making apparatus 71: Mixing dispersion tank 72: Fiber storage tank 73: Dispersion liquid storage tank 74: Filter net 75: Stirrer 76: Covered Papermaking base 77: Discharge port 80: Reinforcing fiber base material 81: Upper die 82: Lower die 83: Suction port 84: Injection port 85: Easy resin flow medium 86: O-ring 90 for sealing: Reinforcing fiber base material 91: Upper mold 92: Lower mold 93: Thermosetting resin sheet

Claims (9)

短繊維の強化繊維の繊維束の集団からなる強化繊維基材と熱硬化性樹脂からなるマトリックス樹脂よりなる繊維強化樹脂であって、強化繊維基材の繊維束の90%以上が、単糸数が100本以下となるように分繊された繊維束からなり、真直な繊維束数が全繊維束数の70%以上であり、繊維束の配向が二次元的に擬似等方性であり、かつ、強化繊維の体積含有率が35%以上であることを特徴とする繊維強化樹脂。   A fiber reinforced resin comprising a reinforced fiber base material comprising a group of fiber bundles of short fiber reinforced fibers and a matrix resin comprising a thermosetting resin, wherein 90% or more of the fiber bundles of the reinforced fiber base material have a single yarn number. It consists of fiber bundles that have been split to be 100 or less, the number of straight fiber bundles is 70% or more of the total number of fiber bundles, the orientation of the fiber bundles is two-dimensionally pseudo-isotropic, and A fiber reinforced resin, wherein the volume content of the reinforced fiber is 35% or more. 前記繊維束が、強化繊維の繊維長の95%以上が3mm以上12mm以下の範囲にある炭素繊維を含む、請求項1に記載の繊維強化樹脂。   The fiber reinforced resin according to claim 1, wherein the fiber bundle includes carbon fibers in which 95% or more of the fiber length of the reinforcing fibers is in a range of 3 mm to 12 mm. 前記繊維束が、強化繊維の繊維長の95%以上が3mm以上40mm以下の範囲にあるガラス繊維を含む、請求項1または2に記載の繊維強化樹脂。   The fiber reinforced resin according to claim 1 or 2, wherein the fiber bundle includes glass fibers in which 95% or more of the fiber length of the reinforcing fibers is in the range of 3 mm to 40 mm. 前記強化繊維基材が、前記繊維束を抄紙工程で抄造し、目付を100g/m2以上にした強化繊維基材からなる、請求項1〜3のいずれかに記載の繊維強化樹脂。 The fiber reinforced resin according to any one of claims 1 to 3, wherein the reinforcing fiber base is made of a reinforcing fiber base made by making the fiber bundle in a paper making process and having a basis weight of 100 g / m 2 or more. 前記強化繊維基材が、バッチ抄造により、予め製品形状またはその展開形状に形成された濾過網を用いて抄造された強化繊維基材からなる、請求項4に記載の繊維強化樹脂。   The fiber reinforced resin according to claim 4, wherein the reinforcing fiber base is made of a reinforcing fiber base made by using a filter net formed in advance into a product shape or a developed shape by batch paper making. 前記繊維束が、カード精紡機で開繊された繊維束からなる、請求項1〜5のいずれかに記載の繊維強化樹脂。   The fiber reinforced resin according to any one of claims 1 to 5, wherein the fiber bundle is a fiber bundle opened by a card spinning machine. 前記短繊維の強化繊維の繊維束からなる強化繊維基材の少なくとも一面側に連続繊維からなる別の強化繊維基材が配設されている、請求項1〜6のいずれかに記載の繊維強化樹脂。   The fiber reinforcement in any one of Claims 1-6 by which another reinforcement fiber base material which consists of continuous fibers is arrange | positioned by the at least one surface side of the reinforcing fiber base material which consists of a fiber bundle of the said short fiber reinforcement fiber. resin. RTM成形方法で成形されたものからなる、請求項1〜7のいずれかに記載の繊維強化樹脂。   The fiber reinforced resin according to any one of claims 1 to 7, wherein the fiber reinforced resin is formed by an RTM molding method. RFI成形方法で成形されたものからなる、請求項1〜7のいずれかに記載の繊維強化樹脂。   The fiber reinforced resin according to any one of claims 1 to 7, wherein the fiber reinforced resin is formed by an RFI molding method.
JP2007007802A 2007-01-17 2007-01-17 Fiber reinforced resin Expired - Fee Related JP5194453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007007802A JP5194453B2 (en) 2007-01-17 2007-01-17 Fiber reinforced resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007007802A JP5194453B2 (en) 2007-01-17 2007-01-17 Fiber reinforced resin

Publications (2)

Publication Number Publication Date
JP2008174605A true JP2008174605A (en) 2008-07-31
JP5194453B2 JP5194453B2 (en) 2013-05-08

Family

ID=39701864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007007802A Expired - Fee Related JP5194453B2 (en) 2007-01-17 2007-01-17 Fiber reinforced resin

Country Status (1)

Country Link
JP (1) JP5194453B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013056985A (en) * 2011-09-07 2013-03-28 Awa Paper Mfg Co Ltd Method for producing prepreg and method for producing fiber-reinforced thermosetting resin formed body
EP2671991A1 (en) * 2011-02-01 2013-12-11 Teijin Limited Random mat and fiber reinforced composite material
WO2013191073A1 (en) * 2012-06-18 2013-12-27 東レ株式会社 Carbon fiber mat and carbon fiber composite material including same
JP2014148124A (en) * 2013-02-01 2014-08-21 Sato Tekkosho:Kk Molding method and molding apparatus
JP2015515390A (en) * 2012-02-28 2015-05-28 オートモビリ ランボルギーニ ソチエタ ペル アツイオニ Method for producing carbon fiber article and article produced by this method
KR101536502B1 (en) * 2011-04-14 2015-07-13 데이진 가부시키가이샤 Reinforcing fiber composite material
WO2016136790A1 (en) * 2015-02-27 2016-09-01 東レ株式会社 Resin supply material, preform, and method for producing fiber-reinforced resin
WO2016158436A1 (en) * 2015-03-30 2016-10-06 東レ株式会社 Fiber-reinforced resin molding material and method for producing same
WO2017043325A1 (en) * 2015-09-07 2017-03-16 Dic株式会社 Heat-compression-molding molding material, molded product in which same is used, and method for manufacturing same
KR20170056581A (en) 2014-09-17 2017-05-23 도레이 카부시키가이샤 Fiber-reinforced resin molding material
WO2017159263A1 (en) 2016-03-15 2017-09-21 東レ株式会社 Fiber-reinforced resin molding material and production method therefor
JP2018192717A (en) * 2017-05-18 2018-12-06 学校法人金沢工業大学 Reinforcing fiber base material and preform
JP2019044542A (en) * 2017-09-06 2019-03-22 小松マテーレ株式会社 Concrete column reinforcement device
KR20190068523A (en) 2016-10-12 2019-06-18 도레이 카부시키가이샤 RANDOM MAT, METHOD FOR MANUFACTURING THE SAME,
CN110527117A (en) * 2019-10-21 2019-12-03 滕州深水湾复合材料科技有限公司 A kind of manufacturing method of fibre reinforced moulding compound
CN111559092A (en) * 2019-02-14 2020-08-21 波音公司 Forming tool for mixing multiple parts of resin for composite parts
JPWO2021182172A1 (en) * 2020-03-11 2021-09-16
CN114801406A (en) * 2022-03-30 2022-07-29 亨弗劳恩(江苏)复合材料研发有限公司 System and method for preparing recycled carbon fiber SMC material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07314474A (en) * 1994-05-26 1995-12-05 Kobe Steel Ltd Profile fiber reinforced plastic, and its production
JP2006077343A (en) * 2004-09-08 2006-03-23 Toray Ind Inc Carbon fiber mat, method for producing the same, substrate for forming by using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07314474A (en) * 1994-05-26 1995-12-05 Kobe Steel Ltd Profile fiber reinforced plastic, and its production
JP2006077343A (en) * 2004-09-08 2006-03-23 Toray Ind Inc Carbon fiber mat, method for producing the same, substrate for forming by using the same

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2671991A1 (en) * 2011-02-01 2013-12-11 Teijin Limited Random mat and fiber reinforced composite material
EP2671991A4 (en) * 2011-02-01 2014-05-21 Teijin Ltd Random mat and fiber reinforced composite material
US8946342B2 (en) 2011-02-01 2015-02-03 Teijin Limited Random mat and fiber-reinforced composite material
KR101536502B1 (en) * 2011-04-14 2015-07-13 데이진 가부시키가이샤 Reinforcing fiber composite material
JP2013056985A (en) * 2011-09-07 2013-03-28 Awa Paper Mfg Co Ltd Method for producing prepreg and method for producing fiber-reinforced thermosetting resin formed body
JP2015515390A (en) * 2012-02-28 2015-05-28 オートモビリ ランボルギーニ ソチエタ ペル アツイオニ Method for producing carbon fiber article and article produced by this method
WO2013191073A1 (en) * 2012-06-18 2013-12-27 東レ株式会社 Carbon fiber mat and carbon fiber composite material including same
JP2014148124A (en) * 2013-02-01 2014-08-21 Sato Tekkosho:Kk Molding method and molding apparatus
KR20170056581A (en) 2014-09-17 2017-05-23 도레이 카부시키가이샤 Fiber-reinforced resin molding material
US10392482B2 (en) 2014-09-17 2019-08-27 Toray Industries, Inc. Fiber-reinforced resin molding material and production method thereof
EP3195994A4 (en) * 2014-09-17 2018-06-13 Toray Industries, Inc. Fiber-reinforced resin molding material
US10822463B2 (en) 2015-02-27 2020-11-03 Toray Industries, Inc. Resin supply material, preform, and method of producing fiber-reinforced resin
JPWO2016136790A1 (en) * 2015-02-27 2017-11-30 東レ株式会社 Resin supply material, preform, and method for producing fiber reinforced resin
WO2016136790A1 (en) * 2015-02-27 2016-09-01 東レ株式会社 Resin supply material, preform, and method for producing fiber-reinforced resin
US10309045B2 (en) 2015-03-30 2019-06-04 Toray Industries, Inc. Fiber-reinforced resin forming material and method of producing same
KR102478812B1 (en) * 2015-03-30 2022-12-19 도레이 카부시키가이샤 Fiber-reinforced resin molding material and manufacturing method thereof
KR20170132209A (en) 2015-03-30 2017-12-01 도레이 카부시키가이샤 Fiber-reinforced resin molding material and its manufacturing method
JPWO2016158436A1 (en) * 2015-03-30 2018-01-25 東レ株式会社 Fiber-reinforced resin molding material and method for producing the same
WO2016158436A1 (en) * 2015-03-30 2016-10-06 東レ株式会社 Fiber-reinforced resin molding material and method for producing same
JP6156612B1 (en) * 2015-09-07 2017-07-05 Dic株式会社 Molding material for heat compression molding, molded product using the same, and method for producing the same
WO2017043325A1 (en) * 2015-09-07 2017-03-16 Dic株式会社 Heat-compression-molding molding material, molded product in which same is used, and method for manufacturing same
CN108026294A (en) * 2015-09-07 2018-05-11 Dic株式会社 Heat compression molding moulding material, formed products and its manufacture method using it
US11097448B2 (en) 2016-03-15 2021-08-24 Toray Industries, Inc. Fiber-reinforced resin molding material and production method therefor
WO2017159263A1 (en) 2016-03-15 2017-09-21 東レ株式会社 Fiber-reinforced resin molding material and production method therefor
KR20190068523A (en) 2016-10-12 2019-06-18 도레이 카부시키가이샤 RANDOM MAT, METHOD FOR MANUFACTURING THE SAME,
US11168190B2 (en) 2016-10-12 2021-11-09 Toray Industries, Inc. Random mat and production method therefor, and fiber-reinforced resin molding material using random mat
JP2018192717A (en) * 2017-05-18 2018-12-06 学校法人金沢工業大学 Reinforcing fiber base material and preform
JP2019044542A (en) * 2017-09-06 2019-03-22 小松マテーレ株式会社 Concrete column reinforcement device
CN111559092A (en) * 2019-02-14 2020-08-21 波音公司 Forming tool for mixing multiple parts of resin for composite parts
US11883983B2 (en) 2019-02-14 2024-01-30 The Boeing Company Forming tools that mix multi-part resin for composite parts
CN111559092B (en) * 2019-02-14 2023-10-27 波音公司 Method and system for mixing portions of thermosetting resin
CN110527117A (en) * 2019-10-21 2019-12-03 滕州深水湾复合材料科技有限公司 A kind of manufacturing method of fibre reinforced moulding compound
CN110527117B (en) * 2019-10-21 2020-09-25 滕州深水湾复合材料科技有限公司 Method for manufacturing carbon fiber reinforced molding compound
WO2021182172A1 (en) * 2020-03-11 2021-09-16 三菱ケミカル株式会社 Cfrp structural body, method for producing cfrp structural body, carbon fiber prepreg, and method for producing carbon fiber prepreg
JP7279849B2 (en) 2020-03-11 2023-05-23 三菱ケミカル株式会社 CFRP structure, CFRP structure manufacturing method, carbon fiber prepreg, and carbon fiber prepreg manufacturing method
JPWO2021182172A1 (en) * 2020-03-11 2021-09-16
CN114801406A (en) * 2022-03-30 2022-07-29 亨弗劳恩(江苏)复合材料研发有限公司 System and method for preparing recycled carbon fiber SMC material
CN114801406B (en) * 2022-03-30 2024-03-12 亨弗劳恩(江苏)复合材料研发有限公司 System and method for preparing recycled carbon fiber SMC material

Also Published As

Publication number Publication date
JP5194453B2 (en) 2013-05-08

Similar Documents

Publication Publication Date Title
JP5194453B2 (en) Fiber reinforced resin
US9909253B2 (en) Random mat, shaped product of fiber reinforced composite material, and carbon fiber mat
DK1802453T3 (en) Infusionsstof for forming large composite structures
EP2702092B1 (en) Steel fiber reinforced composites
JP6944658B2 (en) Fiber reinforced resin molded product and its compression molding method
US9579861B2 (en) Laminate pre-form for a wind turbine blade
JP2018080442A (en) Plane composite material
JP6700049B2 (en) Carbon fiber sheet material, prepreg, laminated body, molded body and manufacturing method thereof
CN107428997A (en) Porous fiber enhancing composite and preparation method thereof
JP2007512449A (en) Needle glass mat
JP2018043412A (en) Laminated base material for rib formation
JP2004518834A (en) Reinforcement using bulk processed fiber
WO2013191073A1 (en) Carbon fiber mat and carbon fiber composite material including same
JP2005313455A (en) Multi-axis fabric, its production method, preform material, and fiber-reinfoced plastic molding
JP2005526188A (en) Natural and fiberglass mat
JP2011202303A (en) Fiber structure and method for producing the same, and preform
Kim Hybrid composites with natural fibres
JPH11285094A (en) Speaker diaphragm
JP2011202304A (en) Fiber structure and method for producing the same, and preform
JPH0790551B2 (en) Non-woven fabric for resin reinforcement and molding sheet using the non-woven fabric
CN106915002A (en) A kind of method that unidirectional prepreg tape sewing molding prepares composite board
JP2008169514A (en) Base material for preform
JPH0538717A (en) Composite sheet for reinforcing reaction injection molded body
JP2016107548A (en) Stampable base material, manufacturing method thereof, and stamping molded article
JP2002283466A (en) Braided cloth for frp pipe and frp pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5194453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees